
Studies in Computational Intelligence 625

Anis Koubaa Editor

Robot
Operating
System (ROS)
The Complete Reference (Volume 1)

Studies in Computational Intelligence

Volume 625

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Anis Koubaa
Editor

Robot Operating System
(ROS)
The Complete Reference (Volume 1)

123

Editor
Anis Koubaa
Prince Sultan University
Riyadh
Saudi Arabia

and

CISTER/INESC-TEC, ISEP
Polytechnic Institute of Porto
Porto
Portugal

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-26052-5 ISBN 978-3-319-26054-9 (eBook)
DOI 10.1007/978-3-319-26054-9

Library of Congress Control Number: 2015955867

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

ROS is an open-source robotic middleware for the large-scale development of
complex robotic systems. Although the research community is quite active in
developing applications with ROS and extending its features, the amount of ref-
erences does not translate the huge amount of work being done.

The objective of the book is to provide the reader with a comprehensive cov-
erage of the Robot Operating Systems (ROS) and the latest related systems, which
is currently considered as the main development framework for robotics
applications.

There are 27 chapters organized into eight parts. Part I presents the basics and
foundations of ROS. In Part II, four chapters deal with navigation, motion and
planning. Part III provides four examples of service and experimental robots.
Part IV deals with real-world deployment of applications. Part V presents
signal-processing tools for perception and sensing. Part VI provides software
engineering methodologies to design complex software with ROS. Simulations
frameworks are presented in Part VII. Finally, Part VIII presents advanced tools and
frameworks for ROS including multi-master extension, network introspection,
controllers and cognitive systems.

I believe that this book will be a valuable companion for ROS users and
developers to learn more about ROS capabilities and features.

January 2016 Anis Koubaa

v

Acknowledgements

The editor would like to acknowledge the support of King Abdulaziz City for
Science and Technology (KACST) through the funded research project entitled
“MyBot: A Personal Assistant Robot Case Study for Elderly People Care” under
the grant number 34-75, and also the support of Prince Sultan University.

vii

Acknowledgements to Reviewers

The Editor would like to thank the following reviewers for their great contributions
in the review process of the book by providing a quality feedback to authors.

Yasir Javed Prince Sultan University

André S. De Oliveira Universidade Tecnológica Federal do Paraná

Bence Magyar PAL Robotics

Alfredo Soto Freescale Semiconductors

Huimin Lu National University of Defense Technology

Dirk Thomas Open Source Robotics Foundation

Walter Fetter Lages Universidade Federal do Rio Grande do Sul

Roberto Guzman Robotnik

Joao Fabro Universidade Tecnológica Federal do Paraná

Ugo Cupcic SHADOW ROBOT COMPANY LTD.

Rafael Bekrvens University of Antwerp

Andreas Bihlmaier Karlsruhe Institute of Technologie (KIT)

Timo Röhling Fraunhofer FKIE

Maram Alajlan Al-Imam Mohamed bin Saud University

Timm Linder Social Robotics Lab, University of Freiburg

Fadri Furrer Autonomous Systems Lab, ETH Zurich

Péter Fankhauser ETH Zurich

William Woodall Open Source Robotics Foundation

Jenssen Chang Gaitech International Ltd.

William Morris Undefined

Markus Achtelik Autonomous Systems Lab, ETH Zurich

Chienliang Fok University of Texas at Austin

Mohamedfoued Sriti Al-Imam Muhammad Ibn Saud Islamic University

Steven Peters Open Source Robotics Foundation

ix

Contents

Part I ROS Basics and Foundations

MoveIt!: An Introduction . 3
Sachin Chitta

Hands-on Learning of ROS Using Common Hardware 29
Andreas Bihlmaier and Heinz Wörn

Threaded Applications with the roscpp API . 51
Hunter L. Allen

Part II Navigation, Motion and Planning

Writing Global Path Planners Plugins in ROS: A Tutorial 73
Maram Alajlan and Anis Koubâa

A Universal Grid Map Library: Implementation and Use Case
for Rough Terrain Navigation . 99
Péter Fankhauser and Marco Hutter

ROS Navigation: Concepts and Tutorial . 121
Rodrigo Longhi Guimarães, André Schneider de Oliveira,
João Alberto Fabro, Thiago Becker and Vinícius Amilgar Brenner

Localization and Navigation of a Climbing Robot Inside a LPG
Spherical Tank Based on Dual-LIDAR Scanning of Weld Beads 161
Ricardo S. da Veiga, Andre Schneider de Oliveira, Lucia Valeria Ramos de
Arruda and Flavio Neves Junior

Part III Service and Experimental Robots

People Detection, Tracking and Visualization Using ROS
on a Mobile Service Robot . 187
Timm Linder and Kai O. Arras

xi

http://dx.doi.org/10.1007/978-3-319-26054-9_1
http://dx.doi.org/10.1007/978-3-319-26054-9_2
http://dx.doi.org/10.1007/978-3-319-26054-9_3
http://dx.doi.org/10.1007/978-3-319-26054-9_4
http://dx.doi.org/10.1007/978-3-319-26054-9_5
http://dx.doi.org/10.1007/978-3-319-26054-9_5
http://dx.doi.org/10.1007/978-3-319-26054-9_6
http://dx.doi.org/10.1007/978-3-319-26054-9_7
http://dx.doi.org/10.1007/978-3-319-26054-9_7
http://dx.doi.org/10.1007/978-3-319-26054-9_8
http://dx.doi.org/10.1007/978-3-319-26054-9_8

A ROS-Based System for an Autonomous Service Robot 215
Viktor Seib, Raphael Memmesheimer and Dietrich Paulus

Robotnik—Professional Service Robotics Applications with ROS. 253
Roberto Guzman, Roman Navarro, Marc Beneto and Daniel Carbonell

Standardization of a Heterogeneous Robots Society Based on ROS 289
Igor Rodriguez, Ekaitz Jauregi, Aitzol Astigarraga, Txelo Ruiz
and Elena Lazkano

Part IV Real-World Applications Deployment

ROS-Based Cognitive Surgical Robotics . 317
Andreas Bihlmaier, Tim Beyl, Philip Nicolai, Mirko Kunze,
Julien Mintenbeck, Luzie Schreiter, Thorsten Brennecke,
Jessica Hutzl, Jörg Raczkowsky and Heinz Wörn

ROS in Space: A Case Study on Robonaut 2 . 343
Julia Badger, Dustin Gooding, Kody Ensley, Kimberly Hambuchen
and Allison Thackston

ROS in the MOnarCH Project: A Case Study in Networked Robot
Systems . 375
João Messias, Rodrigo Ventura, Pedro Lima and João Sequeira

Case Study: Hyper-Spectral Mapping and Thermal Analysis 397
William Morris

Part V Perception and Sensing

A Distributed Calibration Algorithm for Color and Range Camera
Networks . 413
Filippo Basso, Riccardo Levorato, Matteo Munaro
and Emanuele Menegatti

Acoustic Source Localization for Robotics Networks 437
Riccardo Levorato and Enrico Pagello

Part VI Software Engineering with ROS

ROS Web Services: A Tutorial . 463
Fatma Ellouze, Anis Koubâa and Habib Youssef

rapros: A ROS Package for Rapid Prototyping. 491
Luca Cavanini, Gionata Cimini, Alessandro Freddi, Gianluca Ippoliti
and Andrea Monteriù

HyperFlex: A Model Driven Toolchain for Designing and
Configuring Software Control Systems for Autonomous Robots 509
Davide Brugali and Luca Gherardi

xii Contents

http://dx.doi.org/10.1007/978-3-319-26054-9_9
http://dx.doi.org/10.1007/978-3-319-26054-9_10
http://dx.doi.org/10.1007/978-3-319-26054-9_11
http://dx.doi.org/10.1007/978-3-319-26054-9_12
http://dx.doi.org/10.1007/978-3-319-26054-9_13
http://dx.doi.org/10.1007/978-3-319-26054-9_14
http://dx.doi.org/10.1007/978-3-319-26054-9_14
http://dx.doi.org/10.1007/978-3-319-26054-9_15
http://dx.doi.org/10.1007/978-3-319-26054-9_16
http://dx.doi.org/10.1007/978-3-319-26054-9_16
http://dx.doi.org/10.1007/978-3-319-26054-9_17
http://dx.doi.org/10.1007/978-3-319-26054-9_18
http://dx.doi.org/10.1007/978-3-319-26054-9_19
http://dx.doi.org/10.1007/978-3-319-26054-9_20
http://dx.doi.org/10.1007/978-3-319-26054-9_20

Integration and Usage of a ROS-Based Whole Body Control
Software Framework. 535
Chien-Liang Fok and Luis Sentis

Part VII ROS Simulation Frameworks

Simulation of Closed Kinematic Chains in Realistic Environments
Using Gazebo . 567
Michael Bailey, Krystian Gebis and Miloš Žefran

RotorS—A Modular Gazebo MAV Simulator Framework 595
Fadri Furrer, Michael Burri, Markus Achtelik and Roland Siegwart

Part VIII Advanced Tools for ROS

The ROS Multimaster Extension for Simplified Deployment
of Multi-Robot Systems . 629
Alexander Tiderko, Frank Hoeller and Timo Röhling

Advanced ROS Network Introspection (ARNI) 651
Andreas Bihlmaier, Matthias Hadlich and Heinz Wörn

Implementation of Real-Time Joint Controllers 671
Walter Fetter Lages

LIDA Bridge—A ROS Interface to the LIDA
(Learning Intelligent Distribution Agent) Framework 703
Thiago Becker, André Schneider de Oliveira, João Alberto Fabro
and Rodrigo Longhi Guimarães

Contents xiii

http://dx.doi.org/10.1007/978-3-319-26054-9_21
http://dx.doi.org/10.1007/978-3-319-26054-9_21
http://dx.doi.org/10.1007/978-3-319-26054-9_22
http://dx.doi.org/10.1007/978-3-319-26054-9_22
http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_24
http://dx.doi.org/10.1007/978-3-319-26054-9_24
http://dx.doi.org/10.1007/978-3-319-26054-9_25
http://dx.doi.org/10.1007/978-3-319-26054-9_26
http://dx.doi.org/10.1007/978-3-319-26054-9_27
http://dx.doi.org/10.1007/978-3-319-26054-9_27

Part I
ROS Basics and Foundations

MoveIt!: An Introduction

Sachin Chitta

Abstract MoveIt! is state of the art software for mobile manipulation, incorporating
the latest advances in motion planning, manipulation, 3D perception, kinematics,
control and navigation. It provides an easy-to-use platform for developing advanced
robotics applications, evaluating new robot designs and building integrated robotics
products for industrial, commercial, R&D and other domains. MoveIt! is the most
widely used open-source software for manipulation and has been used on over 65
different robots. This tutorial is intended for both new and advanced users: it will
teach new users how to integrate MoveIt! with their robots while advanced users will
also be able to get information on features that they may not be familiar with.

1 Introduction

Robotics has undergone a transformational change over the last decade. The advent
of new open-source frameworks like ROS and MoveIt! has made robotics more
accessible to new users, both in research and consumer applications. In particular,
ROS has revolutionized the developers community, providing it with a set of tools,
infrastructure and best practices to build new applications and robots (like the Baxter
research robot). A key pillar of the ROS effort is the notion of not re-inventing the
wheel by providing easy to use libraries for different capabilities like navigation,
manipulation, control (and more).

MoveIt! provides the core functionality for manipulation in ROS. MoveIt! builds
on multiple pillars:

• A library of capabilities: MoveIt! provides a library of robotic capabilities for
manipulation, motion planning, control and mobile manipulation.

• A strong community: A strong community of users and developers that help in
maintaining and extending MoveIt! to new applications.

S. Chitta (B)
Kinema Systems Inc., Menlo Park, CA 94025, USA
e-mail: robot.moveit@gmail.com
URL: http://moveit.ros.org

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_1

3

4 S. Chitta

Fig. 1 Robots using MoveIt!

• Tools: A set of tools that allow new users to integrate MoveIt! with their robots
and advanced users to deploy new applications.

Figure1 shows a list of robots that MoveIt! has been used with. The robots range
from industrial robots from all the leading vendors and research robots from all over
the world. The robots include single arm, dual-armed robots, mobile manipulation
systems, and humanoid robots. MoveIt! has been used in applications ranging from
search and rescue (the DARPA robotics challenge), unstructured autonomous pick
and place (with industrial robots like the UR5), mobile manipulation (with the PR2
and other robots), process tasks like painting and welding, with the (simulated)
Robonaut robot for target applications in the space station. MoveIt! has been used
or will be used by teams in the DARPA Robotics Challenge, the ROS-Industrial
Consortium, the upcoming Amazon Picking Challenge, the NASA sample retrieval
challenge.

2 A Brief History

MoveIt! evolved from the Arm Navigation framework [1, 2] in ROS. The Arm
Navigation framework was developed after the development of the base navigation
stack in ROS to provide the same functionality that was now available for base
navigation in ROS. It combined kinematics, motion planning, 3D perception and an
interface to control to provide the base functionality ofmoving an arm in unstructured
environments. The central node in theArmNavigation framework, calledmove_arm,
was designed to be robot agnostic, i.e. usable with any robot. It connected to several
other nodes, for kinematics, motion planning, 3D perception and other capabilities,
to generate collision-free trajectories for robot arms. TheArmNavigation framework
was further combined with the ROS grasping pipeline to create, for the first time,
a general grasping and manipulation framework that could (and was) ported onto
several different robots with different kinematics and grippers.

MoveIt!: An Introduction 5

The Arm Navigation framework had several shortcomings. Each capability in the
framework was designed as a separate ROS node. This required sharing data (par-
ticularly environment data) across several processes. The need for synchronization
between the nodes led to several issues: (a) a mis-match of state between separate
nodes often resulted in motion plans that were invalid, (b) communication bottle-
necks because of the need to send expensive 3D data to several different nodes and
(c) difficulty in extending the types of services offered bymove_arm since it required
changing the structure of the node itself. MoveIt! was designed to address all of these
issues.

3 MoveIt! Architecture

The architecture of MoveIt! is shown in Fig. 2. The central node in MoveIt! is called
move_group. It is intended to be light-weight, managing different capabilities and
integrating kinematics, motion planning and perception. It uses a plugin-based archi-
tecture (adopted from ROS)—dramatically improving MoveIt!’s extensibility when
compared to Arm Navigation. The plugin architecture allows users to add and share
capabilities easily, e.g. a new implementation of pick and place or motion planning.
The use of plugins is a central feature of MoveIt! and differentiates it from Arm
Navigation.

Users can access the actions and services provided by move_group in one of three
ways:

• In C++: using the move_group_interface package that provides an easy to setup
interface to move_group using a C++ API. This API is primarily meant for
advanced users and is useful when creating higher-level capabilities.

Fig. 2 MoveIt! high-level architecture

6 S. Chitta

• In Python: using the moveit_commander package. This API is recommended for
scripting demos and for building applications.

• Through a GUI: using the Motion Planning plugin to Rviz (the ROS visualizer).
This API is recommended for visualization, initial interaction with robots through
MoveIt! and for quick demonstrations.

One of the primary design principles behind MoveIt! is to expose an easy to use
API for beginners to use while retaining access to the entire underlying API for
more advanced users. MoveIt! users can access any part of the functionality directly
if desired, allowing custom users to modify and architect their own applications.
MoveIt! builds on several component technologies, each of which we will describe
in brief detail.

3.1 Collision Checking

MoveIt! relies on the FCL [3] package for native collision checking. The collision
checking capabilities are implemented using a plugin architecture, allowing any
collision checker to be integrated with MoveIt!. FCL provides a state of the art
implementation of collision checking, including the ability to do continuous collision
checking. Collision checking is often the most expensive part of motion planning,
consuming almost 80–90% of the time for generating a motion plan. The use of an
Allowed Collision Matrix allows a user to specify which pairs of bodies do
not need to be checked against each other, saving significant time. The Allowed
Collision Matrix is automatically configured by the MoveIt! Setup Assistant but
can also be modified online by the user.

3.2 Kinematics

MoveIt! utilizes a plugin-based architecture for solving inverse kinematics while
providing a native implementation of forward kinematics. Natively, MoveIt! uses a
numerical solver for inverse kinematics for any robot. Users are free to add their own
custom solvers, in particular analytic solvers are much faster than the native solver.
Examples of analytic solvers that are integrated with MoveIt! include the solver for
the PR2 robot. A popular plugin-based solver for MoveIt! is based on IKFast [4] and
offers analytic solvers for industrial arms that are generated (in code).

3.3 Motion Planning

MoveIt! works with motion planners through a plugin interface. This allowsMoveIt!
to communicate with and use different motion planners from multiple libraries,

MoveIt!: An Introduction 7

making MoveIt! easily extensible. The interface to the motion planners is through
a ROS Action or service (offered by the move_group node). The default motion
planners for move_group are configured using the MoveIt! Setup Assistant. OMPL
(Open Motion Planning Library) is an open-source motion planning library that pri-
marily implements randomized motion planners. MoveIt! integrates directly with
OMPL and uses the motion planners from that library as its primary/default set of
planners. The planners in OMPL are abstract; i.e. OMPL has no concept of a robot.
Instead, MoveIt! configures OMPL and provides the back-end for OMPL to work
with problems in Robotics.

3.4 Planning Scene

The planning scene is used to represent the world around the robot and also stores
the state of the robot itself. It is maintained by the planning scene monitor inside the
move group node. The planning scene monitor listens to:

• Robot State Information: on the joint_states topic and using transform informa-
tion from the ROS TF transform tree.

• Sensor Information: using a world geometry monitor that integrates 3D occu-
pancy information and other object information.

• World Geometry Information: from user input or other sources, e.g. from an
object recognition service.

The planning scene interface provides the primary interface for users to modify the
state of the world that the robot operates in.

3.5 3D Perception

3D perception inMoveIt! is handled by the occupancy map monitor. The Occupancy
map monitor uses an Octomap to maintain the occupancy map of the environment.
The Octomap can actually encode probabilistic information about individual cells
although this information is not currently used inMoveIt!. The Octomap can directly
be passed into FCL, the collision checking library that MoveIt! uses. Input to the
occupancy map monitor is from depth images, e.g. from an ASUS Xtion Pro Sensor
or theKinect 2 sensor. The depth image occupancymap updater includes its own self-
filter, i.e. it will remove visible parts of the robot from the depth map. It uses current
information about the robot (the robot state) to carry out this operation. Figure3
shows the architecture corresponding to the 3D perception components in MoveIt!.

8 S. Chitta

Fig. 3 The 3D perception pipeline in MoveIt!: architecture

3.6 Trajectory Processing

MoveIt! includes a trajectory processing component. Motion planners will typically
only generate paths, i.e. there is no timing information associated with the paths.
MoveIt! includes trajectory processing routines that can work on these paths and
generate trajectories that are properly time-parameterized accounting for the maxi-
mum velocity and acceleration limits imposed on individual joints. These limits are
read from a seperate file specified for each robot.

3.7 Using This Tutorial

MoveIt! is a large package and it is impossible to cover it in its entirety in a book
chapter. This document serves as a reference for the tutorial that users can use but
must be used in conjunction with the online documentation on the MoveIt! website.
The online resourcewill remain themost up to date source of information onMoveIt!.
This paper will introduce the most important concepts in MoveIt! and also provide
helpful hints for new users. We assume that the user is already familiary with ROS.
Readers should go through the ROS Tutorials—in particular, they should learn about
ROS topics, services, using the ROS parameter server, ROS actions, the ROS build
system and the ROS transform infrastructure (TF).

The example URDFs and MoveIt! config packages used in this tutorial for the
Fanuc M10ia robot can be found in the examples repository.

http://moveit.ros.org
http://wiki.ros.org/ROS/Tutorials
https://github.com/sachinchitta/moveit_examples.git

MoveIt!: An Introduction 9

3.8 Installing MoveIt!

MoveIt! can easily be installed on aUbuntu 14.04 distribution using ROS Indigo. The
most updated instructions for installing MoveIt! can be found on the MoveIt! instal-
lation page. It is recommended that most users follow the instructions for installing
from binaries. There are three steps to installing MoveIt!:

1. Install ROS—follow the latest instructions on the ROS installation page.
2. Install MoveIt!:

sudo apt-get install ros-indigo-moveit-full

3. Setup your environment:

source /opt/ros/indigo/setup.bash

4 Starting with MoveIt!: The Setup Assistant

The first step in working with MoveIt! is to use the MoveIt! Setup Assistant.1 The
setup assistant is designed to allow users to import new robots and create a MoveIt!
package for interacting, visualizing and simulating their robot (and associated work-
cell). The primary function of the setup assistant is to generate a Semantic Robot
Description Format (SRDF) file for the robot. It also generates a set of files that
allow the user to start a visualized demonstration of the robot instantly. We will not
describe the Setup Assistant in detail (the latest instructions can always be found
on the MoveIt! website [5]). We will instead focus on the parts of the process that
creates the most confusion for new users.

4.1 Start

To start the setup assistant:

rosrun moveit_setup_assistant moveit_setup_assistant

This will bring up a startup screen with two choices: Create New MoveIt! Configuration

Package or Edit Existing MoveIt! Configuration Package. Users should select Create New

MoveIt! Configuration Package for any new robot or workcell (even if the robots in the
workcells already have their own configuration package). Figure4 illustrates this for

1This tutorial assumes that the user is using ROS Indigo on a Ubuntu 14.04 distribution.

http://moveit.ros.org/install
http://wiki.ros.org/indigo/Installation/Ubuntu

10 S. Chitta

Fig. 4 Loading a Robot into the Setup Assistant

a Fanuc M10ia robot. Note that users can select either a URDF file or a xacro file
(often used to put together multiple robots).

The Setup Assistant is also capable of editing an existing configuration. The
primary reason to edit an existing configuration is to regenerate theAllowedCollision
Matrix (ACM). This matrix needs to be re-generated when any of the following
happens:

• The geometric description of your robot (URDF) has changed—i.e., the mesh
representation being used for the robot has changed. Note here that the collision
mesh representation is the key component of the URDF that MoveIt! uses. Chang-
ing the visual description of the robot while keeping the collision representation
unchanged will not require the MoveIt! Setup Assistant to be run again.

• The joint limits specified for the robot have changed—this changes the limits
that the Setup Assistant uses in sampling states for the Allowed Collision Matrix
(ACM). Failing to run the Setup Assistant again may result in a state where the
robot is allowed to move into configurations where it could be in collision with
itself or with other parts of the environment.

MoveIt!: An Introduction 11

4.2 Generating the Self-Collision Matrix

The key choice in generating the self-collision matrix is the number of random
samples to be generated. Using a higher number results in more samples being
generated but also slows down the process of generating theMoveIt! config package.
Selecting a lower number implies that fewer samples are generated and there is a
possibility that some collision checks may be wrongly disabled. We have found in
practice, that generating at least 10,000 samples (the default value) is a good practice.
Figure5 shows what you should expect to see at the end of this step (Remember to
press the SAVE button!).

4.3 Add Virtual Joints

Virtual joints are sometimes required to specify where the robot is in the world. A
virtual joint could be related to the motion of a mobile base or it could be fixed, e.g.
for an industrial robot bolted to the ground. Virtual joints are not always required—
you can work with the default URDF model of the robot for most robots. If you do
add a virtual joint, remember that there has to be a source of transform information
for it (e.g. a localization module for a mobile base or a TF static transform publisher

Fig. 5 Generating the self-collision matrix

12 S. Chitta

Fig. 6 Adding virtual joints

for a fixed robot). Figure6 illustrates the process of adding a fixed joint that attaches
the robot to the world.

4.4 Planning Groups

Planning groups bring together, semantically, different parts of the robot into a group,
e.g. an arm or a leg. The definition of groups is the primary function of the SRDF.
In the future, it is hoped that this information will move directly into the URDF.
Groups are typically defined by grouping a set of joints together. Every child link of
the joints is now a member of the group. Groups can also be defined as a chain by
specifying the first link and the last link in the chain—this is more convenient when
defining an arm or a leg.

In defining a group, you also have the opportunity to define a kinematic solver
for the group (note that this choice is optional). The default kinematic solver that
is always available for a group is the MoveIt! KDL Kinematics solver built around
the Kinematics Dynamics Library package (KDL). This solver will only work with
chains. It automatically checks (at startup) whether the group it is configured for
is a chain or a disjoint collection of joints. Custom kinematics solvers can also be
integrated into MoveIt! using a plugin architecture and will show up in the list of

MoveIt!: An Introduction 13

Fig. 7 Adding planning groups

choices for choosing a kinematics solver. Note that you may (and should) elect not
to initialize a kinematics solver for certain groups (e.g. a parallel jaw gripper).

Figure7 show an example where a Fanuc robot arm is configured to have a group
that represents its six joints. The joints are added to the group using the “Add Joints”
button (which is the recommended button). You can also define a group using just
a link, e.g. to define an end-effector for the Fanuc M10ia robot, you would use the
tool0 link to define an end-effector group.

4.5 Robot Poses

The user may also add fixed poses of the robot into the SRDF. These poses are
often used to describe configurations that are useful in different situations, e.g. a
home position. These poses are then easily accessible using the internal C++ API
of MoveIt!. Figure8 shows a pose defined for the Fanuc M10ia. Note that these
poses are user-defined and do not correspond to a native zero or home pose for the
robot.

14 S. Chitta

Fig. 8 Adding robot poses

4.6 Passive Joints

Certain joints in the robot can be designated as passive joints. This allows the various
components of MoveIt! to know that such joints cannot be used for planning or
control.

4.7 Adding End-Effectors (Optional)

Certain groups in the robot can be designated as end-effectors. This allows users to
interact through these groups using the Rviz interface. Figure9 shows the gripper
group being designated as an end-effector.

4.8 Configuration Files

The last step in the MoveIt! Setup Assistant is to generate the configuration files that
MoveIt! will use (Fig. 10). Note that it is convention to name the generated MoveIt!
config package as robot_name_moveit_config. E.g. for the Fanuc robot used in our

MoveIt!: An Introduction 15

Fig. 9 Adding end-effectors

Fig. 10 Generating configuration files

16 S. Chitta

example, we would name the package fanuc_m10ia_moveit_config. Now, running
the initial demonstration is easy:

roslaunch <moveit_config_package_name> demo.launch

This entire process is better illustrated in the movie accompanying this paper.

5 Using the Rviz Motion Planning Plugin

The Rviz motion planning plugin is the primary interface for working with MoveIt!.
It allows users to create environments and plan collision-free motions. It is shown
in Fig. 11. Here, using the Context tab, users can make a choice of the type of motion
planner to use. The default planning library available with MoveIt! is the OMPL
library—it is automatically configured by the MoveIt! Setup Assistant. The next tab
(labeled PLANNING) is shown in Fig. 12. It allows users to adjust parameters for the
planning process, including allowed planning time, the number of planning attempts
and the speed of the desired motion (as a percentage of full speed). It also allows
users to configure the start and goal states for planning—they can be configured
randomly, to match the current state of a simulated (or real) robot or to a named state
setup in the MoveIt! Setup Assistant. The PLANNING tab also allows the user to plan
and execute motions for the robot.

The Scene tab allows users to add or delete objects into theworkspace of the robot.
Objects or workcells are typically loaded directly from CAD models, e.g. STL files.

Fig. 11 MoveIt! Rviz Plugin

https://youtu.be/asg-thB3mwA

MoveIt!: An Introduction 17

Fig. 12 MoveIt! Rviz Plugin: the planning interface (left) and the scene tab (right)

Fig. 13 MoveIt! Rviz
Plugin: an imported model

To explore this functionality, first download two files: a simple STL file representing
a box and a representation of a complete scene for the robot to work in (in the .scene
format). These files can be imported into the Planning Scene using the import buttons
in the SCENE tab. To import STL files, use the IMPORT FILE button. To import Scene
files, use the Import From Text button. Figure13 shows a countertop model imported
into MoveIt!. Once you import a model, make sure to return to the CONTEXT tab and
press the Publish Current Scene button to indicate to MoveIt! that it should be working
with an updated model of the environment.

5.1 Visualization and Interaction

The Rviz motion planning plugin is also the primary tool for visualization ofMoveIt!
plans and for interaction with MoveIt! robot models. Figure14 shows the robot
interaction models that the user can interact with. A blue ball attached to the end-
effector allows the user to easily drag the end-effector around in any environment
while ROS interactive markers are used for finer position and orientation control of

18 S. Chitta

Fig. 14 MoveIt! Rviz
Plugin: interaction and
visualization. The blue ball
allows direct position
interaction with the
end-effector of a robot. Path
traces can be visualized in
MoveIt!

the end-effector. Planned paths are visualized using the plugin and can be cycled
continuously for better introspection.

5.2 Useful Hints

It is important, while using the MoveIt! Rviz Plugin, to make sure that the start state
for planning always matches the current state of the robot. It is also important to set
the speed to a conservative limit initially, especially with industrial robots, to make
sure that the robot is moving safely in its environment. User should also check the
collision model of their workcell and ensure that it is an accurate representation of
their workcell.

6 The move_group_interface

Theprimary recommendedcodeAPI toMoveIt! is through themove_group_interface.
It provides both a C++ and Python API to the move_group node. The interface
abstracts the ROS API to MoveIt! and makes it easier to use. The ROS API is con-
figured primarily using constraints, e.g. a position constraint for the end-effector
or joint constraints for the entire robot. A position constraint is typically specified
using a box volume in space for the end-effector. The move_group_interface allows
users to specify these constraints directly as a desired position, orientation or joint
configuration for the robot.

6.1 Planning to a Pose Goal

The code below shows how to plan to move the robot to a pose goal using the
C++ API.

MoveIt!: An Introduction 19

moveit::planning_interface::MoveGroup group(‘‘right_arm’’);

geometry_msgs::Pose target_pose1;
target_pose1.orientation.w = 1.0;
target_pose1.position.x = 0.28;
target_pose1.position.y = -0.7;
target_pose1.position.z = 1.0;
group.setPoseTarget(target_pose1);

moveit::planning_interface::MoveGroup::Plan my_plan;
bool success = group.plan(my_plan);

The first line sets the group that the interface is working with (using the group
name specified in the SRDF). Note the use of a ROS message to specify the pose
target.

6.2 Planning to a Joint Goal

The code below shows how to plan to move the robot to a joint goal using the C++
API.

std::vector<double> group_variable_values;
group.getCurrentState()->copyJointGroupPositions(group.getCurrentState()
->getRobotModel()->getJointModelGroup(group.getName()),

group_variable_values);

group_variable_values[0] = -1.0;
group.setJointValueTarget(group_variable_values);

moveit::planning_interface::MoveGroup::Plan my_plan;
success = group.plan(my_plan);

First, we get the current joint values for the group. Then, we modify one of the joint
values to specify a new target. If the target is outside joint limits, no plan will be
generated.

6.3 Move to Joint or Pose Goals

The process for moving to a joint or pose goal is the same as for planning to these
goals. We will only use a different function call: move().

success = group.move(my_plan);

20 S. Chitta

6.4 Adding Objects into the Environment

Objects can be easily added using both the C++ and Python API and through the
Rviz motion planning plugin. The motion planning plugin allows users to directly
import .STL files (e.g. a representation of the workcell). The main parameters that
can be adjusted are the collision model for the added object and the location of the
object. MoveIt! allows different types of collision models including primitives (box,
cylinder, sphere, cone) and mesh models. Mesh models should be simplified as far
as possible to minimize the number of traingles in them.

Workcell components can also be added directly using the PlanningSceneInterface

class.

moveit::planning_interface::PlanningSceneInterface
planning_scene_interface;

moveit_msgs::CollisionObject collision_object;
collision_object.header.frame_id = group.getPlanningFrame();
collision_object.id = ‘‘box1’’;

/* Define a box to add to the world. */
shape_msgs::SolidPrimitive primitive;
primitive.type = primitive.BOX;
primitive.dimensions.resize(3);
primitive.dimensions[0] = 0.4;
primitive.dimensions[1] = 0.1;
primitive.dimensions[2] = 0.4;

geometry_msgs::Pose box_pose;
box_pose.orientation.w = 1.0;
box_pose.position.x = 0.6;
box_pose.position.y = -0.4;
box_pose.position.z = 1.2;

collision_object.primitives.push_back(primitive);
collision_object.primitive_poses.push_back(box_pose);
collision_object.operation = collision_object.ADD;

std::vector<moveit_msgs::CollisionObject> collision_objects;
collision_objects.push_back(collision_object);

planning_scene_interface.addCollisionObjects(collision_objects);

Attaching and detaching the collision object from the environment is also simple.
It is only important to make sure that the object has already been added to the
environment before attaching an object.

/* Attach the object */
group.attachObject(collision_object.id);

/* Detach the object */
group.detachObject(collision_object.id);

MoveIt!: An Introduction 21

6.5 Helpful Hints

There are several debugging steps that a user can follow in case things don’t go as
planned. Here are some helpful hints for what can go wrong and how to fix it.

• Robot won’t move: If the joint limits for the robot are not set properly, the robot
may not be able to move. Check the URDF of the robot and make sure that each
joint has a range of joint values to move through. Check to make sure that the
maximum joint value is greater than the minimum joint value.

• Robot won’t move when I define soft limits: If soft limits are defined for the
robot in the URDF, they will be used by MoveIt!. Make sure that they are valid.

• Motion plans are not being generated successfully: Check that no two parts
of the robot are in self-collision at all joint configurations. This can especially
happen if you add new parts to the robot in the URDF but have not run the robot
again through the MoveIt! Setup Assistant. If any robot parts appear red, they are
in collision—run the MoveIt! Setup Assistant with the complete robot model to
make sure that all collision checks that need to be disabled are labeled correctly
in the SRDF.

• GUI-based Interaction is not working properly: Robots with 6 or more degrees
of freedom dowell with Rviz interfaction. Robots with less than 6DOFs are harder
to interact with through the plugin.

• The motion plans are moving into collision: MoveIt! checks each motion plan
segment for collisions at a certain discretization. If this discretization value is
too large, motion segments will not be checked at a fine discretization and the
resulting motions may actually pass through parts of the environment. The dis-
cretization value can be adjusted using the longest_valid_segment parameter in
the ompl_planning.yaml file.

• The motion plans are moving into collision: If using Rviz, make sure that you
have pressed the Publish Planning Scene button before planning.

6.6 Additional Resources

Additional tutorials are available on the MoveIt! website from the tutorials page.

• Tutorial for the Move Group Interface (C++, Python)—this tutorial described the
main user interface to MoveIt! for users who would like to interact through a ROS
interface. It is the recommended interface for all beginners.

• Tutorial for using the kinematics API (C++)—this tutorial delves deeper into the
use of kinematics (forward and inverse kinematics) using the programmatic C++
API. This tutorial is only recommended for more advanced users of MoveIt!.

• Tutorial for the Planning Scene API (C++, ROS)—this tutorial explains the struc-
ture and interface to the planning scene API.

http://moveit.ros.org/documentation/tutorials/
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/move_group_interface_tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/scripts/doc/move_group_python_interface_tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/kinematics/src/doc/kinematics_tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/planning_scene_tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/planning_scene_ros_api_tutorial.html

22 S. Chitta

• Loading motion planners from plugins, using kinematic constraints: (C++)—this
tutorial explains how to load and use motion planners directly from the C++
interface and also how to specify and use some types of kinematic constraints.
It is intended for advanced users.

• Using the motion planning pipeline and planning request adapters: (C++)—this
tutorial explains how to use the planning request adapters as part of a motion
planning pipeline to change the input to and output from the motion planners. It
is intended for advanced users.

7 Connecting to a Robot

MoveIt! can connect directly to a robot through a ROS interface. The requirements
on a ROS interface include a source of joint information, transform information and
an interface to a trajectory controller:

• Joint States: A source of joint state information is needed. This source must
publish the state information (at least the position of each joint) at a reasonable
rate on the joint_states topic. A typical rate is 100Hz. Different components can
publish on the same topic and all the information will be combined internally
by MoveIt! to maintain the right state. Note that MoveIt! can account for mimic
joints, i.e. coupled joints where a single actuator or motor controls the motion of
two joints.

• Transform Information: MoveIt! uses the joint state information to maintain its
own transform tree internally. However, joint state information does not contain
information about external virtual joints, e.g. the position of the robot in an external
map. This transform information must exist on the ROS transform server using
the TF package in ROS.

• Trajectory Action Controller: MoveIt! also requires the existence of a trajectory
action controller that supports a ROS action interface using the FollowJoint-
Trajectory action in the control_msgs package.

• Gripper Command Action Interface–OPTIONAL: The gripper command
action interface, allows for easy control of a gripper. It differs from the Trajectory
Action interface in allowing the user to set a maximum force that can be applied
by the gripper.

7.1 Configuring the Controller Interface

Configuring the controller interface requires generating the right controller configu-
ration YAML file. An example of a controller configuration for two arms of a robot
and a gripper is given below:

http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/motion_planning_api_tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/planning_pipeline_tutorial.html

MoveIt!: An Introduction 23

controller_list:
- name: r_arm_controller
action_ns: follow_joint_trajectory
type: FollowJointTrajectory
default: true
joints:
- r_shoulder_pan_joint
- r_shoulder_lift_joint
- r_upper_arm_roll_joint
- r_elbow_flex_joint
- r_forearm_roll_joint
- r_wrist_flex_joint
- r_wrist_roll_joint

- name: l_arm_controller
action_ns: follow_joint_trajectory
type: FollowJointTrajectory
default: true
joints:
- l_shoulder_pan_joint
- l_shoulder_lift_joint
- l_upper_arm_roll_joint
- l_elbow_flex_joint
- l_forearm_roll_joint
- l_wrist_flex_joint
- l_wrist_roll_joint

- name: gripper_controller
action_ns: gripper_action
type: GripperCommand
default: true
joints:
- l_gripper_joint
- r_gripper_joint

This configuration should go into a YAML file (called controllers.yaml) inside the
MoveIt! config package. Now, create the controller launch file (call it robot_moveit_
controller_manager.launch where robot is the name of your robot—the robot name
needs to match the name specified when you created your MoveIt! config directory).

Add the following lines to this file:

<launch>

<!-- Set the param that trajectory_execution_manager needs to find the

controller plugin -->

<arg name=’’moveit_controller_manager’’

default=’’moveit_simple_controller_manager/MoveItSimpleControllerManager’’/>

<param name=’’moveit_controller_manager’’ value=’’$(arg

moveit_controller_manager)’’/>

<!-- load controller_list -->

<rosparam file=’’$(find my_robot_name_moveit_config)/config/controllers.yaml’’/>

</launch>

24 S. Chitta

MAKE SURE to replace my_robot_name_moveit_config with the correct path for
your MoveIt! config directory.

Now, you should be ready to have MoveIt! talk to your robot.

7.2 Debugging Hints

The FollowJointTrajectory or GripperCommand interfaces on your robot must be
communicating in the correct namespace. In the above example, you should be able
to see the following topics (using rostopic list) on your robot:

/r_arm_controller/follow_joint_trajectory/goal
/r_arm_controller/follow_joint_trajectory/feedback
/r_arm_controller/follow_joint_trajectory/result
/l_arm_controller/follow_joint_trajectory/goal
/l_arm_controller/follow_joint_trajectory/feedback
/l_arm_controller/follow_joint_trajectory/result
/gripper_controller/gripper_action/goal
/gripper_controller/gripper_action/feedback
/gripper_controller/gripper_action/result

You should also be able to see (using rostopic info topic_name) that the topics are
published/subscribed to by the controllers on your robot and also by the move_group
node.

7.3 Integrating 3D Perception

MoveIt! also integrated 3D perception for building an updated representation of
the environment. This representation is based on the Octomap package. The 3D
perception elements include components that perform self-filtering, i.e. filter out
parts of the robot from sensor streams. Input to the Octomap is from any source
of 3D information in the form of a depth map. The resolution of the Octomap is
adjustable. Using a coarser resolution ensures that the 3D perception pipeline can
run at a reasonable rate. A 10cm resolution should result in an update rate of close
to 10Hz. The 3D perception can be integrated using a YAML configuratoin file.

sensors:
- sensor_plugin: occupancy_map_monitor/DepthImageOctomapUpdater
image_topic: /head_mount_kinect/depth_registered/image_raw
queue_size: 5
near_clipping_plane_distance: 0.3
far_clipping_plane_distance: 5.0
shadow_threshold: 0.2
padding_scale: 4.0
padding_offset: 0.03
filtered_cloud_topic: filtered_cloud

MoveIt!: An Introduction 25

You will now need to update the moveit_sensor_manager.launch file in the launch
directory of your MoveIt! configuration directory with this sensor information (this
file is auto-generated by the Setup Assistant but is empty). You will need to add the
following line into that file to configure the set of sensor sources for MoveIt! to use:

\begin{verbatim}
<rosparam command=’’load’’ file=’’$(find

my_moveit_config)/config/sensors_kinect.yaml’’ />
\end{verbatim}

Note that you will need to input the path to the right file you have created above.
You will also need to configure the Octomap by adding the following lines into the
moveit_sensor_manager.launch:

<param name=’’octomap_frame’’ type=’’string’’
value=’’odom_combined’’ />

<param name=’’octomap_resolution’’ type=’’double’’
value=’’0.05’’ />

<param name=’’max_range’’ type=’’double’’ value=’’5.0’’ />

7.4 Helpful Hints

• Controller Configuration: MoveIt! does not implement any controllers on its
own. Users will have to implement their own controller or, preferably, use ROS-
Control [6] as a controller framework. The ROS-Control package includes trajec-
tory interpolation and smoothing that is essential for smooth operation on industrial
and other robots.

• Sensor Configuration: The self-filtering routines function best if the URDF is
an accurate representation of the robot. Padding parameters can also be used to
adjust the size of the meshes used for self-filtering. It is always best to add a little
padding to the meshes since uncertainty in the motion of the robot can cause the
self-filtering to fail.

8 Building Applications with MoveIt!

MoveIt! is a platform for robotic manipulation. It forms an ideal base to build large-
scale applications. Examples of such applications include:

• Pick and Place: MoveIt! includes a pick and place pipeline. The pipeline allows
pick and place tasks to be fully planned given a set of grasps for an object to be
picked and a set of place locations where the object can be placed. The pipeline
utilizes a series of manipulation planning stages that are configured to run in

26 S. Chitta

parallel. They include (a) freespace motion planning stage to plan the overall
motion of the arm, (b) cartesian planning stages to plan approach and retreat
motions, (c) inverse kinematics stages to compute arm configurations for pick and
place and (d) perception and grasping interfaces for object recognition and grasp
planning respectively.

• Process Path Planning: Complex processes like gluing,welding, etc. often require
an end-effector to follow a prescribed path while avoiding collisions, singulari-
ties and other constraints. MoveIt! can plan such process paths using a cartesian
planning routine built into MoveIt! itself.

• Planning Visibility Paths: MoveIt! includes the ability to process visibility con-
straints. Visibility planning is particularly useful when planning inspection paths,
i.e. planning a path for inspecting a complex part with a camera mounted on the
end-effector of an arm.

• Tele-operation: MoveIt! has been used for tele-operation in complex environ-
ments, e.g. in the DARPA Robotic Challenge. The ability to visualize complex
environments while also planning collision free paths allows full teleoperation
applications to be built with MoveIt!.

9 Conclusion

MoveIt! has rapidly emerged as the core ROS package for manipulation. In com-
bination with ROS-Control, it provides a framework for building core functionality
and full applications for any robotics task. The use of the MoveIt! setup assistant has
made MoveIt! more accessible to new and intermediate users. It has allowed new
robotic platforms to be easily integrated into ROS. The next goal for MoveIt! devel-
opment is to extend its capabilities to provide even more out of the box capabilities
and enable better integration with other types of sensing (e.g. force/tactile) sensing.
We also aim to extend MoveIt! to whole-body manipulation tasks to enable more
applications with humanoid robots. MoveIt! can also form the basis for collaborative
robots, enabling the next generation of tasks where humans and robots work together.
For more information, users are referred to the following resources for MoveIt!:

• The MoveIt! Website
• The MoveIt! Tutorials
• MoveIt! High-level Concept Documentation
• MoveIt! mailing list
• MoveIt! Source code

Acknowledgments MoveIt! is developed and maintained by a large community of users. Special
mention should be made of Dave Hershberger, Dave Coleman, Michael Ferguson, Ioan Sucan and
Acorn Pooley for supporting and maintaining MoveIt! and its associated components in ROS over
the last few years.

http://moveit.ros.org
http://moveit.ros.org/tutorials
http://moveit.ros.org/documentation/concepts/
http://moveit.ros.org
https://github.com/ros-planning

MoveIt!: An Introduction 27

References

1. S. Chitta, E.G. Jones, M. Ciocarlie, K. Hsiao, Perception, planning, and execution for mobile
manipulation in unstructured environments. IEEE Robot. Autom. Mag. Special Issue onMobile
Manipulation 19(2), 58–71 (2012)

2. S. Chitta, E.G. Jones, I. Sucan, Arm Navigation. http://wiki.ros.org/arm_navigation (2010)
3. J. Pan, S. Chitta, D.Manocha, FCL: a general purpose library for collision and proximity queries,

in IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota (2012)
4. D. Coleman, Integrating IKFast withMoveIt!: A Tutorial. http://docs.ros.org/hydro/api/moveit_

ikfast/html/doc/ikfast_tutorial.html (2014)
5. S. Chitta, A. Pooley, D. Hershberger, I. Sucan, MoveIt! http://moveit.ros.org (2015)
6. The ROS Control Framework. http://wiki.ros.org/ros_control 2014

http://wiki.ros.org/arm_navigation
http://docs.ros.org/hydro/api/moveit_ikfast/html/doc/ikfast_tutorial.html
http://docs.ros.org/hydro/api/moveit_ikfast/html/doc/ikfast_tutorial.html
http://moveit.ros.org
http://wiki.ros.org/ros_control

Hands-on Learning of ROS Using Common
Hardware

Andreas Bihlmaier and Heinz Wörn

Abstract Enhancing the teaching of robotics with hands-on activities is clearly
beneficial. Yet at the same time, resources in higher education are scarce. Apart from
the lack of supervisors, there are often not enough robots available for undergraduate
teaching. Robotics simulators are a viable substitute for some tasks, but often real
world interaction is more engaging. In this tutorial chapter, we present a hands-
on introduction to ROS, which requires only hardware that is most likely already
available or costs only about 150$. Instead of starting out with theoretical or highly
artificial examples, the basic idea is to work along tangible ones. Each example is
supposed to have an obvious relation to whatever real robotic system the knowledge
should be transfered to afterwards. At the same time, the introduction covers all
important aspects of ROS from sensors, transformations, robot modeling, simulation
and motion planning to actuator control. Of course, one chapter cannot cover any
subsystem in depth, rather the aim is to provide a big picture of ROS in a coherent and
hands-on manner with many pointers to more in-depth information. The tutorial was
written for ROS Indigo running onUbuntu Trusty (14.04). The accompanying source
code repository is available at https://github.com/andreasBihlmaier/holoruch.

Keywords General introduction · Hands-on learning · Education

1 Introduction

Individual ROS packages are sometimes well documented and sometimes not.
However, the bigger problem for somebody working with ROS for the first time
is not the poor documentation of individual packages. Instead the actual problem

A. Bihlmaier (B) · H. Wörn
Institute for Anthropomatics and Robotics (IAR), Intelligent Process Control
and Robotics Lab (IPR), Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe, Germany
e-mail: andreas.bihlmaier@kit.edu

H. Wörn
e-mail: woern@kit.edu

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_2

29

https://github.com/andreasBihlmaier/holoruch

30 A. Bihlmaier and H. Wörn

is to understand the big picture-to understand how all the various pieces of ROS
come together.1 Although the ROS community provides tutorials,2 in our experience
undergraduates struggle to transfer what they have learned in the sandbox tutorials to
real systems. At the same time, it is difficult to start out with real ROS robots for two
reasons. First, real robots are expensive, easily broken and often require significant
space to work with. Therefore they are often not available in sufficient quantity for
undergraduate education. Second, real robots can be dangerous to work with. This
holds true especially if the goal is to provide a hands-on learning experience for the
students, i.e. allow them to explore and figure out the system by themselves.

Ideally, each student would be provided with a simple robot that is safe and
yet capable enough to also learn more advanced concepts. To our knowledge no
such device is commercially available in the range of less than 200$. We will not
suggest how one could be built, since building it for each student would be too time
consuming. Instead, the goal of this tutorial is to detail a hands-on introduction to
ROS on the basis of commonly available and very low-cost hardware, which does
not require tinkering. The main hardware components are one or two webcams, a
Microsoft Kinect or Asus Xtion and two or more low-power Dynamixel servos.
The webcams may also be laptop integrated. Optionally, small embedded computers
such as Raspberry Pis or BeagleBone Blacks can be utilized. We assume the reader
to understand fundamental networking and operating system concepts, to be familiar
with the basics of Linux including the command line and to know C++ or Python.
Furthermore, some exposure to CMake is beneficial.

The remainder of the chapter is structured as follows:

• First, a brief background section on essential concepts of ROS. It covers the con-
cepts of the ROSmaster, names, nodes, messages, topics, services, parameters and
launch files. This section should be read on a first reading. However, its purpose
is also to serve as glossary and reference for the rest of the chapter.

• Second, a common basis in terms of the host setup is created.
• Third, workingwith a single camera, e.g. a webcam, under ROS serves as an exam-
ple to introduce the computation graph: nodes, topics and messages. In addition,
rqt and tools of the image_pipeline stack are introduced.

• Fourth, a custom catkin package for filtering sensor_msgs/Image is created.
Names, services, parameters and launch files are presented. Also, the defini-
tion of custom messages and services as well as the dynamic_reconfigure and
vision_opencv stacks are shown.

• Fifth, we give a short introduction on how to use RGB-D cameras in ROS, such
as the Microsoft Kinect or Asus Xtion. Point clouds are visualized in rviz and
pointers for the interoperability between ROS and PCL are provided.

• Sixth, working with Dynamixel smart servos is explained in order to explain the
basics of ros_control.

1At least this has been the experience in our lab, not only for undergraduates but also for graduate
students with a solid background in robotics, who had never worked with ROS before.
2http://wiki.ros.org/ROS/Tutorials.

http://wiki.ros.org/ROS/Tutorials

Hands-on Learning of ROS Using Common Hardware 31

• Seventh, a simple robot with two joints and a camera at the end effector ismodelled
as an URDF robot description. URDF visualization tools are shown. Furthermore,
tf is introduced.

• Eighth, based on the URDF model, a MoveIt! configuration for the robot is gen-
erated and motion planning is presented exemplary.

• Ninth, the URDF is extended and converted to SDF in order to simulate the robot
with Gazebo.

2 Background

ROS topics are an implementation of the publish-subscribe mechanism, in which
the ROS Master serves as a well-known entry point for naming and registration.
Each ROS node advertises the topics it publishes or subscribes to the ROSMaster. If
a publication and subscription exist for the same topic, a direct connection is created
between the publishing and subscribing node(s), as shown in Fig. 1. In order to have
a definite vocabulary, which may also serve the reader as glossary or reference, we
give a few short definitions of ROS terminology:

• Master3: Unique, well-known (ROS_MASTER_URI environment variable) entry
point for naming and registration. Often referred to as roscore.

• (Graph Resource) Name4: A name of a resource (node, topic, service or parame-
ter) within the ROS computation graph. The naming scheme is hierarchical and
has many aspects in common to UNIX file system paths, e.g. they can be absolute
or relative.

• Host: Computer within the ROS network, identified by its IP address (ROS_IP
environment variable).

• Node5: Any process using the ROS client API, identified by its graph resource
name.

• Topic6: A unidirectional, asynchronous, strongly typed, named communication
channel as used in the publish-subscribe mechanism, identified by its graph
resource name.

• Message7: A specific data structure, based on a set of built-in types,8 used as type
for topics. Messages can be arbitrarily nested, but do not offer any kind of is-a
(inheritance) mechanism.

3http://wiki.ros.org/Master.
4http://wiki.ros.org/Names.
5http://wiki.ros.org/Nodes.
6http://wiki.ros.org/Topics.
7http://wiki.ros.org/Messages.
8http://wiki.ros.org/msg.

http://wiki.ros.org/Master
http://wiki.ros.org/Names
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Messages
http://wiki.ros.org/msg

32 A. Bihlmaier and H. Wörn

roscore

nodeA

publish("tname",
 ttype)

roscore

nodeA nodeB

subscribe("tname",
 ttype)

roscore

nodeA nodeB

IP:Port
for tname

roscore

nodeA nodeB

subscribe

data

roscore

nodeAN nodeBM

data
nodeA1 nodeB1

N:M

(a)

(d) (e)

(b) (c)

Fig. 1 Overview of the ROS topic mechanism. When a publisher (a) and subscriber (b) are regis-
tered to the same topic, the subscriber receives the network address and port of all publishers (c).
The subscriber continues by directly contacting each publisher, which in return starts sending data
directly to the subscriber (d). Many nodes can publish and subscribe to the same topic resulting in
a N : M relation (e). On the network layer there are N · M connections, one for each (publisher,
subscriber) tuple. The nodes can be distributed over any number of hosts within the ROS network

• Connection A connection between a (publisher, subscriber) tuple carrying the
data of a specific topic (cf. Fig. 1), identified by the tuple (publisher-node, topic,
subscriber-node).

• Service9: A synchronous remote procedure call, identified by its graph resource
name.

• Action10: A higher-level mechanism built on top of topics and services for long-
lasting or preemptable tasks with intermediate feedback to the caller.

• Parameters11: “A shared, multi-variate dictionary that is accessible via network
APIs.” Its intended use is for slow changing data, such as initialization arguments.
A specific parameter is identified by its graph resource name.

• roslaunch12: A command line tool and XML format to coherently start a set of
nodes including remapping of names and setting of parameters.

Topics are well suited for streaming data, where each subscriber is supposed to get
as much of the data as he can process in a given time interval and the network
can deliver. The network overhead and latency is comparatively low because the
connections between publisher and subscriber remain open. However, it is impor-
tant to remember that messages are automatically dropped, if the subscriber queue
becomes full. In contrast, services establish a new connection per call and cannot

9http://wiki.ros.org/Services.
10http://wiki.ros.org/actionlib.
11http://wiki.ros.org/ParameterServer.
12http://wiki.ros.org/roslaunch.

http://wiki.ros.org/Services
http://wiki.ros.org/actionlib
http://wiki.ros.org/ParameterServer
http://wiki.ros.org/roslaunch

Hands-on Learning of ROS Using Common Hardware 33

fail without notice on the caller side. The third mechanism built on top of topics and
services are actions. An action uses services to initiate and finalize a (potentially)
long-lasting task, thereby providing definite feedback. Between start and end of the
action, continuous feedback is provided via the topics mechanism. This mapping to
basic communication mechanisms is encapsulated by the actionlib.

3 ROS Environment Configuration

For the rest of this chapter, we assume a working standard installation13 of ROS
Indigo-on Ubuntu Trusty (14.04). Furthermore, everything shown in this chapter can
be done on a single host. Therefore, a localhost setup is assumed, i.e. roscore and all
nodes run on localhost:

echo 'export ROS_MASTER_URI=http://127.0.0.1:11311' >> ~/.bashrc
echo 'export ROS_IP=127.0.0.1' >> ~/.bashrc

run "source ~/.bashrc" or open a new terminal
echo $ROS_MASTER_URI
should: http://127.0.0.1:11311
echo $ROS_IP
should: 127.0.0.1

From here on it is presumed that roscore is always running. The second part of
setup requires a working catkin build system.14 In case no catkin workspace has been
initialized, this can be achieved with

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace

Afterwards all packages in the catkin workspace source directory (~/catkin_ws/
src) can be built with

cd ~/catkin_ws
catkin_make

The catkin_make command should run without errors for an empty workspace.
In the rest of this chapter, the instruction “Install the REPOSITORY package
from source” refers to cloning the repository into the ~/catkin_ws/src direc-
tory, followed by running catkin_make. Start by installing https://github.com/
andreasBihlmaier/holoruch, which will be used throughout this chapter. After these
preliminaries, we can start the hands-on introduction to the various aspects of ROS.

13A desktop-full installation according to http://wiki.ros.org/indigo/Installation/Ubuntu.
14http://wiki.ros.org/catkin.

https://github.com/andreasBihlmaier/holoruch
https://github.com/andreasBihlmaier/holoruch
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/catkin

34 A. Bihlmaier and H. Wörn

4 Camera Sensors: Driver, Use and Calibration

The first example is a camera sensor. A USB webcam or integrated camera must
be attached to the computer. If multiple cameras are connected to the computer, the
first one is used here.15 Where these settings are stored and how to change them will
be shown later in this section. Use guvcview to make sure the camera is working
correctly and also have a look at the “Image Controls” and “Video” tab for supported
resolutions/framerates and control settings.16

First, install https://github.com/ktossell/camera_umd from source:

cd ~/catkin_ws/src ; git clone https://github.com/ktossell/
↪→ camera_umd.git

cd ~/catkin_ws ; catkin_make

Second, start the camera driver node

roslaunch holoruch_camera webcam.launch

Third, use the command line utilities to check if the camera node is running as
expected:

rosnode list

The output should contain /webcam/uvc_camera_webcam. We also want to
check if the expected topics have been created:

rostopic list

Here, /webcam/camera_info and /webcam/image_raw is expected. If
either the node or the topics do not show up, look at the output of roslaunch
and compare possible errors to the explanation of the launch file in this section.
Next, start rqt to visualize the image data of the webcam

rosrun rqt_gui rqt_gui

Start the “Image View” plugin through the menu: “Plugins” → “Visualization” →
“Image View”. Use the upper left drop-down list to select /webcam/image_raw.
Now the webcam’s live image should appear. Note that everything is already network
transparent. If we would not be using localhost IP addresses, the camera node and
rqt could be running on two different hosts without having to change anything.

After a simple data source and consumer have been setup and before we add
more nodes, let’s look at all of the involved ROS components. First the roslaunch
file webcam.launch:

15The order is determined by the Linux kernel’s Udev subsystem.
16Note: While it does not matter for this tutorial, it is essential for any real-world application that
the webcam either has manual focus or the auto focus can be disabled. Very cheap or old webcams
have the former and better new ones usually have the latter. For the second kind try v4l2-ctl
-c focus_auto=0.

https://github.com/ktossell/camera_umd

Hands-on Learning of ROS Using Common Hardware 35

<launch>
<node ns="/webcam"

pkg="uvc_camera" type="uvc_camera_node" name="uvc_camera_webcam"
output="screen">

<param name="width" type="int" value="640" />
<param name="height" type="int" value="480" />
<param name="fps" type="int" value="30" />
<param name="frame" type="string" value="wide_stereo" />

<param name="auto_focus" type="bool" value="False" />
<param name="focus_absolute" type="int" value="0" />
<!-- other supported params: auto_exposure,

exposure_absolute, brightness, power_line_frequency -->

<param name="device" type="string" value="/dev/video0" />
<param name="camera_info_url" type="string"

value="file://$(find holoruch_camera)/webcam.yaml" />
</node>

</launch>

The goal here is to introduce the major elements of a roslaunch file, not to detail all
features, which are described in the ROSwiki.17 Each <node> tag starts one node, in
our caseuvc_camera_node from theuvc_camera packagewe installed earlier.
The name, uvc_camera_webcam can be arbitrarily chosen, a good convention
is to combine the executable name with a task specific description. If output was
not set to screen, the node’s output would not be shown in the terminal, but sent
to a log file.18 Finally, the namespace tag, ns, allows to prefix the node’s graph
name, which is in analogy with pushing it down into a subdirectory of the filesystem
namespace. Note that the nodes are not started in any particular order and there is no
way to enforce one. The <param> tags can be either direct children of <launch>
or within a <node> tag.19 Either way they allow to set values on the parameter
server from within the launch file before any of the nodes are started. In the latter
case, which applies here, each <param> tag specifies a private parameter20 for the
parent <node> tag. The parameters are node specific.

In case of the uvc_camera_node, the parameters pertain to camera settings.
This node uses the Linux Video4Linux2 API21 to retrieve images from any video
input device supported by the kernel. It then converts each image to the ROS image
format sensor_msgs/Image and published them over a topic, thereby making
them available to the whole ROS system.22 If the launch file does not work as it is,
this is most likely related to the combination of width, height and fps. Further

17http://wiki.ros.org/roslaunch/XML.
18See http://wiki.ros.org/roslaunch/XML/node.
19See http://wiki.ros.org/roslaunch/XML/param.
20Cf. http://wiki.ros.org/Names.
21http://lwn.net/Articles/203924/.
22See also http://wiki.ros.org/image_common.

http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/XML/node
http://wiki.ros.org/roslaunch/XML/param
http://wiki.ros.org/Names
http://lwn.net/Articles/203924/
http://wiki.ros.org/image_common

36 A. Bihlmaier and H. Wörn

information on the uvc_camera package is available on the ROS wiki23 and in the
repository’s example launch files.24

In order to get a transformation between the 3D world and the 2D image of
the camera, an instrinsic calibration of the camera is required. This functionality
is available, for mono and stereo cameras, through the cameracalibrator.py
in the camera_calibration package. Here one essential feature and design
pattern of ROS comes into play. The cameracalibrator.py node does not
require command line arguments for changing the relevant ROS names, such as the
image topic. Instead ROS provides runtime name remapping. Any ROS graph name
within a node’s code can be changed by this ROS mechanism on startup of the node.
In our case, the cameracalibrator.py code subscribes to a "image" topic,
but we want it to subscribe to the webcam’s images on /webcam/image_raw.
The launch syntax provides the <remap> tag for this purpose:

<launch>
<node pkg="camera_calibration" type="cameracalibrator.py"

name="calibrator_webcam" output="screen"
args="--size 8x6 --square 0.0255">

<remap from="image" to="/webcam/image_raw" />
<remap from="camera" to="/webcam" />

</node>
</launch>

The same can be achieved on the command line by the oldname:=newname
syntax:

rosrun camera_calibration cameracalibrator.py \
--size 8x6 --square 0.0255 \
image:=/webcam/image_raw camera:=/webcam

In both cases, the same node with the same arguments and remappings is started,
albeit with a different node name. The monocular calibration tutorial25 explains all
steps to calibrate the webcam using a printed checkerboard. We continue with the
assumption this calibration has been done and “commited”.26

Commonly required image processing tasks, such as undistorting and rectification
of images, are available in the image_proc package.27 Due to the flexibility of
the topic mechanism, we do not have to restart the camera driver, rather we just add
further nodes to the ROS graph.28 Run

roslaunch holoruch_camera proc_webcam.launch

23http://wiki.ros.org/uvc_camera.
24~/catkin_ws/src/camera_umd/uvc_camera/launch/example.launch.
25http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration.
26Check that the values of rostopic echo -n 1 /webcam/camera_info correspond to
those printed to the terminal by cameracalibrator.py.
27http://wiki.ros.org/image_proc.
28If the camera driver and image processing is running on the same host, it is good practice to
use nodelets instead of nodes for both-in order to reduce memory and (de)serialization overhead.
However, this does not substantially change anything.

http://wiki.ros.org/uvc_camera
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/image_proc

Hands-on Learning of ROS Using Common Hardware 37

Fig. 2 The screenshot showsrqtwith the “ImageView”plugin on the top and the “NodeGraph” on
the bottom. The graph visualizes the simple image processing pipeline consisting of uvc_camera
and image_proc

Afterwards rostopic list should show additional topics in the /webcam
namespace. For a live view of the undistorted image, update the drop-down list
in the “Image View” rqt plugin and select /webcam/image_rect_color.

So far the ROS graph is simple. There only exists the uvc_camera_node,
whose image_raw and camera_info topics are subscribed by the image_
proc_webcam node, whose image_rect_color topic is in turn subscribed
by the rqt plugin. However, graphs of real systems often contain dozens of nodes
with hundreds of topics. Fortunately, ROS provides introspection capabilities. That
is, ROS provides mechanisms to acquire some key information about the current
system state. One important information is the structure of the computation graph, i.e.
which nodes are running and to which topics is each one publishing or subscribing.
This can be visualized with the “Node Graph” rqt plugin (under “Plugins” →
“Introspection”). The current ROS graph can be seen in Fig. 2. Next, we will write a
custom ROS node that does custom image processing on the webcam image stream.

5 Custom Node and Messages for Image Processing
with OpenCV

In this section we will create a custom catkin package for image processing on
a sensor_msgs/Image topic.29 Also, the definition of custom messages and
services as well as the dynamic_reconfigure and vision_opencv stacks

29The goal of this section is to provide an example which is short, but at the same time very close
to a real useful node. Standalone examples of how to create ROS publishers and subscribers in C++

38 A. Bihlmaier and H. Wörn

are shown. First, create a new package, here holoruch_custom, and specify all
dependencies that are already known30:

cd ~/catkin_ws/src
catkin_create_pkg holoruch_custom roscpp dynamic_reconfigure
cv_bridge

The slightly abbreviated code for the core node functionality in holoruch_
custom/src/holoruch_custom_node.cpp is shown below
1 int main(int argc, char **argv) {
2 ros::init(argc, argv, "holoruch_custom");
3 ros::NodeHandle n;
4
5 sub = n.subscribe("image_raw", 1, imageCallback);
6 pub = n.advertise<sensor_msgs::Image>("image_edges", 1);
7
8 ros::spin();
9 return 0;
10 }
11
12 void imageCallback(const sensor_msgs::ImageConstPtr& msg) {
13 cv_bridge::CvImagePtr cvimg = cv_bridge::toCvCopy(msg, "bgr8");
14
15 cv::Mat img_gray;
16 cv::cvtColor(cvimg->image, img_gray, CV_BGR2GRAY);
17 cv::Canny(img_gray, img_gray, cfg.threshLow, cfg.thresHigh);
18 cv::Mat img_edges_color(cvimg->image.size(), cvimg->image.type(),
19 cv::Scalar(cfg.edgeB, cfg.edgeG, cfg.edgeR
20));
21 img_edges_color.copyTo(cvimg->image, img_gray); // use img_gray as
22 mask
23
24 pub.publish(cvimg->toImageMsg());
25 }

After initializing the node (2), we create a subscriber to receive the images (5) and
a publisher to send the modified ones (6). The remaining work will be done in the
subscriber callbacks, which are handled by the ROS spinner (8). Each time a new
image arrives, the imageCallback function is called. It converts the ROS image
format to the OpenCV format (13) using the cv_bridge package.31 Afterwards
some OpenCV functions are applied to the data (15–20), the resulting image is
converted back to ROS and published (22). In the example, we apply an edge filter

(Footnote 29 continued)
and Python are available in the ROS wiki: http://wiki.ros.org/ROS/Tutorials. Very basic standalone
packages with examples can also be found at: https://github.com/andreasBihlmaier/ahb_rospy_
example and https://github.com/andreasBihlmaier/ahb_roscpp_example.
30These steps are for illustration only, the full holoruch_custom and
holoruch_custom_msgs package is already contained in the holoruch repository.
31See http://wiki.ros.org/cv_bridge. We will not go into any OpenCV details such as color encod-
ings here. For more information see http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeTo
ConvertBetweenROSImagesAndOpenCVImages and the OpenCV documentation at http://opencv.
org/documentation.html.

http://wiki.ros.org/ROS/Tutorials
https://github.com/andreasBihlmaier/ahb_rospy_example
https://github.com/andreasBihlmaier/ahb_rospy_example
https://github.com/andreasBihlmaier/ahb_roscpp_example
http://wiki.ros.org/cv_bridge
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
http://opencv.org/documentation.html
http://opencv.org/documentation.html

Hands-on Learning of ROS Using Common Hardware 39

to the image and overlay the edges on the original one. There is much more to be
learned about working with images in ROS. However, since the goal of this tutorial
is to give the big picture, we cannot go into further details here.32

Now we add the functionality to change the filter settings during runtime
using dynamic_reconfigure. If the goal would be to change the settings
only on startup (or very seldom), we would use the parameter server instead.33

First, we need to define the parameters, which is accomplished by creating a
holoruch_custom/cfg/filter.cfg file:

imports omitted from listing
g = ParameterGenerator()
Name Type Rcfg-lvl Description Default Min Max
g.add("edgeR", int_t, 0, "Edge Color Red", 255, 0, 255)
g.add("edgeG", int_t, 0, "Edge Color Green", 0, 0, 255)
further parameters omitted from listing
exit(g.generate(PACKAGE, "holoruch_custom", "filter"))

Second, we need to initialize a dynamic_reconfigure in main. Therefore, we
add the following in line 7 above

dynamic_reconfigure::Server<holoruch_custom::filterConfig> server;
server.setCallback(boost::bind(&dynamic_reconf_cb, _1, _2));

and a new callback function, e.g. after line 23, for reconfigure

void dynamic_reconf_cb(holoruch_custom::filterConfig &ncfg, uint32_t lvl
)
{ // cfg is a global variable: holoruch_custom::filterConfig cfg

cfg = ncfg;
}

We refer to the holoruch_custom repository regarding the required additions in
CMakeLists.txt.

After compiling the workspace with catkin_make, we can now run our cus-
tom node. This time we use the ROS_NAMESPACE environment variable to put
holoruch_custom_node, and thereby its depend names, into /webcam.

env ROS_NAMESPACE=/webcam rosrun holoruch_custom holoruch_custom_node \
image_raw:=image_rect_color

Again, the same could be achieved by remapping alone or by the roslaunch ns tag as
shown in the previous section. The result is shown in Fig. 3, the filter settings can be
continously changed while the node is running by use of the “Dynamic Reconfigure”
rqt plugin.

So far we have only used predefined ROS message types. Let’s assume we want
to publish the number of connected edge pixel components, which are detected by
our node, together with the number of pixels in each one. No adequate predefined

32Good documentation and tutorials to delve into this topic can be found at http://wiki.ros.
org/image_common, http://wiki.ros.org/camera_calibration and http://wiki.ros.org/cv_bridge. For
more information on ROS supported sensors, see “Cameras” and “3D sensors” at http://wiki.ros.
org/Sensors.
33See http://wiki.ros.org/roscpp/Overview/ParameterServer. for an example.

http://wiki.ros.org/image_common
http://wiki.ros.org/image_common
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/cv_bridge
http://wiki.ros.org/Sensors
http://wiki.ros.org/Sensors
http://wiki.ros.org/roscpp/Overview/ParameterServer

40 A. Bihlmaier and H. Wörn

Fig. 3 A screenshot of the custom image processing node’s output /webcam/image_edges in
rqt. Compared to Fig. 2, the “Dynamic Reconfigure” plugin was added in the upper right and the
“Node Graph” in the bottom shows the additional node holoruch_custom and its connections

message exists for this purpose, thus we will define a custom one.34 We could put
the message definitions into holoruch_custom, but it is favorable to have them
in a separate package. This way other nodes that want to use the custom message
only have to depend on the message package and only compile it. Thus we create it

catkin_create_pkg holoruch_custom_msgs \
message_generation message_runtime std_msgs

Our custom message holoruch_custom_msgs/EdgePixels, is defined by
the file holoruch_custom_msgs/msg/EdgePixels.msg35:

std_msgs/Header header
int32[] edge_components

Again, see the repository for details about message generation with CMakeLists.
txt. After running catkin_make, the custom message is available in the same
manner as predefined ones:

rosmsg show holoruch_custom_msgs/EdgePixels

The custom message can now be used in holoruch_custom_node.cpp to
communicate information about edge components in the image. We would create a
second publisher in main at line 6:

compPub = n.advertise<holoruch_custom_msgs::EdgePixels>("edges", 1);

34It is highly advisable to make sure that no matching message type already exists before defining
a custom one.
35For available elementary data types see http://wiki.ros.org/msg.

http://wiki.ros.org/msg

Hands-on Learning of ROS Using Common Hardware 41

and the code to calculate and afterwards publish the components would be inserted at
line 21 in imageCallback. Without going into the details of catkin dependencies,
please refer to the holoruch repository and wiki documentation,36 it is necessary
to add a dependency to holoruch_custom_msgs into holoruch_custom/
package.xml and holoruch_custom/CMakeLists.txt. This concludes
the introduction to creating a custom ROS node. Next, we look a different kind of
optical sensor.

6 RGB-D Sensors and PCL

RGB-D sensors such as the Microsoft Kinect or the Asus Xtion provide two kinds of
information: First, a RGB image just like a normal camera. Second, a depth image
usually encoded as a grayscale image, but with each gray valuemeasuring distance to
the camera instead of light intensity. Separately, theRGBanddepth image can be used
as shown in the previous sections. However, the depth image can also be represented
as a point cloud, i.e. an ordered collection of 3D points in the camera’s coordinate
system. If the RGB and depth image is registred to each other, which means the
external camera calibration is known, a colored point cloud can be generated. The
ROS community provides a stack for OpenNI-compatible devices,37 which contains
a launch file to bring up the drivers together with the low-level processing pipeline38:

roslaunch openni2_launch openni2.launch

Use dynamic reconfigure, e.g. the “Dynamic Reconfigure” plugin, to activate “depth
registration” and “color_depth_synchronisation” for the driver node. Because by
default no RGB point clouds are generated.

The most interesting new ROS subsystems that become relevant when working
with RGB-D sensors, or with the sensor_msgs/PointCloud2 message, are
rviz and the Point Cloud Library (PCL). If no RGB-D sensor is available, but
two (web)cameras, have a look at the stereo_image_proc stack39, which can
calculate stereo disparity images and process these to point clouds, as well. We want
to stress this point once more, since it is one of the big benefits when-properly-using
ROS: Message types, sent over topics, represent an abstract interface to the robot
system. They abstract not only on which machine data is generated, transformed
or consumed, but also how this data has been acquired. In the case at hand, once
a sensor_msgs/PointCloud2 has been created, it does not matter whether it

36http://wiki.ros.org/ROS/Tutorials/CreatingPackage.
37Since the end of 2014 there also exists a similar stack for the Kinect One (aka Kinect v2): https://
github.com/code-iai/iai_kinect2.
38If openni2 does not work, also try the older openni stack.
39In case of using two webcams, do not start a seperate driver node for each, instead
use uvc_stereo_node. For stereo calibration refer to http://wiki.ros.org/camera_calibration/
Tutorials/StereoCalibration.

http://wiki.ros.org/ROS/Tutorials/CreatingPackage
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration

42 A. Bihlmaier and H. Wörn

Fig. 4 Live visualization of RGB point clouds (sensor_msgs/PointCloud2) with rviz. In
order to show the colored point cloud, the “Color Transformer” of the “PointCloud2” plugin must
be set to RGB8

originates from a stereo camera or a RGB-D sensor or from a monocular structure
from motion algorithm and so forth.

The rviz “PointCloud2” plugin provides a live 3D visualization of a point cloud
topic. We start rviz using rosrun

rosrun rviz rviz

and use the “Add” button in order to create a new instance of a visualization plugin.
Nextwe select the “By topic” tab and select the depth_registeredPointCloud2
entry. The resulting display can be seen in Fig. 4. Furthermore, aswill become evident
till the end of this chapter, rviz is able to combine a multitude of sensor and robot
state information into a single 3D visualization.

A custom ROS node for processing point clouds with PCL is very similar to the
custom OpenCV node shown in the previous section. Put differently, it is simple and
only requires a few lines of code to wrap existing algorithms-based on frameworks
such asOpenCVor PCL-forROS.Thereby benefiting fromnetwork transparency and
compatibility with the large amount of software available by the ROS community.
Again working with stereo cameras or RGB-D sensors is a large topic in its own
right and we cannot go into further details here.40 Having gained experience with
two different optical sensor types and a lot of fundamental knowledge in working
with ROS, we turn our attention to actuators.

40We refer to the excellent documentation and tutorials in the ROS wiki (http://wiki.ros.org/pcl/
Overview) as well as those for OpenCV (http://opencv.org/documentation.html) and PCL (http://
pointclouds.org/documentation/).

http://wiki.ros.org/pcl/Overview
http://wiki.ros.org/pcl/Overview
http://opencv.org/documentation.html
http://pointclouds.org/documentation/
http://pointclouds.org/documentation/

Hands-on Learning of ROS Using Common Hardware 43

Fig. 5 A simple pan-tilt unit
is shown, it consists of two
Dynamixel AX-12A
actuators together with a
USB2Dynamixel adapter.
Any small webcam or
RGB-D camera can be
attached to the pan-tilt unit,
in the image a Logitech C910
is used. Together the pan-tilt
unit and the camera can be
used for tabletop robotics
experiments. They provide a
simple closed sensor actuator
loop, allowing to teach
advanced robotics concepts

7 Actuator Control: Dynamixel and ROS Control

The Robotis Dynamixel actuators are integrated position or torque controlled “smart
servo” motors and can be daisy chained. It is sufficient to connect them on one end
of the daisy chain to a computer via an USB adapter and to a 9-12 V power supply.
For this chapter we use two Dynamixel AX-12A and one USB2Dynamixel adapter.
Each AX-12A has a stall torque of 1.5Nm, smooth motion is possible up to about
1/5th of the stall torque.41 As of 2015 the overall cost of the three items is less than
150$. The Dynamixel actuators are popular in the ROS community because-among
other things-they can be used out-of-the-box with the dynamixel_motor stack.42

We built a simple pan-tilt unit, which is depicted in Fig. 5. The goal here is not an
introduction to dynamixel_motor,43 rather we provide a hands-on example of
working with actuators under ROS.

First we need to start the node, which directly accesses the Dynamixel motors via
USB:

roslaunch holoruch_pantilt pantilt_manager.launch

Before proceeding make sure that motor data is received:

rostopic echo /motor_states/pan_tilt_port

Now we spawn a joint controller for each axis in the pan-tilt unit:

41http://www.robotis.com/xe/dynamixel_en.
42http://wiki.ros.org/dynamixel_motor.
43In depth tutorials are available in the ROS wiki: http://wiki.ros.org/dynamixel_controllers/
Tutorials.

http://www.robotis.com/xe/dynamixel_en
http://wiki.ros.org/dynamixel_motor
http://wiki.ros.org/dynamixel_controllers/Tutorials
http://wiki.ros.org/dynamixel_controllers/Tutorials

44 A. Bihlmaier and H. Wörn

roslaunch holoruch_pantilt pantilt_controller_spawner.launch

Note that the above call will terminate after spawning the joint controllers. Before
moving the motors, one can set the positioning speed (default is 2.0):

rosservice call /pan_controller/set_speed 'speed: 0.5'
rosservice call /tilt_controller/set_speed 'speed: 0.1'

To check whether everything worked, try to move each axis:

rostopic pub -1 /pan_controller/command std_msgs/Float64 -- 0.4
rostopic pub -1 /tilt_controller/command std_msgs/Float64 -- 0.1

Now we could control our pan-tilt unit through a custom node that publishes to each
axis’ command topic. However, ROS provides higher level mechanisms to work
with robots. The next step will thus be to create a model of our two axis “robot”.

8 Robot Description with URDF

In ROS robots are described, in terms of their rigid parts (= links) and (moveable) axis
(= joints), by the URDF format. The complete holoruch_pantilt.urdf can
be found in the holoruch repository. Only the general URDF structure is described
here:

1 <robot name="holoruch_pantilt">
2 <link name="base_link">
3 <visual>
4 <geometry>
5 <box size="0.15 0.13 0.01" />
6 </geometry>
7 </visual>
8 ...
9 </link>
10
11 <joint name="base_to_pan_joint" type="fixed">
12 <origin xyz="0 0 0.021" rpy="0 0 0"/>
13 <parent link="base_link"/>
14 <child link="pan_link"/>
15 </joint>
16
17 <link name="pan_link">
18 <visual>
19 <geometry>
20 <mesh filename="package://holoruch_pantilt_description/
21 meshes/AX-12A.stl" />
22 </geometry>
23 </visual>
24 <collision>
25 <geometry>
26 <mesh filename="package://holoruch_pantilt_description/
27 meshes/AX-12A_convex.stl" />
28 </geometry>

Hands-on Learning of ROS Using Common Hardware 45

29 </collision>
30 <inertial>
31 <origin rpy="0 0 0" xyz="0 0 0"/>
32 <mass value="0.055"/>
33 <inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
34 </inertial>
35 </link>
36
37 <joint name="pan_joint" type="revolute">
38 <origin xyz="0 0 0.06" rpy="0 0 0"/>
39 <parent link="pan_link"/>
40 <child link="tilt_link"/>
41 <limit lower="-1.57079" upper="1.57079" effort="1.0" velocity=
42 "1.0" />
43 <axis xyz="0 0 1" />
44 </joint>
45
46 <link name="tilt_link"> ... </link>
47 <joint name="tilt_joint" type="revolute"> ... </joint>
48 <link name="camera_link"> ... </link>

Each <link> tag has at least a <visual>, <collision> and <inertial>
child tag. The visual elements can be either geometric primitives (5) or mesh files
(20). For the collision element the same is true with one very important exception:
Collision meshes must always be convex. If this is not minded, collision checking
might not work correctly when using the URDF in combination with MoveIt! (cf.
the following section). Each <joint> tag has an origin relative to its parent
link and connects it with a child link. There are several different joint types, e.g.
fixed (11) and revolute (35). Furthermore, if the joint is moveable, its axis
of motion has to be specified together with a limit. To understand how coordinate
systems are specificed in URDF please see the relevant drawings in the ROS wiki.44

At any time the XML is valid, the current appearance of the robot can be tested
by a utility from the urdf_tutorial package:

roslaunch urdf_tutorial display.launch gui:=True model:=some_robot.urdf

This starts rviz including the required plugins together with a joint_state_
publisher, which allows to manually set the joint positions through a GUI.
Figure 6 depicts a screenshot for the pan-tilt unit.

Once a robot description has been created it can be used by the rviz “Robot-
Model” plugin to visualize the current robot state. Furthermore, the URDF is the
basis for motion planning, which will be covered next.

44http://wiki.ros.org/urdf/XML/model, http://wiki.ros.org/urdf/XML/link and http://wiki.ros.org/
urdf/XML/joint.

http://wiki.ros.org/urdf/XML/model
http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/urdf/XML/joint
http://wiki.ros.org/urdf/XML/joint

46 A. Bihlmaier and H. Wörn

Fig. 6 rviz displaying the live state of the pan-tilt unit. The fixed frame is the base link
of the pan-tilt unit (base_link). The “RobotModel” plugin uses the URDF robot descrip-
tion from the parameter server (/pantilt_controller/robot_description) to visu-
alize the robot links according to the current joint position. The “TF” plugin shows all tf
frames. In the screenshot these are only the frames of the pan-tilt joints. These joint frames
are provided by the robot_state_publisher based on the robot description and a
sensor_msgs/JointState topic (joint_states)

9 Motion Planning with MoveIt!

TheMoveIt! framework45 givesROSusers an easy and unified access tomanymotion
planning algorithms. This does not only include collision free path planning accord-
ing to meshes, but also works in combination with continuously updated obstacles.
Furthermore, it provides rviz plugins to interactively view trajectory execution
and specify motion targets with live pose visualization. In order to use MoveIt!, a
lot of additional configuration is required. Fortunately, a graphical setup assistant is
provided, which takes care of (almost) all required configuration:

roslaunch moveit_setup_assistant setup_assistant.launch

We will not go through the configuration process here, the completly configured
holoruch_pantilt_moveit_config, however, is contained in the reposi-
tory. For more details and background information, we refer to the online available
MoveIt! setup assistant tutorials.46 After completion of the setup, we can directly
use the generated demo.launch to test all planning features but without actually
sending the trajectory goals to the robot (cf. Fig. 7). Although having a generic
motion planner can be demonstrated by means of more impressive examples than

45http://moveit.ros.org/.
46http://docs.ros.org/indigo/api/moveit_setup_assistant/html/doc/tutorial.html.

http://moveit.ros.org/
http://docs.ros.org/indigo/api/moveit_setup_assistant/html/doc/tutorial.html

Hands-on Learning of ROS Using Common Hardware 47

Fig. 7 The “MotionPlanning” rviz plugin provided byMoveIt! is shown in combination with the
pan-tilt unit. Target positions can be specified by moving the interactive marker. Once the desired
target is set, a trajectory from the current pose to the target can be planned by pressing the “Plan”
button. If a motion plan is found, it can be directly visualized in different ways. However, this barely
scratches the surface of the available “MotionPlanning” functionality

by a two axis pan-tilt unit, MoveIt! also works in this case and could be even useful
in applications such as visual servoing. The last point is especially relevant when
considering that no modification of code is required when switching between robots
with completely different kinematics if the MoveIt! API-or at least the actionlib
together with trajectory_msgs/JointTrajectory-is used instead of cus-
tom solutions.

At this point, we have seen how to work with sensor data and control actuators
using ROS. In addition, it should have become clear, at least the big picture of it,
how one can write custom nodes that process incoming sensor data in order to plan
and finally take an action by sending commands to the actuators. The last section
of this tutorial will show how the Gazebo simulator can be used together with ROS
in order to work without access to the real robot.47 Everything written so far about
ROS, processing sensor data as well as moving robots, can be done without any
modification with simulated sensors and simulated actuators. Nodes do not even
have to be recompiled for this. Most of the time, even the same launch files can be
used.

47There are alsomanyother important uses for simulated robot instances.One of these is “RobotUnit
Testing”, which brings unit and regression testing for robotics to a new level, for more information
see [1].

48 A. Bihlmaier and H. Wörn

10 Robot Simulation with Gazebo

Due to historical reasons, ROS and Gazebo use different formats to describe robots.
The former, URDF, has been introduced in the previous section. The Gazebo for-
mat is called SDF and has a similar structure to URDF, i.e. there are links which
are connected by joints-however, there are also some important differences on the
conceptual level, for example how coordinate systems are represented. Thankfully
it is possible to automatically convert from URDF to SDF48:

gz sdf --print robot.urdf > model.sdf

We have to convert holoruch_pantilt.urdf in this manner and also add a
model.config.49 The model.sdf and model.config file must be copied
into their own subdirectory of ~/.gazebo/models/. Afterwards Gazebo can be
started and we can add our simulated pan-tilt unit via the “Insert” tab in the left side
menu:

rosrun gazebo_ros gazebo

After adding the model to the world, the simulated gravity will slowly pull the tilt
axis down until the camera rests on themotor. This happens for two different reasons:
First, we did not specify a <dynamics> tag, which contains friction, for our
model. Second, the SDF does not contain any sensor or model plugins.

We will add two plugins to the SDF file: First, a simulated camera sensor50:

<link name='camera_link'>
...

<sensor name="cam_sensor" type="camera">
<always_on>1</always_on>
<visualize>0</visualize>
<pose>

0 0 0.116
3.14159 3.14159 -1.5708

</pose>
<update_rate>30</update_rate>
<camera>

<horizontal_fov>1.0</horizontal_fov>

<clip>

<near>0.0100000</near>
<far>100.000000</far>

48In case one starts with the SDF description, this can also be converted to an URDF using
sdf2urdf.py model.sdf robot.urdf, see http://wiki.ros.org/pysdf. This option might
become even more attractive with the graphical model editor in Gazebo 6, cf. http://gazebosim.org/
tutorials?tut=model_editor.
49Cf. http://gazebosim.org/tutorials?tut=build_robot\&cat=build_robot.
50http://gazebosim.org/tutorials?tut=ros_gzplugins.

http://wiki.ros.org/pysdf
http://gazebosim.org/tutorials?tut=model_editor
http://gazebosim.org/tutorials?tut=model_editor
http://gazebosim.org/tutorials?tut=build_robot&cat=build_robot
http://gazebosim.org/tutorials?tut=ros_gzplugins

Hands-on Learning of ROS Using Common Hardware 49

</clip>
</camera>
<plugin name="cam_sensor_ros" filename="libgazebo_ros_camera.so"
>
<alwaysOn>true</alwaysOn>
<cameraName>/simcam</cameraName>
<imageTopicName>image_raw</imageTopicName>
<cameraInfoTopicName>camera_info</cameraInfoTopicName>
<frameName>sim_cam</frameName>

</plugin>
</sensor>

</link>

Second, a plugin to control the joints of our simulated model51:

...
<plugin name="joint_pos_control" filename=
"libRobotJointPositionControlPlugin.so">

<robotNamespace>/pantilt</robotNamespace>
<jointsReadTopic>get_joint_positions</jointsReadTopic>
<jointsWriteTopic>set_joint_positions</jointsWriteTopic>

</plugin>
</model>

Fig. 8 The screenshot shows a simulated world containing the pan-tilt unit in Gazebo together with
the live image provided by the simulated camera in rqt. Since the camera images are sent over a
standard sensor_msgs/Image topic, we could run the simulated images through our common
node created in an earlier section

51For ease of use, we use a custom plugin here. It must be installed from source https://
github.com/andreasBihlmaier/robot_joint_position_controller_gazebo. Alternatively Gazebo also
provides ROS control interfaces, however they require the robot to be externally spawned via
spawn_model, see http://gazebosim.org/tutorials/?tut=ros_control.

https://github.com/andreasBihlmaier/robot_joint_position_controller_gazebo
https://github.com/andreasBihlmaier/robot_joint_position_controller_gazebo
http://gazebosim.org/tutorials/?tut=ros_control

50 A. Bihlmaier and H. Wörn

Both plugins provide the usual ROS interface as would be expected from real hard-
ware. The complete model.sdf is available in holoruch_gazebo. Figure 8
shows the simulated pan-tilt unit in Gazebo together with the simulated camera
image shown in rviz. This concludes the last part of our hands-on introduction to
ROS.

Reference

1. A. Bihlmaier, H. Wörn, Automated endoscopic camera guidance: a knowledge-based system
towards robot assisted surgery, in Proceedings for the Joint Conference of ISR 2014 (45th Inter-
national Symposium on Robotics) and ROBOTIK 2014 (8th German Conference on Robotics),
pp. 617-622 (2014)

Authors’ Biography

Andreas Bihlmaier Dipl.-Inform., obtained his Diploma in computer science from the Karlsruhe
Institute of Technology (KIT). He is a Ph.D. candidate working in the Transregional Collabora-
tive Research Centre (TCRC) “Cognition-Guided Surgery” and is leader of the Cognitive Medical
Technologies group in the Institute for Anthropomatics and Robotics-Intelligent Process Control
and Robotics Lab (IAR-IPR) at the KIT. His research focuses on cognitive surgical robotics for
minimally-invasive surgery, such as a knowledge-based endoscope guidance robot.

Heinz Wörn Prof. Dr.-Ing., studied electronic engineering at the University of Stuttgart. He did
his Phd thesis on “Multi Processor Control Systems”. He is an expert on robotics and automation
with 18 years of industrial experience. In 1997 he became professor at the University of Karlsruhe,
now the KIT, for “Complex Systems in Automation and Robotics” and also head of the Institute
for Process Control and Robotics (IPR). Prof. Wörn performs research in the fields of industrial,
swarm, service and medical robotics.

Threaded Applications with the roscpp API

Hunter L. Allen

Abstract Webegin this tutorial by discussing the features of theCatkin build system.
We then proceed by giving a thorough explanation of ROS callback functions in
terms of sensor data. We utilize the Qt5 libraries to make a very simple Graphical
User Interface to control the robot with on screen buttons, as well as view position
information in (x, y, θ) coordinates. This GUI will use the Qt thread library as well
as ROS messages to control and provide information about the state of the robot.

Keywords Tutorial · Callback functions · CMake · Concurrency · GUI ·
Qt5 Programming

1 Introduction

In this chapter, we develop a foundation in the practice of Graphical User Interfaces
and threaded ROS implementation with the aid of the Qt5 library. In doing so, we
introduce a great deal of syntax; however, we implement a more robust system.
Moreover, we will see that ROS operates quite naturally in a threaded environment,
thus making the code more easily adaptable for larger scale applications.

There is a large collection of Qt interfaces for ROS which have already been
written. This collection is known as RQt. RQt was implemented as a replacement
for rxtools. This chapter will be focused on UI implementation outside of RQt, but,
due to the strong resemblance to the primary example in this chapter, its existence
should certainly be pointed out [1].

The primary example in this chapterwill be aUser Interface for controlling a robot.
The controller’s source code is available online [2]. To understand this example, we
must first explore aspects of the catkin build system, using the Qt libraries with ROS,
as well as some fundamentals of GUI creation. The tools introduced here can be

Special thanks to Dr. Julie A. Adams.

H.L. Allen (B)
Purdue University, West Lafayette, IN 47906, USA
e-mail: allen286@Purdue.Edu

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_3

51

52 H.L. Allen

extended for use in research, specifically in Human-Robot Interaction. We proceed
as follows:

• First, we investigate the Catkin Build system: we will discuss the contents of
relevant files for our package, setting the package up for Qt and touch lightly on
message generation.

• Second, we discuss different methods of implementing ROS callback functions.
• Third, we develop a simple application that listens to the position of a robot and
echoes the position in (x, y, θ) to the terminal.

• Fourth, we develop the same application in a threaded environment.
• Fifth, we implement the Graphical User Interface discussed earlier.

2 ROS Environment Configuration

The following examples will require the installation of a few packages. We assume
the user is working on Ubuntu 14.04 with ROS Indigo. It is also assumed that the user
has set up a Catkin workspace (if this is not a valid assumption, see the following
tutorial on the ROS Wiki [3]). To install the required packages, run the following
commands.

$ sudo apt-get install ros-indigo-nav-msgs qt-sdk
$ sudo apt-get install ros-indigo-geometry-msgs

Finally, you may download and compile the source for this chapter’s examples
with the following commands.

$ roscd && cd ../src
$ git clone https://github.com/allenh1/ros-thread-tutorial
$ git clone https://github.com/allenh1/ros-qt-controller
$ cd ../ && catkin_make

At this point you should have all the necessary examples and build-dependencies
for this chapter, and the code should be compiled.

3 Catkin Build System

The Catkin Build System is one of the most powerful tools at your disposal for
use with ROS. Catkin was established as the primary build tool for ROS, replacing
rosbuild, in ROS groovy [11].

Threaded Applications with the roscpp API 53

3.1 Creating package.xml

In a Catkin package, there are two required files: package.xml and CMake
Lists.txt (package.xml replaced manifest.xml in REP-140 [4]). The
first file is responsible for identifying a directory as something Catkin needs to build
as well as provide information about the order in which the packages should be built.
Consider the following example from ros_threading_example.

<?xml version="1.0"?>
<package>

<name>ros_threading_example</name>
<version>0.0.1</version>
<description>Simple threading example.</description>
<license>BSD</license>
<maintainer email="allen286@purdue.edu">Hunter Allen</maintainer>
<author email="allen286@purdue.edu">Hunter Allen</author>

<buildtool_depend>catkin</buildtool_depend>

<build_depend>nav_msgs</build_depend>
<build_depend>roscpp</build_depend>
<build_depend>message_generation</build_depend>

<run_depend>nav_msgs</run_depend>
<run_depend>roscpp</run_depend>
<run_depend>message_generation</run_depend>

</package>

(Example package.xml from ros-threading-example on GitHub [2])

In this example, we create a minimal package.xml file. The required xml tags
include package name, version, description, license, maintainer and author. These
tags are used to identify the package. The buildtool_depend tag identifies
the package as a Catkin package. The build_depend tags are used to establish
the topological building of packages: this helps Catkin to build the packages in the
correct order (so that dependencies are built before the packages which depend on
them). As for run_depend, this identifies the packages with which Catkin needs
to link your package dynamically.

3.2 CMake Setup

Nextweexamine thefileCMakeLists.txt from thepackageros-threading-
example.

cmake_minimum_required(VERSION 2.8.9)
project(ros_threading_example)
find_package(catkin REQUIRED COMPONENTS roscpp

message_generation

54 H.L. Allen

nav_msgs)
find_package(Qt5Widgets REQUIRED)
find_package(Qt5Core REQUIRED)

add_message_files(FILES Pose2D.msg)
generate_messages(DEPENDENCIES std_msgs)

catkin_package(
CATKIN_DEPENDS roscpp message_generation
DEPENDS system-lib

)

qt5_wrap_cpp(QT_MOC_HPP src/RobotThread.h)

include_directories(src ${catkin_INCLUDE_DIRS})
include_directories(${Qt5Widgets_INCLUDE_DIRS})

add_executable(pose_echo_threaded src/main.cpp
src/RobotThread.cpp
${QT_RESOURCES_CPP}

${QT_MOC_HPP})

add_executable(pose_echo src/PoseEcho.cc)

add_dependencies(pose_echo ${PROJECT_NAME}_generate_messages_cpp)
add_dependencies(pose_echo_threaded ${PROJECT_NAME}_generate_messages_cpp)

target_link_libraries(pose_echo_threaded ${catkin_LIBRARIES} Qt5::Widgets)
target_link_libraries(pose_echo ${catkin_LIBRARIES})

install(TARGETS pose_echo_threaded pose_echo
RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

(Example CMakeLists.txt from ros_threading_example on GitHub [5])

In thisCMakeLists.txtfile, we tell Catkin to compile and link the executables
with the necessary ROS libraries (as declared in package.xml) and with the
necessary Qt libraries. We will discuss only the relevant commands here, and note
that information regarding commands out of the scope of this text may be found on
the CMake website [6].

We begin by restricting the CMake version to only those that are 2.8.9 or later (for
the Qt5-specific Commands). This is handled by the command cmake_minimum_
required followed by the flag VERSION and a release number.

The project command identifies the name of the project. Here, one can also
specify the language or languages in which the particular program was written;
however, it is of the author’s opinion that this information is not relevant in the ROS
world (unless you really want to be pedantic).

The find_package command is used to load settings from an external CMake
package. Here it is used to set upCMake toworkwith Catkin and the necessary catkin
packages. Successive calls are made to this command to include the Qt5 libraries
in the build. The flag REQUIRED tells CMake to exit and throw an error if Catkin

Threaded Applications with the roscpp API 55

or any necessary ROS components are not found. The COMPONENTS flag lists the
specific CMake components to require before building.

Catkin provides the macro catkin_package. This command is used to
generate the package configuration and remaining CMake files. There are five
arguments, all optional: INCLUDE_DIRS, LIBRARIES, CATKIN_DEPENDS,
DEPENDS and CFG_EXTRAS.INCLUDE_DIRS controls the export of the inclusion
paths. LIBRARIES declares the libraries that Catkin is exporting from this pack-
age. DEPENDS lists the CMake projects to incorporate that are not Catkin libraries
(system-lib, for example). CFG_EXTRAS is the catch-all command for Catkin;
with this command, you specify another CMake file to include in the build (for
example, this would be a file named extra.cmake).

CMake also has built-in Qt support. It uses the command qt5_wrap_cpp to
produce Qt wrappers.1 These are the moc files usually generated by the make com-
mand in a qmake generated Makefile. In our context, we use this to create a
qt-library from the sources command which we identify with QT_MOC_HPP. Had
we created a User Interface with a tool such as QtDesigner (generating a .ui
file), then we would employ the qt_wrap_ui in a similar fashion.

CMake uses include_directories to identify the directories to include
when looking for header files. We use the ones with which Catkin is already famil-
iar. It is important to note that, unless otherwise specified, CMake interprets your
directory input as relative to the current directory (that is, the one with the file
CMakeLists.txt). In particular, we use it to identify the source directories, the
Catkin include directories and Qt5Widgets include directories.

The add_executable command identifies the binary to be built and identifies
it with the sources with which to build it.

A specified target is linked with the command target_link_libraries.
Such a target must have been produced by an add_executable command or
an add_library command. In our example, we link both executables to the Qt5
Widgets library and the Catkin libraries.

Finally, we place the binary (binaries) and or library (libraries) in the appropriate
locations with the install command. The flag TARGETS identifies the targets we
are installing. There are five types of targets: ARCHIVE, LIBRARY, RUNTIME,
FRAMEWORK and BUNDLE. In most ROS applications, you will exclusively use
LIBRARY and RUNTIME. The DESTINATION flag identifies the end location of
the specified targets.

3.3 Message Generation

Before proceeding into Callback functions, the ability to generate a custom message
file with ease is a noteworthy ROS feature. Say, for example, you wanted to create a
message that held the robot’s position in only two coordinates. You can create a file

1This command is only found when Qt5Core is in the build environment. This command is also
only available in CMake versions 2.8.9 and later.

56 H.L. Allen

called Pose2D.msg and in only a few lines implement the message. Below is the
message file for the above example.

float64 xPose
float64 yPose

The above file is found a in the build path of our example under the directory
msg. Messages are included in the CMake file with the following commands.

add_message_files(FILES Pose2D.msg)
generate_messages(DEPENDENCIES std_msgs)

Also, it is important to note that these commandsmust come before the catkin_
package() command appears. Before the targets are linked in CMakeLists.
txt, we add the message as a dependency with the following lines.

add_dependencies(pose_echo ${PROJECT_NAME}_generate_messages_cpp)
add_dependencies(pose_echo_threaded ${PROJECT_NAME}_generate_messages_cpp)

The messages are referenced in the source by including the automatically gener-
ated header file $PROJECT_NAME/MessageName.h. In our particular example,
we include the message and redefine the type as Pose2D with the following lines.

#include <ros_threading_example/Pose2D.h>
typedef ros_threading_example::Pose2D Pose2D;

4 ROS Callback Functions

In this section we explore the ways a callback function can be implemented in ROS.
We will be using the code examples installed in Sect. 2. We will begin with a simple
example including callbacks of a non-threaded nature, then proceed to callbacks in
a threaded context.

4.1 Basic Callback Functions

Nodes communicate through messages. These messages are processed in a callback
function. In C++, callback functions are implemented through a function pointer.

Consider the following example from ros-thread-tutorial, installed in
Sect. 2.

#include <ros/ros.h>
#include <ros/network.h>
#include <nav_msgs/Odometry.h>

Threaded Applications with the roscpp API 57

#include <stdio.h>
#include <ros_threading_example/Pose2D.h>

typedef ros_threading_example::Pose2D Pose2D;

Pose2D poseMessage;
void poseCallback(const nav_msgs::Odometry& msg)
{

float m_xPos = msg.pose.pose.position.x;
float m_yPos = msg.pose.pose.position.y;
float m_aPos = msg.pose.pose.orientation.w;

std::printf("Pose: (%.4f, %.4f, %.4f)\n", m_xPos, m_yPos, m_aPos);
poseMessage.xPose = m_xPos;
poseMessage.yPose = m_yPos;

}

int main(int argc, char **argv)
{

ros::init(argc, argv, "pose_listener");

ros::NodeHandle n;

ros::Rate rate(100);

ros::Subscriber sub = n.subscribe("odom", 10, poseCallback);
ros::Publisher pub = n.advertise<Pose2D>("/pose2d", 100);

while (ros::ok()) {
pub.publish(poseMessage);

ros::spinOnce();
rate.sleep();

}

return 0;
}

We will break this example into parts for discussion. The function main begins
by initializing the ros node named “pose_listener.” A ros::NodeHandle is then
created. This object acts as an interface for subscribing/publishing and other related
activity. Such an object is essential in any ros application.

ros::Subscriber sub = n.subscribe("odom", 10, poseCallback);

The above line tells the ros::Subscriber object named “sub” to listen to the
topic “odom” with and store the messages with a buffer size of 10. The line also tells
the subscriber how the data should be processed, sending each datum to the function
poseCallback.

ros::Publisher pub = n.advertise<Pose2D>("/pose2d", 100);

This line tells the nodehandle to advertise a new topic called /pose2d that has a
queue of size five; in other words, the topicwill store atmost fivemessages should the
publisher speed fall behind the requested speed. After the publishers and subscribers

58 H.L. Allen

have been declared, we enter a loop that publishes our custom message type. The
command ros::spinOnce() tells the topics to refresh themselves, and we pause
the loop for the amount of time we specified earlier.

Some sample output is provided below, produced from a simulated Pioneer-3AT
robot moving in direction of the positive x-axis inside the Gazebo Simulator.

$ rosrun ros_threading_example pose_echo
Pose: (-2.0987, -0.0061, 1.0000)
Pose: (-2.0974, -0.0061, 1.0000)
Pose: (-2.0961, -0.0061, 1.0000)
Pose: (-2.0948, -0.0061, 1.0000)
Pose: (-2.0936, -0.0061, 1.0000)
Pose: (-2.0923, -0.0061, 1.0000)
Pose: (-2.0910, -0.0061, 1.0000)

4.2 Robots as a Thread

The implementation considered in Sect. 4.1 is not so useful when working in the
context of User Interfaces. Certainly, the ROS functionality should be entirely sepa-
rate from any sort of user interface, but must also be connected. Our goal is simple:
we pass the necessary information to and from a continuously running ROS node to
the interface. As the reader may verify, this lends very nicely to a threaded imple-
mentation, as both the interface and ROS communications are quite hindered by
waiting.

To implement a thread inROS, there are two functionswemust ensure exist. These
functions include the destructor virtual ˜RobotThread() and the function
that calls ros::init(int argc, char ** argv), implemented here as
bool init(). bool init(), in the case of Qt, will also be responsible for
setting up and starting the thread on which our robot will run.

Hereweprovide an exampleof a veryminimal implementationof RobotThread
that is built upon Qt’s thread library, QThread. In the following example, we will
write the same program as before, but in a threaded setting. This form of implemen-
tation is not as succinct as that of the prior, but is far more robust. Such a header
is also quite reusable, as it can be minimally adapted for a myriad of situations. It
is important to note, however, that due to limitations in the roscpp API, multiple
instances of this thread cannot be created as it is implemented here. The source for
this example was installed with that of the prior example in Sect. 2, so we will only
examine the file RobotThread.cpp (as the RobotThread.h file holds only
the class).

#include "RobotThread.h"

RobotThread::RobotThread(int argc, char** pArgv)
: m_Init_argc(argc),

m_pInit_argv(pArgv)
{/** Constructor for the robot thread **/}

Threaded Applications with the roscpp API 59

RobotThread::˜RobotThread()
{

if (ros::isStarted())
{

ros::shutdown();
ros::waitForShutdown();

}//end if

m_pThread->wait();
}//end destructor

bool RobotThread::init()
{

m_pThread = new QThread();
this->moveToThread(m_pThread);

connect(m_pThread, &QThread::started, this, &RobotThread::run);

ros::init(m_Init_argc, m_pInit_argv, "pose_echo_threaded");

if (!ros::master::check())
return false;//do not if ros is not running

ros::start();
ros::Time::init();
ros::NodeHandle nh;

pose_listener = nh.subscribe("odom", 100, &RobotThread::poseCallback,
this);
pose2d_pub = nh.advertise<Pose2D>("/pose2d", 100);

m_pThread->start();
return true;

}//set up ros

void RobotThread::poseCallback(const nav_msgs::Odometry & msg)
{

QMutex pMutex = new QMutex();
pMutex->lock();
m_xPos = msg.pose.pose.position.x;
m_yPos = msg.pose.pose.position.y;
m_aPos = msg.pose.pose.orientation.w;
std::printf("Pose: (%.4f, %.4f, %.4f)\n", m_xPos, m_yPos, m_aPos);
pMutex->unlock();

delete pMutex;
}//callback method to echo the robot’s position

void RobotThread::run()
{

ros::Rate loop_rate(1000);

QMutex * pMutex;

while (ros::ok())
{

pMutex = new QMutex();
pMutex->lock();

60 H.L. Allen

poseMessage.xPose = m_xPos;
poseMessage.yPose = m_yPos;
pose2d_pub.publish(poseMessage);
pMutex->unlock();

delete pMutex;

ros::spinOnce();
loop_rate.sleep();

}//run while ROS is ok.
}

We begin with the constructor. The function RobotThread::RobotThread
(int argc, char ** argv) is responsible for creating the Robot Thread.
It’s function is rather limited: it simply initializes ‘m_Init_argc’ and ‘m_pInit_argv’
which are to be passed to ROS.

The destructor RobotThread::˜RobotThread() serves as a clean exit.
The function first verifies that ROS is running. If so, the function halts its ROS
functionality and waits for this action to complete. Lastly, wait() is called to stop
the thread from processing.
RobotThread::init() is the function responsible for setting up our thread.

OlderQt implementations tend to subclassQThread. Itwas later decided that, instead,
one should subclassQObject (themost basic ofQt constructions) andmove the object
onto a thread. This provides both better control and a clearer thread affinity. This
process is not too difficult to accomplish, as we simply need to create a thread object,
move our implementation onto said object and identify the function that will be
running on the thread. We will discuss the meaning of the connect statement later
in Sect. 5.2.
RobotThread::init() is also responsible for bringing up the ROS services.

As inPoseEcho,ros::init starts the node namedpose_listener. To verify
that the master node is running appropriately, we make a call to ros::master::
check(); if there is no master node, our function returns false, meaning that
initialization of our node failed. ROS is then started, as is the timer for ROS.
The ros::subscriber in this context is stored as a member object called
pose_listener. This subscribes to the /odom topic, storing a buffer of ten mes-
sages with the callback function RobotThread::poseCallback. Take note of
the & in front of the function in this context, in contrast to the prior example. The
next line advertises topic /pose2d with a queue of size five.

Lastly, the function RobotThread::run() is the run function for our thread.
We have a member object poseMessage which is a message of type Pose2D.
We also have member variables m_xPos and m_yPos, which are given data by the
sensor callback function and are in turn used for the data of Pose2D. Using the
same environment as before, we obtain the following output.

$ rosrun ros_threading_example pose_echo_threaded
Pose: (0.0664, 0.0010, 1.0000)
Pose: (0.0677, 0.0010, 1.0000)
Pose: (0.0690, 0.0010, 1.0000)

Threaded Applications with the roscpp API 61

Pose: (0.0702, 0.0010, 1.0000)
Pose: (0.0715, 0.0010, 1.0000)
Pose: (0.0728, 0.0010, 1.0000)
Pose: (0.0741, 0.0010, 1.0000)

5 GUI Programming with Qt5 and ROS

In this section we develop a simple user interface for controlling a robot. Our goal
is to control a robot with the aid of a Graphical User Interface and simultaneously
receive the robot’s position. Here we implement RobotThread in a manner sim-
ilar to that of Sect. 4.2. We will publish a velocity command (a message of type
geometry_msgs::Twist) to the topic /cmd_vel containing the velocity cor-
responding to the button clicked by the user. The interface will also inform the user
of the robot’s position.

Such an implementation is fairly typical. While there are several implementations
already in existence, this implementation serves as a teaching tool to demonstrate
the many tools we have outlined in this chapter.

Before proceeding, please note that Sect. 5.1 deals with the construction of the
interface, and is by no means ROS specific; if the reader has experience in the
development of Qt5 GUI interfaces, they should feel free to move past Sect. 5.1 and
delve immediately into Sect. 5.2.

5.1 An Overview of Qt5 GUI Programming

Beforewe consider linking theRobotThread,wemust create awindowwithwhich
to control the robot. Here we are working with the file ControlWindow.cpp
from the package ros_qt_controller installed in Sect. 2. As the GUI in Fig. 1
was built without the Qt Designer tool, the source links each button manually2;
accordingly, we will only examine sections of the constructor.

The constructor for the ControlWindow object, takes the arguments to pass to
the Robot thread and a pointer to the parent window, which is by default NULL.

The constructor begins by creating QPushButton objects which will ultimately
become the controls for the robot. After each button is created, we must properly set
it up. Below is the setup for the right turn button.

ControlWindow::ControlWindow(int argc, char **argv, QWidget *parent)
: QWidget(parent),

m_RobotThread(argc, argv)

2Note that this is by no means a requirement: one may implement the UI with Qt Designer if one
so chooses, as was mentioned in Sect. 3.2.

62 H.L. Allen

Fig. 1 Screen shot of the
implemented Control
Window

{
...
p_rightButton = new QPushButton();
...
QPalette palette = p_rightButton->palette();
palette.setColor(QPalette::Button,QColor(255,255,255));
p_rightButton->setAutoFillBackground(true);
p_rightButton->setFlat(true);
p_rightButton->setPalette(palette);
p_rightButton->setIcon(QIcon(":/images/right.xpm"));
p_rightButton->setIconSize(QSize(50, 50));
...

}

Here we attach the icons declared in CMakeLists.txt to the button. The color
of the button is set to white with the QPalette object, and is then flattened.We then
place the icon on the button with the setIcon function. We indicate the QResource
with the : appended to the location. Lastly, we set the button to be 50× 50 pixels.
This process then repeated for the remaining buttons.

The layout of thewindow ismanagedby theQVBoxLayout andQHBoxLayout
objects. These objects keep things in the same relative location when the window
is resized. For our purposes, we divide the window into the left and right halves of
the screen; this is done with a QHBoxLayout object. The left and right sides are
represented by QVBoxLayout objects.

On the left side of the screen we place the position data. As we have labeled
the places the position appears, we create horizontal layouts for each location. The
below code creates the label and the box where the position data appears for the
x-coordinate.

ControlWindow::ControlWindow(int argc, char **argv, QWidget *parent)
: QWidget(parent),

m_RobotThread(argc, argv)
{

...
leftLayout = new QVBoxLayout();
p_xLayout = new QHBoxLayout();
...

Threaded Applications with the roscpp API 63

p_xLabel = new QLabel();
p_xLabel->setText(tr("X:"));
p_xDisplay = new QLineEdit();
p_xDisplay->setText(tr("0.0"));
...
p_xLayout->addWidget(p_xLabel);
p_xLayout->addWidget(p_xDisplay);
...
leftLayout->addLayout(p_xLayout);
...

}

The QLabel and QLineEdit objects are subclasses of QWidget. The widgets
are constructed, then added to the layout with the function addWidget. The calls
to the function tr() should be noted as well. This call is to the Qt’s translation
system. Qt recommends you use it for all string literals, as it allows the program to
be instantly translated into several languages [7]. The p_xLayout object is then
added to the left layout. Note: this must be done in the expected order; the objects
are placed from left to right on the horizontal layouts and from top to bottom on the
vertical layouts.

On the right side of the control window we place the controls, as well as a quit
button to close the application cleanly. The below code places the buttons in their
desired locations and combines the left and right layouts in the mainLayout object.

ControlWindow::ControlWindow(int argc, char **argv, QWidget *parent)
: QWidget(parent),

m_RobotThread(argc, argv)
{

...
rightLayout = new QVBoxLayout();
layout = new QHBoxLayout();
layout2 = new QHBoxLayout();
...
mainLayout = new QHBoxLayout();
...
layout2->addWidget(p_rightButton);

...
rightLayout->addLayout(layout2);
...

mainLayout->addLayout(leftLayout);
mainLayout->addLayout(rightLayout);
...

}

Finally, we set the layout of the window, tell the window to appear on the screen
and set the title of the window to “Control Window” with the following three lines
of code.

ControlWindow::ControlWindow(int argc, char **argv, QWidget *parent)
: QWidget(parent),

m_RobotThread(argc, argv)

64 H.L. Allen

{
...
setLayout(mainLayout);

show();

setWindowTitle(tr("Control Window"));
...

}

At this point, we have constructed the window in Fig. 1; however, we have only
constructed the window. The buttons must now be connected to the desired func-
tionality. In the world of Qt, this is accomplished through the use of SIGNAL and
SLOT functions.

5.2 Connecting the Robot to the GUI

Recall that ROS communication is performed by means of a function pointer. In a
similar fashion, Qt controls when a function is called with Signals and Slots [8].

Signals (Slots) also have the ability to emit (receive) multiple pieces of data at the
same time. The signals will be called when the data is ready, and the slots will do the
necessary processing with whatever arguments they were supplied.We canmake this
even safer by sending double’s instead of const double &’s, as this would
send a copy of the variable instead of a constant reference. Lastly, if there is still a
possibility of synchronization issues, Qt has its own Mutex library, QMutex [9].

Qt manages Signals and Slots with the function connect. A typical call to this
function is illustrated below.

connect(&m_closeButton, SIGNAL(clicked()), this, SLOT(close()))

It should also be mentioned that Qt5 supports an alternative syntax (which will
soon replace the above) that is much more user friendly, as it catches incorrectly
connected functions at compiler time. This syntax will not work with Qt4, but is
strongly recommended for Qt5. The previous statement would be implemented as
follows.

connect(p_quitButton, &QPushButton::clicked,
this, &ControlWindow::close);

Here we have a member variable named m_closeButton of type QPush
Button. Also, suppose we encounter this line in the constructor of themainwindow
(this in the above). Then when the button is clicked, a signal is emitted to call the
main window’s close function.3

3close() is a function inherited from QWidget that closes the window.

Threaded Applications with the roscpp API 65

A Slot (Signal) is declared as a void with the required parameters by prepending
the macro Q_SLOT (Q_SIGNAL). A Signal is triggered with the macro Q_EMIT
followed by the function and any required arguments.

Returning to our particular example, we modify the callback function for our
odometry messages to inform the control window of the new position. The signal
containing the position information is declared in RobotThread.h as follows.

Q_SIGNAL void newPose(double,double,double);

The callback function in RobotThread.cpp emits the position information when
each message is received with the following function.

void RobotThread::poseCallback(const nav_msgs::Odometry & msg)
{

QMutex * pMutex = new QMutex();

pMutex->lock();
m_xPos = msg.pose.pose.position.x;
m_yPos = msg.pose.pose.position.y;
m_aPos = msg.pose.pose.orientation.w;
pMutex->unlock();

delete pMutex;
Q_EMIT newPose(m_xPos, m_yPos, m_aPos);

}//callback method to update the robot’s position.

Meanwhile, in ControlWindow.h we declare the slot

Q_SLOT void updatePoseDisplay(double x, double y, double theta);

which is implemented as follows.

void ControlWindow::updatePoseDisplay(double x, double y, double theta)
{

QString xPose, yPose, aPose;
xPose.setNum(x);
yPose.setNum(y);
aPose.setNum(theta);

p_xDisplay->setText(xPose);
p_yDisplay->setText(yPose);
p_aDisplay->setText(aPose);

}//update the display.

This function converts the double variables into QString variables and sets the
contents of the respective displays with the converted strings.

This pair is connected in the constructor of the ControlWindowwith the following
line.

connect(&m_RobotThread, &RobotThread::newPose,
this, &ControlWindow::updatePoseDisplay);

66 H.L. Allen

Next we need to change the velocity of the robot. Since the robot is a member
variable of our ControlWindow object, we can store the linear and angular veloc-
ities to be published to the robot as member variables. The RobotThread’s run
function then publishes the currently desired speed. We add the following function
to RobotThread to modify the robot’s velocity.

void RobotThread::SetSpeed(double speed, double angle)
{

QMutex * pMutex = new QMutex();
pMutex->lock();
m_speed = speed;
m_angle = angle;
pMutex->unlock();

delete pMutex;
}//set the speed of the robot.

This function allows the Slots for each respective arrow key to have a rather pithy
implementation. The following is found in ControlWindow.cpp.

void ControlWindow::goForward() { m_RobotThread.SetSpeed(0.25, 0); }
void ControlWindow::goBackward(){ m_RobotThread.SetSpeed(-0.25, 0); }
void ControlWindow::goRight() { m_RobotThread.SetSpeed(0, -PI / 6.0); }
void ControlWindow::goLeft() { m_RobotThread.SetSpeed(0, PI / 6.0); }
void ControlWindow::halt() { m_RobotThread.SetSpeed(0, 0); }

The final responsibilities of the constructor for ControlWindow is to connect
these functions to their respective buttons, initialize the RobotThread and run the
RobotThread. This process is depicted below.

ControlWindow::ControlWindow(int argc, char **argv, QWidget *parent)
: QWidget(parent),

m_RobotThread(argc, argv)
{

...
connect(p_quitButton, &QPushButton::clicked,

this, &ControlWindow::close);
connect(p_upButton, &QPushButton::clicked,

this, &ControlWindow::goForward);
connect(p_leftButton, &QPushButton::clicked,

this, &ControlWindow::goLeft);
connect(p_rightButton, &QPushButton::clicked,

this, &ControlWindow::goRight);
connect(p_downButton, &QPushButton::clicked,

this, &ControlWindow::goBackward);
connect(p_stopButton, &QPushButton::clicked,

this, &ControlWindow::halt);

conenct(&m_RobotThread, &RobotThread::newPose,
this, &ControlWindow::updatePoseDisplay);

m_RobotThread.init();
}

Threaded Applications with the roscpp API 67

5.3 Publishing the Velocity Messages

Now that the desired velocity settings have been linked to the RobotThread, we
need to send the message to the robot itself. This implementation is almost identical
to the implementation discussed Sect. 4.2. As such, we will highlight the differences
here.

The initialization function is implemented as follows.

bool RobotThread::init()
{

m_pThread = new QThread();
this->moveToThread(m_pThread);

connect(m_pThread, &QThread::started, this, &RobotThread::run);
ros::init(m_Init_argc, m_pInit_argv, "gui_command");

if (!ros::master::check())
return false;//do not start without ros.

ros::start();
ros::Time::init();
ros::NodeHandle nh;
sim_velocity = nh.advertise<geometry_msgs::Twist>("/cmd_vel", 100);
pose_listener = nh.subscribe(m_topic, 10, &RobotThread::poseCallback,
this);

m_pThread->start();
return true;

}//set up the thread

This implementation creates the node gui_command. The function advertises the
velocity messages on the topic “cmd_vel.”.4 We then subscribe to the topic name
stored in the variable m_topic, specified by the terminal arguments and defaulting
to “odom.”

We now turn our attention to the run function.

void RobotThread::run()
{

ros::Rate loop_rate(100);
QMutex * pMutex;
while (ros::ok())
{

pMutex = new QMutex();

geometry_msgs::Twist cmd_msg;
pMutex->lock();
cmd_msg.linear.x = m_speed;
cmd_msg.angular.z = m_angle;
pMutex->unlock();

4This is the standard topic for such a message; however, the reader is encouraged to find a way to
initialize this with a variable topic [Hint: add a const char * to the constructor which defaults
to “cmd_vel”].

68 H.L. Allen

sim_velocity.publish(cmd_msg);
ros::spinOnce();
loop_rate.sleep();
delete pMutex;

}//main ros loop
}

The reader should find this function to be familiar. The message is published as
before, but with a much faster loop rate (100 Hz). The message is also of a dif-
ferent type (geometry_msgs::Twist). Lastly, the variable pMutex prevents
the setSpeed() function from writing over the member variables m_speed and
m_angle in the middle of creating the message.

A video Demonstration of the application running can be found online [10]. The
code will work on any robot that publishes on the cmd_vel topic. This includes
most robots that support ROS. If the reader does not have a physical robot available,
the same code will work in simulation.

$ sudo apt-get install ros-indigo-p2os-launch ros-indigo-p2os-urdf
$ roslaunch pioneer3at.gazebo.launch

Then, in a separate terminal, run the executable.

$ rosrun ros_qt_controller qt_ros_ctrl

The on screen robot should now bemoving, and the data fields should be updating
appropriately in a manner similar to that of the video demonstration.

5.4 Results

We have now demonstrated the flexibility of the Qt library, as well as the practicality
of programmingwith threads in ROS. Solutions of this type are efficient, reusable and
include modern programming libraries which are quite easily updated. Our setup is
done using only CMake calls, sharing with the reader the necessary tools to connect
any external CMake library with the Catkin build system.

We have discovered the power and speed of a threaded ROS application, as well
as the remarkable portability of the code required to make such an application. The
reader should also have some familiarity with GUI programming for ROS and should
be able to adapt the code for research in many fields, particularly Human-Robot
Interaction.

Threaded Applications with the roscpp API 69

References

1. RQt. http://wiki.ros.org/rqt
2. Hunter Allen’s Git Repository. http://github.com/allenh1/ros-qt-controller
3. Creating a Catkin Workspace. http://wiki.ros.org/catkin/Tutorials/create_a_workspace
4. R.E.P. 140. http://www.ros.org/reps/rep-0140.html
5. ROS Threading Tutorial Package. https://github.com/allenh1/ros-thread-tutorial
6. CMake Commands. http://www.cmake.org/cmake/help/v3.0/manual/cmake-commands.7.

html
7. Qt Translation. http://doc.qt.io/qt-5/i18n-source-translation.html
8. Qt Online Documentation. https://doc-snapshots.qt.io
9. QMutex Class. http://doc.qt.io/qt-5.4/qmutex.html
10. Video Demonstration of Controller. https://vimeo.com/123502207
11. ROS Wiki, Catkin Build. http://wiki.ros.org/catkin

Author’s Biography

Hunter Allen is currently an Undergraduate at Purdue University, double-majoring in Mathe-
matics and Computer Science with a minor in Linguistics. Hunter spent 3years at Vanderbilt
University under Dr. Julie A. Adams in the Human-Machine Teaming Laboratory researching
autonomous mobile robotics. Hunter is also the current maintainer of the P2OS ROS stack and
the Gentoo ROS overlay.

http://wiki.ros.org/rqt
http://github.com/allenh1/ros-qt-controller
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://www.ros.org/reps/rep-0140.html
https://github.com/allenh1/ros-thread-tutorial
http://www.cmake.org/cmake/help/v3.0/manual/cmake-commands.7.html
http://www.cmake.org/cmake/help/v3.0/manual/cmake-commands.7.html
http://doc.qt.io/qt-5/i18n-source-translation.html
https://doc-snapshots.qt.io
http://doc.qt.io/qt-5.4/qmutex.html
https://vimeo.com/123502207
http://wiki.ros.org/catkin

Part II
Navigation, Motion and Planning

Writing Global Path Planners
Plugins in ROS: A Tutorial

Maram Alajlan and Anis Koubâa

Abstract In this tutorial chapter, we demonstrate how to integrate a new planner
into ROS and present their benefits. Extensive experimentations are performed to
show the effectiveness of the newly integrated planners as compared to Robot
Operating System (ROS) default planners. The navigation stack of the ROS open-
source middleware incorporates both global and local path planners to support
ROS-enabled robot navigation. Only basic algorithms are defined for the global
path planner including Dijkstra, A*, and carrot planners. However, more intelli-
gent global planners have been defined in the literature but were not integrated in
ROS distributions. This tutorial was developed under Ubuntu 12.4 and for ROS
Hydro version. However, it is expected to also work with Groovy (not tested).
A repository of the new path planner is available at https://github.com/coins-lab/
relaxed_astar. A video tutorial also available at https://www.youtube.com/playlist?
list=PL8UbFU8tzwRjkxccq2zLkmTkOOYela5fu.

Keywords ROS · Global path planner · Navigation stack

M. Alajlan (B) · A. Koubâa
Cooperative Networked Intelligent Systems (COINS) Research Group,
Riyadh, Saudi Arabia
e-mail: maram.ajlan@coins-lab.org

A. Koubâa
College of Computer and Information Sciences, Prince Sultan University,
Rafha Street, Riyadh 11586, Saudi Arabia
e-mail: akoubaa@coins-lab.org

M. Alajlan
College of Computer and Information Sciences, King Saud University,
Riyadh 11683, Saudi Arabia

A. Koubâa
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_4

73

https://github.com/coins-lab/relaxed_astar
https://github.com/coins-lab/relaxed_astar
https://www.youtube.com/playlist?list=PL8UbFU8tzwRjkxccq2zLkmTkOOYela5fu
https://www.youtube.com/playlist?list=PL8UbFU8tzwRjkxccq2zLkmTkOOYela5fu

74 M. Alajlan and A. Koubâa

1 Introduction

Mobile robot path planning is a hot research area. Indeed, the robot should have the
ability to autonomously generate collision free path between any two positions in
its environment. The path planning problem can be formulated as follows: given a
mobile robot and a model of the environment, find the optimal path between a start
position and a final position without colliding with obstacles. Designing an efficient
path planning algorithm is an essential issue in mobile robot navigation since path
quality influences the efficiency of the entire application. The constructed path must
satisfy a set of optimization criteria including the traveled distance, the processing
time, and the energy consumption.

In the literature, the path planning problem is influenced by two factors: (1) the
environment, which can be static or dynamic, (2) the knowledge that the robot has
about the environment; if the robot has a complete knowledge about the environment,
this problem is known as global path planning. On the other hand, if the robot has
an incomplete knowledge, this problem is classified as local path planning.

The navigation stack of the Robot Operating System (ROS) open-source middle-
ware incorporates both global and local path planners to support ROS-enabled robot
navigation. However, only basic algorithms are defined for the global path planner
including Dijkstra, A*, and carrot planners.

In this tutorial, we present the steps for integrating a new global path planner into
the ROS navigation system. The new path planner is based on a relaxed version of the
A* (RA*) algorithm, and it can be found in [1]. Also, we compare the performance
of the RA* with ROS default planner.

The rest of this tutorial is organized as follow.

• Section2 introduces ROS and its navigation system.
• Section3 introduces the relaxed A* algorithm.
• In Sect. 4, we present the steps of integrating a new global path planner into the
ROS navigation system.

• Section5 presents the ROS environment configuration.
• In Sect. 6, we conduct the experimental evaluation study to compare the perfor-
mance of RA* and ROS default planner.

2 ROS

ROS (Robot Operating System) [2] has been developed by Willow Garage [3] and
Stanford University as a part of STAIR [4] project, as a free and open-source robotic
middleware for the large-scale development of complex robotic systems.

ROSacts as ameta-operating system for robots as it provides hardware abstraction,
low-level device control, inter-processesmessage-passing and packagemanagement.
It also provides tools and libraries for obtaining, building, writing, and running code

Writing Global Path Planners Plugins in ROS: A Tutorial 75

across multiple computers. The main advantage of ROS is that it allows manipulat-
ing sensor data of the robot as a labeled abstract data stream, called topic, without
having to deal with hardware drivers. This makes the programming of robots much
easier for software developers as they do not have to deal with hardware drivers and
interfaces. Also, ROS provides many high-level applications such as arm controllers,
face tracking, mapping, localization, and path planning. This allow the researchers to
focus on specific research problems rather than on implementing themany necessary,
but unrelated parts of the system.

Mobile robot navigation generally requires solutions for three different problems:
mapping, localization, and path planning. In ROS, the Navigation Stack plays such
a role to integrate together all the functions necessary for autonomous navigation.

2.1 ROS Navigation Stack

In order to achieve the navigation task, the Navigation Stack [5] is used to inte-
grate the mapping, localization, and path planning together. It takes in infor-
mation from odometry, sensor streams, and the goal position to produce safe
velocity commands and send it to the mobile base (Fig. 1). The odometry comes
through nav_msgs/Odometry message over ROS which stores an estimate of
the position and velocity of a robot in free space to determine the robot’s loca-
tion. The sensor information comes through either sensor_msgs/LaserScan
or sensor_msgs/PointCloudmessages over ROS to avoid any obstacles. The
goal is sent to the navigation stack bygeometry_msgs/PoseStampedmessage.
The navigation stack sends the velocity commands through geometry_msgs/
Twist message on /cmd_vel topic. The Twist message composed of two sub-
messages:

Fig. 1 ROS navigation stack [2]

76 M. Alajlan and A. Koubâa

geometry_msgs/Vector3 linear
float64 x
float64 y
float64 z

geometry_msgs/Vector3 angular
float64 x
float64 y
float64 z

linear sub-message is used for the x, y and z linear velocity components in meters
per second and angular sub-message is used for the x, y and z angular velocity
components in radians per second. For example the following Twist message:

linear: {x: 0.2, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0}

will tell the robot to move with a speed of 0.2 m/s straight ahead. The base controller
is responsible for converting Twistmessages to “motor signals”which will actually
move the robot’s wheels [6].

The navigation stack does not require a prior static map to start with. Actually it
could be initialized with or without a map. When initialized without a prior map, the
robot will know about the obstacles detected by its sensors only and will be able to
avoid the seen obstacles so far. For the unknown areas, the robot will generate an opti-
mistic global path which may hit unseen obstacles. The robot will be able to re-plan
its path when it receives more information by the sensors about these unknown areas.
Instead, when the navigation stack initialized with a static map for the environment,
the robot will be able to generate an informed plans to its goal using the map as prior
obstacle information. Starting with a prior map will have significant benefits on the
performance [5].

To build a map using ROS, ROS provides a wrapper for OpenSlam’s Gmapping
[7]. A particle filter-based mapping approach [8] is used by the gmapping package
to build an occupancy grid map. Then a package named map_server could be
used to save that map. The maps are stored in a pair of files: YAML file and image
file. The YAML file describes the map meta-data, and names the image file. The
image file encodes the occupancy data. The localization part is solved in the amcl
package using an Adaptive Monte Carlo Localization [9] which is also based on
particle filters. It is used to track the position of a robot against a known map. The
path planning part is performed in the move_base package, and is divided into
global and local planning modules which is a common strategy to deal with the
complex planning problem.

The global path planner searches for a shortest path to the goal and the local
path planner (also called the controller), incorporating current sensor readings,
issues the actual commands to follow the global path while avoiding obstacles. More
details about the global and local planners in ROS can be found in the next sections.

The move_base package also maintains two costmaps, global_costmap and
local_costmap to be used with the global and local planners respectively. The
costmap used to store and maintain information in the form of occupancy grid about
the obstacles in the environment and where the robot should navigate. The costmap

Writing Global Path Planners Plugins in ROS: A Tutorial 77

Fig. 2 Recovery behaviors [2]

initialized with prior static map if available, then it will be updated using sensor data
tomaintain the information about obstacles in theworld.Besides that, themove_base
may optionally perform some previously defined recovery behaviors (Fig. 2) when
it fails to find a valid plan.

One reason of failure, is when the robot find itself surrounded with obstacles and
cannot find a way to its goal. The recovery behaviors will be performed in some
order (defined by the user), and after performing one recovery, the move_base will
try to find a valid plan, if it succeeds, it will proceed its normal operation. Otherwise
if it fails, it will perform the next recovery behavior. If it fails after performing all
the recovery behaviors, the goal will be considered infeasible, and it will be aborted.
The default recovery behaviors order is presented in Fig. 2 and it is in increasingly
aggressive order to attempt to clear out the robot space. First recovery behavior is
clearing all the obstacles outside a specific area from the robot’s map. Next, an in-
place rotation will be performed if possible to clear the space. Next, in case this too
fails, more aggressively clearing for the map will be performed, to remove all the
obstacles outside of the rectangular area in which the robot can make an in-place
rotation. Next, another in-place rotation will be performed. If all this fails, the goal
will be aborted.

Therefore, in each execution cycle of the move_base, one of three main states
should be performed:

• Planning state: run the global path planner .
• Controlling state: run the local path planner and move the robot.
• Clearing state: run recovery behavior in case the robot stuck.

There are some predefined parameters in ROS navigation stack that are used to
control the execution of the states, which are:

• planner_ f requency: to determine how often the global path planner should
be called, and is expressed in Hz. When it is set to zero, the global plan will be
computed only once for each goal received.

• controller_ f requency: to determine how often the local path planner or
controller should be called, and also expressed in Hz.

78 M. Alajlan and A. Koubâa

For any global or local planner or recovery behavior to be used with the
move_base it must be first adhere to some interfaces defined in nav_core pack-
age, which contains key interfaces for the navigation stack, then it must be added as
a plugin to ROS. We developed a tutorial on how to add a new global planner as a
plugin to ROS navigation stack, available at [10] and [11].

2.1.1 Global Planner

The global path planner in ROS operates on the global_costmap, which gener-
ally initialized from a prior static map, then it could be updated frequently based on
the value of update_ f requency parameter. The global path planner is respon-
sible for generating a long-term plan from the start or current position to the goal
position before the robot starts moving. It will be seeded with the costmap, and
the start and goal positions. These start and goal positions are expressed by their
x and y coordinates. A grid-based global planner that can use Dijkstra’s algorithm
[12] or A* algorithm to compute shortest collision free path for a robot is obtained
in global_planner package. Also, ROS provide another global planner named
carrot_planner, which is a simple planner that attempts to move the robot
as close to its goal as possible even when that goal is in an obstacle. The current
implementation of the global planner in ROS assumes a circular-shape robot. This
results in generating an optimistic path for the actual robot footprint, which may be
infeasible path. Besides that, the global planner ignores kinematic and acceleration
constraints of the robot, so the generated path could be dynamically infeasible.

2.1.2 Local Planner

The local path planner or the controller in ROS operates on the local_costmap,
which only uses local sensor information to build an obstacle map and dynamically
updated with sensor data. It takes the generated plan from the global planner, and
it will try to follow it as close as possible considering the kinematics and dynamics
of the robot as well as any moving obstacles information in the local_costmap.
ROS provides implementation of two local path planning algorithms namely the
Trajectory Rollout [13] and the Dynamic Window Approach (DWA) [14] in the
package base_local_planner . Both algorithms have the same idea to first discretely
sampled the control space then to perform forward simulation, and the selection
among potential commands. The two algorithm differ in how they sample the robot’s
control space.

After the global plan passed to the controller , the controller will produce veloc-
ity commands to send to a mobile base. For each control cycle, the controller will
try to process part from global path (determined by the size of the local_costmap).

First, the controller will sampled the control space of the robot discretely. The
number of the samples will be specified by the controller parameters vx_samples

Writing Global Path Planners Plugins in ROS: A Tutorial 79

and vtheta_samples (more details about the parameters can be found in the next
section). Then, the controller will perform a simulation in advance for each one of
those velocity samples from the current place of the robot to foresee the situation from
applying each sample for amount of time (this time will be specified in the parameter
sim_t ime). Then, the controller will evaluate each resultant path from the simulation
and will exclude any path having collisions with obstacles. For the evaluation, the
controllerwill incorporates the followingmetrics: distance fromobstacles, distance to
the goal position, distance from the global plan and robot speed. Finally, the controller
will send the velocity command of the highest-scoring path to the mobile base to
execute it.

The “MapGrid” is used to evaluate and score the velocities. For each control cycle,
the controller will create a grid around the robot (the grid size determined by the size
of the local_costmap), and the global path will be mapped onto this area. Then each
grid cell will receive a distance value. The cells containing path points and the goal
will be marked with 0. Then each other grid cell will be marked with its manhattan
distance from nearest zero grid by a propagation algorithm. This “Map Grid” is then
used in the evaluation and scoring of the velocities. As the “Map Grid” will cover
small area from global path each time, the goal position often will lie outside that
area. So in that case the first path point inside the area having a consecutive point
outside the area will be considered as “local goal”, and the distance from that local
goal will be considered when scoring trajectories for distance to goal.

3 Relaxed A*

RA* is a time linear relaxed version of A*. It is proposed to solve the path planning
problem for large scale grid maps. The objective of RA* consists of finding optimal
or near optimal solutions with small gaps, but at much smaller execution times than
traditional A*. The core idea consists of exploiting the grid-map structure to establish
an accurate approximation of the optimal path, without visiting any cell more than
once.

In fact, inA* the exact cost g(n) of a node nmay be computedmany times; namely,
it is computed for each path reaching node n from the start position. However, in the
RA* algorithm g(n) is approximated by the cost of the minimum-move path from
the start cell to the cell associated to node n.

In order to obtain the relaxed version RA*, some instructions of A*, that are time
consuming with relatively low gain in terms of solution quality, are removed. In fact,
a node is processed only once in RA*, so there is no need to use the closed set of the
A* algorithm. Moreover, in order to save time and memory, we do not keep track of
the previous node at each expanded node. Instead, after reaching the goal, the path
can be reconstructed, from goal to start by selecting, at each step, the neighbor having
the minimum g(n) value. Also, it is useless to compare the g(n) of each neighbor
to the g(n) of the current node n as the first calculated g(n) is considered definite.

80 M. Alajlan and A. Koubâa

Finally, it is not needed to check whether the neighbor of the current node is in the
open list. In fact, if its g(n) value is infinite, it means that it has not been processed
yet, and hence is not in the open list. The RA* algorithm is presented in Algorithm 1.

input : Grid, Start , Goal
t Break = 1+1/(length(Grid)+width(Grid));
// Initialisation:
openSet = Start // Set of nodes to be evaluated;
for each vertex v in Grid do

g_score(v)= infinity;
end
g_score[Start] = 0;
// Estimated total cost from Start to Goal:
f _score[Start] = heuristic_cost(Start , Goal);
while openSet is not empty and g_score[Goal]== infinity do

current = the node in openSet having the lowest f _score;
remove current from openSet ;
for each free neighbor v of current do

if g_score(v) == infinity then
g_score[v] = g_score[current] + dist_edge(current, v);
f _score[v] = g_score[v] + t Break * heuristic_cost(v, Goal);
add neighbor to openSet ;

end
end

end
if g_score(goal) ! = infinity then

return reconstruct_path(g_score) // path will be reconstructed based
on g_score values;

else
return failure;

end

Algorithm 1: Relaxed A*

Both terms g(n) and h(n) of the evaluation function of the RA* algorithm are not
exact, then there is no guaranty to find an optimal solution.

4 Integration Steps

In this section, we present the steps of integrating a new path planner into ROS. The
integration has two main steps: (1) writing the path planner class, and (2) deploying
it as a plugin. Following, we describe them in details.

Writing Global Path Planners Plugins in ROS: A Tutorial 81

4.1 Writing the Path Planner Class

As mentioned before, to make a new global planner work with ROS, it must first
adhere to the interfaces defined in nav_core package. A similar example can be
found in the carrot_planner.h [15] as a reference. All the methods defined in
nav_core::BaseGlobalPlanner class must be overridden by the new global
path planner. For this, you need to create a header file, that we will call in our case,
RAstar_ros.h

1 /∗∗ include the libraries you need in your planner here ∗/
2 /∗∗ for global path planner interface ∗/
3 #include <ros/ros.h>
4 #include <costmap_2d/costmap_2d_ros.h>
5 #include <costmap_2d/costmap_2d.h>
6 #include <nav_core/base_global_planner.h>
7 #include <geometry_msgs/PoseStamped.h>
8 #include <angles/angles.h>
9 #include <base_local_planner/world_model.h>

10 #include <base_local_planner/costmap_model.h>
11

12 using std::string;
13

14 #ifndef RASTAR_ROS_CPP
15 #define RASTAR_ROS_CPP
16

17 namespace RAstar_planner {
18

19 class RAstarPlannerROS : public nav_core::BaseGlobalPlanner {
20 public:
21

22 RAstarPlannerROS();
23 RAstarPlannerROS(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);
24

25 /∗∗ overridden classes from interface nav_core::BaseGlobalPlanner ∗∗/
26 void initialize(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);
27 bool makePlan(const geometry_msgs::PoseStamped& start,
28 const geometry_msgs::PoseStamped& goal,
29 std::vector<geometry_msgs::PoseStamped>& plan
30) ;
31 };
32 };
33 #endif

Now, we will explain the different parts of the header file.

3 #include <ros/ros.h>
4 #include <costmap_2d/costmap_2d_ros.h>
5 #include <costmap_2d/costmap_2d.h>
6 #include <nav_core/base_global_planner.h>
7 #include <geometry_msgs/PoseStamped.h>
8 #include <angles/angles.h>
9 #include <base_local_planner/world_model.h>

10 #include <base_local_planner/costmap_model.h>

82 M. Alajlan and A. Koubâa

It is necessary to include coreROS libraries needed for path planner. The headers:

4 #include <costmap_2d/costmap_2d_ros.h>
5 #include <costmap_2d/costmap_2d.h>

are needed to use the costmap_2d::Costmap2D class that will be used by the
path planner as input map. This map will be accessed automatically by the path
planner class when defined as a plugin. There is no need to subscribe to costmap2d
to get the cost map from ROS.

6 #include <nav_core/base_global_planner.h>

is used to import the interface nav_core :: BaseGlobal Planner , which the plugin
must adhere to.

17 namespace RAstar_planner {
18

19 class RAstarPlannerROS : public nav_core::BaseGlobalPlanner {

It is a good practice, although not necessary, to define namespace for your class. Here,
we define the namespace as RAstar_planner for the class RAstarPlanner
ROS. The namespace is used to define a full reference to the class, as RAstar_
planner::RAstarPlannerROS. The class RAstarPlannerROS is then
defined and inherits from the interface nav_core::BaseGlobalPlanner. All
methods defined in nav_core::BaseGlobalPlanner must be overridden by
the new class RAstarPlannerROS.

22 RAstarPlannerROS();

Is the default constructor which initializes the planner attributes with default values.

23 RAstarPlannerROS(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);

This constructor is used to initialize the costmap, that is the map that will be used
for planning (costmap_ros), and the name of the planner (name).

26 void initialize(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);

Is an initialization function for the BaseGlobalPlanner, which initializes the
costmap, that is the map that will be used for planning (costmap_ros), and the
name of the planner (name).

Writing Global Path Planners Plugins in ROS: A Tutorial 83

The initialize method for RA* is implemented as follows:

1 void RAstarPlannerROS::initialize(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros)
2 {
3 if (!initialized_)
4 {
5 costmap_ros_ = costmap_ros;
6 costmap_ = costmap_ros_−>getCostmap();
7 ros::NodeHandle private_nh("~/" + name);
8

9 originX = costmap_−>getOriginX();
10 originY = costmap_−>getOriginY();
11 width = costmap_−>getSizeInCellsX();
12 height = costmap_−>getSizeInCellsY();
13 resolution = costmap_−>getResolution();
14 mapSize = width∗height;
15 tBreak = 1+1/(mapSize);
16 OGM = new bool [mapSize];
17

18 for (unsigned int iy = 0; iy < height; iy++)
19 {
20 for (unsigned int ix = 0; ix < width; ix++)
21 {
22 unsigned int cost = static_cast<int>(costmap_−>getCost(ix, iy));
23 if (cost == 0)
24 OGM[iy∗width+ix]=true;
25 else
26 OGM[iy∗width+ix]=false;
27 }
28 }
29 ROS_INFO("RAstar planner initialized successfully");
30 initialized_ = true;
31 }
32 else
33 ROS_WARN("This planner has already been initialized ... doing nothing");
34 }

For the particular case of the carrot_planner, the initialize method is imple-
mented as follows:

1 void CarrotPlanner::initialize(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros){
2 if (!initialized_){
3 costmap_ros_ = costmap_ros; //initialize the costmap_ros_ attribute to the ←↩

parameter.
4 costmap_ = costmap_ros_−>getCostmap(); //get the costmap_ from ←↩

costmap_ros_
5

6 /∗ initialize other planner parameters ∗/
7 ros::NodeHandle private_nh("~/" + name);
8 private_nh.param("step_size", step_size_, costmap_−>getResolution());
9 private_nh.param("min_dist_from_robot", min_dist_from_robot_, 0.10);

10 world_model_ = new base_local_planner::CostmapModel(∗costmap_);
11

12 initialized_ = true;
13 }
14 else
15 ROS_WARN("This planner has already been initialized ... doing nothing");
16 }

84 M. Alajlan and A. Koubâa

27 bool makePlan(const geometry_msgs::PoseStamped& start,
28 const geometry_msgs::PoseStamped& goal,
29 std::vector<geometry_msgs::PoseStamped>& plan
30) ;

Then, the method bool makePlan must be overridden. The final plan will be
stored in theparameterstd::vector<geometry_msgs::PoseStamped>&
plan of the method. This plan will be automatically published through the plugin as
a topic. An implementation of the makePlan method of the carrot_planner
can be found in [16] as a reference.

Class Implementation In what follows, we present the main issues to be considered
in the implementation of a global planner as plugin. The complete source code of
the RA* planner can be found in [1]. Here is a minimum code implementation of the
RA* global path planner (RAstar_ros.cpp).

1 #include <pluginlib/class_list_macros.h>
2 #include "RAstar_ros.h"
3

4 //register this planner as a BaseGlobalPlanner plugin
5 PLUGINLIB_EXPORT_CLASS(RAstar_planner::RAstarPlannerROS, nav_core::←↩

BaseGlobalPlanner)
6

7 using namespace std;
8

9 namespace RAstar_planner {
10 //Default Constructor
11 RAstarPlannerROS::RAstarPlannerROS(){
12

13 }
14 RAstarPlannerROS::RAstarPlannerROS(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros){
15 initialize(name, costmap_ros);
16 }
17 void RAstarPlannerROS::initialize(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros){
18

19 }
20 bool RAstarPlannerROS::makePlan(const geometry_msgs::PoseStamped& start, const ←↩

geometry_msgs::PoseStamped& goal,
21 std::vector<geometry_msgs::PoseStamped>& plan){
22 if (!initialized_) {
23 ROS_ERROR("The planner has not been initialized, please call initialize () to use the ←↩

planner");
24 return false ;
25 }
26 ROS_DEBUG("Got a start: %.2f, %.2f, and a goal: %.2f, %.2f", start.pose.position.x, ←↩

start.pose.position.y,
27 goal.pose.position.x, goal.pose.position.y);
28 plan.clear();
29 if (goal.header.frame_id != costmap_ros_−>getGlobalFrameID()){
30 ROS_ERROR("This planner as configured will only accept goals in the %s frame, but a ←↩

goal was sent in the %s frame.",
31 costmap_ros_−>getGlobalFrameID().c_str(), goal.header.frame_id.c_str←↩

());
32 return false ;
33 }
34 tf ::Stamped < tf::Pose > goal_tf;
35 tf ::Stamped < tf::Pose > start_tf;
36

37 poseStampedMsgToTF(goal, goal_tf);
38 poseStampedMsgToTF(start, start_tf);

Writing Global Path Planners Plugins in ROS: A Tutorial 85

39

40 // convert the start and goal coordinates into cells indices to be used with RA∗ ←↩

planner
41 float startX = start.pose.position.x;
42 float startY = start.pose.position.y;
43 float goalX = goal.pose.position.x;
44 float goalY = goal.pose.position.y;
45

46 getCorrdinate(startX, startY);
47 getCorrdinate(goalX, goalY);
48

49 int startCell;
50 int goalCell;
51

52 if (isCellInsideMap(startX, startY) && isCellInsideMap(goalX, goalY)){
53 startCell = convertToCellIndex(startX, startY);
54 goalCell = convertToCellIndex(goalX, goalY);
55 }
56 else {
57 cout << endl << "the start or goal is out of the map" << endl;
58 return false ;
59 }
60 ///
61 // call RA∗ path planner
62 if (GPP−>isStartAndGoalCellsValid(OGM, startCell, goalCell)){
63 vector<int> bestPath;
64 bestPath = RAstarPlanner(startCell, goalCell); // call RA∗
65

66 //if the global planner find a path
67 if (bestPath−>getPath().size()>0)
68 {
69 // convert the path cells indices into coordinates to be sent to the move base
70 for (int i = 0; i < bestPath−>getPath().size(); i++){
71 float x = 0.0;
72 float y = 0.0;
73 int index = bestPath−>getPath()[i];
74

75 convertToCoordinate(index, x, y);
76

77 geometry_msgs::PoseStamped pose = goal;
78 pose.pose.position.x = x;
79 pose.pose.position.y = y;
80 pose.pose.position.z = 0.0;
81 pose.pose.orientation.x = 0.0;
82 pose.pose.orientation.y = 0.0;
83 pose.pose.orientation.z = 0.0;
84 pose.pose.orientation.w = 1.0;
85

86 plan.push_back(pose);
87 }
88 // calculate path length
89 float path_length = 0.0;
90 std::vector<geometry_msgs::PoseStamped>::iterator it = plan.begin();
91 geometry_msgs::PoseStamped last_pose;
92 last_pose = ∗it;
93 it++;
94 for (; it!=plan.end(); ++it) {
95 path_length += hypot((∗it).pose.position.x − last_pose.pose.position.x, (∗←↩

it).pose.position.y − last_pose.pose.position.y);
96 last_pose = ∗it;
97 }
98 cout <<"The global path length: "<< path_length<< " meters"<<endl;
99 return true;
100 }
101 else{
102 cout << endl << "The planner failed to find a path " << endl
103 << "Please choose other goal position, " << endl;

86 M. Alajlan and A. Koubâa

104 return false ;
105 }
106 }
107 else{
108 cout << "Not valid start or goal" << endl;
109 return false ;
110 }
111 }
112 };

The constructors can be implemented with respect to the planner requirements
and specification. There are few important things to consider:

• Register the planner as BaseGlobalPlanner plugin: this is done through the
instruction:

5 PLUGINLIB_EXPORT_CLASS(RAstar_planner::RAstarPlannerROS, nav_core::←↩

BaseGlobalPlanner)

For this it is necessary to include the library:

1 #include <pluginlib/class_list_macros.h>

• The implementation of the makePlan() method: The start and goal para-
meters are used to get initial location and target location, respectively. For RA*
path planners, the start and goal first will be converted from x and y coordinates
to cell indices. Then, those indices will be passed to the RA* planner. When the
planner finish its execution, it will return the computed path. Finally, the path
cells will be converted to x and y coordinates, then inserted into the plan vector
(plan.push_back(pose)) in the for loop. This planned path will then be
sent to the move_base global planner module which will publish it through the
ROS topic nav_msgs/Path, which will then be received by the local planner
module.

Now that your global planner class is done, you are ready for the second step,
that is creating the plugin for the global planner to integrate it in the global planner
module nav_core::BaseGlobalPlanner of the move_base package.

Compilation To compile the RA* global planner library created above, it must be
added (with all of its dependencies if any) to the C MakeLists.t xt . This is the code
to be added:

add_library(relaxed_astar_lib src/RAstar_ros.cpp)

Then, in a terminal run catkin_make in your catkin workspace directory
to generate the binary files. This will create the library file in the lib direc-
tory ~/catkin_ws/devel/lib/librelaxed_astar_lib. Observe that
“lib” is appended to the library name relaxed_astar_lib declared in the
CMakeLists.txt

Writing Global Path Planners Plugins in ROS: A Tutorial 87

4.2 Writing Your Plugin

Basically, it is important to follow all the steps required to create a new plugin as
explained in the plugin description page [17]. There are five steps:
Plugin Registration First, you need to register your global planner class as plugin by
exporting it. In order to allow a class to be dynamically loaded, it must be marked as
an exported class. This is done through the special macro PLUGINLIB_EXPORT_
CLASS. This macro can be put into any source (.cpp) file that composes the plugin
library, but is usually put at the end of the .cpp file for the exported class. This was
already done above in RAstar_ros.cpp with the instruction

5 PLUGINLIB_EXPORT_CLASS(RAstar_planner::RAstarPlannerROS, nav_core::←↩

BaseGlobalPlanner)

This will make the class RAstar_planner::RAstarPlannerROS regis-
tered as plugin for nav_core::BaseGlobalPlanner of the move_base.

Plugin Description File The second step consists in describing the plugin in a
description file. The plugin description file is an XML file that serves to store all
the important information about a plugin in a machine readable format. It con-
tains information about the library the plugin is in, the name of the plugin, the
type of the plugin, etc. In our case of global planner, you need to create a new
file and save it in certain location in your package and give it a name, for example
relaxed_astar_planner_plugin.xml. The content of the plugin descrip-
tion file (relaxed_astar_planner_plugin.xml), would look like this:

1 <library path="lib/librelaxed_astar_lib">
2 <class name="RAstar_planner/RAstarPlannerROS"
3 type="RAstar_planner::RAstarPlannerROS"
4 base_class_type="nav_core::BaseGlobalPlanner">
5 <description>This is RA∗ global planner plugin by iroboapp project.</←↩

description>
6 </class>
7 </library>

In the first line:

1 <library path="lib/librelaxed_astar_lib">

wespecify the path to the plugin library. In this case, the path islib/librelaxed_
astar_lib, where lib is a folder in the directory ~/catkin_ws/devel/ (see
Compilation section above).

2 <class name="RAstar_planner/RAstarPlannerROS"
3 type="RAstar_planner::RAstarPlannerROS"
4 base_class_type="nav_core::BaseGlobalPlanner">

Here we first specify the name of the global_planner plugin that we will use
later in move_base launch file as parameter that specifies the global planner to

88 M. Alajlan and A. Koubâa

be used in nav_core. It is typically to use the namespace (RAstar_planner)
followed by a slash then the name of the class (RAstarPlannerROS) to specify
the name of plugin. If you do not specify the name, then the name will be equal to the
type, which is in this case will be RAstar_planner::RAstarPlannerROS.
It recommended to specify the name to avoid confusion.

Thetype specifies the nameof the class that implements the pluginwhich is in our
caseRAstar_planner::RAstarPlannerROS, and thebase_class_type
specifies the name of the base class that implements the plugin which is in our case
nav_core::BaseGlobalPlanner.

5 <description>This is RA∗ global planner plugin by iroboapp project.</description>

The <description> tag provides a brief description about the plugin. For a
detailed description of plugin description files and their associated tags/attributes
please see the documentation in [18].

Why Do We Need This File? We need this file in addition to the code macro
to allow the ROS system to automatically discover, load, and reason about plugins.
The plugin description file also holds important information, like a description of the
plugin, that doesn’t fit well in the macro.

Registering Plugin with ROS Package System In order for pluginlib to query all
available plugins on a system across all ROS packages, each package must explicitly
specify the plugins it exports and which package libraries contain those plugins. A
plugin provider must point to its plugin description file in its package.xml inside
the export tag block. Note, if you have other exports they all must go in the same
export field. In our RA* global planner example, the relevant lines would look as
follows:

1 <export>
2 <nav_core plugin="${prefix}/relaxed_astar_planner_plugin.xml" />
3 </export>

The ${prefix}/ will automatically determine the full path to the file relaxed_
astar_planner_plugin.xml. For a detailed discussion of exporting a plugin,
interested readers may refer to [19].

Important Note: In order for the above export command to work properly, the
providing package must depend directly on the package containing the plugin inter-
face,which isnav_core in the case of global planner. So, the relaxed_astar package
must have the line below in its relaxed_astar/package.xml:

1 <build_depend>nav_core</build_depend>
2 <run_depend>nav_core</run_depend>

This will tell the compiler about the dependency on the nav_core package.

Writing Global Path Planners Plugins in ROS: A Tutorial 89

4.2.1 Querying ROS Package System for Available Plugins

One can query the ROS package system via rospack to see which plugins are
available by any given package. For example:

1 $ rospack plugins −−attrib=plugin nav_core

This will return all plugins exported from the nav_core package. Here is an
example of execution:

1 turtlebot@turtlebot−Inspiron−N5110:~$ rospack plugins −−attrib=plugin nav_core
2 rotate_recovery /opt/ros/hydro/share/rotate_recovery/rotate_plugin.xml
3 navfn /home/turtlebot/catkin_ws/src/navfn/bgp_plugin.xml
4 base_local_planner /home/turtlebot/catkin_ws/src/base_local_planner/blp_plugin.←↩

xml
5 move_slow_and_clear /opt/ros/hydro/share/move_slow_and_clear/recovery_plugin.xml
6 robot_controller /home/turtlebot/catkin_ws/src/robot_controller/←↩

global_planner_plugin.xml
7 relaxed_astar /home/turtlebot/catkin_ws/src/relaxed_astar/←↩

relaxed_astar_planner_plugin.xml
8 dwa_local_planner /opt/ros/hydro/share/dwa_local_planner/blp_plugin.xml
9 clear_costmap_recovery /opt/ros/hydro/share/clear_costmap_recovery/ccr_plugin.xml

10 carrot_planner /opt/ros/hydro/share/carrot_planner/bgp_plugin.xml

Observe that our plugin is now available under the package relaxed_astar
and is specified in thefile /home/turtlebot/catkin_ws/src/relaxed_astar/relaxed_astar_
planner_plugin.xml. You can also observe the other plugins already existing in
nav_core package, including carrot_planner/CarrotPlanner and
navfn, which implements the Dijkstra algorithm.

Now, your plugin is ready to use.

4.3 Running the Plugin

There are a few steps to follow to run your planner in turtlebot. First, you need to
copy the package that contains your global planner (in our case relaxed_astar)
into the catkin workspace of your Turtlebot (e.g. catkin_ws). Then, you need to
run catkin_make to export your plugin to your turtlebot ROS environment.

Second, you need to make some modification to move_base configuration to
specify the new planner to be used. For this, follow these steps:

1. In Hydro, go to this folder /opt/ros/hydro/share/turtlebot_navigation/launch/
includes

$ roscd turtlebot_navigation/
$ cd launch/includes/

2. Open the file move_base.launch.xml (you may need sudo to open and be
able to save) and add the new planner as parameters of the global planner, as
follows:

90 M. Alajlan and A. Koubâa

1
2 <node pkg="move_base" type="move_base" respawn="false" name="move_base" ←↩

output="screen">
3 <param name="base_global_planner" value="RAstar_planner/RAstarPlannerROS"←↩

/>
4

Save and close the move_base.launch.xml. Note that the name of the
planner is RAstar_planner/RAstarPlannerROS the same specified in
relaxed_astar_planner_plugin.xml.
Now, you are ready to use your new planner.

3. You must now bringup your turtlebot. You need to launch minimal.launch,
3dsensor.launch, amcl.launch.xml and move_base.launch.
xml. Here is an example of launch file that can be used for this purpose.

1 <launch>
2 <include file="$(find turtlebot_bringup)/launch/minimal.launch"></include>
3

4 <include file="$(find turtlebot_bringup)/launch/3dsensor.launch">
5 <arg name="rgb_processing" value="false" />
6 <arg name="depth_registration" value="false" />
7 <arg name="depth_processing" value="false" />
8 <arg name="scan_topic" value="/scan" />
9 </include>

10

11 <arg name="map_file" default="map_folder/your_map_file.yaml"/>
12 <node name="map_server" pkg="map_server" type="map_server" args="$(arg ←↩

map_file)" />
13

14 <arg name="initial_pose_x" default="0.0"/>
15 <arg name="initial_pose_y" default="0.0"/>
16 <arg name="initial_pose_a" default="0.0"/>
17 <include file="$(find turtlebot_navigation)/launch/includes/amcl.launch.xml">
18 <arg name="initial_pose_x" value="$(arg initial_pose_x)"/>
19 <arg name="initial_pose_y" value="$(arg initial_pose_y)"/>
20 <arg name="initial_pose_a" value="$(arg initial_pose_a)"/>
21 </include>
22

23 <include file="$(find turtlebot_navigation)/launch/includes/move_base.launch.xml←↩

"/>
24

25 </launch>

Note that changes made in the file move_base.launch.xml will now be
considered when you bring-up your turtlebot with this launch file.

4.4 Testing the Planner with RVIZ

After you bringup your turtlebot, you can launch the rviz using this command (in
new terminal).

$ roslaunch turtlebot_rviz_launchers view_navigation.launch −−screen

Writing Global Path Planners Plugins in ROS: A Tutorial 91

5 ROS Environment Configuration

One important step before using the planners is tuning the controller parameters as
they have a big impact on the performance. The controller parameters can be cate-
gorized into several groups based on what they control such as: robot configuration,
goal tolerance, forward simulation, trajectory scoring, oscillation prevention, and
global plan.

The robot configuration parameters are used to specify the robot acceleration
information in addition to theminimumandmaximumvelocities allowed to the robot.
We are working with the Turtlebot robot, and we used the default parameters from
tur tlebot_navigation package. The configuration parameters are set as follow:
acc_lim_x = 0.5, acc_lim_theta = 1, max_vel_x = 0.3, min_vel_x = 0.1,
max_vel_theta = 1 min_vel_theta = −1 min_in_place_vel_theta = 0.6.

The goal tolerance parameters define how close to the goal we can get. xy_goal_
tolerance represents the tolerance in meters in the x and y distance and should not
be less than the map resolution or it will make the robot spin in place indefinitely
without reaching the goal, so we set it to 0.1. yaw_goal_tolerance represents the
tolerance in radians in yaw/rotation. Setting this tolerance very small may cause the
robot to oscillate near the goal. We set this parameter very high to 6.26 as we do not
care about the robot orientation.

In the forward simulation category, the main parameters are: sim_t ime, vx_
samples, vtheta_samples, and controller_ f requency. The sim_t ime represents
the amount of time (in seconds) to forward-simulate trajectories, and we set it to
4.0. The vx_samples and vtheta_samples represent the number of samples to use
when exploring the x velocity space and the theta velocity space respectively. They
should be set depending on the processing power available, and we use the value
recommended in ROS web-site for them. So, we set 8 to the vx_samples and 20
to vtheta_samples. The controller_ f requency represents the frequency at which
this controller will be called. Setting this parameter a value too high can overload
the CPU. Setting it to 2 work fine with our planners.

The trajectory scoring parameters are used to evaluate the possible velocities to
the local planner. The three main parameters on this category are: pdist_scale,
gdist_scale, and occdist_scale. The pdist_scale represents the weight for how
much the controller should stay close to the global planner path. The gdist_scale
represents the weight for how much the controller should attempt to reach its goal
by whatever path necessary. Increasing this parameter will give the local planner
more freedom in choosing its path away from the global path. The occdist_scale
represents the weight for how much the controller should attempt to avoid obsta-
cles. Because the planners may generate paths very close to the obstacles or
dynamically not feasible, we set the pdist_scale = 0.1, gdist_scale = 0.8 and
occdist_scale = 0.3 when testing our planners. Another parameter named dwa
is used to specify whether to use the DWA when setting it to true, or use the Tra-
jectory Rollout when setting it to f alse. We set it to true because the DWA is
computationally less expensive than the Trajectory Rollout.

92 M. Alajlan and A. Koubâa

6 Experimental Validation

For the experimental study using ROS, we have chosen the realistic Willow Garage
map (Fig. 3), with dimensions 584 * 526 cells and a resolution 0.1 m/cel. In the map,
the white color represents the free area, the black color represents the obstacles, and
the grey color represents unknown area.

Three performance metrics are considered to evaluate the global planners:
(1) the path length, it represents the length of the shortest global path found by
the planner, (2) the steps, it is the number of the steps in the generated paths.
(3) the execution time, which represents the amount of time that the planner spend
to find its best path.

To evaluate the planners, we consider two tours each with 10 random points.
Figure3 shows the points for one of the tours, where the red circle represents the start
location, the blue circle is the goal location, and the green circles are the intermediate
waypoints. We run each planner 30 times for each tour. Figures4, 5, 6 and 7 show
the global plans for that tour generated by the RA*, ROS-A*, and ROS-Dijkstra for
grid path and gradient descent method respectively.

Tables1 and 2 shows the path length and the execution time of the planners for
the complete tour.

Fig. 3 Willow Garage map

Writing Global Path Planners Plugins in ROS: A Tutorial 93

Fig. 4 RA* planner

Fig. 5 ROS A* (grid path)

94 M. Alajlan and A. Koubâa

Fig. 6 ROS Dijkstra (grid path)

Fig. 7 ROS Dijkstra (gradient descent)

Writing Global Path Planners Plugins in ROS: A Tutorial 95

Table 1 Execution time in (microseconds) and path length in (meters) for tour 1

Planner Execution time Path length Number of steps

Total Average

RA* (grid path) 34.7532 3.4214 ± 0.4571 199.6486 1765

A* (grid path) 163.0028 14.4820 ± 1.1104 192.7875 1771

Dijkstra (grid path) 189.9566 19.0443 ± 1.2455 193.5490 1783

Dijkstra (gradient descent) 211.7877 19.1116 ± 1.1714 187.7220 3485

Table 2 Execution time in (microseconds) and path length in (meters) for tour 2

Planner Execution time Path length Number of steps

Total Average

RA* (grid path) 137.2426 13.7243 ± 0.7017 291.9332 2465

A* (grid path) 198.8332 19.8833 ± 1.2563 280.0695 2551

Dijkstra (grid path) 216.1717 21.6172 ± 1.2391 281.4142 2568

Dijkstra (gradient descent) 218.4983 21.8498 ± 1.2261 275.3235 4805

The ROS-Dijkstra with gradient descent method generates paths with more steps
but little shorter in length than A* paths, this is because it has smaller granularity
(more fine-grain exploration), so it has more freedom in the movements and more
able to take smaller steps.

Other planners work at cell level (grid path), so they consider each cell as a single
point, and they have to pass the whole cell in each step. As the resolution of the map

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
xe

cu
tio

n
tim

e
(m

ic
ro

se
co

nd
)

0

5

10

15

20

25

30

35

40
Dijkstra(gradient descent)
Dijksta(grid path)
A*
RA*

Fig. 8 Detailed execution time for tour 1

96 M. Alajlan and A. Koubâa

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
xe

cu
tio

n
tim

e
(m

ic
ro

se
co

nd
)

0

5

10

15

20

25

30

35

40

45
Dijkstra(gradient descent)
Dijksta(grid path)
A*
RA*

Fig. 9 Detailed execution time for tour 2

is 10cm, so the distance in each step is at least 10cm. Comparing the execution time,
the RA*, extremely superior the other planners in all simulated cases. Using RA*,
the execution timewas reduced bymore than 78% from the ROS-A*. Figures8 and 9
shows the average execution time for 30 run between each two points from the tour.

Acknowledgments This work is supported by the iroboapp project “Design and Analysis of Intel-
ligent Algorithms for Robotic Problems and Applications” under the grant of the National Plan
for Sciences, Technology and Innovation (NPSTI), managed by the Science and Technology Unit
of Al-Imam Mohamed bin Saud University and by King AbdulAziz Center for Science and Tech-
nology (KACST). This work is also supported by the myBot project entitled “MyBot: A Personal
Assistant Robot Case Study for Elderly People Care” under the grant from King AbdulAziz City
for Science and Technology (KACST).

References

1. Relaxed A*. https://github.com/coins-lab/relaxed_astar (2014)
2. Robot Operating System (ROS). http://www.ros.org
3. K.Wyrobek, E. Berger, H. Van der Loos, J. Salisbury, Towards a personal robotics development

platform: rationale and design of an intrinsically safe personal robot, in IEEE International
Conference on Robotics and Automation, ICRA 2008 (IEEE, 2008), pp. 2165–2170

4. M. Quigley, E. Berger, A.Y. Ng, STAIR: hardware and software architecture, in AAAI, Robotics
Workshop (Vancouver, BC 2007), pp. 31–37

5. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, K. Konolige, The office marathon: robust
navigation in an indoor office environment, in 2010 IEEE International Conference on Robotics
and Automation (ICRA), May 2010, pp. 300–307

6. P. Goebel, ROS By Example, edited by. Lulu. http://www.lulu.com/shop/r-patrick-goebel/ros-
by-example-hydro-volume-1/ebook/product-21393108.html (2013)

https://github.com/coins-lab/relaxed_astar
http://www.ros.org
http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-hydro-volume-1/ebook/product-21393108.html
http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-hydro-volume-1/ebook/product-21393108.html

Writing Global Path Planners Plugins in ROS: A Tutorial 97

7. OpenSLAM. https://openslam.org/
8. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with rao-

blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)
9. S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust Monte Carlo localization for mobile robots.

Artif. Intell. 128(1–2), 99–141 (2000)
10. Adding a global path planner as plugin in ROS. http://www.iroboapp.org/index.php?title=

Adding_A_Global_Path_Planner_As_Plugin_in_ROS
11. Writing a global path planner as plugin in ROS. http://wiki.ros.org/navigation/Tutorials/

Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
12. E.W. Dijkstra, A note on two problems in connexion with graphs. Numerische Mathematik

1(1), 269–271 (1959)
13. B.P. Gerkey, K. Konolige, Planning and control in unstructured terrain, in Workshop on Path

Planning on Costmaps, Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) (2008)

14. D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance. IEEE
Robot. Autom. Mag. 4(1), 23–33 (1997)

15. Carrot planner header. http://docs.ros.org/hydro/api/carrot_planner/html/carrot_planner_8h_
source.html

16. Carrot planner source. http://docs.ros.org/hydro/api/carrot_planner/html/carrot_planner_
8cpp_source.html

17. Pluginlib package. http://wiki.ros.org/pluginlib
18. Plugin description file. http://wiki.ros.org/pluginlib/PluginDescriptionFile
19. Plugin export. http://wiki.ros.org/pluginlib/PluginExport

https://openslam.org/
http://www.iroboapp.org/index.php?title=Adding_A_Global_Path_Planner_As_Plugin_in_ROS
http://www.iroboapp.org/index.php?title=Adding_A_Global_Path_Planner_As_Plugin_in_ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://wiki.ros.org/navigation/Tutorials/Writing%20A%20Global%20Path%20Planner%20As%20Plugin%20in%20ROS
http://docs.ros.org/hydro/api/carrot_planner/html/carrot_planner_8h_source.html
http://docs.ros.org/hydro/api/carrot_planner/html/carrot_planner_8h_source.html
http://docs.ros.org/hydro/api/carrot_planner/html/carrot_planner_8cpp_source.html
http://docs.ros.org/hydro/api/carrot_planner/html/carrot_planner_8cpp_source.html
http://wiki.ros.org/pluginlib
http://wiki.ros.org/pluginlib/PluginDescriptionFile
http://wiki.ros.org/pluginlib/PluginExport

A Universal Grid Map Library:
Implementation and Use Case for Rough
Terrain Navigation

Péter Fankhauser and Marco Hutter

Abstract In this research chapter, we present our work on a universal grid map
library for use as mapping framework for mobile robotics. It is designed for a wide
range of applications such as online surface reconstruction and terrain interpretation
for rough terrain navigation. Our software featuresmulti-layeredmaps, computation-
ally efficient repositioning of the map boundaries, and compatibility with existing
ROS map message types. Data storage is based on the linear algebra library Eigen,
offering a wide range of data processing algorithms. This chapter outlines how to
integrate the grid map library into the reader’s own applications. We explain the
concepts and provide code samples to discuss various features of the software. As a
use case, we present an application of the library for online elevation mapping with
a legged robot. The grid map library and the robot-centric elevation mapping frame-
work are available open-source at http://github.com/ethz-asl/grid_map and http://
github.com/ethz-asl/elevation_mapping.

Keywords ROS · Grid map · Elevation mapping

1 Introduction

Mobile ground robots are traditionally designed tomove on flat terrain and their map-
ping, planning, and control algorithms are typically developed for a two-dimensional
abstraction of the environment. When it comes to navigation in rough terrain (e.g.
with tracked vehicles or legged robots), the algorithms must be extended to take into
account all three dimensions of the surrounding. The most popular approach is to
build an elevation map of the environment, where each coordinate on the horizontal

P. Fankhauser (B) · M. Hutter
Robotic Systems Lab, ETH Zurich, LEE J 201, Leonhardstrasse 21,
8092 Zurich, Switzerland
e-mail: pfankhauser@ethz.ch
URL:http://www.rsl.ethz.ch

M. Hutter
e-mail: mahutter@ethz.ch

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_5

99

http://github.com/ethz-asl/grid_map
http://github.com/ethz-asl/elevation_mapping
http://github.com/ethz-asl/elevation_mapping

100 P. Fankhauser and M. Hutter

plane is associated with an elevation/height value. For simplicity, elevation maps are
often stored and handled as grid maps, which can be thought of as a 2.5-dimensional
representation, where each cell in the grid holds a height value.

In our recent work, we have developed a universal grid map library for use
as a generic mapping framework for mobile robotics with the Robotic Operating
System (ROS). The application is universal in the sense that our implementation
is not restricted to any special type of input data or processing step. The library
supports multiple data layers and is for example applicable to elevation, variance,
color, surface normal, occupancy etc. The underlying data storage is implemented
as two-dimensional circular buffer. The circular buffer implementation allows for
non-destructive and computationally efficient shifting of the map position. This is
for example important in applications where the map is constantly repositioned as
the robot moves through the environment (e.g. robot-centric mapping [1]). Our soft-
ware facilitates the handling of map data by providing several helper functions. For
example, iterator functions for rectangular, circular, and polygonal regions enable
convenient and memory-safe access to sub-regions of the map. All grid map data is
stored as datatypes from Eigen [3], a popular C++ linear algebra library. The user
can apply the available Eigen algorithms directly to the map data, which provides
versatile and efficient tools for data manipulation.

A popular ROS package that also works with a grid-based map representation is
the costmap_2d [4, 5] package. It is part of the 2D navigation stack [6] and used
for two-dimensional robot navigation. Its function is to process range measurements
and to build an occupancy grid of the environment. The occupancy is typically
expressed as a status such as Occupied, Free, and Unknown. Internally, costmaps
are stored as arrays of unsigned char with an integer value range of 0–255.
While sufficient for processing costmaps, this data format can be limiting in more
general applications. To overcome these deficiencies, the grid map library presented
in this work stores maps as matrices of type float. This allows for more precision
and flexibility when working with physical types such as height, variance, surface
normal vectors etc. To ensure compatibility with the existing ROS ecosystem, the
gridmap library provides converters to transform gridmaps toOccupancyGrid (used
by the 2D navigation stack), GridCells, and PointCloud2 message types. Converting
and publishing the map data as different message types also allows to make use
of existing RViz visualization plugins. Another related package is the OctoMap
library [7] and its associated ROS interface [8]. OctoMap represents a map as three-
dimensional structure with occupied and free voxels. Structured as octree, OctoMap
maps canbedynamically expanded and can contain regionswith different resolutions.
In comparison to a 2.5-dimensional grid representation, the data structure ofOctoMap
is well suited to represent full three-dimensional structures. This is often useful when
workingwith extendedmapswithmultiple floors and overhanging structures or robot
arm motion planning tasks. However, accessing data in the octree entails additional
computational cost since a search over the nodes of the tree has to be performed [7].
Instead, the representation of grid maps allows for direct value access and simplified
data management in post-processing and data interpretation steps.

A Universal Grid Map Library: Implementation and Use Case for Rough … 101

Fig. 1 The grid map library has been applied to various mapping tasks. a An elevation map created
from an onboard Kinect depth sensor allows the quadrupedal robot StarlETH [10] to navigate in
rough terrain [1]. Colors represent the uncertainty of the height estimates, red corresponds to less
certain and blue to more certain estimates. b Autonomous landing of a multicopter is achieved by
finding a safe landing spot [9]. The map is created from the depth estimation from an onboard IMU
and monocular camera. Unsafe landing areas are marked in red, safe areas in blue, and the chosen
landing spot in green

The grid map library has served as underlying framework for several applications.
In [1], elevation maps are built to plan the motion of a legged robot through rough
terrain (see Fig. 1a). Range measurements acquired from an onboard Kinect depth
sensor and robot pose estimates are fused in a probabilistic representation of the
environment. The mapping procedure is formulated from a robot-centric perspective
to explicitly account for drift of the pose as the robot moves.1 In [9], the grid map
library has been used in work for autonomous landing of a Micro Aerial Vehicle
(MAV) (see Fig. 1b). An elevation map is generated from estimated depth data from
an onboard Inertial Measurement Unit (IMU) and a monocular camera. The map is
then used to automatically find a safe landing spot for the vehicle.2

In this chapter, we discuss the steps required to implement our software for various
applications. In the remainder of this chapter, we cover the following topics:

• First, we demonstrate how to download the grid map library and give an overview
of its components. Based on a simple example node, we present the basic steps
required to integrate the library.

1A video demonstration is available at http://youtu.be/I9eP8GrMyNQ.
2A video demonstration is available at http://youtu.be/phaBKFwfcJ4.

http://youtu.be/I9eP8GrMyNQ
http://youtu.be/phaBKFwfcJ4

102 P. Fankhauser and M. Hutter

• Second, we describe the main functionalities of the library. We highlight the main
concepts and demonstrate their usage with code samples from a tutorial node.

• Third, we discuss a use case of the software with an elevation mapping application
presented in [1].

2 Overview

2.1 Prerequisites and Installation

In the following, we assume a functioning installation of Ubuntu 14.04 LTS (Trusty
Tahr) and ROS Indigo. Installation instructions for ROS Indigo on Ubuntu are given
in [11]. Although we will present the procedures for these versions, the Grid Map
packages have been also tested for ROS Jade and should work with future version
with no or minor adaptations. Furthermore, we presume a catkin workspace has been
setup as described in [12].

Except for ROS packages that are part of the standard installation (cmake_-
modules, roscpp, sensor_msgs, nav_msgs etc.), the grid map library depends only on
the linear algebra library Eigen [3]. If not already available on your system, install
Eigen with

$ sudo apt-get install libeigen3-dev

To use the grid map library, clone the associated packages into the /src folder of
your catkin workspace with

$ git clone git@github.com:ethz-asl/grid_map.git

Finish the installation by building your catkin workspace with

$ catkin_make

To maximize performance, make sure to build in Release mode. You can specify the
build type by setting

$ catkin_make -DCMAKE_BUILD_TYPE=Release

If desired, you can build and run the associated unit tests with

$ catkin_make run_tests_grid_map_core run_tests_grid_map

Note that our library makes use of C++11 features such as list initializations and
range-based for-loops. Therefore, the CMake flag -std=c++11 is added in the
CMakeLists.txt files.

A Universal Grid Map Library: Implementation and Use Case for Rough … 103

2.2 Software Components

The grid map library consists of several components:

grid_map_core implements the core algorithms of the gridmap library. It provides
the GridMap class and several helper classes. This package is implemented
without ROS dependencies.

grid_map is the main package for ROS dependent projects using the grid map
library. It provides the interfaces to convert grid map objects to several ROS
message types.

grid_map_msgs holds the ROS message and service definitions for the GridMap
message type.

grid_map_visualization contains a node written to visualize GridMap messages
in RViz by converting them to standard ROS message types. The visualization
types and parameters are fully user-configurable through ROS parameters.

grid_map_demos contains several nodes for demonstration purposes. The sim-
ple_demo node is a short example on how to use the grid map library. An extended
demonstration of the library’s functionalities is given in the tutorial_demo node.
Finally, the iterators_demo and image_to_gridmap_demo nodes showcase the
usage of the grid map iterators and the conversion of images to grid maps, respec-
tively.

grid_map_filters builds on the ROS filters library [13] to implement a range of
filters for grid map data. The filters provide a standardized API to define a chain of
filters based on runtime parameters. This allows for great flexibility when writing
software to process grid maps as a sequence of configurable filters.

2.3 A Simple Example

In the following,wedescribe a simple example on how to use the gridmap library.Use
this code to verify your installation of the grid map packages and to get you started
with your own usage of the library. Locate the file grid_map_demos/src/
simple_demo_node.cpp with the following content:

1 #include <ros/ros.h>
2 #include <grid_map/grid_map.hpp>
3 #include <grid_map_msgs/GridMap.h>
4 #include <cmath>
5

6 using namespace grid_map;
7

8 int main(int argc, char** argv)
9 {

10 // Initialize node and publisher.
11 ros::init(argc, argv, "grid_map_simple_demo");
12 ros::NodeHandle nh("~");

104 P. Fankhauser and M. Hutter

13 ros::Publisher publisher =
nh.advertise<grid_map_msgs::GridMap>("grid_map", 1, true);

14

15 // Create grid map.
16 GridMap map({"elevation"});
17 map.setFrameId("map");
18 map.setGeometry(Length(1.2, 2.0), 0.03);
19 ROS_INFO("Created map with size %f x %f m (%i x %i cells).",
20 map.getLength().x(), map.getLength().y(),
21 map.getSize()(0), map.getSize()(1));
22

23 // Work with grid map in a loop.
24 ros::Rate rate(30.0);
25 while (nh.ok()) {
26

27 // Add data to grid map.
28 ros::Time time = ros::Time::now();
29 for (GridMapIterator it(map); !it.isPastEnd(); ++it) {
30 Position position;
31 map.getPosition(*it, position);
32 map.at("elevation", *it) = -0.04 + 0.2 * std::sin(3.0 *

time.toSec() + 5.0 * position.y()) * position.x();
33 }
34

35 // Publish grid map.
36 map.setTimestamp(time.toNSec());
37 grid_map_msgs::GridMap message;
38 GridMapRosConverter::toMessage(map, message);
39 publisher.publish(message);
40 ROS_INFO_THROTTLE(1.0, "Grid map (timestamp %f) published.",

message.info.header.stamp.toSec());
41

42 // Wait for next cycle.
43 rate.sleep();
44 }
45 return 0;
46 }

In this program, we initialize a ROS node which creates a grid map, adds data, and
publishes it. The code consists of several code blocks which we explain part by part.

10 // Initialize node and publisher.
11 ros::init(argc, argv, "grid_map_simple_demo");
12 ros::NodeHandle nh("~");
13 ros::Publisher publisher =

nh.advertise<grid_map_msgs::GridMap>("grid_map", 1, true);

This part initializes a nodewith name grid_map_simple_demo (Line 11) and creates a
private node handle (Line 12). A publisher of type grid_map_msgs::GridMap
is created which advertises on the topic grid_map (Line 13).

15 // Create grid map.
16 GridMap map({"elevation"});
17 map.setFrameId("map");

A Universal Grid Map Library: Implementation and Use Case for Rough … 105

18 map.setGeometry(Length(1.2, 2.0), 0.03);
19 ROS_INFO("Created map with size %f x %f m (%i x %i cells).",
20 map.getLength().x(), map.getLength().y(),
21 map.getSize()(0), map.getSize()(1));

We create a variable map of type grid_map::GridMap (we are setting
using namespace grid_map on Line 6). A grid map can contain multiple
map layers. Here the grid map is constructed with one layer named elevation.3 The
frame id is specified and the size of the map is set to 1.2× 2.0m (side length along
the x and y-axis of the map frame) with a resolution of 0.03 m/cell. Optionally,
the position (of the center) of the map could be set with the third argument of the
setGeometry(...) method. The print out shows information about the gener-
ated map:

[INFO][..]: Created map with size 1.200000 x 2.010000 m (40 x 67cells).

Notice that the requested map side length of 2.0 m has been changed to 2.01 m. This
is done automatically in order to ensure consistency such that the map length is a
multiple of the resolution (0.03 m/cell).

23 // Work with grid map in a loop.
24 ros::Rate rate(30.0);
25 while (nh.ok()) {

After having setup the node and the grid map, we add data to the map and publish it
in a loop of 30 Hz.

27 // Add data to grid map.
28 ros::Time time = ros::Time::now();
29 for (GridMapIterator it(map); !it.isPastEnd(); ++it) {
30 Position position;
31 map.getPosition(*it, position);
32 map.at("elevation", *it) = -0.04 + 0.2 * std::sin(3.0 *

time.toSec() + 5.0 * position.y()) * position.x();
33 }

Our goal here is to add data to the elevation layer of the map where the eleva-
tion for each cell is a function of the cell’s position and the current time. The
GridMapIterator allows to iterate through all cells of the grid map (Line 29).
Using the *-operator on the iterator, the current cell index is retrieved. This is used to
determine the position for each cell with help of the getPosition(...)method
of the grid map (Line 31). The current time in seconds is stored in the variable time.
Applying the temporary variables position and time, the elevation is computed
and stored in the current cell of the elevation layer (Line 32).

35 // Publish grid map.
36 map.setTimestamp(time.toNSec());
37 grid_map_msgs::GridMap message;
38 GridMapRosConverter::toMessage(map, message);

3For simplicity, we use the list initialization feature of C++11 on Line 16.

106 P. Fankhauser and M. Hutter

39 publisher.publish(message);
40 ROS_INFO_THROTTLE(1.0, "Grid map (timestamp %f) published.",

message.info.header.stamp.toSec());

We update the timestamp of the map and then use the GridMapRosConverter
class to convert the grid map object (of type grid_map::GridMap) to a ROS grid
map message (of type grid_map_msgs::GridMap, Line 38). Finally, the mes-
sage is broadcasted to ROS with help of the previously defined publisher (Line 39).
After building with catkin_make, make sure a roscore is active, and then run this
example with

$ rosrun grid_map_demos simple_demo

This will run the node simple_demo and publish the generated grid maps under the
topic grid_map_simple_demo/grid_map.

In the next step, we show the steps to visualize the grid map data. The grid_map_
visualization package provides a simple tool to visualize a ROS grid map message in
RViz in various forms. It makes use of existing RViz plugins by converting the grid
mapmessage to message formats such as PointCloud2, OccupancyGrid, Marker etc.
Wecreate a launch-file undergrid_map_demos/grid_map_demos/launch/
simple_demo.launch with the following content

1 <launch>
2 <!-- Launch the grid map simple demo node -->
3 <node pkg="grid_map_demos" type="simple_demo"

name="grid_map_simple_demo" output="screen" />
4 <!-- Launch the grid map visualizer -->
5 <node pkg="grid_map_visualization"

type="grid_map_visualization"
name="grid_map_visualization" output="screen">

6 <rosparam command="load" file="$(find
grid_map_demos)/config/simple_demo.yaml" />

7 </node>
8 <!-- Launch RViz with the demo configuration -->
9 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find

grid_map_demos)/rviz/grid_map_demo.rviz" />
10 </launch>

This launches simple_demo (Line 3), grid_map_visualization (Line 5), and RViz
(Line 9). The grid_map_visualization node is loaded with the parameters from
grid_map_demos/config/simple_demo.yaml with following configura-
tion

1 grid_map_topic: /grid_map_simple_demo/grid_map
2 grid_map_visualizations:
3 - name: elevation_points
4 type: point_cloud
5 params:
6 layer: elevation
7 - name: elevation_grid
8 type: occupancy_grid

A Universal Grid Map Library: Implementation and Use Case for Rough … 107

Fig. 2 Launching the simple_demo.launch file will run the simple_demo and
grid_map_visualization node and open RViz. The generated grid map is visualized as point cloud

9 params:
10 layer: elevation
11 data_min: 0.1
12 data_max: -0.18

This connects the grid_map_visualization with the simple_demo node via the
grid_map_topic parameter (Line 1) and adds a PointCloud2 (Line 3) and Occu-
pancyGrid visualization (Line 7) for the elevation layer. Run the launch file with

$ roslaunch grid_map_demos simple_demo.launch

If everything is setup correctly, you should see the generated grid map in RViz as
shown in Fig. 2.

3 Package Description

This section gives an overview of the functions of the grid map library. We describe
the API and demonstrate its usage with example code from a tutorial file at
grid_map_demos/src/tutorial_demo_node.cpp. This tutorial_demo
extends the simple_demo by deteriorating the elevation layer with noise and outliers
(holes in the map). An average filtering step is applied to reconstruct the original
data and the remaining error is analyzed. You can run the tutorial_demo including
visualization with

$ roslaunch grid_map_demos tutorial_demo.launch

108 P. Fankhauser and M. Hutter

Fig. 3 The grid map library uses multilayered grid maps to store data for different types of
information

3.1 Adding, Accessing, and Removing Layers

When working with mobile robotic mapping, we often compute additional informa-
tion to interpret the data and to guide the navigation algorithms. The grid map library
uses layers to store information for different types of data. Figure3 illustrates the
multilayered grid map concept, where for each cell data is stored on the congruent
layers.

The grid map class can be initialized empty or directly with a list of layers such as

18 GridMap map({"elevation", "normal_x", "normal_y", "normal_z"});

A new layer can be added to an existing map with

void add(const std::string& layer, const float value) ,

where the argument value determines the value with which the new layer is popu-
lated. Alternatively, data for a new layer can be added with

45 map.add("noise", Matrix::Random(map.getSize()(0), map.getSize()
(1)));

In case the added layer already exists in the map, it is replaced with the new data. The
availability of a layer in the map can be checked with the method exists(...).
Access to the layer data is given by the get(...) methods and its short form
operator [...]:

46 map.add("elevation_noisy", map.get("elevation") + map["noise"]);

More details on the use of the addition operator + with grid maps is given in
Sect. 3.7. A layer from the map can be removed with erase(...).

3.2 Setting the Geometry and Position

For consistent representation of the data, we define the geometrical properties of a
grid map as illustrated in Fig. 4. The map is specified in a grid map frame, to which

A Universal Grid Map Library: Implementation and Use Case for Rough … 109

Fig. 4 The grid map is defined to be aligned with its grid map frame. The position of the map is
specified as the center of the map relative the its frame

the map is aligned to. The map’s position is defined as the center of the rectangular
map in the specified frame.

The basic geometry of the map such as side lengths, resolution, and position
(see Fig. 4) is set through the setGeometry(...) method. When working with
different coordinate frames, it is important to specify the grid map’s frame:

19 map.setFrameId("map");
20 map.setGeometry(Length(1.2, 2.0), 0.03, Position(0.0, -0.1));

It is important to set the geometry before adding any data as all cell data is cleared
when the grid map is resized.

3.3 Accessing Cells

As shown in Fig. 4, individual cells of grid map layer can be accessed in two ways,
either by direct index access with

float& at(const std::string& layer, const grid_map::Index& index)

or by referring to a position of the underlying cell with

float& atPosition(const std::string& layer,
const grid_map::Position& position).

110 P. Fankhauser and M. Hutter

Conversions between a position and the corresponding cell index and vice versa
are given with the getIndex(...) and getPosition(...) methods. These
conversions handle the underlying algorithmics involved with the circular buffer
storage and are the recommended way of handling with cell indices/positions. An
example of usage is:

51 if (map.isInside(randomPosition))
52 map.atPosition("elevation_noisy", randomPosition) = ...;

Here, the helper method isInside(...) is used to ensure that the requested
position is within the bounds of the map.

3.4 Moving the Map

The grid map library offers a computationally efficient and non-destructive method
to change the position of grid map with

void move(const grid_map::Position& position).

The argument position specifies the new absolute position of the grid map w.r.t.
the grid map frame (see Sect. 3.2). This method relocates the grid map such that the
grid aligns between the previous and new position (Fig. 5). Data in the overlapping
region before and after the position change remains stored. Data that falls outside
of the map at its new position is discarded. Cells that cover previously unknown
regions are emptied (set tonan). The data storage is implemented as two-dimensional

Fig. 5 The grid map library offers with the move(...) method a computationally efficient and
non-destructive method to change the position of grid map. The underlying implementation of the
gridmap as two-dimensional circular buffer allows tomove themapwithout allocating newmemory

A Universal Grid Map Library: Implementation and Use Case for Rough … 111

circular buffer, meaning that data in the overlapping region of themap is notmoved in
memory. This minimizes the amount of data that needs to be changed when moving
the map.

3.5 Basic Layers

For certain applications it is useful to define a set of basic layers with setBasic
Layers(...). These layers are considered when checking the validity of a grid
map cell. If the cell has a valid (finite) value in all basic layers, the cell is declared
valid by the method

bool isValid(const grid_map::Index& index) const.

Similarly, the method clearBasic()will clear only the basic layers and is there-
fore more efficient than clearAll() which clears all layers. By default, the list
of basic layers is empty.

3.6 Iterating over Cells

Often, one wants to iterate through a number of cells within a geometric shape within
the grid map, for example to check the cells which are covered by the footprint of
a robot. The grid map library offers iterators for various regions such as rectangular
submaps, circular and polygonal regions, and lines (see Fig. 6). Iteration can be
achieved with a for-loop of the form

32 for (GridMapIterator it(map); !isPastEnd(); ++it) { ... }

Fig. 6 Iterators are a convenient way to work with cells belonging to certain geometrical
regions. a The GridMapIterator is used to iterate through all cells of the grid map. b
The SubmapIterator accesses cells belonging to a rectangular region of the map. c The
CircleIterator iterates through a circular region specified by a center and radius. d The
PolygonIterator is defined by n vertices and covers all inlying cells. e The LineIterator
uses Bresenham’s line algorithm [14] to iterate over a line defined by a start and end point. Example
code on how to use the gridmap iterators is given in the iterators_demo node of the grid_map_demos
package

112 P. Fankhauser and M. Hutter

The dereference operator * is used to retrieve the current cell index of the iterator
such as in following examples:

35 map.at("elevation", *it) = ...;

67 Position currentPosition;
68 map.getPosition(*it, currentPosition);

76 if (!map.isValid(*circleIt, "elevation_noisy")) continue;

These iterators canbeused at the border of themapswithout concern as they internally
ensure to access only cells within the map boundary.

3.7 Using Eigen Functions

Because each layer of the gridmap is stored internally as anEigenmatrix, all functions
provided by the Eigen library [3] can directly be applied. This is illustrated with
following examples:

46 map.add("elevation_noisy", map.get("elevation") + map["noise"]);

Here, the cell values of the two layers elevation and noise are summed up arithmeti-
cally and the result is stored in the new layer elevation_noisy. Alternatively, the noise
could have been added to the elevation layer directly with the += operator:

46 map.get("elevation") += 0.015 * Matrix::Random(map.getSize()(0),
47 map.getSize()(1));

A more advanced example demonstrates the simplicity that is provided by making
use of the various Eigen functions:

91 map.add("error", (map.get("elevation_filtered") -
map.get("elevation")).cwiseAbs());

92 unsigned int nCells = map.getSize().prod();
93 double rmse = sqrt(map["error"].array().pow(2).sum() / nCells);

Here, the absolute error between two layers is computed (Line 91) and used to
calculate the Root Mean Squared Error (RMSE) (Line 93) as

eRMS =

√
√
√
√
√

n∑

i=1
(fi − ci)2

n
, (1)

where ci denotes the value of cell i of the original elevation layer, fi the cell values
in the filtered elevation_filtered layer, and n the number of cells of the grid map.

A Universal Grid Map Library: Implementation and Use Case for Rough … 113

3.8 Creating Submaps

A copy of a part from the grid map can be generated with the method

GridMap getSubmap(const grid_map::Position& position,
const grid_map::Length& length, bool&

isSuccess).

The return value is of type GridMap and all described methods apply also to the
retrieved submap. When retrieving a submap, a deep copy of the data is made and
changing data in the original or the submapwill not influence its counterpart.Working
with submaps is often useful tominimize computational load and data transfer if only
parts of the data is of interest for further processing. To access or manipulate the
original data in a submap region without copying, refer to the SubmapIterator
described in Sect. 3.6.

3.9 Converting from and to ROS Data Types

The grid map class can be converted from and to a ROS GridMap message with the
methods fromMessage(...) and toMessage(...) of the GridMapRos
Converter class:

97 grid_map_msgs::GridMap message;
98 GridMapRosConverter::toMessage(map, message);

Additionally, a grid map can be saved in and loaded from a ROS bag file with the
saveToBag(...) and loadFromBag(...) methods. For compatibility and
visualization purposes, a grid map can be converted also to PointCloud2, Occupan-
cyGrid, and GridCells message types. For example, using the method

static void toPointCloud(const grid_map::GridMap& gridMap,
const std::vector<std::string>& layers,
const std::string& pointLayer,
sensor_msgs::PointCloud2& pointCloud) ,

a grid map is converted to a PointCloud2 message. Here, the second argument
layers determines which layers are converted to the point cloud. The layer in
the third argument pointLayer specifies which of these layers is used as z-value
of the points (x and y are given by the cell positions). All other layers are added
as additional fields in the point cloud message. These additional fields can be used
in RViz to determine the color of the points. This is a convenient way to visualize
characteristic of the map such as uncertainty, terrain quality, material etc.

Figure7 shows the different ROS messages types that have been generated
with the grid_map_visualization node for the tutorial_demo. The setup of the
grid_map_visualization for this example is stored in the grid_map_demos/
config/tutorial_demo.yaml parameters file.

114 P. Fankhauser and M. Hutter

(a)

filtered

noisy

(b)

(c) (d)

Fig. 7 Grid maps can be converted to several ROS message types for visualization in RViz. a
Visualization as PointCloud2 message type showing the results of the tutorial_demo filtering step.
Colors represent the absolute error between the filtered result and the original data before noise
corruption. b Vectors (here surface normals) can be visualized with help of the Marker message
type. c Representation of a single layer (here the elevation layer) of the grid map asOccupancyGrid.
d The same layer is shown as GridCells type where cells within a threshold are visualized

original
image

resulting
grid map

(a) (b)

Fig. 8 Image data can be used to populate a grid map. a A terrain is drawn in an image editing
software and used to generate a height field gridmap layer. bA color layer in the gridmap is updated
by the projected video stream of twowide-angle cameras in the front and back of the robot. Example
code on how to add data from images to a grid map is given in the image_to_gridmap_demo node
of the grid_map_demos package

3.10 Adding Data from Images

The grid map library allows to load data from images. In a first step, the geom-
etry of the grid map can be initialized to the size of the image with the method
GridMapRosConverter::initializeFromImage(...). Two different
methods are provided to add data from an image as layer in a grid map. To add data

A Universal Grid Map Library: Implementation and Use Case for Rough … 115

as scalar values (typically from a grayscale image), the method addLayerFrom
Image() can be used. This requires to specify the lower and upper values for the cor-
responding black and white pixels of the image. Figure8a shows an example, where
an image editing software was used to draw a terrain. To add data from an image as
color information, the addColorLayerFromImage() is available. This can be
used for example to add color information from a camera to the grid map as shown
in Fig. 8b.

4 Use Case: Elevation Mapping

Based on the grid map library, we have developed a ROS package for local terrain
mappingwith an autonomous robot. This section introduces the technical background
of the mapping process, discusses the implementation and usage of the package, and
presents results from real world experiments.

4.1 Background

Enabling robots to navigate in previously unseen, rough terrain, requires to recon-
struct the terrain as the robot moves through the environment. In this work, we
assume an existing robot pose estimation and an onboard range measurement sen-
sor. For many autonomous robots, the pose estimation is prone to drift. In case of a
drifting pose estimate, stitching fresh scans with previous data leads to inconsistent
maps. Addressing this issue, we formulate a probabilistic elevation mapping process
from a robot-centric perspective. In this approach, the generated map is an estimate
of the shape of the terrain from a local perspective. We illustrate the robot-centric
elevation mapping procedure in Fig. 9. Our mapping method consists of three main
steps:

1. Measurement Update: New measurements from the range sensor are fused
with existing data in the map. By modeling the three-dimensional noise distrib-
ution of the range sensor, we can propagate the depth measurement errors to the
corresponding elevation uncertainty. By means of a Kalman filter, new measure-
ments are fused with existing data in the map.

2. Map Update: For a robot-centric formulation, the elevation map needs to be
updated when the robot moves. We propagate changes of pose covariance matrix
to the spatial uncertainty of the cells in the grid map. This reflects errors of the
pose estimate (such as drift) in the elevation map. At this step, the uncertainty for
each cell is treated separately to minimize computational load.

3. Map Fusion: When map data is required for further processing in the planning
step, an estimation of the cell heights is computed. This requires to infer the
elevation and variance for each cell from its surrounding cells.

116 P. Fankhauser and M. Hutter

6D Pose estimation

Local mapping area Newer dataOlder data

Distance measurements

Map estimate
Mean ± standard deviation

Fig. 9 The elevation mapping mapping procedure is formulated from a robot-centric perspective.

Applying our mapping method, the terrain is reconstructed under consideration of
the range sensor errors and the robots pose uncertainty. Each cell in the grid map
holds information about the height estimate and a corresponding variance. The region
ahead of the robot has typically the highest precision as it is constantly updated with
newmeasurements from the forward-looking distance sensor. Regions which are out
of the sensor’s field of view (below or behind the robot) have decreased certainty due
to drift of the robot’s relative pose estimation. Applying a probabilistic approach,
motion/trajectory planning algorithms can take advantage of the available certainty
estimate of the map data.

4.2 Implementation

We have implemented the robot-centric elevation mapping process as a ROS pack-
age.4 The node subscribes to PointCloud2 depth measurements and a robot pose esti-
mate of type PoseWithCovarianceStamped. For the depth measurements, we provide
sensor processorswhich generate themeasurement variances based on a noisemodel
of the device. We support several range measurement devices such as Kinect-type
sensors [2], laser range sensors, and stereo cameras.

Building a local map around the robot, the map’s position is updated continuously
to cover the area around the robot. This can be achieved with minimal computational
overhead by using the move(...) method provided by the grid map library (see
Sect. 3.4).

4Available at: http://github.com/ethz-asl/elevation_mapping.

http://github.com/ethz-asl/elevation_mapping

A Universal Grid Map Library: Implementation and Use Case for Rough … 117

Fig. 10 The quadrupedal robot StarlETH [10] is walking over obstacles by using the elevation
mapping node to map the environment around the its current position. A Kinect-type range sensor
is used in combination with the robot pose estimation to generate a probabilistic reconstruction of
the terrain

The elevation mapping node publishes the generated map as GridMap message
(containing layers for elevation, variance etc.) on two topics. The unfused eleva-
tion map (considering only processing steps 1 and 2 from Sect. 4.1) is continu-
ously published under the topic elevation_map_raw and can be used to mon-
itor the mapping process. The fused elevation map (the result of processing step
3 Sect. 4.1) is computed and published under elevation_map if the ROS ser-
vice trigger_fusion is called. Partial (fused) maps can be requested over the
get_submap service call. The node implements the map update and fusion steps
as multi-threaded processes to enable continuous measurement updates.

Using the grid_map_visualization node, the elevation maps can be visualized in
RViz in several ways. It is convenient to show the map as point cloud and color the
points with data from different layers. For example, in Fig. 1 the points are colored
with the variance data of the map and in Fig. 10 with colors from an RGB camera.
Using a separate node for visualization is a good way to split the computational
load to different systems and limit the data transfer from the robot to an operator
computer.

4.3 Results

Wehave implemented the elevationmapping software on the quadrupedal robot Star-
lETH [10] (see Fig. 10). A downward-facing PrimeSense Carmine 1.09 structured
light sensor is attached in the front of the robot as distance sensor. The state estima-
tion is based on stochastic fusion of kinematic and inertial measurements [15], where
the position and the yaw-angle are in general unobservable and are therefore subject
to drift. We generate an elevation map with a size of 2.5× 2.5m with a resolution
of 1 cm/cell and update it with range measurements and pose estimates at 20 Hz on
an Intel Core i3, 2.60 GHz onboard computer. The mapping software can process
the data at sufficient speed such that the map can be used for real-time navigation.
As a result of the high resolution and update rate of the range sensor, the map holds

118 P. Fankhauser and M. Hutter

Goal Position

Current Position

Not
Traversable

Fully
Traversable

Fig. 11 The traversability of the terrain is judged based on the acquired elevation map. The tra-
versability estimation takes factors such as slope, step size, and roughness of the terrain into con-
sideration. A collision free path for the pose of the robot is found using an RRT-based [16] planner

dense information and contains only very few cells with no height information. This
is an important prerequisite for collision checking and foothold selection algorithms.
Thanks to the probabilistic fusion of the data, the real terrain structure is accurately
captured and outliers and spurious data is suppress effectively.

In another setup, we have also used the elevation map data to find a traversable
path through the environment. Figure11 depicts the robot planning a collision free
path in the map of a corridor. A rotating Hokuyo laser range sensor in the front of the
robot is used the generate the elevation map with a size of 6× 6m with a resolution
of 3 cm/cell. In this work, the elevation information is processed to estimate the
traversability of the terrain. Multiple custom grid map filters (see Sect. 2.2) are used
to interpret the data based on the slope, step height, and roughness of the terrain. An
RRT-based [16] planner finds a traversable path to the goal pose for the horizontal
translation x and y and yaw-rotation ψ . At each expansion of the search tree, the
traversability of all the cells contained in the footprint of the robot is checked with
help of the PolygonIterator (see Sect. 3.6).

5 Summary and Conclusion

In this chapter, we introduced a grid map library developed for mapping applications
with mobile robots. Based on a simple example, the first steps to integrate the library
in existing or new frameworkswere presented.We highlighted some of the features of

A Universal Grid Map Library: Implementation and Use Case for Rough … 119

the software and illustrated their usage with code samples from a tutorial example.
Finally, an application of the grid map library for elevation mapping was shown,
whereby the background, usage, and results were discussed.

In our current work, we use the gridmap library (in combinationwith the elevation
mapping package) in applications such as multi-robot mapping, foothold quality
evaluation, collision checking for motion planning, and terrain property prediction
through color information. We hope our software will be useful to other researcher
working on rough terrain mapping and navigation with mobile robots.

Acknowledgments This work was supported in part by the Swiss National Science Foundation
(SNF) through project 200021_149427/1 and the National Centre of Competence in Research
Robotics.

References

1. P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, R. Siegwart, Robot-centric elevation map-
ping with uncertainty estimates, in International Conference on Climbing and Walking Robots
(CLAWAR) (2014)

2. P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, R. Seigwart, Kinect v2 for
mobile robot navigation: evaluation and modeling, in International Conference on Advanced
Robotics (ICAR) (2015)

3. G. Guennebaud, B. Jacob, Eigen 3, http://eigen.tuxfamily.org. Accessed Aug 2015
4. E. Marder-Eppstein, D.V. Lu, D. Hershberger. costmap_2d, http://wiki.ros.org/costmap_2d.

Accessed Aug 2015
5. D.V. Lu, D. Hershberger, W.D. Smart, Layered costmaps for context-sensitive navigation, in

IEEE International Conference on Intelligent Robots and Systems (IROS) (2014)
6. D.V. Lu, M. Ferguson, navigation, http://wiki.ros.org/navigation. Accessed Aug 2015
7. A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard, OctoMap: an efficient

probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)
8. K.M. Wurm, A. Hornung. octomap, http://wiki.ros.org/octomap. Accessed Aug 2015
9. C. Forster, M. Faessler, F. Fontana, M. Werlbeger, D. Scaramuzza, Continuous on-board

monocular-vision–based elevation mapping applied to autonomous landing of micro aerial
vehicles, in IEEE International Conference on Robotics and Automation (ICRA) (2015)

10. M. Hutter, C. Gehring, M. Hoepflinger, M. Bloesch, R. Siegwart, Towards combining speed,
efficiency, versatility and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6),
1427–1440 (2014)

11. ROS.org. Ubuntu install of ROS Indigo, http://wiki.ros.org/indigo/Installation/Ubuntu.
Accessed Aug 2015

12. ROS.org. Installing and Configuring Your ROS Environment, http://wiki.ros.org/ROS/
Tutorials/InstallingandConfiguringROSEnvironment. Accessed Aug 2015

13. ROS.org. filters, http://wiki.ros.org/filters. Accessed Aug 2015
14. J.E. Bresenham, Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30

(1965)
15. M.Bloesch, C.Gehring, P. Fankhauser,M.Hutter,M.A.Hoepflinger, R. Siegwart, State estima-

tion for legged robots on unstable and slippery terrain, in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (2013)

16. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning (1998)

http://eigen.tuxfamily.org
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/navigation
http://wiki.ros.org/octomap
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/filters

120 P. Fankhauser and M. Hutter

Authors’ Biography

Péter Fankhauser is a Ph.D. student at the Robotic Systems Lab at ETH Zurich since 2013. He
received his MSc degree in Robotics, Systems and Control from ETH Zurich in 2012. His research
interests are in mapping and motion planning for legged robots.

Marco Hutter is assistant professor for Robotic Systems at ETH Zurich and Branco Weiss Fel-
low. He received his M.Sc. in mechanical engineering (2009) and his doctoral degree in robotics
(2013) from ETH Zurich. In his work, Marco focuses on design, actuation, and control of legged
robotic systems that can work in challenging environments.

ROS Navigation: Concepts and Tutorial

Rodrigo Longhi Guimarães, André Schneider de Oliveira, João Alberto
Fabro, Thiago Becker and Vinícius Amilgar Brenner

Abstract This tutorial chapter aims to teach the main theoretical concepts and
explain the use of ROSNavigation Stack. This is a powerful toolbox to path planning
and Simultaneous Localization And Mapping (SLAM) but its application is not triv-
ial due to lack of comprehension of the related concepts. This chapter will present
the theory inside this stack and explain in an easy way how to perform SLAM in
any robot. Step by step guides, example codes explained (line by line) and also real
robot testing will be available. We will present the requisites and the how-to’s that
will make the readers able to set the odometry, establish reference frames and its
transformations, configure perception sensors, tune the navigation controllers and
plan the path on their own virtual or real robots.

Keywords ROS · Navigation Stack · Tutorial · Real robots · Transformations

1 Introduction

Simultaneous Localization And Mapping (SLAM) is an important algorithm that
allows the robot to acknowledge the obstacles around it and localize itself. When
combined with some other methods, such as path planning, it is possible to allow
robots to navigate unknown or partially known environments. ROS has a package

R.L. Guimarães (B) · A.S. de Oliveira · J.A. Fabro · T. Becker · V.A. Brenner
LASER - Advanced Laboratory of Embedded Systems and Robotics, Federal University
of Technology - Paraná, Av. Sete de Setembro, Curitiba 3165, Brazil
e-mail: rguimaraes@alunos.utfpr.edu.br

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

J.A. Fabro
e-mail: fabro@dainf.ct.utfpr.edu.br

T. Becker
e-mail: beckerthiago@gmail.com

V.A. Brenner
e-mail: brenner@alunos.utfpr.edu.br

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_6

121

122 R.L. Guimarães et al.

that performs SLAM and path planning along with other functionalities for naviga-
tion, named Navigation Stack. However, some details of its application are hidden,
considering that the programmer has some expertise. The unclear explanation and
the many subjective aspects within the package can lead the user to fail using the
technique or, at least, consume extra effort.

This chapter aims to present the theory inside ROS Navigation Stack and explain
in an easy way how to perform autonomous navigation in any robot. It will also
explain how to use a virtual environment to use the Navigation Stack on virtual
robots. These robots are designed to publish and subscribe the same information
in real and virtual environments, where all sensors and actuators of real world are
functional in virtual environment.

We begin the chapter explaining what the Navigation Stack is with some sim-
ple and straight-forward definitions and examples where the functionalities of the
package are explained in conjunction with reminders of some basic concepts of
ROS. Moreover, a global view of a system running the Navigation Stack at its full
potential is shown,where the core subset of this system is explained bit by bit. In addi-
tion, most of the indirectly related components of the system, like multiple machine
communication, will be indicated and briefly explained, with some tips about its
implementation.

The chapter will be structured in four main topics. Firstly, an introduction of
mobile robot navigation and a discussion about SLAMwill be presented, along with
some discussion about transformations.

In the second section,ROSEnvironment, themain purpose is to let the reader know
everything he needs to configure his own virtual or real robot. Firstly, the limitations
of the Navigation Stack are listed together with the expected hardware and software
that the reader should have to follow the tutorial. Secondly, an explanation about
odometry and kinematics is given, focusing on topics like precision of the odometry
and the impact of the lack of it in the construction of costmaps for navigation (do
not worry, you will see that in detail later). Perception sensors are also discussed.
The differences and advantages of each of the main kinds of perception sensors, like
depth sensors, light detection and ranging (LIDAR) sensors are also emphasized.
In addition, reference frames and its transformations are discussed, showing how to
achieve the correct merge of the sensors information. Still on the second section,
a dense subsection about the Navigation Stack is presented. It is in respect to the
configuration of the Navigation Stack to work with as many robots as possible,
trying to organize the tutorial in a way that both reach high level of detail and
generalization, ensuring that the reader is apt to perceive a way to have his own robot
navigate itself. An in-depth discussion of map generation and map’s occupancy is
performed. To do that, the tutorial is structured in a step-by-step way in which all
the navigation configuration files will be analyzed, examining the parameters and
setting them to example values that correspond to pioneer (ARIA based) robots (e.g.
Pioneer 3-AT, as seen on Fig. 1). The explanation of the whole process in addition to
the demonstration of the effects of the parameter changes should be enough to clear
up any doubts the reader might have.

ROS Navigation: Concepts and Tutorial 123

Fig. 1 Side by side are two
pioneer ARIA based robots:
Pioneer 3-AT and Pioneer
LX. These robots, owned by
the Advanced Laboratory of
Embedded Systems and
Robotics of UTFPR, can use
the Navigation Stack

In the third sectionwewill discuss the experiments in real andvirtual environments
to prove the accuracy of the SLAM method. All steps to use a virtual environment
where the reader should be able to test his own configuration for the Navigation
Stack are demonstrated. Lastly, some experiments are run in virtual and real robots,
to illustrate some more capabilities of the package. In this section we will also take
a glance over rviz usage.

Lastly, a brief biography of the authors will be presented, showing why this team
is able to write the tutorial chapter here presented.

2 Background

ROS has a set of resources that are useful so a robot is able to navigate through a
known, partially known or unknown environment, in otherwords, the robot is capable
of planning and tracking a path while it deviates from obstacles that appear on its
path throughout the course. These resources are found on the Navigation Stack.

One of the many resources needed for completing this task and that is present
on the Navigation Stack are the SLAM systems (also called localization systems),
that allow a robot to locate itself, whether there is a static map available or SLAM
is required. amcl is a tool that allows the robot to locate itself in an environment
through a static map, a previously created map. The entire area in which the robot
could navigatewould have to bemapped in ametrically correctway to use staticmaps,
a big disadvantage of this resource. Depending on the environment that surrounds
the robot, these static maps are capable of increasing or decreasing the confidence
of the localization systems. To bypass the lack of flexibility of static maps, two
other localization systems are offered by ROS to work with the Navigation Stack:
Gmapping and hector_mapping.

124 R.L. Guimarães et al.

Both Gmapping and hector_mapping are implementations of SLAM, a technique
that consists on mapping an environment at the same time that the robot is moving, in
otherwords, while the robot navigates through an environment, it gathers information
from the environment through its sensors and generates a map. This way you have
a mobile base able not only to generate a map of an unknown environment as well
as updating the existent map, thus enabling the use of the device in more generic
environments, not immune to changes.

The difference between Gmapping and hector_mapping is that the first one takes
in account the odometry information to generate and update the map and the robot’s
pose. However, the robot needs to have proprioceptive sensors, which makes the
usage of it hard for some robots (e.g. flying robots). The odometry information is
interesting because they are able to aid on the generation of more precise maps, since
understanding the robot kinematics we can estimate its pose.

Kinematics is influenced, basically, by the way that the devices that guarantee the
robot’smovement are assembled. Some examples ofmechanic features that influence
the kinematics are: the wheel type, the number of wheels, the wheel’s positioning
and the angle at which they are disposed. A more in-depth explanation of kinematics
is done in Introduction to Mobile Robots [1].

However, as much useful as the odometry information can be, it is not immune to
faults. The faults are caused by the lack of precision on the capture of data, friction,
slip, drift and other factors. These accumulated factors can lead to inconsistent data
and prejudice themaps formation, that tend to be distorted under these circumstances.

Other indispensable data to generate a map are the sensors’ distance readings, for
the reason that they are responsible in detecting the external world and, this way,
serve as reference to the robot. Nonetheless, the data gathered by the sensors must be
adjusted before being used by the device. These adjustments are needed because the
sensorsmeasure the environment in relation to themselves, not in relation to the robot,
in other words, a geometric conversion is needed. To make this conversion simpler,
ROS offers the tf tool, which makes it possible to adjust the sensors positions in
relation to the robot and, this way, suit the measures to the robot’s navigation.

3 ROS Environment

Beforewebegin setting up the environment inwhichwewillwork, it is very important
to be aware of the limitations of the Navigation Stack, so we are able to adapt our
hardware. There are four main limitations in respect to the hardware:

• The stack was built aiming to address only differential drive and holonomic robots,
although it is possible to use some features with another types of robots, which
will not be covered here.

• The Navigation Stack assumes that the robot receives a twist type message [2]
with X, Y and Theta velocities and is able to control the mobile base to achieve
these velocities. If your robot is not able to do so, you can adapt your hardware or

ROS Navigation: Concepts and Tutorial 125

just create a ROS node that converts the twist message provided by the Navigation
Stack to the type of message that best suits your needs.

• The environment information is gathered from a LaserScan message type topic. If
you have a planar laser, such as a Hokuyo URG or a sick Laser, it should be very
easy to get them to publish their data, all you need to do is install theHokuyo_node,
Sicktoolboxor similar packages, depending onyour sensor.Moreover, it is possible
to use other sensors, as long as you can convert their data to the LaserScan type.
In this chapter, we will use converted data from Microsoft Kinect’s depth sensor.

• The Navigation Stack will perform better with square or circular robots, whereas
it is possible to use it with arbitrary shapes and sizes. Unique sizes and shapes may
cause the robot to have some issues in restricted spaces. In this chapter we will be
using a custom footprint that is an approximation of the robot.

If your system complies with all the requirements, it is time to move to the software
requirements, which are very few and easy to get.

• You should have ROS Hydro or Indigo to get all the features, such as layered
costmaps, that are a Hydro+ feature. From here, we assume you are using a Ubuntu
12.04 with ROS Hydro.

• You should have the Navigation Stack installed. In the full desktop version of ROS
it is bundled, but depending on your installation it might be not included. Do not
worry with that for now, it is just good to know that if some node is not launching
it may be because the package you are trying to use is not installed.

• As stated on the hardware requirements, youmight need some software to get your
system navigation ready:

– If your robot is not able to receive a twist message and control its velocity as
demanded, one possible solution is to use a custom ROS node to transform the
data to a more suitable mode.

– You need to have drivers able to read the sensor data and publish it in a ROS
topic. If you’re using a sensor different from a planar laser sensor, such as a
depth sensor, you’ll most likely also need to change the data type to LaserScan
through a ROS node.

Now that you know all you need for navigation, it is time to begin getting those
things. In this tutorial we’ll be using Pioneer 3-AT and Pioneer LX and each of them
will have some particularities in the configuration that will help us to generalize the
settings as much as possible. We’ll be using Microsoft’s Kinect depth sensor in the
Pioneer 3-AT and the Sick S300 laser rangefinder that comes built-in in the Pioneer
LX. Most of this chapter is structured in a “by example” approach from now on and
if you like it, you should check out the ROS By Example—Volume 1 [3] book. In
this book, there are a lot of useful codes for robots and a navigation section that
complements very well what we discuss in this chapter. You also might find useful
to check their example codes [4], where you can find a lot of useful codes, such as
rviz configuration files and navigation examples.

126 R.L. Guimarães et al.

Important Note: no matter what robot you’re using, you will probably need to
allow the access to the USB ports that have sensors or to the ports that communicate
to your robots. For example, if you have the robot connected in ttyUSB0 port, you
can give the access permission by issuing the following command:

sudo chmod 777 -R /dev/ttyUSB01

This configurationwill be valid only for the current terminal, so it is recommended
to add this instruction to the ∼/.bashrc file. Edit this file by writing the following
lines at the bottom of the file:

if [-e /dev/ttyUSB0]; then1
sudo chmod 777 -R /dev/ttyUSB02
echo “Robot found on USB0!”3
fi4

This command will check if there is something in the /dev/ttyUSB0 port and, if
the condition holds, it will change the permissions on the port and will print to the
screen the message “Robot found on USB0!”. It is noteworthy that, as said above,
this command is assuming that the robot is on /dev/ttyUSB0. Also, this script will be
executed every time a new terminal is opened and since a sudo command is issued a
password will be prompted for non-root users.

3.1 Configuring the Kinect Sensor

The Kinect is a multiple sensor equipment, equipped with a depth sensor, an RGB
camera and microphones. First of all, we need to get those features to work by
installing the drivers, which can be found in the ros package Openni_camera [5].
You can get Openni_camera source code from its git repository, available on the
wiki page, or install the stack with a linux terminal command using apt-get (REC-
OMMENDED). We will also need a ROS publisher to use the sensor data and that
publisher is found in the Openni_launch [6] package, that can be obtained the exactly
same ways. To do so, open your terminal window and type:

$ sudo apt-get install ros-<rosdistro>-openni-camera1
$ sudo apt-get install ros-<rosdistro>-openni-launch2

Remember to change “<rosdistro>” to your ros version (i.e.‘hydro’ or ‘indigo’).
With all the software installed, it’s time to power on the hardware.

Depending on your application plugging Kinect’s USB Cable to the computer
you’re using and the AC Adapter to the wall socket can be enough, however needing
a wall socket to use your robot is not a great idea. The AC Adapter converts the AC
voltage (e.g. 100V@60Hz) to the DC voltage needed to power up the Kinect (12V),
therefore the solution is exchanging the AC adapter for a 12V battery. The procedure
for doing this is explained briefly in the following topics:

ROS Navigation: Concepts and Tutorial 127

• Cut the AC adapter off, preferably near the end of the cable.
• Strip a small end to each of the two wires (white and brown) inside of the cable.
• Connect the brown wire to the positive(+) side of the 12V battery and the white
wire to the negative(−). You can do this connection by soldering [7] or using
connectors, such as crimp [8] or clamp [9] wire connectors.

Be aware that the USB connection is enough to blink the green LED in front of the
Kinect and it does not indicate that the external 12V voltage is there. You can also
learn a little more about this procedure by reading the “Adding a Kinect to an iRobot
Create/Roomba” wiki page [10].

Now thatwehave the software and the hardware prepared, some testing is required.
With theKinect powered on, execute the following command on theUbuntu terminal:

$ roslaunch openni_launch openni.launch1

The software will come up and a lot of processes will be started along with the
creation of some topics. If your hardware is not found for some reason, you may see
the message “No devices connected…waiting for devices to be connected”. If this
happens, please verify your hardware connections (USB and power). If that does not
solve it, you may try to remove some modules from the Linux Kernel that may be the
cause of the problems and try again. The commands for removing the modules are:

$ sudo modprobe -r gspca_kinect1
$ sudo modprobe -r gspca_main2

Once the message of no devices connected disappears, you can check some of
the data supplied by the Kinect in another Terminal window (you may open multiple
tabs of the terminal in standard Ubuntu by pressing CTRL+SHIFT+T) by using one
or more of these commands:

$ rosrun image_view disparity_view image:=/camera/depth/disparity1
$ rosrun image_view image_view image:=/camera/rgb/image_color2
$ rosrun image_view image_view image:=/camera/rgb/image_mono3

The first one will show a disparity image, while the second and third commands
will show the RGB camera image in color and in black and white respectively.

Lastly, we need to convert the depth image data to a LaserScan message. That is
needed because Gmapping, the localization system we are using, accepts as input a
single LaserScan message. Fortunately, we have yet another packages to do this for
us, the Depthimage_to_laserscan package and the ira_laser_tools
package. You just need one of the two packages, and, although the final result is
a LaserScan message for both, the data presented will be probably different. The
Depthimage_to_laserscan package is easier to get and use, and as we have
done with the other packages, we can check out the wiki page [11] and get the source
code from the git repository or we can simply get the package with apt-get:

$ sudo apt-get install ros-<rosversion>-depthimage-to-laserscan1

128 R.L. Guimarães et al.

This package will take a horizontal line of the PointCloud and use it to produce
the LaserScan. As you can imagine, it is possible that some obstacles aren’t present
at the selected height, the LaserScan message will not represent the PointCloud data
so well and gmapping will struggle to localize the robot in the costmap generated by
the Navigation Stack using the PointCloud directly.

The other option, ira_laser_tools package, produces a more representative
result, but it is harder to use and consumes a lot more processing power. In this pack-
ageyouhave twonodes:laserscan_virtualizer andlaserscan_multi_
merger. The first one, can be configured to convert multiple lines of your Point-
Cloud into different LaserScan messages. The second one, the merger node, receives
multiple LaserScan messages and merges them in a single LaserScan message. You
can check the article found on [12] to find out more about the package.

To install this package, you have to first clone the git repository found on [13]
to your catkin workspace source folder and then compile it. This is done with the
following commands:

$ cd /home/user/catkin_ws/src1
$ git clone https://github.com/iralabdisco/ira_laser_tools.git2
$ cd /home/user/catkin_ws3
$ catkin_make4

Now that the nodes are compiled, you have to configure the launch files to suit
your needs. Go to the launch folder, inside the ira_laser_tools package folder,
and open laserscan_virtualizer.launch with your favorite editor. You
should see something like this:

1 <!--
2 FROM: http://wiki.ros.org/tf#static_transform_publisher
3

4 <<static_transform_publisher x y z yaw pitch roll
frame_id child_frame_id period_in_ms>>

5 Publish a static coordinate transform to tf using an x/
y/z offset and yaw/pitch/roll. The period, in
milliseconds, specifies how often to send a
transform. 100ms (10hz) is a good value.

6 == OR ==
7 <<static_transform_publisher x y z qx qy qz qw frame_id

child_frame_id period_in_ms>>
8 Publish a static coordinate transform to tf using an x/

y/z offset and quaternion. The period, in
milliseconds, specifies how often to send a
transform. 100ms (10hz) is a good value.

9

10 -->
11

ROS Navigation: Concepts and Tutorial 129

12 <launch>
13

14 <!-- DEFINE HERE THE STATIC TRANFORMS, FROM
BASE_FRAME (COMMON REFERENCE FRAME) TO THE
VIRTUAL LASER FRAMES-->

15 <!-- WARNING: the virtual laser frame(s) *must*
match the virtual laser name(s) listed in
param: output_laser_scan -->

16 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster1" args="0 0 0
0 0.3 0 laser_frame scan1 1000" />

17 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster2" args="0 0 0
0 0.0 0 laser_frame scan2 1000" />

18 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster3" args="0 0 0
0.0 0.0 0.3 laser_frame scan3 1000" />

19 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster4" args="0 0 0
0.0 0.0 -0.3 laser_frame scan4 1000" />

20

21 <node pkg="ira_laser_tools" name="
laserscan_virtualizer" type="
laserscan_virtualizer" output="screen">

22 <param name="cloud_topic" value="/
cloud_in"/> <!-- INPUT POINT CLOUD --
>

23 <param name="base_frame" value="/
laser_frame"/> <!-- REFERENCE FRAME
WHICH LASER(s) ARE RELATED-->

24 <param name="output_laser_topic" value ="
/scan" /> <!-- VIRTUAL LASER OUTPUT
TOPIC, LEAVE VALUE EMPTY TO PUBLISH
ON THE VIRTUAL LASER NAMES (param:
output_laser_scan) -->

25 <param name="virtual_laser_scan" value ="
scan1 scan2 scan3 scan4" /> <!-- LIST
OF THE VIRTUAL LASER SCANS. YOU MUST
PROVIDE THE STATIC TRANSFORMS TO TF,
SEE ABOVE -->

26 </node>
27 </launch>

130 R.L. Guimarães et al.

This launch file is responsible for converting some parts of the PointCloud in
multiple LaserScans. As you can notice from the file, it is taking four lines from the
Kinect PointCloud: two horizontal lines, one at the kinect level and another 30cm
above the kinect level; two oblique lines, each of them with 0.3 rad of rotation to one
side in relation to the Kinect and in the same horizontal level. You can have more
information about the usage in the comments in the code itself and on this article
[12], but here are the things you will most likely need to modify to correctly use the
package:

• The number of scans you want: You have to find a number good enough to
summarize a lot of information without using too much CPU. In our case, we
tested with 8 horizontal lines, from 25cm below the Kinect to 90cm above of it.
We used horizontal lines because that way the ground would not be represented
in the LaserScan message. To do this, simply duplicate one of the node launching
lines, changing the name of the node and the name of the scan to an unique name.
For each line, you should configure the transform coordinates to whatever you see
fit, although we recommend the horizontal lines approach. Do not forget to put the
name of the new scan on the virtual_laser_scan parameter.

• The tf frame of the Kinect: Change laser_frame to the name of the frame of
your Kinect. In our case, camera_link.

• Input PointCloud: Change this line to the name of the topic that contains the
PointCloud. Openni_launch publishes it, by default, to /camera/depth
/points.

• The base_frame parameter: Selects the frame to which the LaserScans will be
related. It is possible to use the same frame as the Kinect.

• The output_laser_topic parameter: Selects the output topic for the LaserScan
messages. We left it blank, so each of the LaserScans would go to the topic with
their respective name.

Lastly, you have to configure the merger node. Start by opening up the
laserscan_multi_merger.launch file, on the same folder of the virtual-
izer launch file. You should see this:

1 <!--
2 DESCRITPION
3 -->
4

5

6 <launch>
7 <node pkg="ira_laser_tools" name="

laserscan_multi_merger" type="
laserscan_multi_merger" output="screen">

8 <param name="destination_frame" value="/
cart_frame"/>

9 <param name="cloud_destination_topic"
value="/merged_cloud"/>

ROS Navigation: Concepts and Tutorial 131

10 <param name="scan_destination_topic"
value="/scan_multi"/>

11 <param name="laserscan_topics" value ="
scandx scansx" /> <!-- LIST OF THE
LASER SCAN TOPICS TO SUBSCRIBE -->

12 </node>
13 </launch>

This launch file is responsible for merging multiple LaserScans into a single one.
As you can notice from the file, it is taking two LaserScan topics (scandx and
scansx) and merging. The three things you will most likely modify are:

• The destination_frame parameter: Chooses the frame to which the merged
LaserScan is related. Again, you can simply use the Kinect frame.

• Cloud : Change laser_frame to the name of the frame of your Kinect. In our
case, camera_link.

• The scan_destination_topic: Youwill probably want gmapping to read this infor-
mation, so, unless you have some special reason not to do that, use the /scan
topic here.

• The laserscan_topics paramter: List all the topics that contain the LaserScan
messages you want to merge. If you are using eight, you will most likely use scan1
to scan8 here.

Important Notes: When using this package, there are some important things you
have to notice. First, it won’t work correctly if you launch the merger before the
virtualizer, and since ROS launchers do not guarantee the order, you may use a shell
script to do that for you. Second, if the transformations take too long to be published,
you may end up with some issues in the merger. To correct that, we modified the
149th line of the code, changing the ros::Duration parameter from 1 to 3(setting this
parameter too high will make the LaserScan publication less frequent). The line will
then look like that:

tfListener_.waitForTransform(scan->header.frame_id.c_str(), destination_frame.c_str(),1
scan->header.stamp, ros::Duration(3));

With this last installation, you should have all the software you need for Kinect
utilization with navigation purposes, although there is a lot of other software you
can use with it. We would like to point out two of these packages that can be very
valuable at your own projects:

• kinect_aux [14]: this package allows to use somemore features of theKinect, such
as the accelerometer, tilt, and LED. It can be used along with the openni_camera
package and it is also installed with a simple apt-get command.

• Natural Interaction—openni_tracker [15]: One of the most valuable packages
for usingwith theKinect, this package is able to do skeleton tracking functionalities
and opens a huge number of possibilities. It is kind of tough to install and the

132 R.L. Guimarães et al.

process can lead to problems sometimes, so we really recommend you to do a full
system backup before trying to get it to work. First of all, install the openni_tracker
package with an apt-get, as stated on the wiki page. After that, you have to get
these recommended versions of the files listed below.

– NITE-Bin-Linux-x86-v1.5.2.23.tar.zip
– OpenNI-Bin-Dev-Linux-x86-v1.5.7.10.tar.bz2
– SensorKinect093-Bin-Linux-x86-v5.1.2.1.tar.bz2

The official openni website is no longer in the air, but you can get the files on
Openni.ru [16] or on [17], where I made them available. The first two files (NITE
and Openni) can be installed following the cyphy_people_mapping [18] tutorial
and the last file should be installed by:

• Unpacking the file

$ tar -jxvf SensorKinect093-Bin-Linux-x86-v5.1.2.1.tar.bz21

• Changing the permission of the setup script to allow executing.

$ sudo chmod a+x install.sh1

• Installing.

$ sudo ./install.sh1

Now that we have all software installed we should pack it all together in a single
launch file, tomake thingsmore independent and do not need to start a lot of packages
manually when using the Kinect. Here is an example of a complete launch file for
starting the Kinect and all the packages that make its data navigation-ready:

1 <launch>
2 <include file="$(find openni_launch)/launch/

openni.launch" />
3 <node respawn="true" pkg="

depthimage_to_laserscan" type="
depthimage_to_laserscan" name="laserscan">

4 <remap from="image" to="/camera/depth/
image" />

5 </node>
6 </launch>

As you can see and you might be already used to because of the previous chap-
ters, the ROS launch file is running one node and importing another launch file:
openni.launch, imported from the openni_launch package. Analyzing the code in a
little more depth:

ROS Navigation: Concepts and Tutorial 133

• The first and sixth lines are the launch tag, that delimits the content of the launch
file;

• The second line includes the openni.launch file from the openni_launch pack-
age, responsible for loading the drivers of the Kinect, getting the data, and pub-
lishing it to ROS topics;

• The third line starts the packagedepthimage_to_laserscanwith the “laser-
scan” name. It also sets the respawn parameter to true, in case of failures. This
package is responsible for getting a depth image from a ROS topic, converting it
to a LaserScan message and publishing it to another topic;

• The fourth line is a parameter for the depthimage_to_laserscan. By
default, the package gets the depth image from the /image topic, but the
openni_launch publishes it in the /camera/depth/image topic, and that
is what we are saying to the package.

There is still the transform (tf) missing, but we will discuss that later, because the
configuration is very similar to all sensors.

3.2 Sick S300 Laser Sensor

The pioneer LX comes bundled with a Sick S300 laser sensor and we’ll describe here
how to get its data, since the process should be very similar to other laser rangefinder
sensors. The package that supports this laser model is sicks300, that is currently
only supported by the fuerte and groovy versions of ROS. We are using a fuerte
installation of ROS in this robot, so it’s no problem for us, but it must be adapted if
you wish to use it with hydro or indigo. For our luck, it was adapted and it is available
at STRANDS git repository [19]. The procedure for getting it to work is:

• Cloning the repository, by using the command git clone https://github.com/bohle
nder/sicks300.git (the URL will change depending on your version);

• Compile the files. For rosbuild versions, use rosmake sicks300 sicks300 and for
catkinized versions, use catkin_make.

• Run the files by using the command rosrun sicks300 sicks300_driver. It should
work with the default parameters, but, if it doesn’t, check if you have configured
the baud rate parameter correctly (the default is 500000 and for the pioneer LX,
for example, it is 230400).

The procedure should be very similar for other laser sensors and the most used
packages, sicktoolbox_wrapper, hokyuo_node and urg_node, are very well docu-
mented on the ROS wiki. Its noteworthy that there is another option for reading
pioneer LX laser sensor data: cob_sick_s300 package.

3.3 Transformations

As explained on the background section, the transforms are a necessity for the Nav-
igation Stack to understand where the sensors are located in relation to the center of

134 R.L. Guimarães et al.

the robot (base_link). It is possible to understand a little more of transformations by
examining the Fig. 2.

Fig. 2 Figure containing the most commonly used tf frames [20]

As you can see on the Fig. 2, we have several frames. A brief explanation of each
of the topics is done below:

• map is the global reference frame and the robot pose should not drift much over
time in relation to it [21].

• odomdrifts and can cause discrete jumpswhennew sensor information is available.
• base_link is attached to the robot center.
• base_ footprint is very straightforward: it is the base_link projection on the ground
(zero height). Therefore, its transform is published in relation to the base_link.

• base_stabilized is the center position of the robot, not computing the roll and pitch
angles. Therefore, its transform is also published in relation to the base_link.

• laser_link is the center position of the laser sensor, and its transform is published
in relation to the base_link.

There is a clear hierarchy on these frames: map is the parent of odom and odom
is the parent of base_link. The transform between odom and base_link has to be
computed over the odometry sensor data and published. The transformation between
base_link and map is computed by the localization system and the other transforma-
tion, between the map and the odom frames, uses this information to be computed.

We will publish a transform between the Pioneer 3-AT base_link and the Kinect
sensor laser_link(the center of the Kinect sensor) as example, given that this pro-
cedure is equal for any type of sensor. The first thing in order to use transforms is
getting the distances you need. You will have to measure three-dimensional coor-
dinates in respect to the center of the robot and will also need to get the angles
between the robot pointing direction and the sensor pointing direction. Our Kinect

ROS Navigation: Concepts and Tutorial 135

sensor is aligned with the robot pointing direction on the yaw and its z coordinate is
also aligned with the robot center (and that’s the usual case for most of the robots),
therefore we have to measure only the x and y distances between the sensor and the
robot centers. The x distance for our robot is 35cm (0.35m) and our height distance
(y) is 10cm (0.1m). There are two standard ways to publish the angle values on
transforms: using quaternion or yaw/pitch/roll. The first one, using quaternion, will
respect the following order:

static_transform_publisher x y z qx qy qz qw frame_id child_frame_id period_in_ms1

Where qx, qy, qz and qw are the versors in the quaternion representation of
orientations and rotations. To understand the quaternion representation better, refer
to Modeling and Control of Robot Manipulators [22]. The second way of publishing
angles, using yaw/roll/pitch and the onewewill be using, is published in the following
order:

static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period_in_ms1

The common parameters for both quaternion and yaw/row/pitch representations
are:

• x, y and z are the offset representation, inmeters, for the three-dimensional distance
between the two objects;

• frame_id and child_frame_id are the unique names that will bound the transfor-
mations to the object to which they relate. In our case, frame_id is the base_link
of the robot and child_frame_id is the laser_link of the sensor.

• period_in_ms is the time between two publications of the tf. It is possible to
calculate the publishing frequency by calculating the reciprocal of the period.

In our example, for the Pioneer 3-AT and the Kinect, we have to include, in the
XML launcher (just write this line down at a new launch file, we will indicate further
in the text where to use it), the following code to launch the tf node:

<node pkg=“tf” type=“static_transform_publisher” name=“Pioneer3AT_laserscan_tf”1
args=“0.1 0 0.35 0 pi/2 pi/2 base_link camera_link 100” />

If you have some doubts on how to verify the angles you measured, you can use
rviz to check them, by including the laser_scan topic and verifying the rotation of
the obtained data. If you do not know how to do that yet, check the tests section of
the chapter, which includes the rviz configuration.

3.4 Creating a Package

At this point, you probably already have some XML files for launching nodes con-
taining your sensors initialization and for initializing some packages related to your

136 R.L. Guimarães et al.

platform (robot powering up, odometry reading, etc.). To organize these files and
make your launchers easy to find with ros commands, create a package containing
all your launchers. To do that, go to your src folder, inside your catkin workspace,
and create a package with the following commands (commands valid for catkinized
versions of ROS):

$ cd /home/user/catkin_ws/src1
$ catkin_create_pkg packageName std_msgs rospy roscpp move_base_msgs2

These two commands are sufficient for creating a folder containing all the files
that will make ROS find the package by its name. Copy all your launch files to the
new folder, namesake to your package, and then compile the package, by going to
your workspace folder and issuing the compile command:

$ cd /home/user/catkin_ws1
$ catkin_make2

That’s all you need to do. From now on, remember to put your launch and config
files inside this folder. You may also create some folder, such as launch and config,
provided that you specify these sub-paths when using find for including launchers
in other launchers.

3.5 The Navigation Stack—System Overview

Finally, all the pre-requisites for using the Navigation Stack are met. Thus, it is
time to begin studying the core concepts of the Navigation Stack, as well as their
usage. Since the overview of the Navigation Stack concepts was already done in the
Background section, we can jump straight to the system overview, which is done in
Fig. 3. The items will be analyzed in the following sections block by block.

You can see on Fig. 3 that there are three types of nodes: provided nodes, optional
provided nodes and platform specific nodes.

• The nodes inside the box, provided nodes, are the core of the Navigation Stack,
and are responsible, mainly, by managing the costmaps and for the path planning
functionalities.

• The optional provided nodes, amcl and map_server, are related to static map func-
tions, as will be explained later, and since using a static map is optional, using
these nodes is also optional.

• The platform specific nodes are the nodes related to your robot, such as sensor
reading nodes and base controller nodes.

In addition, we have the localization systems, not shown in Fig. 3. If the odometry
source was perfect and no errors were present on the odometry data, we would
not need to have localization systems. However, in real applications that is not the
case, and we have to account other types of data, such as IMU data, so we can
correct odometry errors. The localization systems discussed on this chapter are:

ROS Navigation: Concepts and Tutorial 137

amcl, gmapping and hector_mapping. Below, a table is available to relate a node to a
keyword, so you can understand better the relationship of the nodes of the Navigation
Stack.

Localization Environment inter-
action

Static maps Trajectory planning Mapping

amcl sensor_sources amcl global_planner local_costmap
gmapping base_controller map_server local_planner global_costmap
hector_mapping odometry_source recovery_behaviors

3.5.1 Amcl and Map_server

The first two blocks that we can focus on are the optional ones, responsible for the
static map usage: amcl and map_server. map_server contains two nodes: map_server
and map_saver. The first one, namesake to the package, as the name indicates, is a
ROS node that provides static map data as a ROS Service, while the second one,
map_saver, saves a dynamically generated map to a file. amcl does not manage the
maps, it is actually a localization system that runs on a known map. It uses the
base_footprint or base_link transformation to the map to work, therefore it needs
a static map and it will only work after a map is created. This localization system
is based on the Monte Carlo localization approach: it randomly distributes particles
in a known map, representing the possible robot locations, and then uses a particle
filter to determine the actual robot pose. To know more about this process, refer to
Probabilistic Robotics [24].

Fig. 3 Overview of a typical system running the Navigation Stack [23]

138 R.L. Guimarães et al.

3.5.2 Gmapping

gmapping, as well as amcl, is a localization system, but unlike amcl, it runs on
an unknown environment, performing Simultaneous Localization and Mapping
(SLAM). It creates a 2D occupancy grid map using the robot pose and the laser
data (or converted data, i.e. Kinect data). It works over the odom to map transfor-
mation, therefore it does not need the map nor IMU information, needing only the
odometry.

3.5.3 Hector_mapping

As said in the background section, hector_mapping can be used instead of using
gmapping. It uses the base_link to map transformation and it does not need the
odometry nor the static map: it just uses the laser scan and the IMU information to
localize itself.

3.5.4 Sensors and Controller

These blocks of the system overview are in respect to the hardware-software interac-
tion and, as indicated, are platform specific nodes. The odometry source and the base
controller blocks are specific to the robot you are using, since the first one is usually
published using the wheel encoders data and the second one is the responsible for
taking the velocity data from the cmd_vel topic and assuring that the robot repro-
duces these velocities. It is noteworthy that the whole system will not work if the
sensor transforms are not available, since they will be used to calculate the position
of the sensor readings on the environment.

3.5.5 Local and Global Costmaps

The local and global 2D costmaps are the topics containing the information that
represents the projection of the obstacles in a 2D plane (the floor), as well as a
security inflation radius, an area around the obstacles that guarantee that the robot
will not collide with any objects, no matter what is its orientation. These projections
are associated to a cost, and the robot objective is to achieve the navigation goal
by creating a path with the least possible cost. While the global costmap represents
the whole environment (or a huge portion of it), the local costmap is, in general, a
scrolling window that moves in the global costmap in relation to the robot current
position.

ROS Navigation: Concepts and Tutorial 139

3.5.6 Local and Global Planners

The local and global planners do not work the sameway. The global planner takes the
current robot position and the goal and traces the trajectory of lower cost in respect to
the global costmap. However, the local planner has a more interesting task: it works
over the local costmap, and, since the local costmap is smaller, it usually has more
definition, and therefore is able to detect more obstacles than the global costmap.
Thus, the local planner is responsible for creating a trajectory rollout over the global
trajectory, that is able to return to the original trajectory with the fewer cost while it
deviates from newly inserted obstacles or obstacles that the global costmap definition
was not able to detect. Just to make it clear, move_base is a package that contains the
local and global planners and is responsible for linking them to achieve the navigation
goal.

3.6 The Navigation Stack—Getting It to Work

At last, it is time to write the code for the full launcher. It is easier to do this with an
already written code, such as the one that follows:

1 <launch>
2 <master auto="start"/>
3

4 <!-- PLATFORM SPECIFIC -->
5 <node pkg="p2os_driver" type="p2os_driver" name=

"p2os_driver" >
6 <param name="port" value="/dev/ttyUSB0" /

>
7 <param name="pulse" value="1.0" />"
8 </node>
9

10 <node pkg="rostopic" type="rostopic" name="
enable_robot" args="pub /cmd_motor_state
p2os_driver/MotorState 1" respawn="true">

11 </node>
12

13 <!-- TRANSFORMS -->
14 <node pkg="tf" type="static_transform_publisher"

name="Pioneer3AT_laserscan_tf" args="0.1 0
0.35 0 pi/2 pi/2 base_link camera_link 100"
/>

15

16 <!-- SENSORS CONFIGURATION -->

140 R.L. Guimarães et al.

17 <arg name="kinect_camera_name" default="camera"
/>

18 <param name="/$(arg kinect_camera_name)/
driver/data_skip" value="1" />

19 <param name="/$(arg kinect_camera_name)/
driver/image_mode" value="5" />

20 <param name="/$(arg kinect_camera_name)/
driver/depth_mode" value="5" />

21

22 <include file="$(find course_p3at_navigation)/
myKinect.launch" />

23

24 <!-- NAVIGATION -->
25

26 <node pkg="gmapping" type="slam_gmapping"
respawn="false" name="slam_gmapping" output=
"screen">

27 <param name="map_update_interval" value="
2.0"/>

28 <param name="maxUrange" value="6.0"/>
29 <param name="iterations" value="5"/>
30 <param name="linearUpdate" value="0.25"/>
31 <param name="angularUpdate" value="0.262"

/>
32 <param name="temporalUpdate" value="-1.0"

/>
33 <param name="particles" value="300"/>
34 <param name="xmin" value="-50.0"/>
35 <param name="ymin" value="-50.0"/>
36 <param name="xmax" value="50.0"/>
37 <param name="ymax" value="50.0"/>
38 <param name="base_frame" value="base_link

"/>
39 <param name="minimumScore" value="200.0"/

>
40 <param name="srr" value="0.01"/>
41 <param name="str" value="0.01"/>
42 <param name="srt" value="0.02"/>
43 <param name="stt" value="0.02"/>
44 </node>
45

46 <node pkg="move_base" type="move_base" respawn="
false" name="move_base" output="screen">

47 <rosparam file="$(find
course_p3at_navigation)/

ROS Navigation: Concepts and Tutorial 141

sg_costmap_common_params_p3at.yaml"
command="load" ns="global_costmap" />

48 <rosparam file="$(find
course_p3at_navigation)/
sg_costmap_common_params_p3at.yaml"
command="load" ns="local_costmap" />

49 <rosparam file="$(find
course_p3at_navigation)/
sg_local_costmap_params.yaml" command
="load" />

50 <rosparam file="$(find
course_p3at_navigation)/
sg_global_costmap_params.yaml"
command="load" />

51 <rosparam file="$(find
course_p3at_navigation)/
becker_base_local_planner_params.yaml
" command="load" />

52 <param name="base_global_planner" type="
string" value=" navfn/NavfnROS" />

53 <param name="controller_frequency" type="
double" value="6.0" />

54 </node>
55

56

57 </launch>

As you can see the code is divided by commentaries in four sections as enumerated
below:

3.6.1 PLATFORM SPECIFIC

Before explaining this section it is useful to clarify something: these PLATFORM
SPECIFIC code is related to the platform specific nodes and it is not, by any means,
the only platform specific sections of the navigation configuration, since almost all
parameters presented on this chapter can be modified depending on your needs. This
first section of the code is relative to the nodes you have to run so your robot is
able to read the information in the /cmd_vel topic and translate this information
into the respective real velocities to the robot’s wheels. In the case here represented,
for the Pioneer 3-AT, two nodes are run: p2os_driver [25] and an instance of the
rostopic [26] node. The first one, p2os_driver, is a ROS node specific for some
Pioneer robots, including the Pioneer 3-AT, able to control the motors in accordance
to the information it receives from the ros topics /cmd_vel and /cmd_motor_state.

142 R.L. Guimarães et al.

/cmd_vel has the velocities information and /cmd_motor_state tells the package if the
motors are enabled. That is the reason the rostopic node should be run: it publishes
a true value to the /cmd_motor_state topic so the p2os_driver knows that the motor
should be enabled. p2os_driver also publishes some useful data, like sonar sensor
data, transformations, battery_state and more.

3.6.2 TRANSFORMS

As discussed in the transforms section, you should create a transform between the
robot’s base_link and the sensor laser_link. Here is the place we recommend it to be
put, although it can be launched in a separate launch file or in any particular order in
this launch file. Any other transforms you may have should be put here too.

3.6.3 SENSORS CONFIGURATION

This section of the code was left to initialize all the nodes regarding the sensors
powering up and configuration. The first four lines of this section contain some
configurations of the Kinect sensor:

• (1) The first line changes the camera name to kinect_camera_name;
• (2) The second lines sets it to drop 1 frame of the Kinect for each valid one,
outputting at approximately 15Hz instead of 30Hz;

• (3) The third and fourth lines are in respect to the resolution, where we have
selected 320 × 240 QVGA 30Hz for the image and 30Hz QVGA for the depth
image. The available options for image mode are:

– 2: (640 × 480 VGA 30Hz)
– 5: (320 × 240 QVGA 30Hz)
– 8: (160 × 120 QQVGA 30Hz)

And for the depth image mode:

– 2: (VGA 30Hz)
– 5: (QVGA 30Hz)
– 8: (QQVGA 30Hz)

It is noteworthy that these parameters configurations for the Kinect, although
recommended, are optional, since the default values will work. Besides the parameter
configuration, there is also the line including the Kinect launcher that we wrote at
the “Configuring the Kinect Sensor” section, which powers the sensor up and gets
its data converted to laser data. If you’re using any other kind of sensor, like a laser
sensor, you should have your own launcher include here. Finally, if you odometry
sensors aren’t configured yet(in our case, the p2os_driver is responsible for this) you
may do this here.

ROS Navigation: Concepts and Tutorial 143

3.6.4 NAVIGATION

Understanding which nodes you should run, why and what each of them does is the
main focus of this chapter. To get our Pioneer 3-AT navigating, we are using two
navigation nodes (gmapping and move_base) and a lot of parameters. As explained
before, gmapping is a localization system, while move_base is a package that con-
tains the local and global planners and is responsible for linking them to achieve
the navigation goal. Therefore, let us start explaining the gmapping launcher, the
localization system we are using, since we have odometry available and our map is
unknown (we will not use any static maps). For that, each parameter will be analyzed
at once, as follows:

• map_update_interval: time (in seconds) between two updates of the map. Ideally,
the update would be instantaneous, however, it would cost too much for the CPU
to do that. Therefore, we use a interval, for which the default is 5 s.

• maxUrange: themaximum range for which the laser issues valid data. Data farther
from this distance will be discarded.

• iterations: the number of iterations of the scanmatcher.
• linearUpdate, angularUpdate and temporalUpdate: thresholds for a scan request.
temporalUpdate asks for a new scan whenever the time passed since the last scan
exceeds the time indicated in the parameter, while linearUpdate and angularUpdate
ask for scanwhen the robot translates or rotates (respectively) the amount specified
in the parameters.

• particles: sets the number of particles used in the filter.
• xmin, ymin, xmax and ymax: these four coordinates form, together, the map size.
• base_ frame: indicates the frame that corresponds to the mobile base in the trans-
form tree.

• minimumScore: its a threshold value for considering the outcome of the scan
matching good. Here we set the parameter to 200, but you should test some values
between 0 and 300 depending on your configuration. Keep in mind that scores go
from about −3000 to more than 600.

• srr, srt, str and stt: these parameters relate to the odometry errors. You should test
your configuration and measure the four possible errors respectively: translation
as a function of translation, translation as a function of rotation, rotation as a
function of translation and rotation as a function of rotation. Here, r goes for rho
(translation) and t goes for theta (rotation). The easiest way to do this is by sending
goals to your robot and measuring the difference between the expected movement
and the actual movement.

As to move_base, it bases its path planning techniques on the current location and
the navigation goal. In the node launcher code, we have the usual syntax to launch
a node, followed by a list of seven parameters, five of which are rosparams. The
params are two:

• base_global_planner is a parameter for selecting the plugin (dynamically loadable
classes). The plugin we use is the default for 1.1+ series, so we put this statement

144 R.L. Guimarães et al.

here just to ensure we’ve selected the correct one. As you will see on the test
section, we changed this parameter to use the dwa_local_planner, since it works
better on our configuration.

• controller_ frequency is a parameter that fixes the rate (in Hz) at which the control
loop will run and velocity commands will be issued.

The rosparams, in turn, are files that contain more parameters for the move_base,
and which are done this way to keep the files organized and easy to read. Thus, we
will take advantage of this fact and analyze the parameter files separately. First, we
begin looking at the costmap_common_params file, the one that contains parameters
that apply for both the local and global costmaps:

1 obstacle_range: 5.0
2 raytrace_range: 6.0
3

4 max_obstacle_height: 1.0
5 min_obstacle_height: 0.05
6

7 footprint: [[0.3302, -0.0508], [0.254, -0.0508],
[0.254, -0.254], [-0.254, -0.254], [-0.254, 0.254],
[0.254, 0.254], [0.254, 0.0508], [0.3302, 0.0508]]

8 #robot_radius: 0.35
9 inflation_radius: 0.35

10 footprint_padding: 0
11

12 transform_tolerance: 1.0
13 map_type: costmap
14 cost_scaling_factor: 100
15

16

17 observation_sources: laser_scan_sensor
18 laser_scan_sensor: {sensor_frame: camera_link,

data_type: LaserScan, topic: scan, marking: true,
clearing: true}

19

20 #observation_sources: pointcloud_sensor
21 #pointcloud_sensor: {sensor_frame: camera_link,

data_type: PointCloud2, topic: /camera/depth/points,
marking: true, clearing: true}

As you may know, the sharp(#) represents a commented line or value, and does
not affect the results. This way, let us present the meaning of each of the params used
in the costmap common parameters file:

• obstacle_range and raytrace_range: obstacle_range relates to the maximum dis-
tance (in meters) that will be considered when taking the obstacle data and putting

ROS Navigation: Concepts and Tutorial 145

it to the costmap, while raytrace_range is the maximum distance (also in meters)
that will be considered when taking the free space around the robot and putting it
to the costmap.

• max_obstacle_height and min_obstacle_height: these parameters set the area that
will consider the sensor data as valid data. The most common is setting the min
height near the ground height and the max height slightly greater than the robot’s
height.

• robot_radius and inflation_radius: when you’re considering your robot as circu-
lar, you can just set the robot_radius parameter to the radius(in meters) of your
robot and you get a circular footprint. Although, even if you don’t have a circular
robot, it is important to set the inflation_radius to the “maximum radius” of your
robot, so the costmap creates a inflation around obstacles and the robot doesn’t
collide, no matter what is it direction when getting close to obstacles.

• footprint and footprint_padding: when you want a most precise representation
of your robot, you have to comment the robot_radius parameter and create a
custom footprint, as we did, considering [0, 0] as the center of your robot.
footprint_padding is summed at each of the footprint points, both at the x and
y coordinates, and we do not use it here, so we set it to zero.

• transform_tolerance: sets themaximum latency accepted so the systemknows that
no link in the transform tree is missing. This parameter must be set in an interval
that allows certain tolerable delays in the transformpublication and detectsmissing
transforms, so the Navigation Stack stops in case of flaws in the system.

• map_type: just here to enforce we are using a costmap.
• cost_scaling_factor: this parameter sets the scaling factor that applies over the
inflation. This parameter can be adjusted so the robot has a more aggressive or
conservative behavior near obstacles.

e−cost_scaling_factor×(distance_from_obstacle−inscribed_radius)× (costmap_2d::INSCRIBED_INFLATED_OBSTACLE−1)

• observation_sources: This last parameter is responsible for choosing the source of
the sensor data. We can both use here point_cloud, as we’re using for the Kinect,
or laser_scan, as the commented lines suggest and as may be used for a Hokuyo or
sick laser sensor. Along with the laser type, it is very important to set the correct
name of the subscribed topic, so the Navigation Stack takes the sensor data from
the correct location. The marking and clearing values are self-explanatory, since
they set if the sensor data from the observation source is allowed to mark and clear
the costmap. This parameter raises yet some very important discussion:

– When selecting which observation source you are going to use, you have to
consider that gmapping is using a LaserScan message as its observation source.
If you are using a Kinect, you can choose the PointCloud message as your
observation source here, and, although it will represent a lot more obstacles
than the LaserScan would, that can bring a lot of problems to gmapping, that
will struggle to get the current robot position.

Now that we have set all the costmap common parameters, we must set the para-
meter specific to the local and global costmaps. We will analyze them together, since

146 R.L. Guimarães et al.

most of the parameters are very similar. First, take a look at the files. For the global
costmap we have:

1 global_costmap:
2 global_frame: /map
3 robot_base_frame: base_link
4 update_frequency: 1.0
5 publish_frequency: 1.0 #0
6 static_map: false
7 width: 50 #3.4
8 height: 50 #3.4
9 origin_x: -25 #-1.20 is the actual position; -0.95 is

the old one, for the frond wheel at the marker
10 origin_y: -25 #-1.91
11 resolution: 0.1

And for the local:

1 local_costmap:
2 global_frame: /odom
3 robot_base_frame: base_link
4 update_frequency: 5.0
5 publish_frequency: 10.0
6 static_map: false
7 rolling_window: true
8 width: 3.0
9 height: 3.0

10 resolution: 0.025

As you can see, both of them start with a tag specifying the costmap to which
they relate. Then, we have the following common parameters:

• global_frame: indicates the frame for the costmap to operate in. They are set to
different values because gmapping publishes the transform from odom to map,
the global reference frame. If you set both of them to /odom you will be using the
odometry data exclusively.

• robot_base_frame: indicates the transformation frame of the robot’s base_link.
• update_frequency and publish_frequency: The frequency (in Hz) for map update
and for publication of the display data.

• static_map: indicates whether the system uses or not a static map.
• width and height: width and height of the map, in meters.
• resolution: resolution of the map in meters per cell. This parameter is usually
higher in smaller maps (local).

Aside from these common parameters, there’s the definition of the map size along
with the choosing between rolling window map or not. For the global map, we

ROS Navigation: Concepts and Tutorial 147

adopted the fixed map (there is no need to set rolling_windows to false, since it is
the default), therefore we need to declare the x and y initial positions of the robots
in respect to the map window. For the local_costmap, we use a rolling window map
and the only parameter we have to set is the rolling_window to true.

Lastly, we have the base_local_planner parameters file. The base_local_planner
treats the velocity data according to its parameters so the base_controller receives
coherent data. Thus, the base_local_planner parameters are platform_specific. Take
a look at the configuration for the Pioneer 3-AT:

1 TrajectoryPlannerROS:
2 max_vel_x: 0.5
3 min_vel_x: 0.1
4 max_rotational_vel: 0.5
5 max_vel_theta: 0.5
6 min_vel_theta: -0.5
7 min_in_place_rotational_vel: 0.5
8 min_in_place_vel_theta: 0.5
9 escape_vel: -0.1

10

11

12 acc_lim_th: 0.5
13 acc_lim_x: 0.5
14 acc_lim_y: 0.5
15

16 holonomic_robot: false

Again, we should analyze the most important parameters separately.

• min_vel_x and max_vel_x: The minimum and maximum velocities (in meter-
s/second) allowed when sending data to the mobile base. The minimum velocity
should be great enough to overcome friction. The maximum velocity adjust is
good for limiting the robot’s velocity in narrow environments.

• max_rotational_vel and min_in_place_rotational_vel: limits for the rotational
velocities, the difference is that rotational_vel is the maximum rotation veloc-
ity when the mobile base is also moving forward or backward, while in_place
_rotational_vel is the minimum rotation vel so the robot can overcome friction
and turn without having to move forward or backward.

• min_vel_theta and max_vel_theta: the minimum and maximum rotational veloc-
ities (in radians/second).

• min_in_place_vel_theta: alike min_in_place_rotational_vel, but in radians per
second.

• escape_vel: this speed delimits the driving speed during escapes (in meters per
second). Its noteworthy that this value should be negative for the robot to reverse.

• acc_lim_x, acc_lim_y and acc_lim_theta: accelerations limits. They are the x,y
and rotational acceleration limits respectively, wherein the first two are in meters
per squared second and the last is radians per squared second.

148 R.L. Guimarães et al.

• holomic_robot: this is a boolean responsible to choose between holonomic and
non-holonomic robots, so the base_local_planner can issue velocity commands as
expected.

Finally, we have a basic set up, contemplating all the usual parameters that you
have to configure and some more. There is a small chance that some parameter is
missing for your configuration, therefore it is a good idea to do a quick check in the
base_local_planner [27] and costmap_2d [28] wiki pages.

The way that we have presented does not use layers, although ROS Hydro+
supports this feature. Porting these files to this new approach of costmaps is not
a hard task, and that is what we will cover now.

3.7 Layered Costmaps

For this approach, we use the launchers and the configuration files from the pre-
vious package. First, we create a package named p3at_layer_navigation, as stated
on the creating a package section. Then, we copy all files from the previous pack-
age but the package.xml and CMakelists.txt files to the folder of the newly created
package. For the base_local_planner, nothing should be modified, since the planning
will not be affected in any way when exploding the maps in layers. The common
costmaps file is the one that will be affected the most, and here is one example
costmap_common_params.yaml file that illustrates this:

1 robot_base_frame: base_link
2

3 transform_tolerance: 1.0
4

5 robot_radius: 0.35
6

7 footprint: [[0.3302, -0.0508], [0.254, -0.0508],
[0.254, -0.254], [-0.254, -0.254], [-0.254, 0.254],
[0.254, 0.254], [0.254, 0.0508], [0.3302, 0.0508]]

8

9 inflater:
10 robot_radius: 0.35
11 inflation_radius: 0.35
12

13 obstacles:
14 observation_sources: pointcloud_sensor
15 pointcloud_sensor:
16 data_type: PointCloud2
17 topic: camera/depth/points
18 min_obstacle_height: 0.2
19 max_obstacle_height: 2.0
20 marking: true
21 clearing: true

ROS Navigation: Concepts and Tutorial 149

22 z_voxels: 8
23 z_resolution: 0.25
24 max_obstacle_height: 2.0

As you can see in the file, the parameters do not change much, the difference is
that they are organized in a different way: there are some parameters that are common
for all costmaps and there are some parameters that are common between layers. In
this example, we create two layers: a inflater layer, that considers a circular robot
with 35cm of radius, and, therefore, an inflation radius of 35cm so it doesn’t collide
with anything; a obstacles layer, that takes the pointcloud data (if you are using a
laser, please change that here) and passes this data to the costmap.

The two other files have a slight modification: you should specify the layers
they are using by using the plugins mnemonic, as shown for the global_costmap
configuration file:

1 global_frame: map
2

3 robot_base_frame: base_link
4 update_frequency: 1.0
5 publish_frequency: 1.0
6 static_map: false
7 width: 50
8 height: 50
9 origin_x: -25

10 origin_y: -25
11 resolution: 0.1
12

13 plugins:
14 - {name: obstacles, type: "costmap_2d::VoxelLayer"}
15 - {name: inflater, type: "costmap_2d::InflationLayer"}

The local_costmap should have the same plugins statement at the end. Moreover,
you can add any extra layers you want. The structure of the topics will change a
little bit, since the footprint is now inside the layers and the costmaps are divided
in multiple topics. You can get to know a little more about this organization in the
Using rviz section.

4 Starting with a Test

Before we begin the testing, we must find a way to visualize the navigation in action.
That can be done through the software rviz, that allows us, amongst other things, to
visualize the sensor data in a comprehensive way and to check the planned paths as

150 R.L. Guimarães et al.

they are generated. The execution of rviz is often in a computer different from the
one that operates on the robot, so you may use multiple machines that share the same
ROS topics and communicate.

4.1 Using Rviz

To run rviz, simply issue the following command:

$ rosrun rviz rviz1

The interface of rviz depends on your version, but the operation should be very
similar. It is way easier to configure rviz with the Navigation Stack up and running,
although it is possible to do so without it. In this tutorial we will only cover the
configuration steps when the Navigation Stack launcher is already implemented,
so make sure you have launched all the nodes needed for navigation and just then
launched rviz. After launching rviz, you should add the topics you wish to display.
First, as an example, add the PointCloud 2 from the Kinect, as shown in Fig. 4.

As you can see in Fig. 4, there are four steps for adding a new topic when Navi-
gation Stack is already running:

• (1) Click on the button “add” at the bottom left-hand side of the screen;
• (2) Choose the tab “By topic” on the windows that appears. This is only possible
when the topics are available, so if you don’t have the Navigation Stack running

Fig. 4 Steps for adding new information for rviz to display

ROS Navigation: Concepts and Tutorial 151

you will have to choose the info in the tab “By display type” and manually insert
the topic names and types.

• (3) Select the topic and its message type on the central frame of the window. In
this example, we are selecting the PointCloud2 data that the Kinect provides on
the /camera/depth_registered/points topic.

• (4) Write a meaningful display name in the textbox, so you don’t forget what the
data is representing in the future.

• (5) Confirm the addition by pressing “Ok”.

The process is equal for all kinds of topics, so a list of the most common topics
(note: depending if you changed some topic names, some things on the list may
differ) should be enough to understand and add all the topics you need.

Name Topic Message type
ROBOT FOOT-
PRINT

/local_costmap/robot_footprint geometry_msgs/PolygonStamped

LOCAL COSTMAP /move_base/local_costmap/costma
p

nav_msgs/GridCells

OBSTACLES
LAYER

/local_costmap/obstacles nav_msgs/GridCells

INFLATED OBSTA-
CLES LAYER

/local_costmap/inflated_obstacles nav_msgs/GridCells

STATIC MAP /map nav_msgs/GetMap or nav_msgs/O
ccupancyGrid

GLOBAL PLAN /move_base/TrajectoryPlannerRO
S/global_plan

nav_msgs/Path

LOCAL PLAN /move_base/TrajectoryPlannerRO
S/local_plan

nav_msgs/Path

2D NAV GOAL /move_base_simple/goal geometry_msgs/PoseStamped
PLANNER PLAN /move_base/NavfnROS/plan nav_msgs/Path
LASER SCAN /scan sensor_msgs/LaserScan
KINECT POINT-
CLOUD

/camera/depth_registered/points sensor_msgs/PointCloud2

It is interesting to know a little more about topics that you haven’t heard about,
because every topic listed here is very valuable at checking the navigation function-
alities at some point. Therefore, lets do a brief explanation at each of the topics:

• ROBOT FOOTPRINT: These message is the displayed polygon that represents
the footprint of the robot. Here we are taking the footprint from the local_costmap,
but it is possible to use the footprint from the global_costmap and it is also possible
to take the footprint from a layer, for example, the footprint may be available at the
/move_base/global_costmap/obstacle_layer_footprint/footprint_stamped topic.

• LOCAL COSTMAP: If you’re not using a layered approach, your local_costma
p in its whole will be displayed in this topic.

• OBSTACLES LAYER: One of the main layers when you’re using a layered
costmap, containing the detected obstacles.

152 R.L. Guimarães et al.

• INFLATED OBSTACLES LAYER: One of the main layers when you’re using a
layered costmap, containing areas around detected obstacles that prevent the robot
from crashing with the obstacles.

• STATIC MAP: When using a pre-built static map it will be made available at this
topic by the map_server.

• GLOBAL PLAN: This topic contains the portion of the global plan that the local
plan is considering at the moment.

• LOCAL PLAN: Display the real trajectory that the robot is doing at the moment,
the one that will imply in commands to the mobile base through the /cmd_vel
topic.

• 2D NAV GOAL: Topic that receives navigation goals for the robot to achieve. If
you want to see the goal that the robot is currently trying to achieve you should
use the /move_base/current_goal topic.

• PLANNER PLAN: Contains the complete global plan.
• LASER SCAN: Contains the laser_scan data. Depending on your configuration
this topic can be a real reading from your laser sensor or it can be a converted
value from another type of sensor.

• KINECT POINTCLOUD: This topic, shown in the example, is a cloud of points,
as the name suggests, that forms, in space, the depthimage captured by the Kinect.
If you are using a laser sensor, this topic will not be available.

These are the most used topics, however you may have a lot more depending on
your setup and in what you want to see. Besides, just the local_costmap and the most
used layers of it were presented, but you may want to see the global costmap and its
layers, in addition to another layers that you may use. Explore the topics you have
running with the rviz and you may find more useful info.

4.2 Multiple Machines Communication

Multiple Machines Communication is a rather complex topic and it is possible that
you have to use more than one computer at the same time when navigating with
a robot. Usually, in navigation scenarios, two computers are used: one is mounted
on the mobile base and is responsible for getting sensor data and passing velocities
commands to the robot, while the other is responsible for heavy processing and
monitoring.

Although a ROS network can be very complex, if you are using just two machines
as specified above, youwill probably be able to communicate themwith the following
steps. If that is not your case, please refer to the Multiple Machines Communication
ROS wiki page [29]. To get the machines working together you must specify names
for both machines in the /etc/hosts file on your system. The usual hosts file is similar
to:You have to choose a name for both the machines (here we chose robot and
masterpc) and add to both the /etc/hosts files the entries for them. The entry on the
/etc/hosts must have the IP of the machine in the wireless lan they share and the name

ROS Navigation: Concepts and Tutorial 153

IPAddress Hostname1
127.0.0.1 localhost2
192.168.1.101 robot3
192.168.1.100 masterpc4

you picked (two new entries per file, one for itself and other for the other PC). After
that, you should set the ROS_MASTER_URI variables. In the master machine, it
should be:

$ export ROS_MASTER_URI=http://localhost:113111

In the other machine, you should type:

$ export ROS_MASTER_URI=http://mastermachine:113111

Test your configuration this way, and if the configurations work, add the export
lines to the end of the ∼/.bashrc file of both computers, so every time a terminal
window is opened these commands are issued.

4.3 Real Tests on Pioneer 3-AT

Finally, it is time to see the robot navigating. Launch your navigation file and then run
rviz. If you made all the correct configuration for the Navigation Stack and for rviz
you should be able to see your robot footprint, pose and the costmaps. Try selecting
the 2D Nav goal at the top of the screen in rviz, click and hold at some point on
the map and then choose the direction, so the robot knows where to go and in what
position it should stop. A global path would be generated, as well as a local, and
you should see them indicated by green lines. You can see an example of the robot
navigating on Figs. 5 and 6.

As you can see in the pictures, a global plan is drawn from the start point to
the finish point and a local plan is being drawn along the way, trying to follow
the global path without crashing. As for the costmaps, the yellow section indicates
where the obstacle is, and is an infinite cost area. The radius around the obstacle, in
our case almost entirely blue, is the inflation radius, where the cost is exponentially
decreasing from the obstacle to the border of the inflation radius. Depending on your
inflation_radius and cost_scaling_factor parameters, this coloring
can be different.

154 R.L. Guimarães et al.

Fig. 5 Example costmaps for the Pioneer 3-AT navigating in a room

Fig. 6 Photograph of the robot navigating, at the same moment the print screen of Fig. 5 was taken

Conducting the tests we have found that the navigation does not work so great
with the default planner. Therefore, we tested the dwa_local_planner and the results
were way better. The dwa_local_planner is, in general, better for slow robots, and to
use it you should modify your move_base launcher as follows:

ROS Navigation: Concepts and Tutorial 155

1 <node pkg="move_base" type="move_base" respawn="false"
name="move_base" output="screen" clear_params="true"
>

2 <param name="controller_frequency" value="
10.0" />

3 <param name="controller_patience" value="15.0
" />

4 <param name="planner_frequency" value="2.0" /
>

5 <param name="clearing_rotation_allowed" value
="false" />

6 <rosparam file="$(find course_p3at_navigation
)/sg_costmap_common_params_p3at.yaml"
command="load" ns="global_costmap" />

7 <rosparam file="$(find course_p3at_navigation)/
sg_costmap_common_params_p3at.yaml" command="
load" ns="local_costmap" />

8 <rosparam file="$(find course_p3at_navigation)/
sg_local_costmap_params.yaml" command="load"
/>

9 <rosparam file="$(find course_p3at_navigation)/
sg_global_costmap_params.yaml" command="load"
/>

10 <param name="base_local_planner" value="
dwa_local_planner/DWAPlannerROS" />

11 <rosparam file="$(find course_p3at_navigation
)/dwa_planner_ros.yaml" command="load" />

12 </node>

As you can see, a new param file is added, and this file is very similar to the
base_local_planner parameters. You can find the original version of the file, taken
from the scitos_2d_navigation github [30] on their URL or you can see our modified
version here:

1 DWAPlannerROS:
2 acc_lim_x: 1.0
3 acc_lim_y: 0.0
4

5 acc_lim_th: 2.0
6

7 min_vel_x: -0.55
8 min_vel_y: 0.0
9 max_vel_y: 0.0

10 max_rot_vel: 1.0
11 min_rot_vel: 0.4

156 R.L. Guimarães et al.

12

13 yaw_goal_tolerance: 0.1
14

15 xy_goal_tolerance: 0.3
16

17 latch_xy_goal_tolerance: true
18

19 sim_time: 1.7
20

21 path_distance_bias: 5.0
22 goal_distance_bias: 9.0
23 occdist_scale: 0.01
24

25 oscillation_reset_dist: 0.05
26

27 prune_plan: true
28

29 holonomic_robot: false

If you are having some troubles, you may verify the view_frames functionality of
the tf ROS package. It is very useful for spotting problems on your transformation
tree and it also helps to learn better some of the concepts about transformations that
we have presented. To generate a “frames.pdf” file containing the current tf tree,
insert the following lines on the shell:

$ rosrun tf view_frames1

As a result, we got the tf tree seen on Fig. 7, where you can clearly see the hierarchy
between the frames and understand a little better the relation between them. Each
transform on the tf tree (represented by the arrows) has some related data, such as the
average rate and the node that is broadcasting the transform. If you don’t have a tree
structure like that, where some frame is not linked to the tree or the map, odom and
base_link are not presented on this order, please check your tf configuration. Please
note that this is not the only possible configuration, as you can have base_footprint
when you are using hector_mapping, for example. Another thing that you may have
noticed is thatwedonot have only one frame for theKinect: the openni_launcher node
publishes 4 transformations between 5 distinct frames, and the only transformation
that we have manually launched, in this case, is the transformation between the
base_link and the camera_link.

After seeing the system was working as expected, we tried to do some more
significant tests. First we arranged our test room in two ways: a single wood object
on the middle of the room and the robot at one side; a corridor formed by some
objects. You can see the two scenarios and the results of the navigation in rviz in
Figs. 8 and 9.

ROS Navigation: Concepts and Tutorial 157

Fig. 7 tf Tree generated by the view_frames command

To do these experiments, a initial and final position on the room were chosen for
each one. After that the distance and the difference in angle were measured, and then
we published the goal with these values. We have done that with a simple node, very
similar to the node you can find here [31]. You can also publish a goal by issuing the
following command (CHANGE THE VALUES TO SUIT YOUR NEEDS):

rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped ’ header: frame_id:1
”/base_link”, pose: position: x: 0.2, y: 0 , orientation: x: 0, y: 0, z: 0, w: 1 ’

It is possible to see on Fig. 8 that the robot would get to the goal by following a
straight line if no object was present, but it successfully avoids the obstacle and gets
to the exact point it intended to. It is also possible to see on the images that it doesn’t
just avoid the obstacle, but a region around it, the inflation radius, since there is a low

158 R.L. Guimarães et al.

Fig. 8 a Robot moving right after it receives a goal. b Robot avoiding the obstacle. c Robot getting
to the goal

Fig. 9 a Robot moving right after it receives a goal. b Robot entering the corridor. c Robot getting
to the goal

cost area right around of it. When it gets to the goal, it rotates until it gets the right
angle. In the way, you can see that the local and global CostMaps do not perfectly
match and start to drift, but the gmapping transformation is able to adjust that with
very little errors.

On Fig. 9 the task of the robot is harder: it has to avoid some obstacles and get to
a point that is after a corridor. At first, it tries to avoid the obstacles by going around
them, but it sees the wall. After that, it decides to enter the inflation radius, a high cost
area, but trying to stay as close to the border as possible. At the end, it successfully
gets to the goal and adjusts itself to the right direction.

In rviz it is possible to see some details about the navigation:

• Obstacles on the gmapping map and on the CostMaps should overlap each other
perfectly, and that is almost the case in most of the situations;

• Obstacles on local and global CostMap should also overlap each other, and gmap-
ping does a good job in correcting the odometry errors to get that;

ROS Navigation: Concepts and Tutorial 159

• The inflation radius is avoided by the robot, that usually translates right at its border
to get to the goal. This behavior can be different depending on the cost factors you
chose at the planner parameters;

• The global path is not perfectly followed by the local path in almost every situation,
because the parameters to calculate the smallest cost of them are usually different.
The frequency of update and cost parameters should alter this behavior as needed.

4.3.1 Conclusion

Navigating through unknown environments is a very hard task, however we had
great results doing it while using the Navigation Stack. This set of tools helped us to
achieve great results, allowing the robot to create a dynamically generated map and
achieve goals without crashing. We hope that this tutorial chapter, along with some
background reading of the references we have presented, is enough for you to also
get your robot navigating.

References

1. I.R.S.D. Siegwart, Introduction to Autonomous Mobile Robots, Intelligent Robotics and
Autonomous Agent series (The MIT Press, Cambridge, 2011)

2. ROS.org, Ros package geometry_msgs (2015), http://wiki.ros.org/geometry_msgs. Accessed
03 Jan 2015

3. R.P. Goebel, Ros by example, vol. 1 (2014), http://www.lulu.com/shop/r-patrick-goebel/ros-
by-example-hydro-volume-1/ebook/product-21393108.html. Accessed 13 June 2015

4. R.P. Goebel, Ros metapackage rbx1 (2014), https://github.com/pirobot/rbx1/tree/hydro-devel.
Accessed 13 June 2015

5. ROS.org, Ros package openni_camera (2015), http://wiki.ros.org/openni_camera Accessed 03
Jan 2015

6. ROS.org, Ros package openni_launch (2015), http://wiki.ros.org/openni_launch. Accessed 03
Jan 2015

7. AnthonyJ350, How to solder / soldering basics tutorial (2011), https://www.youtube.com/
watch?v=BxASFu19bLU. Accessed 03 Jan 2015

8. mjlorton, Tutorial: How to crimp connectors, strip wire and use heat shrink. (2013), https://
www.youtube.com/watch?v=kjSGCSwNuAg. Accessed 03 Jan 2015

9. E.C. Wireconnector, E-clamp quick wire connector (2013). https://www.youtube.com/watch?
v=GI8lRSQQbJk. Accessed 03 Jan 2015

10. ROS.org, Adding a kinect to an irobot create/roomba (2015), http://wiki.ros.org/kinect/
Tutorials/Adding. Accessed 03 Jan 2015

11. ROS.org, Ros package depthimage_laserscan (2015), http://wiki.ros.org/depthimage_to_
laserscan. Accessed 03 Jan 2015

12. S.F.A.S D.G. Ballardini, A.L. Fontana, ira_tools: a ros laserscan manipulation toolbox (2014),
arXiv:1411.1086. Accessed 12 Jan 2015

13. S.F.A.S.D.G. Ballardini, A.L. Fontana, Ros package ira_tools (2014), https://github.com/
iralabdisco/ira_laser_tools. Accessed 12 Jan 2015

14. ROS.org, Ros package kinect_aux (2015), http://wiki.ros.org/kinect_aux. Accessed 03 Jan
2015

http://wiki.ros.org/geometry_msgs
http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-hydro-volume-1/ebook/product-21393108.html
http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-hydro-volume-1/ebook/product-21393108.html
https://github.com/pirobot/rbx1/tree/hydro-devel
http://wiki.ros.org/openni_camera
http://wiki.ros.org/openni_launch
https://www.youtube.com/watch?v=BxASFu19bLU
https://www.youtube.com/watch?v=BxASFu19bLU
https://www.youtube.com/watch?v=kjSGCSwNuAg
https://www.youtube.com/watch?v=kjSGCSwNuAg
https://www.youtube.com/watch?v=GI8lRSQQbJk
https://www.youtube.com/watch?v=GI8lRSQQbJk
http://wiki.ros.org/kinect/Tutorials/Adding
http://wiki.ros.org/kinect/Tutorials/Adding
http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/depthimage_to_laserscan
http://arxiv.org/abs/1411.1086
https://github.com/iralabdisco/ira_laser_tools
https://github.com/iralabdisco/ira_laser_tools
http://wiki.ros.org/kinect_aux

160 R.L. Guimarães et al.

15. ROS.org, Ros package openni_tracker (2015), http://wiki.ros.org/openni_tracker. Accessed 03
Jan 2015

16. O.T.S. for 3D Sensing, Openni sdk history (2014), http://www.openni.ru/openni-sdk/openni-
sdk-history-2/index.html. Accessed 12 June 2015

17. R.L. Guimaraes, Complementary files for using more kinect functions (2015), https://github.
com/rosnavigation/KINECT_FILES. Accessed 12 June 2015

18. ROS.org, Ros package cyphy_mapping (2015), http://wiki.ros.org/cyphy_people_mapping.
Accessed 03 Jan 2015

19. STRANDS, Ros package sicks300 (2014), https://github.com/strands-project-releases/
sicks300/tree/release/hydro/sicks300. Accessed 03 Jan 2015

20. ROS.org, How to set up hector_slam for your robot (2015), http://wiki.ros.org/hector_slam/
Tutorials/SettingUpForYourRobot. Accessed 03 Jan 2015

21. W. Meeussen, Coordinate frames for mobile platforms (2015), http://www.ros.org/reps/rep-
0105.html. Accessed 03 Jan 2015

22. B. Sciavicco, L. Sicoliano,Modelling and Control of Robot Manipulators, AdvancedTextbooks
in Control and Signal Processing (CreateSpace Independent Publishing Platform, Charleston,
2000)

23. ROS.org, Navigation tutorials: Robotsetup (2015), http://wiki.ros.org/navigation/Tutorials/
RobotSetup. Accessed 03 Jan 2015

24. W.F.D. Thrun, S. Buggard,Probabilistic Robotics, Intelligent Robotics andAutonomousAgent
Series (MIT Press, Cambridge, 2005)

25. ROS.org, Ros package p2os_driver (2015), http://wiki.ros.org/p2os_driver. Accessed 03 Jan
2015

26. ROS.org, Ros package rostopic (2015), http://wiki.ros.org/rostopic. Accessed 03 Jan 2015
27. ROS.org, Ros package base_planner (2015), http://wiki.ros.org/base_local_planner. Accessed

03 Jan 2015
28. ROS.org, Ros package costmap_2d/layered (2015), http://wiki.ros.org/costmap_2d/layered.

Accessed 03 Jan 2015
29. ROS.org, Running ros across multiple machines (2015), http://wiki.ros.org/ROS/Tutorials/

MultipleMachines. Accessed 19 June 2015
30. N. Bore, Ros scitos_navigation package github (2013), https://github.com/nilsbore/scitos_2d_

navigation. Accessed 20 June 2015
31. R. Yehoshua, Sendgoals.cpp (2013), http://u.cs.biu.ac.il/~yehoshr1/89-685/Fall2013/demos/

lesson7/SendGoals.cpp. Accessed 20 June 2015

http://wiki.ros.org/openni_tracker
http://www.openni.ru/openni-sdk/openni-sdk-history-2/index.html
http://www.openni.ru/openni-sdk/openni-sdk-history-2/index.html
https://github.com/rosnavigation/KINECT_FILES
https://github.com/rosnavigation/KINECT_FILES
http://wiki.ros.org/cyphy_people_mapping
https://github.com/strands-project-releases/sicks300/tree/release/hydro/sicks300
https://github.com/strands-project-releases/sicks300/tree/release/hydro/sicks300
http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot
http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot
http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/p2os_driver
http://wiki.ros.org/rostopic
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/costmap_2d/layered
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
http://wiki.ros.org/ROS/Tutorials/MultipleMachines
https://github.com/nilsbore/scitos_2d_navigation
https://github.com/nilsbore/scitos_2d_navigation
http://u.cs.biu.ac.il/~yehoshr1/89-685/Fall2013/demos/lesson7/SendGoals.cpp
http://u.cs.biu.ac.il/~yehoshr1/89-685/Fall2013/demos/lesson7/SendGoals.cpp

Localization and Navigation of a Climbing
Robot Inside a LPG Spherical Tank Based
on Dual-LIDAR Scanning of Weld Beads

Ricardo S. da Veiga, Andre Schneider de Oliveira,
Lucia Valeria Ramos de Arruda and Flavio Neves Junior

Abstract Mobile robot localization is a classical problem in robotics andmany solu-
tions are discussed. This problem becomes more challenging in environments with
few and/or none landmarks and poor illumination conditions. This article presents
a novel solution to improve robot localization inside a LPG spherical tank by robot
motion of detected weld beads. No external light source and no easily detectable
landmarks are required. The weld beads are detected by filtering and processing
techniques applied to raw signals from the LIDAR (Light Detection And Ranging)
sensors. A specific classification technique—-SVM (Support Vector Machine)—is
used to sort data between noises and weld beads. Odometry is determined according
to robot motion in relation with the weld beads. The data fusion of this odometry
with another measurements is performed through Extended Kalman Filter (EKF)
to improve the robot localization. Lastly, this improved position is used as input to
the autonomous navigation system, allowing the robot to travel through the entire
surface to be inspected.

Keywords Mobile robots · Localization · LIDAR · No landmarks · Weld beads ·
Data fusion · Autonomous navigation

R.S. da Veiga (B) · A.S. de Oliveira · L.V.R. de Arruda · F. Neves Junior
Automation and Advanced Control System Laboratory (LASCA), Federal University
of Technology - Parana (UTFPR), Av. Sete de Setembro, 3165 - Reboucas CEP,
Curitiba, Parana 80230-901, Brazil
e-mail: ricardo_veiga@mail.com

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

L.V.R. de Arruda
e-mail: lvrarruda@utfpr.edu.br

F. Neves Junior
e-mail: neves@utfpr.edu.br

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_7

161

162 R.S. da Veiga et al.

1 Introduction

This work presents a ROS-based robot designed to inspect metallic spherical tanks.
Spherical tanks are used to store Liquefied Petroleum Gas (LPG) and they are also
known as Horton Spheres in honor of Horace Ebenezer Horton, founder of CB&I—
Chicago Bridge and Iron Company, which built the very first spherical tank in 1923
in Port Arthur, Texas. Often inspections and verifications of weld beads are necessary
during the sphere life cycle to prevent failures and leaks, as shown on Fig. 1—this
was a spherical tank explosion after an earthquake in Chiba city, Japan, march 11,
2011, which can give an idea of how tragic one explosion in this equipments can be.

Inspection usually applies long and expensive techniques, as seen in [1], many
times exposing the technicians to unhealthy and often hazardous environments.
Mobile robots can be used to reduce or avoid these risks. Inspection robots have
the task of navigating through the entire inner and outer surfaces of the storage tank,
searching for structural failures in the steel plates or in the weld beads.

Finding the inspection robot accurate location inside the sphere might be a harsh
task, but it is essential to a successful inspection job. When the inspection system
detects any surface problem or disturbance, its exact position must be stored to a
later deeper and more detailed inspection. The navigation module of an inspection
robot must perform several turns around the sphere’s inner surface to cover the entire
tank and the full path must extend for many meters. A small localization error can
deviate the robot a lot from its original path, introducing a large error in inspection
fault mapping. Several localization techniques may be merged to increase robot
localization precision, e.g. [2–4].

Fig. 1 Major failure and explosion of a LPG tank

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 163

A simple solution to localize the robot could be visual feedback from cameras.
Some papers suggest this approach, e.g., [5–7]. However, the LPG internal environ-
ment is almost totally dark and powerful lights must be avoided due to the possi-
bility that heat generated by the lamps may create sparks inside a highly explosive
atmosphere, therefore this technique should be discarded.

However, robot navigation inside LPG spherical tanks are also not achievable only
via wheel odometry becausemany uncertainties are introduced in trajectory tracking,
making the inspection job to fail. Other sources of odometry should be considered
to improve localization. The Inertial Measurement Unit (IMU) is an important tool
to increase the accuracy of robot localization, as reported on some works e.g. [8, 9].
This unit is essential to climbing robots because the gravitational force may act as
a disturbance and it cannot be neglected as discussed in [10], especially when the
robot is traveling at the equatorial zones of the spheres. Aiming a better precision,
the fusion of different odometry sources is typically performed often with the widely
known Extended Kalman Filter (EKF) like in [11].

Data fusion between the wheel odometry and IMU improves meaningfully the
robot localization. However, these are ‘blind’ sources related only with robot’s para-
meters and without environment data (proprioceptive sensors). Both methods com-
pute odometry based on current sensor readings and previous robot pose. This is also
know as dead-reckoning, where the errors are accumulative [12].

LIDAR (Light Detection And Ranging) sensors are also commonly used to envi-
ronmentmapping, but they can be used like an odometry source aswell.Many articles
discuss this approach, e.g. [13–15]. This type of sensor does a pseudo-visual map-
ping due its output data that is a one-dimensional array of distances with n-points.
LIDAR odometry is related to distance between the robot and its environment’s land-
marks, like walls, obstacles, etc. [16–18]. However, this approach cannot be used in
spherical tanks because the distance (over inside and outside surfaces) are invariable
and there are no other easily detectable landmarks.

This work presents a novel approach to localize a climbing robot, especially inside
LPG spherical tanks, based on LIDAR sensors. Signals from two LIDAR sensors
placed horizontally facing downwards are processed by several techniques. The goal
is to make possible the detection of small structures like weld beads, thus increasing
the accuracy in determining the inspection robot pose. ROS modules are used to
allow easy navigation in this environment and all source code is available at https://
github.com/AIR-LASCA/air1.git.

2 AIR—Autonomous Inspection Robot

The robot presented in this work is more detailed in [10]. The same base was used
with more sensors allowing its localization and autonomous navigation. The robot’s
basic concept is shown on Fig. 2.

https://github.com/AIR-LASCA/air1.git
https://github.com/AIR-LASCA/air1.git

164 R.S. da Veiga et al.

Fig. 2 Robot parameters and footprint

Fig. 3 Robot on a real tank

This robot have four unaligned wheels to overpass obstacles in tank surface, like
weld beads and possible structural failures without adherence losses. It was tested
outside on a real tank, as shows Fig. 3.

Adherence to the tank walls are performed bymagnetic wheels specially designed
to LPG tank surface, ensuring that all magnetic force is applied towards the tank
surface, even when these wheels are over some obstacle. One experiment with this
kind of wheel is shown on Fig. 4.

More informations about this project, as the mechanical parameters and specifi-
cations can be found at [10, 19].

The robot uses an active adhesion control system that can estimate how much
each wheel is loosing its adhesion power, using a Artificial Neural Network (ANN).
This controller workflow is shown on Fig. 5. Based on the IMU, using the magnetic

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 165

Fig. 4 Magnetic Wheels experiments and testing [10]

Fig. 5 Navigation Stabilization System

166 R.S. da Veiga et al.

field measurements, this system can detect and accurately determine if there is any
adhesion loss. Furthermore, it also controls a security electromagnet to prevent the
robot from falling when it detects an adhesion loss.

3 Localization Problems in Spherical Tanks

Storage tanks, like the one presented in Fig. 6, are metal structures used in industries
to store liquids and gases under high pressures. Since they are spherical and therefore
have no corners that would be the weakest region of the structure, they are one good
solution to this storage problem.

During autonomous navigation, the robot must cover the entire surface of the
tank so the inspection module can detect problems and inconsistencies properly,
both in the weld beads and in the whole metallic surface of the plates. Accurate robot
localization in this environment is crucial to a good inspection job because when a
surface fault is detected, its exact position must be stored to further inspection and
maintenance.

The interior of a LPG sphere is fully dark, with no easily detectable landmarks and
no different faces—from every viewpoint on the inner side of the sphere structure,
the robot will always see the same semi-sphere. The only possible reference inside
the sphere are the weld beads that connect the sphere plates, and these are hard to
detect because they are just a couple millimeters high. Figure6 shows a sphere being
assembled, and the weld beads are digitally highlighted.

Fig. 6 Assembly of a LPG Sphere tank with digitally highlighted weld beads

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 167

4 Weld Beads Scanning with LIDAR Sensors

In this paper, the weld bead scanning through LIDAR sensor is evaluated in a part
of a real LPG tank plate. This plate is made with two sphere assembly pieces linked
by a weld bead, as seen in Fig. 7.

The LIDAR sensor fires a 2D laser beam around itself with 240◦ of scan area
and 0.36◦ of angular resolution. It detects objects within a semicircle with 4000mm
radius and it returns a one-dimensional matrix containing approximately 683 scan
points, called laser beam. The LIDAR sensor measurements are the distances around
itself and now it is necessary to linearize distances without angular displacement as
shown in Fig. 8.

Fig. 7 Robot sitting on a real section plate of a LPG sphere tank with weld bead

(a)

(b)

(c)

Fig. 8 Entire linearization process. a LIDAR sensor detecting a at surface, gray dots are the points
where the laser beam contacts the surface. Each slice represents a (1/p) of the total reading data.
bData packets transcribed to linear scale, still having linearization errors. c Data packets transcribed
to linear scale without linearization errors

168 R.S. da Veiga et al.

This linearization is performed with raw data through simple trigonometry rules,
based on laser height from the ground (17.1334 cm), as

x ′ = tan

(
(sa

p

)

∗
(

x − sa

2

)
)

∗ h, (1)

where, x is the measured point, x ′ is the processed point, sa is the scan area angle, p
is the number of scan points and h represents the height of laser with respect to the
robot’s base.

The entire linearization process to the 240◦ spectrum is illustrated in Fig. 8.
This linearized signal resulting from the LIDAR spread beam is the core element

to detect the weld beads.

5 Localization Inside LPG Spheres

As discussed above, the main goal of this work is improve robot localization inside a
pitch-black spherical tank. In the previous sections, it was proved that LIDAR sensor
accurately detects weld beads. Now, this sensor will be applied to improve robot’s
odometry. From now on, the experiments are performed in a virtual spherical tank,
which is designed with same physical characteristics of a real one. Dynamic effects
like gravity, magnetic adhesion, friction and others are also considered in the virtual
environment. The interaction between tank and robot aims to mimic the real world
as closely as possible.

5.1 LIDAR Based Odometry

Localization inside spherical tanks is made based on motion of weld beads. A dual-
LIDAR approach is used to odometry where two LIDAR sensors are used, each of
one robot’s side and both parallel to robot, as shown previously on Fig. 7, on page
xxx.

LIDAR odometry comprises various steps. The first is the detection of any motion
on dual-LIDAR signals. The idea is simple: Since the sensor can detect a weld
bead then this weld bead can be tracked. If the bead moves 10cm in one direction,
this means that the robot has moved 10cm in the opposite direction. Notice that
this technique does not need any knowledge a priori about the position neither the
displacement of theweld beads on the sphere or its diameter. In the casewhen no bead
is detected, that is, when the trajectory is collinear with the beads, no calculations
are made and the output of the whole system is cloned from the Wheel Odometry.

Figure9 shows a schematic drawing of the robot while scanning a given section
of a planar structure. Two small arrows point the weld beads detected by the LIDAR
sensor.

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 169

Fig. 9 Schematic of the weld beads being detected by the LIDAR sensor. Small arrows point the
beads

(a)

(b)

(c)

Fig. 10 Example of LIDAR odometry computation. a Processed signal coming from the LIDAR
sensors. b Computation of interest areas by lower and upper limits. c Motion estimation

The scanned surface signal, after the processing described in Sect. 4, looks like
Fig. 10a. Peak regions, represented by point-down triangles, are the weld bead detec-
tions, called as interest points. The motion of interest points represents the motion
of weld beads related to the robot reference and consequently robot motion related
to the odometry frame.

When any interest point motion occurs, the calculation of lower and upper limits
is made to cut nonessential signal parts through a band-pass filter, as illustrated in
Fig. 10b. Areas around the interest points are called as interest areas, these represents
the LIDAR detection of the weld beads in its whole range. The edge points of the
interest areas are used to synchronize between dual-LIDAR signals.

The difference between current data and previous data are made with delta com-
putation and it represents the robot’s motion in two LIDAR reading steps, as shown
in Fig. 10c. The last step is the delta signal filtering to avoid any noises. Mean filters
and low-pass filters are applied and results are integrated to obtain the position value.

Global motion estimation is performed by data fusion of these processed LIDAR
data with the other odometry sources through ExtendedKalman Filter (EKF), as seen
in Fig. 11. Since the working procedure of the EKF filter is widely known, it won’t

170 R.S. da Veiga et al.

Fig. 11 Fusion of different odometry sources

be discussed here. One source is wheel odometry, that contributes mainly in linear
displacement but at long distances it presents serious disturbances, especially in cases
when the robot is located sideways, traveling near the equatorial zones of the sphere,
where Gravity force acts as a massive disturbance. Other source is the 3DOF IMU
that ensures a correction on linear displacement and angular displacement estimation.
However, both methods are strongly disturbed by dynamic influences, like gravity
and friction. The dual-LIDAR odometry corrects these disturbances and improves
the robot’s localization.

6 Experimental Results

Experimental tests are subdivided in two environments, each one with many runs.
In the first test, it is applied a linear trajectory on planar environment to evaluate
the proposed odometry with classical approaches. Second test is inside the virtual
spherical tank aiming to evaluate the dynamic influences of gravity. Table1 identify
the used methods.

Table 1 Used odometry methods

Abbreviation Meaning

Des Desired pose

Sim Virtual odometry calculated by virtual environment without errors

W Wheels odometry based only in wheels encoders

W+I EKF fusion of Inertial Measurement Unit (IMU) odometry and wheels
odometry

W+I+L EKF fusion of IMU odometry, wheels odometry and LIDAR odometry

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 171

(a)

(b)

Fig. 12 Comparison between odometry methods in planar environment. a Planar environment.
b Final pose of trajectory in planar environment

6.1 Experiments on Planar Environment

The initial experiment is performed on planar environment and the robot must track a
linear path without any degree of angular motion (Fig. 12a). The trajectory tracking
is run four times, each one with a different method of pose feedback. The first
approachuses odometry directly from the virtual environment,without errors, labeled
Simulated—no calculations, errors or estimations employed. The deviance from the
original desired track that can be noticed on Fig. 12b comes from the robot’s dynamic
model, and it is considered normal. The second method performs the odometry
using only wheel encoders. The fusion between wheel odometry and IMU is the
third experiment. Finally, the trajectory tracking is performed via fusion of wheel
odometry, IMU odometry and LIDAR odometry. Figure12b shows a more detailed
picture of the day point, as Fig. 12a brings the entire scenery of the first experiment.

The distance covered by four methods is presented in Fig. 13. Numerically, the
fusion between IMU and wheel odometry has 1.75m of error. However, the addition
of the LIDAR odometry in EKF fusion reduces this error in 46% (0.8m of error).
Figure14 shows the normalized error of these methods.

172 R.S. da Veiga et al.

Fig. 13 Trajectory tracking
in planar environment.
Follow Table1 information
about the abbreviations on
the graph legends

Fig. 14 Normalized errors
in planar environment

6.2 Experiments in LPG Spherical Tank

This experiment evaluates trajectory tracking inside spherical tanks. It is desired that
the robot perform two turns around the tank with gravity acting sideways (Fig. 15).
The same four feedback methods are tested.

The distance covered by four methods inside LPG tank is presented in Fig. 16,
while Fig. 17 shows that the best performance is with the use of the LIDAR based
odometry. To a path with two turns and 88 meters of distance, this method reduces
normalized error of 24 meters (wheels + IMU) to 7.5 meters, meaning a reduction
of about 68%.

Fig. 15 Comparison between odometry methods in LPG spherical tank

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 173

Fig. 16 Trajectory tracking
in spherical tank

0 50 100 150 200 250
0

20

40

60

80

100

120

Time (sec)
D

is
ta

nc
e

(m
)

Des
Sim
W
W+I
W+I+L

Fig. 17 Normalized errors
in spherical tank

0 50 100 150 200 250
0

5

10

15

20

25

30

35

Time (s)

N
or

m
. E

rr
or

 (
m

)

W
W+I
W+I+L

7 Navigation

In order to the robot accomplish its main navigating goal through a certain area on
the tank surface, a navigation system is necessary, so it can avoid obstacles while
traveling to its goals. The ROS navigation stack fits this needs perfectly, with some
hardware requirements, such as a 2-D laser sensor, a moving base and a few data
about the robot’s geometry and dynamic behavior—like acceleration and top speed
limits—it is possible to move the robot around without many problems.

To configure the AIR robot to this needs, some minor changes were made to its
initial form. First, another LIDAR sensor was placed on the top-front position. A
3D camera from a Kinect sensor was also embedded on the robot for monitoring
purposes, since it is not necessary to the Navigation Stack. This version of the AIR
robot is shown on Fig. 18. The complete diagram showing the control loop is shown
on Fig. 19. Each of this modules will be detailed on the forthcoming paragraphs.

Analyzing from the top part in Fig. 19, the first module called Switch reads a file
with the goals—points on the trajectory that the robot must follow—and send these
goals to one of two controllers, named Auxiliary and Navigation. This is done to
circumvent the fact that ROS Navigation stack does not handle well a goal where
this robot in particular must make a turn on its own z axis (sometimes called an yaw
axis turn). So, depending on the current goal settings, the Switch module chooses
the appropriate controller and sends it the goal.

174 R.S. da Veiga et al.

Fig. 18 Diagonal view.
LIDAR sensor and 3D
camera are mounted on top
of the robot

The Auxiliary controller will read the current odometry (nav_msgs/Odometry)
and send geometry_msgs/Twist messages to the base controller. If the Navigation
controller is the chosen one, it will also read the map from another block, called
gmapping, and produce messages of the same type as Auxiliary controller to the
base controller. The Navigation uses data from the map and from the 2D laser scan
to assist the routing process by building 2D costmaps that tells the robot where are
the obstacles, and where can it go without harm. Map construction and navigation
at the same time will be explained on the next section.

Two costmaps are built to plan the trajectory, one local and one global. The local
one takes care of the current destination obstacles, and the global costmap builds a
larger route, in a smaller detail. The higher the cost of a given cell in the map, the
harder it is to the robot move across this cell. Obstacles are marked as a impossible-
to-cross cell, with the highest value. Figure20 shows an example of both global and
local costmaps, in gray lines. The pentagonal shape represents the robot.

The next block on the flowchart is the base controller, which works as an inverse
kinematics calculation module, reading the desired speed to the robot as a whole
and calculating each joint speed. This are then inputted on the virtual environment,
where the main parts of the simulation takes place. Figure21 shows a screenshot of
this virtual environment (Fig. 21a) and a real spherical tank—both tanks have the
same physical characteristics.

From the virtual environment, three modules are attached, IMU—that gathers
data from the accelerometer and the gyroscope inside the virtual robot and pub-
lishes this data, the Wheel Odometry, connected to the encoders in each motor,

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 175

Switch

Goals

Navigation gmapping

goals

Auxiliary map

speed
(Twist)

Base_controller

motor
speeds [0..3]

Virtual
Environment encoder

data [0..3]

Accelerometer
+ Gyroscope

Wheel
Odometry

IMU

Laser
Odometry

LIDAR data

controller
selection

EKF

Odometry
Sources

Orientation

Odometry

Fig. 19 Complete schematic of the Navigation Control Loop

Fig. 20 Example map. The
gray borders over the black
lines form the global
costmap. Inside the dotted
square, the local costmap
takes place

176 R.S. da Veiga et al.

Fig. 21 Comparison between the two spherical tanks, virtual and real. a Spherical tank used on
the virtual environment. b A real sphere, with the same dimensions of the virtual one

performing calculations somewhat similar to a forward kinematics, and keeping
track of the robot’s odometry, but it does not count slips on the wheels and this
errors are cumulative—this is known as Dead Reckoning—, and lastly the LIDAR
odometry, that has been covered in detail in the previous section.

7.1 Wheel Odometry

Wheel odometry is calculated based on the wheel’s encoders. A very simple encoder
is shown on Fig. 22. This disc-like structure is attached to the motor and for each full
turn on the motor, the two beams are tampered sixteen times, making the encoder
generate sixteen pulses. The encoder attached to the real motors has a resolution

Fig. 22 Simplified encoder
schematic

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 177

way higher, having 13.500 pulses for each wheel turn, given the gear ratio from the
motor to the wheel itself and publish its informations on topic /to_odom. Given the
diameter of each wheel and the number of pulses per turn, it is possible to calculate
how much the robot have moved in a given time.

This is known as Dead Reckoning because it does not take into account slips and
drifts of the wheel on the environment. If the wheel slips and the robot gets stuck in
a given place, the odometry will still count as if the robot was moving.

Theodometrymain code is the following (basedonUbuntu14.04 andROSIndigo):
#include "ros/ros.h"
#include "nav_msgs/Odometry.h"
#include "geometry_msgs/Twist.h"

nav_msgs::Odometry MyOdom;
ros::Time T;
ros::Publisher pub;

void to_odom_callback(const geometry_msgs::Twist::ConstPtr& msg){
ros::Duration difft = ros::Time::now() - T;
MyOdom.header.stamp = ros::Time::now();
MyOdom.header.frame_id = "/odom";
MyOdom.child_frame_id = "/base_link";

MyOdom.pose.pose.position.x = MyOdom.pose.pose.position.x + msg->linear.x * difft.toSec() / M_PI;
MyOdom.pose.pose.position.y = MyOdom.pose.pose.position.y + msg->linear.y * difft.toSec() / M_PI;
MyOdom.pose.pose.orientation.z = MyOdom.pose.pose.orientation.z + msg->angular.z * difft.toSec() / M_PI;

MyOdom.twist.twist.linear.x = msg->linear.x;
MyOdom.twist.twist.linear.y = msg->linear.y;
MyOdom.twist.twist.angular.z = msg->angular.z;
pub.publish(MyOdom);
T = ros::Time::now();
}

int main (int argc, char** argv) {

ros::init(argc, argv, "Odometry");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/to_odom", 1000, to_odom_callback);
pub = n.advertise<nav_msgs::Odometry>("/odom", 1000);

ros::Rate loop_rate(10);
T = ros::Time::now();

while(ros::ok()) {
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}

7.2 EKF

The Extended Kalman Filter fuses the three sources of information about the robot
movements. Its working principle is simple, conceptually speaking, and can be

178 R.S. da Veiga et al.

Fig. 23 Simple diagram of
EKF working principle

Sensor 1

Sensor 2

Sensor n

EKF
Output

resumed like it is shown on Fig. 23. It operates as a probabilistic filter, and to each
sensor input there is a covariance attached. Based on this covariance, the EKF calcu-
lates how good is a given data source, so it can assign a weight to this source in the
fusion. Then, it fuses together all the data sources, taking into account their weights.
The result, in this case, is a Odometry message with a better estimation of where the
robot actually is. Figure23 shows a simple diagram of a fusion between three data
sources, outputting a result with a better estimation, and a lower covariance attached
to it.

To this specific project, the EKF launch file is listed below.
<launch>

<node pkg="robot_pose_ekf" type="robot_pose_ekf" name="robot_pose_ekf">
<param name="output_frame" value="odom_combined"/>
<param name="freq" value="10.0"/>
<param name="sensor_timeout" value="1.0"/>
<param name="odom_used" value="true"/>
<param name="imu_used" value="true"/>
<param name="vo_used" value="true"/>
<param name="debug" value="true"/>
<param name="self_diagnose" value="true"/>

</node>
</launch>

7.3 Simultaneous Localization and Mapping—SLAM

Maps are valuable items when exploring new areas. The same concept of a human
map is applied here to the robot mapping system.When the robot is exploring a brand
new area and if the map is not available, one must be built on-the-fly, at the same time
when the navigation is running. This is done by the Gmapping block and it is called
Simultaneous Localization andMapping—SLAM. The idea is, then again, simple in
concept. An empty-cell grid is populated by data coming from a 2D LIDAR sensor,
as shown on Fig. 24.

When the sensor detects an obstacle, the module traces where that obstacle is,
given the localization of the sensor itself and the distance and position of the detected
obstacle, and marks the obstacle in the map. In some cases, the empty space between
the robot and the obstacle is also marked on the map as free space, so it differs from

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 179

L

Fig. 24 Slam map building, based on the localization and obstacle detection by the LIDAR sensor,
marked as “L”. Light-gray areas are marked as free space, white areas are unknown space, dark-gray
spots are obstacles

Fig. 25 SLAM example, built by the AIR robot

the unknown space (empty cells). A more realistic example of a SLAM built map is
shown on Fig. 25, that represents the floor plan of the room where the AIR robot is
being built and tested.

180 R.S. da Veiga et al.

Fig. 26 Navigation
example, in a simplified
environment. As it is
possible to see, the robot
succeeded to arrive at it’s
destination, avoiding
obstacles

Goal

Fig. 27 2D path and
environment visualization,
using RVIZ software

Robot Path

Using the SLAM package along with the Navigation one, it is possible to send
a specific goal to the robot and it will fetch this goal avoiding obstacles on its path.
This can be seen on a simplistic example, on Fig. 26 and on the virtual environment,
on Figs. 27 and 28.

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 181

Fig. 28 3D view of the
same path, using VREP
simulation software

The launch file and configuration files for this mapping system are listed as
follows.

• main launch file.

<launch>

<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">

<rosparam file="costmap_common_params.yaml" command="load" ns="global_costmap" />

<rosparam file="costmap_common_params.yaml" command="load" ns="local_costmap" />

<rosparam file="local_costmap_params.yaml" command="load" />

<rosparam file="global_costmap_params.yaml" command="load" />

<rosparam file="base_local_planner_params.yaml" command="load" />

</node>

</launch>

– base_local_planner_params.yaml.

TrajectoryPlannerROS:

acc_lim_x: 0.025

acc_lim_theta: 0.01

max_vel_x: 0.20

min_vel_x: 0.01

max_rotational_vel: 0.2

min_in_place_rotational_vel: 0.18

182 R.S. da Veiga et al.

holonomic_robot: false

xy_goal_tolerance: 0.250

yaw_goal_tolerance: 0.20

sim_granularity: 0.025

vx_samples: 10

vtheta_samples: 20

goal_distance_bias: 10

path_distance_bias: 22

occdist_scale: 0.01

heading_lookahead: 0.325

oscillation_reset_dist: 0.08

– costmap_common_params.yaml

obstacle_range: 3.0

raytrace_range: 4.0

inflation_radius: 0.3

transform_tolerance: 1

footprint: footprint_padding: 0.03

controller_patience: 2.0

observation_sources: laser_scan_sensor

laser_scan_sensor: {

sensor_frame: /Hokuyo_ROS,

data_type: LaserScan,

topic: /vrep/front_scan,

marking: true,

clearing: true}

– global_costmap_params.yaml

global_costmap:

global_frame: /map

robot_base_frame: base_footprint

update_frequency: 5

publish_frequency: 1

static_map: false

origin_x: -10

origin_y: -10

width: 20.0

height: 20.0

resolution: 0.1

– local_costmap_params.yaml

local_costmap:

global_frame: odom

Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank … 183

robot_base_frame: base_footprint

update_frequency: 10.0

publish_frequency: 2.0

static_map: false

rolling_window: true

width: 3.0

height: 3.0

resolution: 0.05

origin_x: -1.50

origin_y: -1.50

8 Conclusions

This paper presented a localizationmethod to a climbing robot to be used in inspection
of liquefied petroleum gas storage tanks. LPG spheres are fully dark, with no easily
detectable landmarks and no different faces. The unique reference inside sphere are
weld beads and these are hard to detect because they are only a few millimeters high.

An odometry based on dual-LIDAR sensor is proposed in order to improve
the classical odometry calculation through inertial measurement unit and wheel
encoders. The proposed localization estimation used two LIDAR sensors placed
each robot side to identify the weld beads. Sensor accuracy is expanded with appli-
cation of some filters and a Support VectorMachine which classify data coming from
the LIDAR signals as weld beads and noises. Odometry is determined according to
motion of weld beads in relation of robot.

Data fusion between wheels odometry, IMU and LIDAR odometry is made
through extended Kalman filter to improve localization estimation. The result is
a better accuracy of robot localization through minimal landmarks and without light
influence.

9 Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Acknowledgments This project was partially funded by Brazil’s National Counsel of Technologi-
cal and Scientific Development (CNPq), Coordination for the Improvement of Higher Level People
(CAPES) and the National Agency of Petroleum, Natural Gas and Biofuels (ANP) together with the
Financier of Studies and Projects (FINEP) and Brazil’s Ministry of Science and Technology (MCT)
through the ANPs Human Resources Program for the Petroleum and Gas Sector - PRH-ANP/MCT
PRH10-UTFPR.

184 R.S. da Veiga et al.

References

1. W. Guan, Y. Tao, H. Cheng, C. Ma, and P. Guo, Present status of inspection technology and
standards for large-sized in-service vertical storage tanks, in ASME 2011 Pressure Vessels and
Piping Conference (American Society of Mechanical Engineers, 2011), pp. 749–754

2. C. Pfitzner, W. Antal, P. Hess, S. May, C. Merkl, P. Koch, R. Koch, M.Wagner, 3d multi-sensor
data fusion for object localization in industrial applications, in ISR/Robotik 2014; Proceedings
of 41st International Symposium on Robotics, (June 2014), pp. 1–6

3. A. Corominas Murtra, J. Tur, Imu and cable encoder data fusion for in-pipe mobile robot local-
ization, in Technologies for Practical Robot Applications (TePRA), 2013 IEEE International
Conference on (April 2013), pp. 1–6

4. N. Ganganath, H. Leung, Mobile robot localization using odometry and kinect sensor, in
Emerging Signal Processing Applications (ESPA), 2012 IEEE International Conference on,
(Jan 2012), pp. 91–94

5. T. Whelan, H. Johannsson, M. Kaess, J. Leonard, J. McDonald, Robust real-time visual odom-
etry for dense rgb-d mapping, in Robotics and Automation (ICRA), 2013 IEEE International
Conference on (May 2013), pp. 5724–5731

6. C. Siagian, C.-K. Chang, and L. Itti, Mobile robot navigation system in outdoor pedestrian
environment using vision-based road recognition, in 2013 IEEE International Conference on
Robotics and Automation (ICRA) (May 2013), pp. 564–571

7. H. Azartash, N. Banai, T.Q. Nguyen, An integrated stereo visual odometry for robotic naviga-
tion. Robot. Auton. Syst. 62(4), 414–421 (2014)

8. V. Malyavej, W. Kumkeaw, M. Aorpimai, Indoor robot localization by rssi/imu sensor fusion,
in Electrical Engineering/Electronics, Computer, Telecommunications and Information Tech-
nology (ECTI-CON), 2013 10th International Conference on (May 2013), pp. 1–6

9. K. Saadeddin, M. Abdel-Hafez, M. Jarrah, Estimating vehicle state by gps/imu fusion with
vehicle dynamics. J. Intell. Robot. Syst. 74(1–2), 147–172 (2014)

10. R.V. Espinoza,A.S. deOliveira, L.V.R. deArruda, F.N. Junior, Navigations stabilization system
of a magnetic adherence-based climbing robot. J. Intell. Robot. Syst. 78, 65–81 (2015)

11. J. Simanek, M. Reinstein, V. Kubelka, "Evaluation of the ekf-based estimation architectures
for data fusion in mobile robots. IEEE/ASME Trans. Mechatron. 99, 1–6 (2014)

12. J. Knuth, P. Barooah, Error growth in position estimation from noisy relative pose measure-
ments. Robot. Auton. Syst. 61(3), 229–244 (2013)

13. S. Hu, C. Chen, A. Zhang, W. Sun, L. Zhu, A small and lightweight autonomous laser mapping
system without gps. J. Field Robot. 30(5), 784–802 (2013)

14. S.A.Hiremath,G.W. van derHeijden, F.K. vanEvert, A. Stein, C.J. ter Braak, Laser range finder
model for autonomous navigation of a robot in a maize field using a particle filter. Comput.
Electron. Agric. 100, 41–50 (2014)

15. H. Surmann, A. Nuchter, J. Hertzberg, An autonomous mobile robot with a 3d laser range
finder for 3d exploration and digitalization of indoor environments. Robot. Auton. Syst. 45(3–
4), 181–198 (2003)

16. H. Dong, T. Barfoot, Lighting-invariant visual odometry using lidar intensity imagery and
pose interpolation, in Field and Service Robotics eds. by K. Yoshida and S. Tadokoro, Springer
Tracts in Advanced Robotics, vol. 92 (Springer, Berlin, 2014), pp. 327–342

17. G. Fu, P. Corradi, A. Menciassi, P. Dario, An integrated triangulation laser scanner for obstacle
detection of miniature mobile robots in indoor environment. IEEE/ASME Trans. Mechatron.
16, 778–783 (2011)

18. H. Kloeden, D. Schwarz, E.M. Biebl, R.H. Rasshofer, Vehicle localization using cooperative
rf-based landmarks, in Intelligent Vehicles Symposium (IV), 2011 IEEE (IEEE, 2011), pp.
387–392

19. R.V. Espinoza, J.P.B. Nadas, A.S. de Oliveira, L.V.R. de Arruda, N.F, Adhesion force control
and active gravitational compensation for autonomous inspection in lpg storage spheres, in
Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian
(IEEE, 2012), pp. 232–238

Part III
Service and Experimental Robots

People Detection, Tracking and Visualization
Using ROS on a Mobile Service Robot

Timm Linder and Kai O. Arras

Abstract In this case study chapter, we discuss the implementation and deployment
of a ROS-based, multi-modal people detection and tracking framework on a custom-
built mobile service robot during the EU FP7 project SPENCER. The mildly human-
ized robot platform is equipped with five computers and an array of RGB-D, stereo
and 2D laser range sensors. After describing the robot platform, we illustrate our
real-time perception pipeline starting from ROS-based people detection modules for
RGB-D and 2D laser data, via nodes for aggregating detections from multiple sen-
sors, up to person and group tracking. For each stage of the pipeline, we provide
sample code online. We also present a set of highly configurable, custom RViz plug-
ins for visualizing detected and tracked persons and groups. Due to the flexible and
modular structure of our pipeline, all of our components can easily be reused in cus-
tom setups. Finally, we outline how to generate test data using a pedestrian simulator
and Gazebo.We conclude with quantitative results from our experiments and lessons
that we learned during the project. To our knowledge, the presented framework is the
functionally most complete one that is currently available for ROS as open-source
software.

Keywords People detection · People tracking · Group tracking · Perception ·
Service robot · Mobile robot · Sensors · Visualization

T. Linder (B) · K.O. Arras
Social Robotics Laboratory, University of Freiburg,
Georges-Köhler-Allee 074, 79110 Freiburg im Breisgau, Germany
e-mail: linder@cs.uni-freiburg.de
URL: http://github.com/spencer-project

K.O. Arras
e-mail: arras@cs.uni-freiburg.de

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_8

187

188 T. Linder and K.O. Arras

1 Introduction

In this chapter, we discuss our experiences with the implementation and deployment
of a ROS-based people detection and tracking framework on a complex, custom
mobile service robot platform equipped with a large array of sensors.

Contributions of the Book Chapter

One key contribution of this chapter is a set of reusable message definitions for a
people and group detection and tracking pipeline. In our research, we demonstrated
that these definitions can successfully be applied across different sensor modalities
and real-time detection and tracking algorithms, for which we provide exemplary
implementations. Based upon these message definitions, we also provide a reusable
and highly configurable set of visualization plugins for the standard ROS visual-
ization tool, RViz. To our knowledge, the resulting people detection and tracking
framework is the functionally most complete one that is publicly available for ROS
at present.

The code for the detection and trackingmodules, aswell as ourmessage definitions
and visualization plugins, can be found online1 in a Git repository, mostly under a
BSD license. The content of this repository needs to be cloned into a ROSworkspace
and built using catkin_make. An up-to-date list of dependencies can be found in
the accompanying Readme file. Our components have been tested on ROS Hydro
and Indigo on 64-bit Ubuntu systems.

2 Background of the SPENCER Project

The aim of the EU FP7 research project SPENCER is to develop algorithms for
service robots that can guide groups of people through highly dynamic and crowded
pedestrian environments, such as airports or shopping malls, while behaving in a
socially compliant manner by e. g. not crossing in between families or couples. Pos-
sible situations that such a robot could encounter are visualized in Fig. 1. To this end,
robust and computationally efficient components for the perception of humans in the
robot’s surroundings need to be developed.

2.1 Robot Hardware and Sensory Setup

As none of the commercially available robot platforms offered the computational and
sensory capabilities required for the research in SPENCER, a custom mobile robot
was developed by an industrial partner within the project. The differential-drive robot

1https://github.com/spencer-project/spencer_people_tracking.

https://github.com/spencer-project/spencer_people_tracking

People Detection, Tracking and Visualization … 189

Fig. 1 Typical situations encountered by a mobile service robot in crowded pedestrian environ-
ments, such as shopping malls or airports. To be able to behave in a socially compliant way while
driving, by for instance not crossing through a group, the robot needs to gain a precise understanding
of the persons in its environment

Fig. 2 Left Picture and renderings of the SPENCER robot platform. Right The custom-built mobile
data capture platform, including a custom odometry solution using quadrature encoders in dynamo
housings on bothmainwheels, connected to amicrocontroller (bottom right picture). Both platforms
contain numerous ROS-based software components distributed over multiple computers

platform built for SPENCER, shown in Fig. 2 (left), is around 2m tall and equipped
with two onboard Intel Core i7-3520M machines for planning and navigation, an
i3-2120 machine for interaction, two i7-4700MQ gaming laptops with nVidia
GeForce GTX 765M for perception and one embedded PowerPC system for low-
level motion control. All systems communicate over a gigabit ethernet connection
and, except for the embedded system, run ROS Indigo on Ubuntu 14.04.

The robot is equipped with two front- and two rear-looking RGB-D sensors, a
front-facing stereo camera systemand a pair of 2D laser scanners offering,when com-
bined, a 360◦ coverage. For human-robot interaction, a touchscreen and a boarding
pass reader have been integrated. CustomROSwrappers for communication with the
embedded system and the robot’s head joints were developed as part of the project.

Mobile Data Capture Platform To obtain groundtruth data for the design, training
and testing of new algorithms, we also built a mobile data capture platform (Fig. 2,
right) consisting of an off-the-shelf bicycle trailer equipped with sensors in a similar
configuration as on the actual robot. Wheel odometry for localization is obtained
using a custom microcontroller solution that communicates with a ROS node on a
laptop. For data recording using rosbag, we used 3 high-end laptops with fast SSDs.
Overall, using this platform, we captured over 1.4TB of data at a major European
airport to train our perception components.

190 T. Linder and K.O. Arras

Fig. 3 People and group tracking pipeline developed during the SPENCER project

2.2 People Tracking Pipeline

Figure3 shows the real-time people and group detection and tracking pipeline devel-
oped in the context of the SPENCER project.

Startingwith sensory data such as 2D laser scans, RGB-D point clouds or stereo or
monocular camera images, we first detect people using detectors devised specifically
for the particular sensor modality (Sect. 3). The resulting person detections are then
fed into a person tracker (Sect. 4), which integrates the information over time and
attempts to maintain a consistent ID for a given person for as long as possible. A
simple approach for tracking entire groups of persons by estimating their spatial and
social relations is presented in Sect. 5.

All of this becomesmore complex if information frommultiple detectors operating
on different sensor modalities, such as 2D laser and RGB-D, shall be combined to
make tracking more robust and cover a larger field of view (Sect. 6). Finally, using
the powerful RViz visualization tool and custom plugins developed by us as well as
a custom SVG exporter script, the outputs of the tracking pipeline can be visualized
(Sect. 7). In Sect. 8, we briefly outline how to generate test data for experiments
using a pedestrian simulator. Finally, we show qualitative results and discuss runtime
performance in Sect. 9.

The entire communication between different stages of our pipeline occurs via
ROS messages defined in the corresponding sections, which we explain in detail to
encourage reuse of our components in custom setups. The architecture allows for
easy interchangeability of individual components in all stages of the pipeline.

3 People Detection

In this section, we present ROS message definitions and exemplary implementations
for detecting people in RGB-D and 2D laser range data. We start by a short summary
of existing research in this field.

While still relatively expensive, 2D laser range finders offer data at high fre-
quencies (up to 100Hz) and cover a large field of view (usually around 180◦). Due
to the sparseness, the sensor data is very cheap to process, but does not offer any
appearance-based cues that can be used for people detection or re-identification.
Early works based on 2D laser range data detect people using ad-hoc classifiers that
find local minima in the scan [10, 27]. A learning approach is taken by Arras et al.
[2], where a classifier for 2D point clouds is trained by boosting a set of geometric
and statistical features.

People Detection, Tracking and Visualization … 191

In RGB-D, affordable sensors are gaining popularity in many indoor close-range
sensing scenarios since they do not require expensive disparity map calculations like
stereo cameras and usually behave more robustly in low lighting conditions. Spinello
andArras [28] proposed a probabilistically fusedHOD(histogramof oriented depths)
and HOG (histogram of oriented gradients) classifier. Munaro et al. [21] present a
person detector in RGB-D that uses a height map-based ROI extraction mechanism
and linear SVM classification using HOG features, which has been integrated into
the Point Cloud Library (PCL). Jafari et al. [12] at close range also use a depth-based
ROI extraction mechanism and evaluate a normalized depth template on the depth
image at locations where the height map shows local maxima corresponding to heads
of people. For larger distances, a GPU-accelerated version of HOG is used on the
RGB image.

3.1 ROS Message Definitions

In the following, we present our message definitions for person detection. Due to the
multi-language support of ROS, the resulting messages can be processed by any kind
of ROS node, regardless if implemented in C++, Python, Lua or Lisp. We want to
emphasize that ourmessage definitions are intentionally kept as simple and generic as
possible, to allow reuse over a wide range of possible sensor modalities and detection
methods. Therefore, for instance, we do not include image bounding boxes or visual
appearance information which would be specific to vision-based approaches and not
exist e.g. in 2D laser range data.

Our definition of a detected person is similar to a geometry_msgs/PoseArray, but
additionally, for each detection we also specify a unique detection ID, a confidence
score, a covariance matrix and the sensor modality. The detection ID allows the
detection to be matched against e.g. the corresponding image bounding box, pub-
lished under the same detection ID on a separate ROS topic. The covariance matrix
expresses the detector’s uncertainty in the position (and orientation, if known). It
could, for instance, be a function of the detected person’s distance to the sensor, and
is therefore not necessarily constant. The confidence score can be used to control
track initialization and to compute track scores. Finally, information about themodal-
ity can be used by a tracking algorithm to, for example, assign a higher importance
to visually confirmed targets.

A spencer_tracking_msgs/DetectedPerson thus has the following attributes:

• detection_id [uint64]: Unique identifier of the detected person, monotonically
increasing over time. To ensure uniqueness, different detector instances, should
use distinct ID ranges, by e.g. having the first detector issue only IDs that end in 1,
the second detector IDs that end in 2, and so on.

• confidence [float64]: A value between 0.0 and 1.0 describing the confidence that
the detection is a true positive.

192 T. Linder and K.O. Arras

Fig. 4 Left Area visible to the front laser scanner (in grey), candidate laser scan segments (with
numbers that identify the segments), and laser-based person detections (orange boxes). Right Pro-
jection of the laser-based person detections into a color image of the scene. Segment 72 on the left
border is a false negative classification. As the 2D laser scanner has a very large horizontal field of
view (190◦), the camera image does not cover the entire set of laser scan segments (e.g. segment 24
on the right)

• pose [geometry_msgs/PoseWithCovariance]: Position andorientation of the detec-
tion inmetric 3D space, alongwith its uncertainty (expressed as a 6 × 6 covariance
matrix). For unknown components, e.g. position on the z axis or orientation, the
corresponding elements should be set to a large value.2 The pose is relative to the
coordinate frame specified in the DetectedPersons message (see below).

• modality [string]: A textual identifier for the modality or detection method used
by the detector (e.g.RGB-D, 2D laser). Common string constants are pre-defined
in the message file.

A DetectedPersons message aggregates all detections found by a detector in the
same detection cycle, and contains the following attributes:

• header [std_msgs/Header]: Timestamp and coordinate frame ID for these detec-
tions. The timestamp should be copied from the header of the sensor_msgs/
LaserScan, Image or PointCloud2 message that the detector is operating on. Sim-
ilarly, the coordinate frame can be a local sensor frame as long as a corresponding
transformation into the tracking frame (usually “odom”) exists in the TF hierarchy.

• detections [array of DetectedPerson]: The array of persons that were detected by
the detector in the current time step.

3.2 Person Detection in 2D Laser Data

Boosted Laser Segment Classifier For people detection in 2D laser range data
(Fig. 4), we use a re-implementation of [2] using an Ada-Boost implementation from
the OpenCV library. The classifier has been trained on a large, manually annotated

2We usually use a value of 105 to indicate this. If set to infinity, the covariance matrix becomes
non-invertible, causing issues later on during tracking.

People Detection, Tracking and Visualization … 193

data set consisting of 9535 frames captured using our mobile data capture platform
in a pedestrian zone, with the laser scanner mounted at about 75cm height. We used
an angular scan resolution of 0.25◦ and annotated detections up to a range of 20m.

Prior to classification, the laser scan is segmented by a separate ROS node
using either jump distance or agglomerative hierarchical clustering with a distance
threshold of 0.4m. The combined laser-based segmentation and detection system is
launched via the command-line

roslaunch srl_laser_detectors

adaboost_detector_with_segmentation.launch

and expects sensor_msgs/LaserScan messages on the /laser topic and publishes the
resulting detections at /detected_persons. The names of these topics can be recon-
figured via parameters passed to the launch file. A short example dataset for testing,
and instructions on how to play back this recorded data, can be found online in our
README file.

Leg Detector We also provide a wrapper to make the existing leg_detector
ROS package compatible with our message definitions. This package needs to be
downloaded and built separately.3 The underlying algorithm uses a subset of the
2D features also included in our implementation of [2], but first tracks both legs
separately and in our experience works best if the laser sensor is mounted very close
to the ground, below 0.5m height.

3.3 Person Detection in RGB-D

Upper-Body Detector We modified the publicly available close-range upper-body
detector by [12] (Fig. 5, left) to also output DetectedPersons messages. It operates
purely on depth images and is launched via:

roslaunch rwth_upper_body_detector upper_body_detector.launch

The input and output topics can be configured via the camera_namespace
and detected_persons parameters. It is assumed that a ground plane estimate
is published on the topic specified by the ground_plane parameter, which can
e.g. be achieved using the ground_plane_fixed.launch file provided in the
rwth_ground_plane package.

Further RGB-D Detectors In the pcl_people_detector package, we also
integrated the RGB-D person detector by [21] from the Point Cloud Library (PCL),
which extracts regions of interest from a depth-based height map and then applies a
linear HOG classifier. We extended the code to output markers for visualization of

3http://wiki.ros.org/leg_detector.

http://wiki.ros.org/leg_detector

194 T. Linder and K.O. Arras

Fig. 5 Different RGB-D detectors which we integrated into our framework. Left Upper-body
detector from [12] which slides a normalized depth template over the depth image. Middle RGB-D
detector from PCL which first extracts regions of interest, visualized here by boxes, from the point
cloud [21]. Right Combo-HOD (histogram of oriented depths) detector [28] (closed-source)

ROIs (Fig. 5, middle) and output DetectedPersons messages. Configurable parame-
ters are documented in a launch file that can be started via:

roslaunch pcl_people_detector start.launch

Likewise, as a proof of concept, a closed-source implementation of Combo-HOD
(histogram of oriented depths) [28] was integrated (Fig. 5, right).

3.4 Person Detection in Monocular Vision

groundHOG We also integrated the GPU-accelerated medium- to far-range ground-
HOG detector from [12] into our framework. It is configured in a similar way as the
upper-body detector described above, and also requires a groundplane estimate to
narrow down the search space for possible person detections. On a computer with a
working CUDA installation, it can be launched via:

roslaunch rwth_ground_hog ground_hog_with_GP.launch

As can be seen from these examples, it is very easy to integrate new detectors into
our people tracking framework. This makes it possible to easily swap out detectors in
experiments, as well as to draw upon a common visualization toolkit for displaying
the detections along with raw sensor data in 3D space (Sect. 7).

4 People Tracking

The output of a person detector just represents a single snapshot in time and may be
subject to false alarms andmissed detections. Togain amore long-termunderstanding
of the scene, to filter out spurious misdetections and to extract trajectory information
and velocity profiles, the detected persons need to be associated over time, a process

People Detection, Tracking and Visualization … 195

called people tracking. The goal of a people tracking system is tomaintain a persistent
identifier for the same person over time, as long as the person remains visible in the
scene and while bridging short moments of occlusion.

Different multi-target data association and tracking algorithms have been stud-
ied in the context of person tracking. Simpler algorithms such as the Nearest-
Neighbor Standard Filter (NNSF), Global Nearest Neighbor (GNN) [4, 22] or
Nearest-Neighbor Joint Probabilistic Data Association (NNJPDA) [3] make hard
data association decisions, whereas other variants including the Joint Probabilistic
Data Association Filter (JPDAF) [27] use soft assignments. All of these methods
are single-hypothesis algorithms that at the end of each tracking cycle, only keep
the most likely data association hypothesis in memory. In contrast, multi-hypothesis
tracking approaches (MHT) [1, 8, 12, 25] use a hypothesis tree which allows to
correct wrong initial decisions at a later point in time. This, however, comes at the
price of higher computational complexity and complex implementation.

4.1 ROS Message Definitions

As in the detection case, we tried to keep the message definitions for people tracking
as generic as possible such that they can be re-used across a large variety of different
people tracking algorithms. In the following sections, we illustrate concrete imple-
mentations that we have experimented with during the project, all of which yield the
following output.
A TrackedPerson, according to our definition, possesses the following attributes:

• track_id [uint64]: An identifier of the tracked person, unique over time.
• is_matched [bool]: False if no matching detection was found close to the track’s
predicted position. If false for too long, the track usually gets deleted.

• is_occluded [bool]: True if the person is physically occluded by another person or
obstacle. False if the tracking algorithm cannot determine this.

• detection_id [uint64]: If is_matched is true, the unique ID of the detection asso-
ciated with the track in the current tracking cycle. Otherwise undefined.

• pose [geometry_msgs/PoseWithCovariance]: The position and orientation of the
tracked person in metric 3D space, along with its uncertainty (expressed as a 6 × 6
covariance matrix). The pose is relative to the coordinate frame specified in the
TrackedPersons message (see below).

• twist [geometry_msgs/TwistWithCovariance]: The linear and possibly angular
velocity of the track, along with their uncertainties.

• age [duration]: The time span for which this track has existed in the system.

The TrackedPersons message aggregates all TrackedPerson instances that are cur-
rently being tracked:

196 T. Linder and K.O. Arras

• header [std_msgs/Header]: The coordinate frame is usually a locally fixed frame
that does not move with the robot, such as “odom”. The timestamp is copied
from the incoming DetectedPersons message; this is important to synchronize
DetectedPersons and TrackedPersons messages to be able to look up details about
a DetectedPerson identified by its detection_id.

• tracks [array of TrackedPerson]: All persons that are being tracked in the current
tracking cycle, including occluded and unmatched tracks.

4.2 People Tracking Algorithms Used in Our Experiments

During the SPENCER project, we have conducted experiments with different person
tracking algorithms of varying complexity. Next to a computationally cheap nearest-
neighbor algorithm which we will describe in the following section, we converted
an existing hypothesis-oriented multi-hypothesis tracker from our past work [1, 17]
into a ROS package4 to exploit the visualization capabilities and interchangeability
of detectors of our framework. Further experiments were conducted using a vision-
based track-oriented multi-hypothesis tracker5 [12].

A detailed study of which person tracking algorithm to choose under which cir-
cumstances is subject of our ongoing research. We believe that in general, the choice
of models (e.g. for motion prediction, occlusion handling, inclusion of visual appear-
ance) has a greater influence on overall tracking performance than the tracking algo-
rithm itself. Here, various methods have been proposed in the past, e.g. the use of
a motion model influenced by social forces [19], adapting occlusion probabilities
and motion prediction within groups [17], improved occlusion models [16], or an
online-boosted RGB-D classifier that learns to tell apart tracks from background or
other tracked persons [18, 22].

4.3 Example: Nearest-Neighbor Tracker

As an illustrative example, we show how a person tracking system can be imple-
mented using a very simple nearest-neighbor standard filter, for which the full code
is provided online. Combined with the extensions discussed in the following section,
the system can in most situations already track persons more robustly than other
publicly available ROS-based people tracking implementations that we are aware of
(e. g. in wg-perception/people).

The nearest-neighbor data associationmethod greedily associates a detectionwith
the closest (existing) track, if that track’s predicted position is closer than a certain

4Not (yet) publicly available due to open questions on licensing.
5ROS version to be made available in the rwth_pedestrian_tracking package.

People Detection, Tracking and Visualization … 197

gating threshold.While not as robust asmore advancedmethods likemulti-hypothesis
tracking (MHT), it is very simple to implement and real time-capable evenwith a high
number of tracks (up to 40–80). In our experience, such single-hypothesis methods
deliver satisfactory results if there are not too many closely spaced persons in the
scene and the detector has a relatively low false alarm rate and high recall, which can
also be achieved by fusing information frommultiple detectors in differentmodalities
(Sect. 6).

A new tracking cycle starts once a new, and potentially empty, set of Detected-
Persons is received by the tracker from the detector. The resulting actions that are
performed are summarized in the following ROS callback:

People Tracking Workflow

1 void newDetectedPersonsCallback(DetectedPersons& detections)
2 {
3 transformIntoFixedFrame(detections);
4 predictTrackStates();
5 predictMeasurements();
6 Pairings pairings = performDataAssociation(m_tracks, detections);
7 updateTrackStates(pairings);
8 initNewTracks(detections, pairings);
9 deleteObsoleteTracks();

10 }

First, in line 3, all detections are transformed into the locally fixed “odom” coor-
dinate frame, by looking up the robot’s current position in the world as reported by
odometry using the tf library. The states of all existing tracked persons—internally
represented as a 4D vector (x, y, ẋ, ẏ) of position and velocity—are predicted into
the future (line 4), e.g. using a Kalman Filter, and converted into measurement pre-
dictions by dropping their velocity components (line 5). Then, an association matrix
is constructed which contains the distance between predicted and real measurement
position for each possible pairing of detections and tracks. This usually involves a
gating step in which incompatible pairings are discarded beforehand. The nearest-
neighbor standard filter then starts searching for the pairing with minimum distance
until all tracks and/or detections have been associated. In line 7, the states of all
matched tracks are updated with the position of the associated detection, or in the
case of an unmatched track, the state prediction is used as the new state. Finally,
new tracks are initialized from detections that could not be associated with any track
(line 8). Tracks that have not been associated with a detection for too long (i. e.
occluded) are deleted.

4.4 Improving Robustness of Tracking

For more robust tracking of maneuvering persons, we extended this tracking method
with an interacting multiple models (IMM) approach that dynamically mixes four
different motion models depending on the evolution of a tracked person’s trajec-
tory and the prediction error: (1) A constant velocity (CV) model with low process

198 T. Linder and K.O. Arras

noise, (2) a CV model with high process noise, (3) a Brownian motion model, (4) a
coordinated-turn model. In lab experiments, this combination helped to reduce the
number of track losses caused by abruptly stopping or turning persons, without us
having to manually tune process noise levels, especially in smaller or very crowded
environments where motions are less linear.

Our implementation also optionally subscribes to a second DetectedPersons ROS
topic, on which detections of a high-recall, low-confidence detector (e.g. a primitive
laser blob detector) can be published. After regular data association, we perform
another round of data association on these detections only with tracks that have not
yet been associated with a detection (from the high-precision detector). This simple
modification can improve tracking performance significantly if the main detector has
a low sensitivity.

Finally, an implementation of a track initialization logic as described in [6] helps
to prevent false track initializations in case of spurious misdetections.

Launching the People Tracker

The nearest-neighbor tracker implementation comes with a launch file configured
with parameters that yielded good results in our test cases.We recommend the reader
to copy this launch file and use it as a starting point for own experiments:

roslaunch srl_nearest_neighbor_tracker nnt.launch

4.5 Tracking Metrics

For performance evaluations, we wrapped two publicly available Python imple-
mentations of the CLEAR MOT [5] and OSPA [26] multi-target tracking metrics
into ROS nodes that follow our message conventions. These metrics are helpful
for tuning parameters of the tracking system, as well as evaluating completely new
tracking algorithms. They assume that annotated groundtruth tracks are given in
the form of time-synchronized TrackedPersons messages, and can be found in the
spencer_tracking_metrics package.

5 Group Tracking

For socially compliant navigation, which is the main research objective in the
SPENCER project, tracking just individual persons is not sufficient. If the task of
the robot is to guide a group of persons through a shopping mall or an airport, or to
avoid crossing through groups of people, knowledge of groups in the surroundings
is important. In the latter case, we regard as a group a closely spaced formation of
standing or walking persons. In the former case, a more long-term definition of group

People Detection, Tracking and Visualization … 199

might be necessary, in which a person can, for instance, briefly leave the formation
to avoid opposing traffic before re-joining the group.

Group tracking has been studied before in the computer vision community on
photos and movies [7, 9, 29]. Methods have also been developed for group track-
ing using overhead cameras in the context of video surveillance [14, 23, 24, 30].
For people tracking on mobile robots in a first-person perspective, a multi-model
multi-hypothesis tracker for groups has been proposed by Lau et al. [13], which was
extended by Luber and Arras [17] and Linder and Arras [15].

In the following, we outline a few basic principles for online group detection and
tracking, and describe sample code that we provide online.

5.1 Social Relation Estimation

Before detecting groups, we first estimate the pairwise social relations of all tracked
persons by feeding the output of the people tracker into a social relation estimation
module. This module, based upon the work described in [15], builds a social network
graph as shown in Fig. 6 (left), where the edge weights encode the likelihood of a
positive social relation between a pair of persons. To estimate these likelihoods, we
rely on coherent motion indicators, which aremotion-related features thatwere found
to indicate group affiliation between people in large-scale crowd behavior analysis
experiments [20]. They consist of relative spatial distance, difference in velocity
and difference in orientation of a given pair of tracks. Using a probabilistic SVM
classifier trained on a large dataset annotated with group affiliations, these features
are mapped to a social relation probability that indicates the strength of the relation.
This method allows for an easy integration of additional social cues (such as persons’
eye gaze, body pose) in the future. An implementation and a trained SVM model
are provided in the spencer_social_relations package. Figure7 shows the

Fig. 6 Left Example of a social network graph, where the edge weights encode the likelihood of a
positive social relation between persons. Colored circles below each person indicate resulting group
affiliations and grey covariance ellipses visualize position uncertainty. Right Three different groups
that are being tracked in RGB-D

200 T. Linder and K.O. Arras

SocialRelation

+ type [string]
+ strength [float32]
+ track1_id [uint64]
+ track2_id [uint64]

SocialRelations

+ header [std_msgs/Header]
+ elements [array of SocialRelation]

TrackedPerson

+ ...
2 0..* 1

Fig. 7 Message definitions for the social network graph. The strength of a social relation is specified
as a real number between 0.0 and 1.0. The type string can be used to distinguish between different
types of relations, e.g. spatial, family or romantic

corresponding SocialRelation and SocialRelations ROS messages that constitute the
resulting social network graph.

5.2 Group Detection and Tracking

To detect groups, we perform graph-cutting in the social network graph by removing
all edges below a fixed edge weight threshold. The remaining connected components
of the graph then become the resulting groups.

A simple group tracking algorithm can now be implemented by treating groups
as separate entities, and tracking their centroids. This data association might fail if
the group splits apart very suddenly, causing a large shift in the resulting new cen-
troids. Alternatively, it is possible to track just the composition of a group, in terms
of its individual group members, and then keep a memory of previously seen group
configurations. This works as long as at least one person in the group is always
visible. A simple Python-based implementation of this approach can be found in
the spencer_group_tracking package. The output is in the form of Tracked-
Groups messages, as outlined in Fig. 8.

In ongoing research shown in Fig. 6 (right), we use a more complex approach
which interleaves a group-level data association layer with regular person-level data
association in a multi-model multi-hypothesis tracker [15, 17]. By explicitly mod-
elling group formation in terms of merge and split events, groups can be tracked
more robustly. Internally, a prototype of this system has already been integrated with
our visualization and detection framework and yielded good experimental results.
While currently not publicly available, this system uses exactly the same message
interfaces as the provided Python code.

TrackedGroup

+ group_id [uint64]
+ age [duration]
+ centerOfGravity [geometry_msgs/PoseWithCovariance]
+ track_ids [array of uint64]

TrackedGroups

+ header [std_msgs/Header]
+ groups [array of TrackedGroup]

TrackedPerson

+ ...
0..* 11..* 1

Fig. 8 Message definition for a single tracked group, a collection of all tracked groups in one cycle,
and their relation towards tracked persons

People Detection, Tracking and Visualization … 201

6 Multi-Modal Tracking

In this section, we describe how we can fuse the output of multiple detectors, poten-
tially operating in different sensor modalities, to make people tracking more robust
and extend the robot’s field of view.Abroad overviewof different strategies for fusing
multi-modal detections for general tracking purposes is given in [4]. Here, wemainly
focus on fusion at the detection level, as track-to-track fusion involves associating
two or more trajectories with each other, which is computationally more complex
and not straightforward. Our framework allows for two different fusion strategies at
the detection level, namely detection-to-detection and detection-to-track fusion.

6.1 ROS Message Definitions

To keep a memory of which detections have been fused together, we define a Com-
positeDetectedPerson message (Fig. 9). Retaining this information is essential for
components at later stages in the perception pipeline, like a human attribute clas-
sifier that takes as an input the regions of interest found by a vision-based person
detector. If these ROIs likewise bear a corresponding detection ID, they can later on
be associated with the correct tracked person such that the extracted information can
be smoothed over time.

In order to provide all of our fusion components with a streamlined, homogenous
interface, we initially convert all DetectedPersons messages into CompositeDetect-
edPersons via a converter node, even if there is only a singleDetectedPerson involved.
This allows for easy chaining of the components.

6.2 Strategies for Fusion at the Detection Level

Detection-to-Detection Fusion Fusing detections to detections has got the advan-
tage that the resulting composite detections can be fed into any existing (unimodal)
tracking algorithm, without requiring special provisions to cope with information

CompositeDetection

+ composite_detection_id [uint64]
+ mean_confidence [float64]
+ min_confidence [float64]
+ max_confidence [float64]
+ pose [geometry_msgs/PoseWithCovariance]

CompositeDetections

+ header [std_msgs/Header]
+ elements [array of CompositeDetection]

DetectedPerson

+ ...
0..* 1

+ original_detections [array of DetectedPerson]

1..* 1

Fig. 9 Message definitions for composite detections. Retaining the information which original
detections have been combined into a composite detection or a track is important for perception
components at later stages in the pipeline

202 T. Linder and K.O. Arras

from multiple detectors. This approach can also be helpful if the tracking algorithm
itself is computationally very complex and scales badly with the number of detec-
tions. For detection-to-detection fusion, we have implemented a series of nodelets6

which can be used to flexibly compose a fusion pipeline by means of roslaunch XML
files:

• Converter nodelets for converting DetectedPersons messages into CompositeDe-
tectedPersons messages, and vice versa.

• Aggregator nodelets which simply concatenate two sets of CompositeDetected-
Persons.Useful for combining detections from sensorswith non-overlapping fields
of view, in which case no data association is required.

• Fusion nodelets that perform data association between two sets of Composite-
DetectedPersons, e.g. using a nearest-neighbor data association technique.

Detection-to-Track Fusion Although presently not realized, our framework also
allows for detection-to-track fusion. As the tracker’s knowledge of a track’s previous
trajectory can helpwith the association of the incoming detections, this approachmay
provide better results in case of very crowded environments. In this case, the fusion
stage needs to be implemented within the tracker itself. It then becomes the tracker’s
responsibility to publish a corresponding CompositeDetectedPersons message to let
other perception components know which original detections have been fused.

6.3 Post-Processing Filters

Often, higher-level reasoning components are not interested in all tracks that are
output by the people tracking system. Therefore, we provide a series of post-
processing filters for TrackedPersons messages such that the output, for instance,
only includes visually confirmed tracks, non-static persons, or the n persons clos-
est to the robot (useful for human-robot interaction). These are implemented in
spencer_tracking_utils and can be set up in a chain if needed.

6.4 Multi-Modal People Tracking Setup on the Robot

On the robot platform, we run the front laser detector, the front upper-body RGB-D
detector, the front HOG detector, and the fusion-related nodes on a single laptop.
Likewise, the detectors for the rear-oriented sensors are executed on the second
laptop, as well as the people tracking system itself. The lower RGB-D sensor on each
side is tilted downwards and currently only used for close-range collision avoidance.
Since all components, including the laser-based segmentation as a pre-processing

6A powerful mechanism to dynamically combine multiple algorithms into a single process with
zero-copy communication cost. See http://wiki.ros.org/nodelet.

http://wiki.ros.org/nodelet

People Detection, Tracking and Visualization … 203

Rviz

Front RGB-D HOG

Rear RGB-D HOG

Front RGB-D upper body

Rear RGB-D upper body

Front laser

Rear laser

NN-Fuser

DETECTORS DETECTION FUSION STAGE TRACKING STAGE

People tracker

Social relations
estimation

Group tracker

Front laser (high-recall)

Rear laser (high-recall)

Aggregator

VISUALIZATION

TrackedPersonsDetectedPersons TrackedGroups SocialRelations
SVG

export

NN-Fuser

NN-Fuser

NN-Fuser

Aggregator

SENSOR DRIVERS

Front RGB-D Rear RGB-DFront laser Rear laser

Fig. 10 A possible multi-modal people and group detection and tracking architecture that can be
configured using our framework. Arrows represent ROSmessage flows. This setup was used during
experiments on the SPENCER robot platform. Rounded rectangles represent reusable components
that can be run as separate ROS nodes, and therefore easily be distributed across different computers.
Connections between nodes are configured entirely in roslaunch XML without having to modify
source code

step, are implemented as individual ROS nodes, they are separate system processes
and therefore automatically make full use of modern multi-core CPUs.

Figure10 shows a configuration which we used during experiments with our
robot platform. Due to the flexible configuration in roslaunch XML files, different
setups can easily be tested without modifying any source code. Of course, if the
used people tracker implementation directly supports multiple detection sources,
most of the detection-to-detection fusion stage can be left out (up to a possible
aggregation of front and rear detections). We also ran experiments with an integrated
person- and group tracker [15] that combines all of the steps in the tracking stage in
order to feed back information from group-level tracking into person tracking, while
still publishing TrackedPersons, SocialRelations and TrackedGroups messages. In
all these cases, the remaining components including detectors, visualization, post-
processing filters and evaluation metrics can still be used as-is.

204 T. Linder and K.O. Arras

6.5 Exemplary Launch File

As an inspiration for own experiments, we provide a launch file for the multi-modal
people tracking setup that we used on our robot:

roslaunch spencer_people_tracking_launch tracking_on_robot.launch

Alternatively, we provide a launch file that just uses a single RGB-D sensor:

roslaunch spencer_people_tracking_launch

tracking_single_rgbd_sensor.launch height_above_ground:=1.6

7 Visualizing the Outputs of the Perception Pipeline

Powerful visualization tools can be of great help when analyzing the performance
of a complex perception pipeline. The standard visualization tool for sensor data
which is shipped with ROS is RViz, which uses the feature-rich OGRE graph-
ics engine as its visualization backend. The core idea behind RViz is that it pro-
vides different visualization plugins (displays) for different types of ROS messages,
e.g. sensor_msgs/LaserScan or nav_msgs/Odometry.
In general, RViz provides two ways of implementing custom visualizations:

• Markers and marker arrays, using existing displays provided byRViz andmessage
types from the visualization_msgs package. They allow to easily display
primitives such as lines, triangles, texts, cubes or static 3D meshes. The pose,
dimensions and color of the shape are specifiedwithin themessage itself, published
by a ROS node in any supported programming language.

• RViz plugins, written in C++, can benefit from the entire set of capabilities offered
by the OGRE graphics engine. As each display comes with a property panel based
on the UI framework Qt, they can easily be customized within the RViz user
interface. RViz automatically takes care of persisting any settings when the user
saves the configuration,which allows to load entire visualization setups via a single
mouse-click.

In our experience, markers allow to quickly implement component-specific visu-
alizations without requiring much developer effort. On the other hand, RViz plugins
are great for more complex visualizations that are reused often. They offer a better
end-user experience (due to the ability to change settings on-the-fly inside the RViz
GUI) at the cost of larger implementation effort.

People Detection, Tracking and Visualization … 205

7.1 Custom RViz Visualization Plugins

During the course of the SPENCER project, we were often in need of visualizing the
outputs of our people tracking system and changing visualization settings on-the-fly,
for instance during live robot experiments and for demonstration videos and pub-
lications. Therefore, in the spencer_tracking_rviz_plugin package, we
developed a series of custom RViz plugins for displaying detected persons, tracked
persons, social relations, tracked groups and human attributes.7 They are automati-
cally discovered by RViz and include features such as:

• Different visual styles: 3D bounding box, cylinder, animated human mesh
• Coloring: 6 different color palettes
• Display of velocity arrows
• Visualization of the 99% covariance ellipse for position uncertainty
• Display of track IDs, status (matched, occluded), associated detection IDs
• Configurable reduction of opacity when a track is occluded
• Track history (trajectory) display as dots or lines
• Configurable font sizes and line widths

In the Results section in Fig. 14, we show a number of different visualizations
generated using our RViz plugins. For the first row of that figure, we additionally
used the existing RViz Camera display to project 3D shapes into a camera image.
Examples of the social relations and tracked groups display are shown in Fig. 6, left
and right. As opposed to other RViz displays, these displays subscribe to two topics
at the same time (e. g. social relations and tracked persons).

7.2 URDF Model for Robot Visualization

To visualize the robot in RViz, we built a URDF (Unified Robot Description For-
mat) file for the SPENCER robot, which defines the different joints of the platform,
including fixed joints at the base of the robot and the sensor mounting points. The
robot_state_publisher and joint_state_publisher packages use
the URDF to publish a hierarchy of transforms (TF tree) for transforming between
local sensor and robot coordinate frames as shown in Fig. 11 (right).

To create the visual robot model shown in Fig. 11 (left), we used a CAD model
provided by the robot manufacturer and first removed any unnecessary components
inside the robot’s shell that are not visible from the outside using FreeCAD. We
then exported a single Collada (DAE) file for each movable part and simplified the
resulting mesh to reduce its polygon count. This can be done using software such
as MeshLab or 3DS Max. We then manually aligned the visual parts of the model
against the TF links specified in the URDF, by cross-checking with RViz and the
CAD file.

7Such as gender and age group, not discussed here in detail.

206 T. Linder and K.O. Arras

Fig. 11 Left Robot models (based upon URDF descriptions) of the SPENCER robot platform and
the mobile data capture platform. Middle Robot coordinate frame. Right Simplified version of the
TF hierarchy used on the SPENCER robot

For the mobile data capture platform, we used a point cloud registration software
and an RGB-D sensor that we rotated around the platform at different azimuths and
elevations to generate a visual representation. We built a transform hierarchy similar
to that of the actual robot, to ensure that the same perception algorithms can be run
on recorded and live data without modifications.

7.3 ROS-based SVG Exporters

For the visualization of detected and tracked persons and groups, we additionally
provide a Python script in the srl_tracking_exporter package for exporting
scalable vector graphics (SVGs). This is useful to analyze person trajectories from
a 2D top-down view of the scene, which can be animated to display the evolution of
tracks over time. In contrast to videos recorded fromRviz, they support free zooming
to permit the analysis of smaller details (e.g. the cause of track identifier switches,
by looking at the positions of individual detections). The resulting SVGs (Fig. 12)
are best viewed in a web browser such as Chrome.

Fig. 12 Scalable and optionally animated vector graphic showing a 2D top-down view of a scene
with several person tracks and their track IDs. Detections are shown as small diamonds. Arrowheads
symbolize velocity, with the bottom grey track showing robot odometry. The user can zoom into
the SVG to read detection IDs and timestamps

People Detection, Tracking and Visualization … 207

8 Integration with 3rd-Party Simulation Tools

Often, experimenting with real, recorded data can be cumbersome due to the need
for manual groundtruth annotations and because it can be difficult to capture or pro-
voke specific situations without scripting the behavior of the agents in the scene. For
example, testing socially compliant motion planning in combination with a real peo-
ple tracking system (including occlusions) proves to be difficult from pre-recorded
datasets as the sensor position is decided at the time of recording. Testing on the real
robot, however, can bring up its own challenges, where lack of open space, limited
physical access to the robot, hardware issues or discharged batteries are just a few
obstacles to overcome.

8.1 Integration with the Robot Simulator Gazebo

For this reason, we integrated our framework with the robot simulator Gazebo to
generate simulated sensor data of moving persons from a moving robot in static
environments (Fig. 13, left). We simulate 2D laser scan data with a noise model
matching that of the real sensor on the basis of datasheet specifications.

As simulating the environment becomes computationally very complexwithmore
than a dozen persons in the scene, we disable the Gazebo physics engine and instead
manually update the agents’ and robot’s position at 25Hz using the Gazebo ROS
API. Person shapes are approximated by static 3D meshes that are processed by a
GPU-accelerated raytracing algorithm in Gazebo to simulate laser scans. The result-
ing sensor_msgs/LaserScan is published on ROS and fed to our laser-based person
detector, and RViz for visualization (Fig. 13, right).

Fig. 13 Left Positions of simulated pedestrians are constantly sent to theGazebo simulator viaROS,
which then generates simulated laser scans and again publishes them via ROS. These simulated laser
scans can then be fed into the people tracking pipeline for synthetic experiments. Right Moving
pedestrians in a ROS adaptation of PedSim, the pedestrian simulator, visualized in RViz. The
pedestrian behavior is modelled using a social force model from behavioral sciences

208 T. Linder and K.O. Arras

8.2 Integration with the Pedestrian Simulator PedSim

Simulating realistic pedestrian motion behaviors is a research topic of its own. Here,
we use the publicly available PedSim library,8 which simulates pedestrian crowd
behaviors using a social force model from behavioral sciences [11]. We wrapped
the library into a ROS node and added an RViz-based visualization of persons and
obstacles using visualization markers (visible in Fig. 13, right). The positions of the
simulated pedestrians are published as TrackedPersons messages, which can serve as
a groundtruth to evaluate tracking performance (see Sect. 4.5). A separate converter
node then sends these positions toGazebo,where they are used to position 3Dmeshes
as described in the previous section.

9 Results

In this section, we show qualitative results of our tracking system, discuss runtime
performance and summarize important lessons that we learned during the project.
As research in SPENCER is still going on at the time of this writing, we are currently
preparing a detailed quantitative study of our tracking system, including a comparison
of different multi-modal tracking approaches, for a publication at the end of the
project.

9.1 Qualitative Results

InFig. 14,we show illustrative results of our tracking system runningondata recorded
with ourmobile data capture platform (Fig. 2) during a crowded situation at an airport,
shortly after passengers have disembarked from an airplane. At the detection stage,
we observe that the different detectors (2D laser, RGB-D upper-body, groundHOG
in RGB) complement each other well and significantly increase the field of view
around the robot in which persons can be tracked. In group guidance scenarios,
it can make sense to filter out tracks in a post-processing step which have not been
visually confirmed (shown in different color in the third row of Fig. 14), as especially
the laser-based detector can sometimes trigger false alarms when objects appear like
humans in the laser scan.

Multiple videos which show our tracking system in action on both the real robot
platform and pre-recorded datasets can be found on our YouTube channel.9

8http://pedsim.silmaril.org/.
9http://www.youtube.com/spencereuproject.

http://pedsim.silmaril.org/
http://www.youtube.com/spencereuproject

People Detection, Tracking and Visualization … 209

Fig. 14 Multi-modal people detection and tracking from a mobile robot in a crowded airport
environment. First row Color images of the upper rear and front RGB-D sensors, with projected
laser points and bounding boxes of tracked persons. Second row Detections of 2D laser (orange
boxes), upper-body detector (cyan) and groundHOG (yellow) on top of front and rear RGB-D and
2D laser point clouds. Fused detections are shown as grey cylinders. The area visible to the laser
scanners is shaded in grey. Third row Resulting person tracks. As opposed to blue persons which
are only tracked in laser, red tracks have been confirmed a number of times by one of the visual
detectors. Last row Tracked groups that were detected via coherent motion indicator features

210 T. Linder and K.O. Arras

9.2 Runtime Performance

Our system runs in real-time at 20–25 Hz using the configuration described in
Sect. 6.4 on two Intel Core i7-4700MQ gaming laptops with 8 GB RAM and nVidia
GeForce GTX 765M graphics.10 These laptops are dedicated to perception tasks on
the robot. We avoid expensive streaming of RGB-D images over network by execut-
ing the RGB-D detectors directly on the laptop where the corresponding sensor is
connected via USB. The computationally most expensive components are the person
detectors, each requiring about one CPU core, with the people tracker itself requir-
ing only 10–15% of a single CPU core when 20–30 tracks are simultaneously being
tracked.

9.3 Lessons Learned

Finally, we want to note down a few points that we learned about ROS and our
hardware during the course of our project:

Parallelization: A complex perception pipeline such as the one developed in
SPENCER requires a high amount of computational power.We learned that ROS can
be a great help here due to its node-based modular structure, which easily allows to
split up complex processing tasks into separate processes that can be run on different
CPU cores or even different computers, without requiring extensive reconfiguration.

Collaboration: We think it is important to devise mock components early on in the
project to enable other collaborators to test their dependent components. Due to the
multi-language support in ROS, these can be simple Python scripts that e.g. publish
fake detections.

Transform issues: We often had to deal with transform-related issues, which is
natural due to the high number of sensor coordinate frames involved. Here, we found
the tools tf_monitor, tf_echo, view_frames of the tf package as well as
the TF display in RViz to be of great help. Especially the first-mentioned tool allows
to identify latency issues that can arise when the clocks of the computers on the
robot are not properly synchronized, which will cause transform lookups to fail. The
roswtf tool lists unconnected ROS topic subscriptions, which helps when dealing
with over 300 concurrently active topics.

Hardware: In terms of hardware, instead of using gaming laptops onboard a robot, in
the future we would rather use traditional computers with extra GPU and USB PCIe
cards to circumvent the USB bus sharing issues which we repeatedly encountered
with the first-generation RGB-D sensors, since most laptops nowadays only expose

10The GPU is only used by the groundHOG person detector. For a single RGB-D sensor and 2D
laser scanner, a single laptop is sufficient.

People Detection, Tracking and Visualization … 211

a single USB bus. It might also be worthwhile to consider using many small-form-
factor PCs with integrated GPUs, as opposed to few high-end computers. Due to
the modular structure of ROS, individual nodes can easily be spread across different
computers.

10 Conclusion

In this chapter, we presented a multi-modal, ROS-based people detection and track-
ing framework developed for and tested on a large mobile service robot. We believe
that due to its modular structure with clearly defined interfaces between components,
our framework can easily be re-used on other robot platforms equipped with simi-
lar sensor configurations. Also, as we found out in our own research, standardized
message interfaces allow to easily replace individual components of the pipeline,
such as the core tracking algorithm, by a different implementation for comparative
purposes. When doing so, the user can leverage our wide infrastructure of existing
visualization, evaluation and simulation tools to quickly set up a usable tracking sys-
tem. To our knowledge, the presented people tracking framework is the functionally
most complete one that is currently available as open-source ROS software.

In future work, we want to extend our tracking framework with person re-
identification capabilities, the lack of which is currently themost apparent bottleneck
when dealing with lengthy occlusions of tracked persons.

Acknowledgments This work has been supported by the EC under contract number FP7-ICT-
600877 (SPENCER). The authors would like to thank Fabian Girrbach for implementing several
important extensions to the tracking system; Stefan Breuers from the Computer Vision Group at
RWTH Aachen for MHT experiments and integrating the RGB-D and monocular vision detectors
into the framework; and Christian Dondrup from the Lincoln Centre for Autonomous Systems
Research for the original ROS integration of these components.

References

1. K.O. Arras, S. Grzonka, M. Luber, W. Burgard, Efficient people tracking in laser range data
using a multi-hypothesis leg-tracker with adaptive occlusion probabilities, in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) (Pasadena, California,
USA, 2008)

2. K.O. Arras, O.M. Mozos, W. Burgard, Using boosted features for the detection of people in 2D
range data, in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA) (Rome, Italy, 2007)

3. Y. Bar-Shalom, University of California, L.A.U.E.: Multitarget-Multisensor Tracking: Appli-
cations and Advances (No. 3 in Radar Library, Artech House, 2000)

4. Y. Bar-Shalom, P. Willett, X. Tian, Tracking and Data Fusion: A Handbook of Algorithms
(YBS Publishing, Storrs, 2011)

5. K. Bernardin, R. Stiefelhagen, Evaluating multiple object tracking performance: the CLEAR
MOT metrics. J. Image Video Process. 2008, 1:1–1:10 (2008)

212 T. Linder and K.O. Arras

6. S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems (Radar Library,
Artech House, 1999)

7. W. Choi, S. Savarese, A unified framework for multi-target tracking and collective activ-
ity recognition, in Proceedings of the European Conference on Computer Vision (ECCV)
(Florence, Italy, 2012), pp. 215–230

8. I. Cox, S. Hingorani, An efficient implementation of Reid’s multiple hypothesis tracking algo-
rithm and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI) 18(2), 138–150 (1996)

9. L. Ding, A. Yilmaz, Inferring social relations from visual concepts, in IEEE International
Conference on Computer Vision (ICCV) (Barcelona, Spain, 2011)

10. A. Fod, A. Howard, M.J. Matari, Laser-based people tracking, in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) (Washington, DC, 2002)

11. D. Helbing, P. Molnar, A social force model for pedestrian dynamics. Phys. Rev. E 51 (1995)
12. O.H. Jafari, D. Mitzel, B. Leibe, Real-time RGB-D based people detection and tracking for

mobile robots and head-worn cameras, in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA) (Hong Kong, China, 2014)

13. B. Lau, K.O. Arras, W. Burgard, Multi-model hypothesis group tracking and group size esti-
mation. Int. J. Soc. Robot. 2(1), 19–30 (2010)

14. L. Leal-Taixé, G. Pons-Moll, B. Rosenhahn, Everybody needs somebody: modeling social and
grouping behavior on a linear programming multiple people tracker, in ICCV Workshop on
Modeling, Simulation and Visual Analysis of Large Crowds (2011)

15. T. Linder, K.O. Arras, Multi-model hypothesis tracking of groups of people in RGB-D data,
in IEEE International Conference on Information Fusion (FUSION’14) (Salamanca, Spain,
2014)

16. Luber, M., Tipaldi, G.D., Arras, K.O.: Better models for people tracking, in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, 2011)

17. M. Luber, K.O. Arras, Multi-hypothesis social grouping and tracking for mobile robots, in
Robotics: Science and Systems (RSS’13) (Berlin, Germany, 2013)

18. M. Luber, L. Spinello, K.O. Arras, People tracking in RGB-D data with online-boosted target
models, in Proceedings of theInternational Conference on Intelligent Robots and Systems
(IROS) (San Francisco, USA, 2011)

19. M. Luber, J.A. Stork, G.D. Tipaldi, K.O. Arras, People trackingwith humanmotion predictions
from social forces, in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) (Anchorage, USA, 2010)

20. M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, G. Theraulaz, The walking behaviour of
pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4) (2010)

21. M. Munaro, F. Basso, E. Menegatti, Tracking people within groups with RGB-D data, in
Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2012)

22. M.Munaro, E.Menegatti, Fast RGB-D people tracking for service robots. Auton. Robot. 37(3),
227–242 (2014)

23. S. Pellegrini, A. Ess, van Gool, L. Improving data association by joint modeling of pedestrian
trajectories and groupings, in Proceedings of the European Conference on Computer Vision
(ECCV), (Heraklion, Greece, 2010)

24. Z. Qin, C.R. Shelton, Improving multi-target tracking via social grouping, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Providence, RI,
USA, 2012)

25. D.B. Reid, An algorithm for tracking multiple targets. Trans. Autom. Control. 24(6) (1979)
26. D. Schuhmacher, B.T. Vo, B.N. Vo, A consistent metric for performance evaluation of multi-

object filters. Signal Process. IEEE Trans. 56(8), 3447–3457 (2008)
27. D. Schulz,W.Burgard,D. Fox,A.B.Cremers, People trackingwithmobile robots using sample-

based joint probabilistic data association filters. Int. J. Robot. Res. 22(2), 99–116 (2003)
28. L. Spinello, K.O. Arras, People detection in RGB-D data, in Proceedings of the International

Conference on Intelligent Robots and Systems (IROS) (San Francisco, USA, 2011)

People Detection, Tracking and Visualization … 213

29. G. Wang, A. Gallagher, J. Luo, D. Forsyth, Seeing people in social context: recognizing people
and social relationships, in Proceedings of the European Conference on Computer Vision
(ECCV) (Heraklion, Greece, 2010)

30. T. Yu, S.N. Lim, K.A. Patwardhan, N. Krahnstoever, Monitoring, recognizing and discovering
social networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Miami, FL, USA, 2009)

Authors’ Biography

Timm Linder is a PhD candidate at the Social Robotics Laboratory of the University of Freiburg,
Germany. His research in the SPENCER project focusses on people detection and tracking in 2D
laser range and RGB-D data, as well as human attribute classification in RGB-D. He is an expe-
rienced C++ and Python developer and has been a ROS user for over two years. He contributed
to the ROS visualization tool RViz and played a major role in the deployment and integration of
the software stack on the SPENCER robot platform.

Kai O. Arras is an assistant professor at the Social Robotics Laboratory of the University of
Freiburg, and coordinator of the EU FP7 project SPENCER. After his diploma degree in Electri-
cal Engineering at ETH Zürich, Switzerland and a PhD at EPFL, he was a post-doctoral research
associate at KTH Stockholm, Sweden and at the Autonomous Intelligent Systems Group of the
University of Freiburg. He also spent time as a senior research scientist at Evolution Robotics,
Inc. and later became a DFG Junior Research Group Leader at the University of Freiburg.

A ROS-Based System for an Autonomous
Service Robot

Viktor Seib, Raphael Memmesheimer and Dietrich Paulus

Abstract The Active Vision Group (AGAS) has gained plenty of experience in
robotics over the past years. This contribution focuses on the area of service robotics.
We present several important components that are crucial for a service robot system:
mapping andnavigation, object recognition, speech synthesis and speech recognition.
A detailed tutorial on each of these packages is given in the presented chapter. All
of the presented components are published on our ROS package repository: http://
wiki.ros.org/agas-ros-pkg.

Keywords Service robots ·SLAM ·Navigation ·Object recognition ·Human-robot
interaction · Speech recognition · Robot face

1 Introduction

Since 2003 the Active Vision Group (AGAS) is developing robotic systems. The
developed software was tested on different robots in the RoboCup1 competitions.
Our robot Robbie participated in the RoboCup Rescue league where it became
world champion in autonomy (Best in Class Autonomy Award) in 2007 and 2008.
It also won the Best in Class Autonomy Award in the RoboCup German Open in
the years 2007–2011. Our robot Lisa depicted in Fig. 1 is the successor of Rob-
bie and is participating in the RoboCup@Home league. Lisa’s software is based on
Robbie’s, but was adopted and extended to the tasks of a service robot in domestic

1RoboCup website: http://www.robocup.org

V. Seib (B) · R. Memmesheimer · D. Paulus
Active Vision Group (AGAS), University of Koblenz-Landau, Universitätsstr. 1,
56070 Koblenz, Germany
e-mail: vseib@uni-koblenz.de
URL: http://agas.uni-koblenz.de

R. Memmesheimer
e-mail: raphael@uni-koblenz.de

D. Paulus
e-mail: paulus@uni-koblenz.de

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_9

215

http://wiki.ros.org/agas-ros-pkg
http://wiki.ros.org/agas-ros-pkg
http://www.robocup.org

216 V. Seib et al.

Fig. 1 The current setup of
our robot Lisa. A laser range
finder in the lower part is
used for mapping and
navigation. On top, an
RGB-D camera, a high
resolution camera and a
microphone are mounted on
a pan-tilt unit. Additionally,
Lisa possesses an 6-DOF
robotic arm for object
manipulation and a screen
displaying different facial
expressions to interact with
the user

environments. Lisa has already won four times the 3rd place and in 2015 the 2nd
place of the RoboCup German Open and is frequently participating in the finals of
the RoboCup@HomeWorld Championship. Further, in 2015 Lisa won the 1st place
in the RoboCup@Home World Championship in Hefei, China. Additionally, Lisa
has won the Innovation Award (2010) and the Technical Challenge Award (2012) of
the RoboCup@Home league. Inspired by this success, we want to share our software
with the ROS community and give a detailed instruction on how to use this software
with other robots. Further information about our research group and robotic projects
are available online2 and information about Lisa at our project website.3

After a common environment setup, presented in Sec. 2, we will introduce the
following ROS components in this chapter:

• First, we introduce a graphical user interface, homer_gui in Sect. 3.
• Second, we present nodes for mapping and navigation in Sect. 4.
• This will be followed by a description of our object recognition in Sect. 5.
• Finally, we demonstrate components for human robot interaction such as speech
recognition, speech synthesis and a rendered robot face in Sect. 6

With the presented software, a ROS enabled robot will be able to autonomous-
ly create a map and navigate in a dynamic environment. Further, it will be able
to recognize objects. Finally, the robot will be able to receive and react to speech
commands and reply using natural language. The speech recognition is implemented
by interfacing with an Android device that is connected to the robot. A robot face
with different face expressions and synchronized lip movements can be presented on
an onboard screen of the robot.

2Active Vision Group: http://agas.uni-koblenz.de.
3Team homer@UniKoblenz: http://homer.uni-koblenz.de.

http://agas.uni-koblenz.de
http://homer.uni-koblenz.de

A ROS-Based System for an Autonomous Service Robot 217

The presented software can be downloaded from our ROS software repository.4

All example code in this chapter is also available online. Further, we provide accom-
panying videos that can be accessed via our YouTube channel.5

2 ROS Environment Configuration

All contributed packages have been tested with Ubuntu 14.04 LTS (Trusty Tahr) and
ROS Indigo. For convenience, the script install_homer_dependencies.sh
(in the software repository) installs all needed dependencies. However, also the step-
by-step instruction in each section can be used.

There are common steps to all presented packages that need to be taken to config-
ure the ROS environment properly. To configure all paths correctly, it is necessary to
define an environment variable HOMER_DIR. It should contain the path of the folder
that contains the catkin workspace on your hard disk. For example, on our robot the
path is /home/homer/ros. To set the environment variable HOMER_DIR to point
to this path, type:

export HOMER_DIR=/home/homer/ros

Please replace the path by the one that you use. To test whether the variable was set
correctly, type:

echo $HOMER_DIR

This command displays the path the variable points to.
Note that you need to set the path in every terminal. To avoid this, the path can

be defined in your session configuration file .bashrc and will be automatically set
for each terminal that is opened. In order to do this, please type:

echo"export HOMER_DIR=/home/homer/ros">> ˜/.bashrc

After setting the path, make sure that you did not change the directory structure after
downloading the software from our repository. However, if you changed it, please
adjust the paths written out after $ENV{HOMER_DIR} in the CMakeLists.txt file of
the corresponding packages.

3 Graphical User Interface

Although a graphical user interface (GUI) is not necessary for a robot, it provides
a lot of comfort in monitoring or controlling the state of the system. ROS already

4AGAS ROS packages: http://wiki.ros.org/agas-ros-pkg.
5HomerUniKoblenz on YouTube: http://www.youtube.com/c/homerUniKoblenz.

http://wiki.ros.org/agas-ros-pkg
http://www.youtube.com/c/homerUniKoblenz

218 V. Seib et al.

has rviz, a powerful tool for visualization of sensor data that can be extended with
own plugins. Thus, we do not aim at creating our own visualization tool. Rather,
in our package homer_gui we include rviz’s visualization as a plugin. This
means that it is able to visualize everything that rviz does and can be adapted
using the same configuration files. However, our GUI provides more than pure data
visualization. It offers a convenient way of creating amap, defining navigation points
and monitoring the navigation. Also, it enables the user to train and test new objects
for object recognition in a convenient way and to monitor and define commands for
human robot interaction. Additionally, basic state machine-like behavior and task
execution can be defined in the GUI with only a fewmouse clicks. The homer_gui
is intended to run directly on the on-board computer of the robot. However, it can
also be used to control the robot’s state and behavior remotely. Please note that the
version of the homer_gui presented here is a reduced version, encompassing only
functionality that we provide additional packages for. As we continue releasing more
and more components from our framework, more tabs and widgets will be included
in the homer_gui.

3.1 Background

The homer_gui package is a Qt-based application. It serves as the central com-
mand, monitoring and visualization interface for our robot. The main concept is to
define several task specific tabs that provide a detailed control of all task specific
components. As an example, in the currently provided homer_gui package we
added the Map and Object Recognition tabs. These two tabs are closely linked to
our mapping and navigation (see Sect. 4) and to our object recognition (see Sect. 5).
Their functionality will be described in the corresponding sections, together with the
related packages. The third tab in homer_gui is the main tab with the title Robot
Control. Its purpose is the visualization of the sensor data and the robot’s belief about
the world. Further, some frequently used functionality of the robot can be accessed
through buttons in this tab.

3.2 ROS Environment Configuration

Please make sure to take the configuration steps described in Sect. 2 before pro-
ceeding. In order to use the package homer_gui you have to install the following
libraries:

• Qt: http://qt.nokia.com
• Rviz: http://wiki.ros.org/rviz (usually comes with ROS)
• PCL: http://pointclouds.org/ (usually comes with ROS)

http://qt.nokia.com
http://wiki.ros.org/rviz
http://pointclouds.org/

A ROS-Based System for an Autonomous Service Robot 219

You can install the Qt libraries by opening a terminal and typing (all in one line):

sudo apt-get install libqt4-core libqt4-dev libqt4-gui

3.3 Quick Start and Example

To start the homer_gui, type

roslaunch homer_gui homer_gui.launch

Awindow, similar to Fig. 2 will appear. By itself, the GUI is not very exciting. Its full
potential unfolds when used on a robot platform or e.g. with the packages described
in Sects. 4 and 5. If started on a robot platform, the 3D view of the Robot Control tab
will, among others, display the laser data and the robot model (Fig. 2).

3.4 Package Description

Since the Object Recognition and Map tabs are described in detail in Sects. 4 and 5,
this descriptionwill focus on theRobot Control tab. Themain functionality of this tab
is the 3Dviewon the left part of the tab.We included thervizplugin into the 3Dview
widget. On startup, the homer_gui will load the file homer_display.rviz
contained in the config folder of the package. Every rviz display configured in
that file will also be available in our GUI. However, it can only be reconfigured using
rviz.

Fig. 2 Graphical user interface homer_gui. On the left the well known 3D view of rviz is
included as plugin. On the right images of two connected cameras are displayed

220 V. Seib et al.

The right side of the Robot Control tab contains two subtabs, Control and
SimpleAction. The Control has two image widgets on top. The left one subscribes to
the topic /camera/rgb/image_raw, the default image topic of the widespread
RGB-D cameras (e.g. Kinect). The right one can be used to visualize other images
as needed. It subscribes to the topic /image and in the same manner as the left wid-
get, expects a message of type sensor_msgs/Image. The Control tab further
contains two text line widgets with corresponding buttons. The first one is used to
simulate recognized speech. When the button Fake User Input is pushed, the text in
the corresponding text widget is published on the topic /recognized_speech
as a std_msgs/Stringmessage. The second button is used to let the robot speak.
Pushing the button Speak publishes a std_msgs/String message on the topic
/robot_face/speak. If the robot_face described in Sect. 6 is running, the
speech will be synthesized.

The second subtab, SimpleAction, is used to spontaneously create basic state
machine-like behavior. So far, three simple actions can be used: Drive to, Speak and
Hear. After selecting one of the actions on the left side of the tab, a parameter needs
to be specified.

The Speak action takes a string that will be spoken by the robot (using the
robot_face package described in Sect. 6) as parameter. The Drive to action takes
a point of interest (POI) name as string as its parameter. For now it is sufficiently
to define a POI as a “named navigation goal”. On execution, the robot will navigate
to this POI in the map. For details on how to create POIs, please refer to Sect. 4.
The Hear action is used for speech recognition and is the only action that takes
multiple parameters, separated by commas (without spaces). If only one parameter
is specified, the action will block until speech is recognized that matches the given
parameter string. However, with multiple parameters a case distinction is achieved.
Depending on the recognized words the robot can perform different behavior.

By using the Add button, an Action is added to the list of actions. Added actions,
except Hear, can be moved inside the list. Clicking Start will start the execution until
all actions are executed or the Stop button is pressed. Once a list of actions is defined
it can be saved and loaded with the corresponding buttons.

Two examples for a command sequence defined using simple actions are presented
in Fig. 3. The behavior of the robot defined in the upper image will be as follows:
first, the robot will say “starting”. After finishing the speech action, it navigates to
the POI office and will say “I am in the office”. After that the robot waits for the
“exit” command. As soon as this command is received, the robot navigates to the
POI outside.

The behavior defined in the lower image is an example for case distinction. The
robot starts by saying “I am ready”. After that it waits for one of three commands.
Depending on whether it hears “office”, “kitchen” or “living room, it navigates to
the corresponding POI and announces that it has reached its destination.

Thus, using the Simple Action tab basic robotic behavior can be achieved without
programming. In the following sections further functionality of the homer_gui
and the corresponding packages will be introduced.

A ROS-Based System for an Autonomous Service Robot 221

Fig. 3 Two examples of task sequences defined using the simple actions

4 Mapping and Navigation

The approach used in our software follows the algorithms described in [16] that were
developed in our research group. To generate a map, the algorithm uses the robot’s
odometry data and the sensor readings of a laser range finder. The map building
process uses a particle filter to match the current scan onto the occupancy grid. For
navigation a path to the target is found using the A*-algorithm on the occupancy
grid. The found path is post processed to allow for smooth trajectories. The robot
then follows waypoints along the planned path.

The main benefit of our mapping and navigation compared to well established
packages such as hector_mapping6 and amcl7 is its close integration with the
graphical user interface homer_gui. It allows the user to define and manage dif-
ferent named navigation targets (points of interest). Further, maps can be edited by
adding or removing obstacles in different map layers. Despite the points of interest
andmap layers, the gridmaps createdwith our application are completely compatible
with the ROS standard. The additional information is stored in a separate yaml-file
that is only processed by the homer_gui, while the actual map data is not changed.

A video showing an example usage of the homer_gui with our mapping and
navigation is available online.8

6Hector Mapping: http://wiki.ros.org/hector_mapping.
7AMCL: http://wiki.ros.org/amcl.
8Example video for mapping and navigation: http://youtu.be/rH4pNq3nlds.

http://wiki.ros.org/hector_mapping
http://wiki.ros.org/amcl
http://youtu.be/rH4pNq3nlds

222 V. Seib et al.

4.1 Background

Mapping and Localization For autonomous task execution in domestic environ-
ments a robot needs to know the environment and its current position in that envi-
ronment. This problem is called SLAM (Simultaneous Localization and Mapping)
and is usually solved by a probabilistic Bayes formulation, in our case by a particle
filter. Based on the position estimate from odometry the current laser scan is regis-
tered against the global occupancy grid. The occupancy grid stores the occupation
probability for each cell and is used for path planning and navigation.

Navigation This approach is based on Zelinsky’s path transform [17, 18]. A distance
transform is combined with a weighted obstacle transform and used for navigation.
The distance transform holds the distance per cell to a given target. On the other
hand, the obstacle transform holds the distance to the closest obstacle for each cell.
This enables the calculation of short paths to target locations while at the same time
maintaining a required safety distance to nearby obstacles.

Our navigation system merges the current laser range scan as a frontier into the
occupancymap. A calculated path is then checked against obstacles in small intervals
during navigation,which can be done at very little computational expense. If an object
blocks the path for a given interval, the path is re-calculated. This approach allows
the robot to efficiently navigate in highly dynamic environments.

4.2 ROS Environment Configuration

Please make sure to take the configuration steps described in Sect. 2 before proceed-
ing. Further, the package homer_gui will be used in the examples presented here.
Please also follow the configurations steps described in Sect. 3. The mapping and
navigation packages require the Eigen library. To install this dependency, please type
the following command in a terminal:

sudo apt-get install libeigen3-dev

4.3 Quick Start and Example

Before proceeding, do not forget to execute the catkin_make command in your
ROS workspace.

Mapping To be able to use the mapping, your robot needs to publish odometry data
on the topic /odom and laser range data on the topic /scan. Please refer to the
ReadMe file9 if your robot is publishing encoder ticks instead of odometry data.With

9A ReadMe is available online in the software repository.

A ROS-Based System for an Autonomous Service Robot 223

Fig. 4 2D and 3D view of a map and a planned path (blue line). Red dots indicate the current laser
scan, while orange circles in the 2D map represent named navigation targets (points of interest)

the odometry and laser range data we are able to construct 2D occupancy grid maps
using thehomer_mapping package. However, the position of the laser range finder
relative to the robot needs to be given. This is achieved by creating a transformation
from /base_link to /laser for instance by adding:

<node pkg="tf"type="static_transform_publisher"
name="base_link_to_laser_broadcaster"
args="0.0 0.0 0.1 0.0 0.0 0.0 1.0 /base_link /laser 100"/>

to your launch file. Please substitute the frame name of the laser range finder (here:
/laser) by the frame frame_id of the /scan messages from your laser range
finder. For further information on transformations and frames please check out the
tf package documentation.10

With these preparations completed the mapping can be started with the following
command:

roslaunch homer_mapping homer_mapping.launch

The mapping node constructs the map incrementally and refines the current position
of the robot using a particle filter SLAM approach. The map is published on the
/map topic and the robot’s pose on the topic /pose. The map can be inspected with
rviz or our interface presented in Sect. 3 by typing

roslaunch homer_gui homer_gui.launch

and selecting the Map tab. An example visualization is shown in Fig. 4.

Navigation Prerequisite for navigation is the map and the robot’s pose, both are
computed by the homer_mapping package:

10tf package documentation: http://wiki.ros.org/tf.

http://wiki.ros.org/tf

224 V. Seib et al.

roslaunch homer_mapping homer_mapping.launch

For navigation, please additionally start the navigation package with the following
command:

roslaunch homer_navigation homer_navigation.launch

The navigation node will publish velocity commands of type geometry_msgs/
Twist on topic /cmd_vel. Please make sure that your robot subscribes to this
topic.

If you are using rviz you can use the 2D Pose Estimate button to localize the
robot (if needed) and subsequently the 2D Nav Goal button to define a target location
for navigation and start navigating.

Navigation can also be started via command line. The equivalent command to the
2D Nav Goal button is

rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped

After typing this command, press the TAB-button twice and fill in the desired target
location. Alternatively, you can use the following command to start navigation

rostopic pub /homer_navigation/start_navigation
homer_mapnav_msgs/StartNavigation

The latter option has additional parameters that allow you to define a distance to the
target or to ignore the given orientation. In the next section, named target location, the
so called points of interest (POIs), will be introduced. The following command can
be used to navigate to a previously defined POI (in this example to the POI kitchen):

rostopic pub /homer_navigation/navigate_to_POI homer_mapnav_msgs/
NavigateToPOI

"poi_name: ’kitchen’
distance_to_target: 0.0
skip_final_turn: false"

In all cases the navigation can be canceled by the command

rostopic pub /homer_navigation/stop_navigation std_msgs/Empty"{}"

As soon as the target location is reached, a message of type std_msgs/Empty
is published on the topic/homer_navigation/target_reached. In case the
navigation goal could not be reached, a message of type homer_mapnav_msgs/
TargetUnreachable is published on the topic /homer_navigation/
target_unreachable which holds the reason why the target could not be
reached.

A ROS-Based System for an Autonomous Service Robot 225

Please note that the full strength of our mapping and navigation packages comes
from its close integration with the homer_gui package, which will be explained
in the following section.

4.4 Using the homer_gui for Mapping and Navigation

This section describes the integration of the mapping and navigation with the
homer_gui and the involved topics and messages. Please type the following com-
mands to start all components needed for the examples in this section:

roslaunch homer_mapping homer_mapping.launch roslaunch
homer_navigation homer_navigation.launch
roslaunch homer_gui homer_gui.launch

A window showing the homer_gui should open. Please select the Map tab where
you should see the currentmap and the robot’s pose estimate similar to Fig. 5. Option-
ally, a previously created map can be loaded with the Open... button. After loading a
map, usually the robot’s pose needs to be changed. This is achieved by Ctrl + Left-
Click in themap view. To change the robot’s orientation please useCtrl + RightClick,
clicking on the point the robot should look at. This corresponds to the functionality
encapsulated in the 2D Pose Estimate button in rviz, however, by splitting the def-
inition of the robot’s location and orientation a more precise pose estimate can be
given than if both have to be set at once.

Fig. 5 The mapping tab in the homer_gui. On the left side the occupancy gridmap is shown.
The current laser measurements are aligned to the map and drawn in red. The robot’s pose estimate
is denoted by the blue circle with an arrow. Orange circles are points of interest

226 V. Seib et al.

However, the functionality of the 2D Nav Goal button in rviz is handled com-
pletely differently in our system. In rviz, the 2D Nav Goal button is used to define
a navigation goal, a target orientation and start navigating towards this goal at once.
In the homer_gui a click on the map adds a point of interest (POI) to the map view.
After adding a POI symbol a name needs to be assigned on the right side of the tab
(Fig. 5). A close-up of this dialog is shown in Fig. 6. A click on Apply informs the
homer_map_manager that a new POI is available. The target orientation of a POI
is denoted by a small arrow inside the POI symbol. To change its orientation a POI
must be selected. A Ctrl + LeftClick on a location in the map defines the direction
the robot should face after reaching the target. The specified orientation needs to be
confirmed with the Apply button. An arbitrary number of POIs can be added to the
map specifying all required locations for navigation. To actually navigate to a POI,
it needs to be selected and the Drive to button pressed (Fig. 6). The Stop navigation
button allows to abort navigation and stop the robot. Please note that the Drive to
button uses the same topic and message as the 2D Nav Goal button in rviz. How-
ever, the location in rviz is determined from a click on the map whereas here the
location is taken from the predefined POI.

The homer_gui further allows to use different map layers. This is used e.g. if
the robot is equipped with only one laser range finder on a fixed height that is not
capable of detecting all obstacles in the area. The map layers are shown in the Map
Layers subtab of the Map tab (Fig. 7). The SLAM Map layer is the normal occupancy
grid for navigation. The laser data layer only shows the current laser scan, while
the Kinect Map layer is currently not used, but will contain sensor readings from an
RGB-D camera in the future. All selected layers are merged into the SLAM Map and
used for navigation and obstacle avoidance. The Masking Map layer is used to add
additional obstacles that the robot was not able to perceive automatically. To modify
the Masking Map, please select it and press Shift + LeftClick into the map view. A
red square will appear whereby its corners can be dragged to give it the desired shape
and location. A click on apply will finally add the modification to the layer. There
are different types of modifications that can be added:

block: An area that the robot will consider as an obstacle that will be avoided in
any case (e.g. stairs or other not perceived obstacles).

obstacle: Similar to block, however this type can be used to allow manipulation in
this area while navigation will still be prohibited.

Fig. 6 The interface for
adding and editing POIs, as
well as to start and abort
navigation

A ROS-Based System for an Autonomous Service Robot 227

Fig. 7 The map layers
interface to manually modify
the existing map in different
ways

free: This area will be considered as free regardless of the sensor readings or the
stored map data. This is useful if navigating with a fixed map where an object has
moved or a closed door is now open.

sensitive: This type enables you to define high sensitive areas where obstacles are
faster included into the map. This is useful for known dynamic parts of the map,
for instance door areas.

These modifications can be added to any map layer. However, we advise to only
modify the Masking Map manually since other layers are continuously updated by
sensor readings and thus might alter the manual modifications.

4.5 Package Description and Code Examples

The graph in Fig. 8 shows the two nodes that are encapsulated in the homer_
mapping package with the most important topics. The homer_mapping node
is in charge of the mapping and the associated algorithms. The node homer_map_
manager handles the loading and storage of maps, as well as manages the POIs
and map layers. The most important topics are explained in the following:

Fig. 8 ROS graph of the nodes inside the homer_mapping package with the most important
topics

228 V. Seib et al.

Mapping Publishers

/pose (geometry_msgs/PoseStamped): The current pose estimate in the
/map frame as calculated by the particle filter.

/homer_mapping/slam_map (nav_msgs/OccupancyGrid): The cur-
rent map as output from the SLAM algorithm (without any map layers). The
default publishing frequency is 2Hz.

/map (nav_msgs/OccupancyGrid): The current map enhanced with map
layers.

Mapping Subscribers

/odom (nav_msgs/Odometry): Current robot odometry values, needed by the
particle filter for the SLAM algorithm.

/scan (sensor_msgs/LaserScan): Current lasermeasurements, needed by
the particle filter for the SLAM algorithm.

Mapping Services

/homer_map_manager/save_map (homer_mapnav_msgs/SaveMap):
Saves the current occupancy map with all POIs and layers.

/homer_map_manager/load_map (homer_mapnav_msgs/LoadMap):
Loads a map from a specified file path.

The graph in Fig. 9 shows the homer_navigation node with its most impor-
tant topics.As the navigation relies on the nodehomer_mapping and homer_map
_manager, these nodes need to be running for the robot to be able to navigate. The
homer_navigation node handles the path planning algorithm and sends control
commands to the robot. The most important topics are explained in the following.
For a better overview not all of these topics are shown in Fig. 9.
Navigation Publishers

/cmd_vel (geometry_msgs/Twist): Velocity commands calculated by the
navigation node are published on this topic.

Fig. 9 ROS graph of the nodes inside the homer_navigation package with the most important
topics

A ROS-Based System for an Autonomous Service Robot 229

/homer_navigation/target_reached (std_msgs/Empty): When
the robot reaches a navigation goal a message will be send on this topic.

/homer_navigation/target_unreachable (homer_mapnav_msgs
/Target Unreachable): The system is notified on this topic if a target is
not reachable and the navigation is canceled.

Navigation Subscribers

/map (nav_msgs/OccupancyGrid): The current map with all defined map
layers merged is used for path calculation and obstacle avoidance.

/pose (geometry_msgs/PoseStamped): The current pose of the robot for
path planning.

/scan (nav_msgs/LaserScan): The current laser scan is used for obstacle
avoidance.

/homer_navigation/start_navigation (homer_mapnav_msgs
/Start Navigation): Plans a path and starts navigating to a target location.

/homer_navigation/navigate_to_POI (homer_mapnav_msgs/
NavigateToPOI): Plans a path and starts navigating to a given POI.

/homer_navigation/stop_navigation (homer_mapnav_msgs/
StopNavigation): Stops the current navigation task.

To use the mapping and navigation in your own application, be sure to include the
homer_mapnav_msgs as build and run dependency in your package’s
package.xml file. Further, homer_mapnav_msgs has to be added to the
find_package section and as a dependency to the catkin_package section
in the CMakeLists.txt file. As with the command line examples from the Quick
Start section we provide an example for navigating to a location and to a predefined
POI by its name. An example header file for navigation could look like this:

1 #include <ros/ros.h>
2 #include <tf/tf.h>
3 #include <homer_mapnav_msgs/NavigateToPOI.h>
4 #include <homer_mapnav_msgs/StartNavigation.h>
5

6 class NavigationExample {
7 public:
8 NavigationExample(ros::NodeHandle nh);
9 virtual ˜NavigationExample(){};

10

11 void driveToPOI(std::string name, float distance_to_target = 0.03);
12 void driveToPosition(float x, float y, float z,
13 float orientation_in_rad = 0.0,
14 float distance_to_target = 0.03)
15 private:
16 void targetReachedCallback(
17 const std_msgs::Empty::ConstPtr& msg);
18 void targetUnreachableCallback(
19 const homer_mapnav_msgs::TargetUnreachable::ConstPtr& msg);
20 ros::Publisher navigate_to_poi_pub_;
21 ros::Publisher start_navigation_pub_;

230 V. Seib et al.

22 ros::Subscriber target_reached_sub_;
23 ros::Subscriber target_unreachable_sub_;
24 };

In your class implementation you can use the following code snippets. First, include
the example header and initialize all subscribers and publishers in the constructor:

1 #include"NavigationExample.h"
2

3 NavigationExample::NavigationExample(ros::NodeHandle nh)
4 {
5 navigate_to_poi_pub_ = nh->advertise<homer_mapnav_msgs::NavigateToPOI>
6 ("/homer_navigation/navigate_to_POI", 1);
7 start_navigation_pub_ = nh->advertise<homer_mapnav_msgs::
8 StartNavigation>("/homer_navigation/start_navigation", 1);
9

10 target_reached_sub_ = nh->subscribe<std_msgs::Empty>
11 ("/homer_navigation/target_reached", 1,
12 &NavigationExample::targetReachedCallback, this);
13

14 target_unreachable_sub_ = nh->subscribe<homer_mapnav_msgs::
15 TargetUnreachable>("/homer_navigation/target_unreachable", 1,
16 &NavigationExample::targetUnreachableCallback, this);
17 }

The following function is used to navigate to a predefined POI.

1 void NavigationExample::driveToPOI(std::string name,
2 float distance_to_target)
3 {
4 ROS_INFO_STREAM("DRIVING TO "+ name);
5 homer_mapnav_msgs::NavigateToPOI msg;
6 msg.poi_name = name;
7 msg.distance_to_target = distance_to_target;
8 navigate_to_poi_pub_.publish(msg);
9 }

Further, the following function allows to navigate to arbitrary coordinates in the
/map frame.

1 void NavigationExample::driveToPosition(float x, float y, float z,
2 float orientation_in_rad,
3 float distance_to_target)
4 {
5 homer_mapnav_msgs::StartNavigation start_msg;
6 start_msg.goal.position.x = x;
7 start_msg.goal.position.y = y;
8 start_msg.goal.position.z = z;
9 start_msg.goal.orientation =

10 tf::createQuaternionMsgFromYaw(orientation_in_rad);
11 start_msg.distance_to_target = distance_to_target;

A ROS-Based System for an Autonomous Service Robot 231

12 m_start_navigation_pub.publish(start_msg);
13 }

Finally, the following two callbacks provide a feedback onwhether the target location
could be reached or not:

1 void NavigationExample::targetReachedCallback(
2 const std_msgs::Empty::ConstPtr& msg)
3 {
4 ROS_INFO_STREAM("Reached the goal location");
5 }
6 void NavigationExample::targetUnreachableCallback(
7 const homer_mapnav_msgs::TargetUnreachable::ConstPtr& msg)
8 {
9 ROS_WARN_STREAM("Target unreachable");

10 }

5 Object Recognition

The ability to recognize objects is crucial for robots and their perception of the
environment. Our object recognition algorithm is based on SURF feature clustering
in Hough-space. This approach is described in detail in [14]. We applied it in the
Technical Challenge of the RoboCup 2012where wewon the 1st place. Additionally,
with an extended version of the algorithm we won the 2nd place in the Object
Perception Challenge of the RoCKIn competition in 2014.

A video showing an example usage of the homer_gui with our object recogni-
tion is available online.11

5.1 Background

Our object recognition approach is based on 2D camera images and SURF features
[2]. The image processing pipeline for the training procedure is shown in Fig. 10. In
order to train the object recognition classifier an image of the background and of the
object has to be captured. These two images are used to calculate a difference image
to segment the object. From segmented object we extract a number of SURF features
f . A feature is a tuple f = (x, y, σ, θ, δ) containing the position (x, y), scale σ and
orientation θ of the feature in the image, as well as a descriptor δ. Thus, the features
are invariant towards scaling, position in the image and in-plane rotations. Further
images with a different object view need to be acquired and added to the object model
in the database to capture the object’s appearance from all sides.

11Example video for object recognition: https://youtu.be/dptgFpu7doI.

https://youtu.be/dptgFpu7doI

232 V. Seib et al.

Fig. 10 Image processing pipeline for the training phase

Fig. 11 Image processing pipeline for the recognition phase

The image processing pipeline for the recognition step is shown in Fig. 11. Since
no information about the background is available during the object recognition phase,
SURF features are extracted from the whole input image. The obtained features are
then matched against the features stored in the object database. For fast nearest-
neighbor and distance computation in the high dimensional descriptor space we use
an approximate nearest neighbor approach [10]. Since simple distance thresholds do
not perform well in high dimensional space, Lowe introduced the distance ratio [7],
which is used here to sort out ambiguous matches. The result of feature matching
is a set of matches between features extracted from training images and the scene
image. This set may still contain outliers, i.e. matches between learned features and
the scene’s background.

The featurematches are clustered in a four dimensional Hough-space representing
the 2D position of the object’s centroid in the image (x, y), it’s scale σ and it’s
rotation θ . The goal is to find a consistent object pose in order to eliminate false
feature correspondences. Each feature correspondence is a hypothesis for an object
pose and is added to the corresponding bin in the accumulator. As suggested in [5,
7], to reduce discretization errors, each hypothesis is added to the two closest bins in
each dimension, thus resulting in 16 accumulator entries per feature correspondence.
As a result of the Hough-transform clustering all features with consistent poses are
sorted into bins, while most outliers are removed since they do not form maxima in
Hough-space.

In the next step, bins representing maxima in Hough-space are inspected. A per-
spective transformation is calculated between the features of a bin and the corre-
sponding points in the database under the assumption that all features lie on a 2D
plane. As most outliers were removed by discarding minima in Hough-space, a
consistent transformation is obtained here. Random Sample Consensus (RANSAC)
is used to identify the best homography for the set of correspondences. The

A ROS-Based System for an Autonomous Service Robot 233

Fig. 12 The input image for object recognition as acquired by our robot during the Technical
Challenge of the RoboCup (a) and the output image depicting the recognition results (b). During
training and recognition an image resolution of 8 MP was used

homography with most point correspondences is considered to be the correct object
pose. Finally, the object presence in the scene is verified by comparing the number
of matched features of the object with the number of all features in the object area.
For further details on the presented algorithm, please refer to [14].

We applied the described algorithm in the Technical Challenge of the RoboCup
@Home World Championship 2012 in Mexico-City where we won the 1st place.
The cropped input image as well as the recognition result of the Technical Challenge
are shown in Fig. 12.

5.2 ROS Environment Configuration

Please make sure to take the configuration steps described in Sect. 2 before pro-
ceeding. The following Quick Start and Example section will use the homer_gui
package described in Sect. 3. Please make sure to follow the steps described there
for the ROS Environment Configuration, as well.

234 V. Seib et al.

The nodes for object recognition are contained in the or_nodes package. This
package depends on the following packages that are also provided in our software
repository:

• or_libs This package contains all algorithms used for object recognition.
• or_msgs All messages used by the or_nodes package are contained here.
• robbie_architecture Core libraries from our framework that other pack-
ages depend on are enclosed here.

All libraries needed to run these packages are installed with ROS automatically.
However, you will need a camera to follow the presented examples. Although our
approach uses RGB data only, in our experience the most widespread and ROS
supported camera is a Kinect-like RGB-D camera. For the camera in our example
we use OpenNI that you can install by typing (all in one line):

sudo apt-get install ros-indigo-openni-camera
ros-indigo-openni-launch

You can use any other camera, of course.

5.3 Quick Start and Example

Before proceeding, please make sure that you completed the ROS Environment Con-
figuration for the object recognition packages. Further, do not forget to execute the
catkin_make command in your ROS workspace.

To recognize objects you need to connect a camera to your computer. In our
example we use a Microsoft Kinect. After connecting the device, start the camera
driver by typing

roslaunch openni_launch openni.launch

This should advertise several topics, including /camera/rgb/image_rect_
color. This topic will be assumed as the default topic that our application uses to
receive camera images from. You can specify a different topic by changing the para-
meter /OrNodes/sInputImageTopic inside the params_kinect.yaml
file. This file is located in the config folder inside the or_nodes package.

You can start the object recognition by typing the following command:

roslaunch or_nodes or_nodes.launch

This will start the necessary nodes, as well as load the default object lisa. Please
start now the homer_gui described in Sect. 3 by typing

roslaunch homer_gui homer_gui.launch

A ROS-Based System for an Autonomous Service Robot 235

Fig. 13 Graphical user interface homer_gui with the current image of the Kinect in the upper
left image widget. The red ellipses indicate the selected Object Recognition tabs

As soon as the main window appears, select the Object Recognition tab on the upper
part of the window. In the tab you are now in please again select the Object Recogni-
tion on the right part of the screen. If everything works as expected, you should see
the camera image of the Kinect in the top left image widget of theObject Recognition
tab (see Fig. 13). Since a default object is already loaded, we can immediately test
the recognition. In order to do this, click on the Start Recognition Loop button in the
lower right part of the window. Now the object recognition is performed on a loop
using the incoming camera images of the Kinect. Please go back to page 2 where an
image of our robot Lisa is shown. If you point the kinect at that image, you should
see a recognition result similar to Fig. 14. As soon as you are done testing, press the
Stop Recognition Loop button. Please note that for obvious reasons we could not test
this example with the final version of the book and used a printed image of the robot
instead.

5.4 Using the homer_gui for Object Learning
and Recognition

This section describes the integration of the object recognition and training pipelines
with the homer_gui. Please connect an RGB-D camera (or any camera you like)
with your computer and type the following commands to start all nodes that are used
in the following use case

236 V. Seib et al.

Fig. 14 Graphical user interface homer_gui displaying the recognition result of our robot Lisa
in the bottom left image widget. The red ellipse indicates the button to start the recognition

roslaunch or_nodes or_nodes.launch
roslaunch homer_gui homer_gui.launch
roslaunch openni_launch openni.launch

Replace the last command by the launch-file of your camera driver.
To train a new object, click on Object Recognition tab in the homer_gui

and in the appearing window on the tab Object Training. As in the quick start
example, you should see the current camera image in the top left image wid-
get. To obtain better results, point the camera at a static background then click
Grab Background. The next incoming image on the image source topic (default:
/camera/rgb/image_rect_color) will be processed as background image.
The background image will appear in the bottom left widget (received over the topic
/or/obj_learn_primary) and a grayscale version of the image will appear in
the top right widget (received over the topic /or/debug_image_gray). Now
place an object that you want to train in front of the camera and click on Grab Fore-
ground. Again, the next incoming image on the image source topic will be processed.
The result is sent to the homer_gui and displayed. The bottom left widget shows
the outline of the object, while the top right widget displays the extracted object mask
(Fig. 15).

In some cases, the initial object mask is far from being optimal. Therefore, several
thresholds need to be adjusted in the GUI using the three sliders and one checkbox on
the right side. Each change will be immediately displayed in the colored image with
the outline and themask image.Note that the initially displayed state of the sliders and
the checkboxmust not necessarily reflect their real states as the GUImight have been
started before the object learning node. It is therefore advised to change each of the
sliders and re-activate the checkbox and see whether the segmentation improves. The

A ROS-Based System for an Autonomous Service Robot 237

Fig. 15 The image widget part of the Object Recognition tab is shown. The top left image shows
the current camera image. The top right image shows the object mask obtained by subtracting the
background and foreground images. The bottom image shows the outline of the object according
to the mask. Only features inside this outline will be saved for this object view

semantics of the sliders and the checkbox are as follows. If the checkbox is checked,
only the largest separated segment of the difference between the background and
the foreground will be used. The threshold determining the separation between the
foreground and background is set with the Background Deletion Threshold slider.
Around the segmented mask, a morphological opening is performed. The radius for
this operation is determined with the Mask Open Radius slider. Finally, an additional
border can be added to the mask by adjusting the Additional Border slider. The
obtained mask might contain a small portion of the table that was segmented due
to the shadow of the object. Usually, this has no negative effect on the recognition
result, as long as the table plane is homogeneous without many features.

To save the obtained object view, click on the AddImage button. Optionally, you
can specify a name for the image in the text field next to the button. An image can
be removed again by selecting the image in the list on the right and clicking the
button RemoveImage. By clicking the Reset button, all images saved so far will be
removed. Several views of the object (about 8–12) should be acquired and saved by
repeating the described procedure. After obtaining enough object views, the object
file has to be saved by specifying a name and clicking the Save button (top right
corner of the window). The resulting object file will be the specified object name

238 V. Seib et al.

with the file extension .objprop. The file will be placed in the package or_nodes
inside the folder objectProperties.

Besides learning new objects by the described procedure, the Object Training tab
offers somemore functionalities. Instead of grabbing the background and foreground
images, images can also be loaded from the hard disk using the buttons Load Back-
ground and Load Foreground, respectively. Further, with the Load Object button, a
previously saved object file can be loaded and more images added or removed.

To recognize a learned object, select the Object Recognition tab on the right.
Please note that the homer_gui is still in development and the numerous check-
boxes in upper right part the Object Recognition subtab have no functionality so far.
It is planned to use these checkboxes in future to display additional debug informa-
tion in the recognition result image widget. Please click on the Load Object button
to select an object for recognition. Note that only loaded objects will be used for
recognition. To remove a loaded object, the corresponding object has to be selected
and subsequently the Remove Object button pushed.

With the desired objects loaded, the recognition can be started by pressing the
Grab Single Image, the Load Image or the Start Recognition Loop buttons. While
the Load Image button is used to recognize objects on an image from the hard disk,
the other two buttons use the incoming images from the camera sensor. In case the
recognition loop was started, recognition runs continuously on the incoming image
stream and can be stopped by a click on the Stop Recognition Loop button. The
recognition result is sent as a or_msgs/OrMatchResult message on the topic
or/match_result.Additionally, astd_msgs/Imagemessage is publishedon
the topic /or/obj_learn_primary displaying the recognition results (Fig. 16).

5.5 Package Description and Code Examples

The graph in Fig. 17 shows the two nodes contained in the or_nodes package with
the most important topics. The obj_learn node is used for object learning and the

Fig. 16 Recognition example of the default object lisa and the learned object robot. The input
image is shown on the left, the recognition results and bounding boxes are shown on the right

A ROS-Based System for an Autonomous Service Robot 239

Fig. 17 ROS graph of the nodes inside the or_nodes package with the most important topics

node obj_rec for object recognition. The most important topics are explained in
the following:

Publishers

/or/match_result (or_msgs/OrMatchResult): Recognition results are pub-
lished on this topic.

/or/debug_image_gray (std_msgs/Image): Debug images and extracted
object mask images are published on this topic.

/or/obj_learn_primary_color (std_msgs/Image): Topic with images
showing the object outline during learning and the recognition results.

Subscribers

/camera/rgb/image_rect_color (std_msgs/Image): Input image topic
for object recognition and learning.

/or/learn_commands (or_msgs/OrLearnCommand): Topic for commands
regarding the object learning procedure.

/or/commands (or_msgs/OrCommand): Topic for commands regarding object
recognition.

To use the object recognition in your own application, be sure to include the
or_msgs as build and run dependency in your package’s package.xml file. Fur-
ther, or_msgs has to be added to the find_package section and as a dependency
to the catkin_package section in the CMakeLists.txt file. The easiest way
to load objects for recognition is to include the following line in your launch file:

<rosparam param="or_objects">lisa,robot</rosparam>

This line sets the parameter or_objects on the ROS parameter server and assigns
it the object names. The object names must be separated by a comma without spaces.
In this example the object files lisa.objprop and robot.objprop will be
loaded automatically on startup. The object files have to be located inside the object-
Properties folder in the or_nodes package. Note that this parameter has to be set
before launching the object recognition launch file. In case this parameter is not set,

240 V. Seib et al.

default objects from the legacy (deprecated) configuration file are loaded (see below).
An example header for object recognition could look like this:

1 #include <ros/ros.h>
2 #include <or_msgs/OrCommand.h>
3 #include <or_nodes/src/Modules/ORControlModule.h>
4 #include <or_msgs/OrMatchResult.h>
5 #include <or_msgs/MatchResult.h>
6 #include <or_msgs/RecognizeImage.h>
7

8 class ObjectsExample {
9 public:

10 ObjectsExample(ros::NodeHandle nh);
11 virtual ˜ObjectsExample(){};
12 private:
13 void recognizeObjects();
14 void orResultsCallback(const or_msgs::OrMatchResult::ConstPtr& msg);
15 void recognizeImagePart(const sensor_msgs/Image &img_msg);
16 ros::Publisher or_command_pub_;
17 ros::Subscriber or_result_sub_;
18 ros::ServiceClient or_client_;
19 };

In your class implementation you can use the following code snippets. First, include
the example header and initialize all subscribers and publishers in the constructor:

1 #include"ObjectsExample.h"
2

3 ObjectsExample::ObjectsExample(ros::NodeHandle nh) {
4 or_command_pub_ = nh.advertise<or_msgs::OrCommand>
5 ("/or/commands", 10);
6 or_result_sub_ = nh.subscribe("/or/match_result", 1,
7 &ObjectsExample::or_result_callback, this);
8 or_client_ = nh.serviceClient<or_msgs::RecognizeImage>
9 ("/or/recognize_object_image");

10 }

The following function calls the recognition on the input image topic:

1 void ObjectExample::recognizeObjects()
2 {
3 or_msgs::OrCommand msg;
4 msg.command = ORControlModule::GrabSingleImage;
5 or_command_pub_.publish(msg);
6 }

The recognition result is obtained in this callback:

1 void ObjectExample::orResultsCallback(const
2 or_msgs::OrMatchResult::ConstPtr& msg)
3 {
4 for(MatchResult mr : msg->match_results)
5 {
6 ROS_INFO_STREAM("Recognized object "<< mr.object_name);

A ROS-Based System for an Autonomous Service Robot 241

7 // mr.b_box is the bounding box of this object
8 }
9 }

In some application youmight not want to use the whole input image for recognition,
but only a certain region of interest. This is especially the case when you have
segmented an object using geometrical information. The extracted RGB image part
of the segmented object can then be put into an sensor_msgs/Image message
and a service call used for recognition. The following code snippet shows an example:

1 void ObjectExample::recognizeImagePart(const sensor_msgs/Image &img_msg)
2 {
3 or_msgs::RecognizeImage srv;
4 srv.request.image = img_msg;
5 if(or_client_.call(srv))
6 {
7 // this vector contains all recognized objects inside img_msg
8 std::vector<std::string> result = srv.response.names;
9 }

10 else ROS_ERROR_STREAM("Failed to call service!");
11 }

Finally, a word about configuration files of the object recognition. These packages
contain a mixture of .xml and .yaml files for configuration inside the config
folder of the or_nodes package. The .xml files are the deprecated configura-
tion files from the pre-ROS era of our software framework. On the other hand, the
.yaml files are the well known configuration files of ROS. The most important files
are the params_asus.yaml and params_kinect.yaml. Both define same
parameters, but differ in the default topic for the image input. Since the Kinect sen-
sor was used in the examples above, we continue with it. The default content of the
params_kinect.yaml is:

/OrNodes/sConfigFile: /config/custom.xml
/OrNodes/sProfile: drinks
/OrNodes/sInputImageTopic: /camera/rgb/image_rect_color
/OrNodes/debugOutput: /true
/OrNodes/debugOutputPath: /default

The first value is the package relative path to the pre-ROS custom configuration
file and the second line defines the profile to be used inside the custom config-
uration file. There are two .xml files: default.xml and custom.xml. The
file default.xml is automatically loaded on startup. It contains all parameters
necessary for object learning and object recognition, encapsulated in the profile
default. Normally, you don’t need to change values in this file. To specify custom
values, please use the file custom.xml that is the default custom file in the .yaml
file. Currently, the profile drinks is defined in custom.xml that overrides the
default value of ObjectRecognition/sLoadObject. This is the parameter
specifying the object files that should be loaded on startup in case the parameter

242 V. Seib et al.

or_objects is missing on the ROS parameter server. When loading the configu-
ration files, a merged.xml is generated by the config loader that contains all available
profiles from default.xml and custom.xml. The third line in the.yaml file is
the default image topic that the object recognition is using. The last two lines define
the debug output. However, they are not fully integrated, yet.

6 Human Robot Interaction

Human-Robot interaction is another basic component needed by service robots. We
provide a ROS package coupled with an Android app for speech recognition and
synthesis. It integrates with any modern Android device and enables the robot to
use the speech recognition and synthesis of the Android system. Android provides
speech recognition and synthesis for many languages and also works completely
offline, once the dictionaries have been downloaded.

As a second component of the presented interaction system we present our robot
face as introduced and evaluated in [13]. Apart from a neutral face expression it can
show 6 other emotions. The robot face captures the speech output of the robot and
moves the lips synchronously to the spoken words.

A video showing an example animated face with synthesized speech is available
online.12

6.1 Background

Speech Recognition Spoken commands belong to the most user-friendly interaction
with robots. There are grammar based speech recognition systems that are optimized
by understanding a subset of commands defined in a grammar. On the other hand,
grammar free systems exist which are potentially able to understand all commands
without prior training. In this sectionwe present a grammar free system that integrates
with the Android speech API.

Robot Face Different talking heads were developed in the last years for research
in the field of human-robot interaction [3, 4, 8, 12, 15]. All of these heads were
constructed in hardware, posing a challenge in designing and building these heads.
A strong advantage, however, is the possibility to place cameras inside the head’s
eyes. This allows for intuitive interaction in a way that a person can show an object
to the robot by holding it in front of the robot’s head. Although this is not possible
with a face completely designed in software, we chose this approach to create our
animated robot face. In our opinion the high number of advantages of an animated
head outweights its drawbacks.Apart from a screen,whichmany robots already have,

12Example video for the robot face: http://youtu.be/jgcztp_jAQE.

http://youtu.be/jgcztp_jAQE

A ROS-Based System for an Autonomous Service Robot 243

there is no specific hardware that needs to be added to the robot.Moreover, it is highly
customizable and can be adjusted to everyone’s individual needs. Several animated
robot heads were developed in the recent years that likewise possess the ability to
e.g. move their lips synchronously [1, 6, 11]. In contrast to our approach, these
animated heads were designed with the goal of modeling a realistic and human-like
appearance. However, we focus on human robot interaction and have intentionally
created an abstracted robot face with a cartoon-like appearance.

Human-like or even photo-realistic faces are employed to convey realism and
authenticity to the interacting person. On the other hand the purpose of stylized
cartoon faces is to invoke empathy and emotions. So far, most robots lack humanoid
features and stature, thus a realistic human face is not appropriate to interact with it.
We therefore modeled an abstract cartoon face exhibiting only the most important
facial features to express emotions: eyes, eyebrows and amouth. Further, by choosing
a cartoon face we minimize the risk of falling into the uncanny valley [9].

The lips of the robot face move synchronously to the synthesized speech. For
speech synthesis the text-to-speech system Festival is used in the robot_face
node. However, it can be replaced by the presented the Android speech synthesis
(see below). We achieve synchronization by mapping visemes to phonemes of the
synthesized text. Visemes are visually distinguishable shapes of the mouth and lips
that are necessary to produce certain sounds. Phonemes are groups of similar sounds
that feel alike for the speaker. Usually, only a few visemes are sufficient to achieve
a realistic animation of the lips.

Additionally to the synchronized lips, the robot face is capable of expressing 6
different emotions and a neutral face. The different emotions are depicted in Fig. 18.
To animate arbitrary text with the desired face expression we need dynamically gen-
erated animations. Apart from visemes we defined shape keys containing several
different configurations for the eyes and eyebrows to display different face expres-
sions. Animations are created by interpolating between the different shape keys. For
animation we use Ogre3d as graphics engine, Qt as window manager and Blender
for creating the meshes for the face.

Fig. 18 Animated face of our service robot Lisa. The depicted face expressions are: happy, neutral,
sad, angry, disgusted, frightened and surprised (from left to right)

244 V. Seib et al.

6.2 ROS Environment Configuration

Speech Recognition As the communication between the Android app and the ROS
node is solved by sockets you have to ensure that the ROS machine and the Android
device are in the same network. An easy solution for doing this is to use your Android
smartphone aswifi hotspot and connect the ROSmachine to it. Additionally you have
to ensure that both applications operate on the same port. You can change the port
in the recognition.launch file in the android_speech_pkg. This port
needs to be the same as entered in the homer_speech app.

<!-- Bind to all addresses -->
<param name="˜host"value=""/>
<!-- Port -->
<param name="˜port"value="8051"/>

Robot Face In order to use this package you have to install the following libraries:

• Festival: http://www.cstr.ed.ac.uk/projects/festival
• Ogre3d: http://www.ogre3d.org
• Qt: http://qt.nokia.com
• OpenCV: http://opencv.org (usually comes with ROS)

If you want to create your own robot face you will additionally need Blender (http://
www.blender.org/). You can install all of these libraries and voices for speech syn-
thesis by opening a terminal and typing (all in one line):

sudo apt-get install libqt4-core libqt4-dev libqt4-gui festival
festival-dev festlex-cmu festlex-poslex festlex-oald mbrola
mbrola-us1 libogre-1.8-dev libesd0-dev libestools2.1-dev libpulse-dev

6.3 Quick Start and Example

Speech Recognition We provide a compiled app homer_speech.apk (Fig. 19)
for your Android device. In order to use this app, ensure that both, the robot’s com-
puter and the smartphone are in the same network. In our tests, we attached the
Android device to the robot in a comfortable height for speaking.

To use the speech recognition, start the app and set the robot’s IP and port in
the edit boxes inside the homer_speech app. On the robot, run the following
command to start the corresponding ROS node:

roslaunch android_speech_pkg recognition.launch

The Recognize button initiates the recognition process and either stops listen-
ing after recognizing silence or when the Stop Recognition button is pressed. So

http://www.cstr.ed.ac.uk/projects/festival
http://www.ogre3d.org
http://qt.nokia.com
http://opencv.org
http://www.blender.org/
http://www.blender.org/

A ROS-Based System for an Autonomous Service Robot 245

Fig. 19 The
homer_speech app. The
Speak and Recognize buttons
provide speech synthesis and
recognition, respectively.
The two edit boxes in the
lower part of the screen are
used to configure the
connection for speech
recognition

far, the app allows to switch between German and English US speech recog-
nition. The recognized speech will be send as a std_msgs/String on the
/recognized_speech topic. You can test the recognition by pressing theRecog-
nize button and typing the command

rostopic echo /recognized_speech

on the robot’s computer.
To use the speech synthesis, the host parameter in the synthesis.launch

file needs to be adjusted to the Android device’s IP. The device’s IP is shown in the
homer_speech app in the bottom line (Fig. 19). On the robot, run the following
command for speech synthesis:

roslaunch android_speech_pkg synthesis.launch

You can test your configuration either by pressing the Speak button or with the
following command:

rostopic pub /speak std_msgs/String"data: ’Hello World’"

Robot FaceAfter setting up theROSenvironment and executing thecatkin_make
command in your ROS workspace you can start the robot_face by typing the
following command:

246 V. Seib et al.

Fig. 20 The female and male version of the robot_face showing in white the synthesized
speech and in red the recognized speech

roslaunch robot_face robot_face.launch

A window showing the robot face appears similar to the one shown in Fig. 20 on
the left. Note that with this launch file the speech will be synthesized by festival.
Thus, the robot_face can be used without any Android device. In order to use
the speech synthesis of the presented app, please use the following command:

roslaunch robot_face robot_face_android_synthesis.launch

Type the following command to let the robot speak:

rostopic pub /robot_face/speak std_msgs/String
"Hello, how are you?"

You will hear a voice and the face moves its lips accordingly.
If the speech recognition node is running, you can answer and see the recog-

nized speech displayed below the face. Without speech recognition, you can fake the
displayed message by typing the command:

rostopic pub /recognized_speech std_msgs/String
"Thank you, I am fine!"

A ROS-Based System for an Autonomous Service Robot 247

Table 1 Available emoticons and the corresponding face expressions

Face expression Neutral Happy Sad Angry Surprised Frightened Disgusted

Emoticon . :) :(>: :o :& :!

To activate different face expressions, just include the corresponding emoticon in
the string that you sent to the robot. For instance, to show a happy face expression,
you can type:

rostopic pub /robot_face/speak std_msgs/String
"This is the happy face :)"

Table1 shows all available face expressions and the intended emotions. Please refer to
the user study in [13] on how these face expressions are perceived by humans. Apart
from showing face expressions and synchronized lip movements, the robot_face
can also show images and video streams instead of the face. Please refer to the
following section to use this functionality. If you want to create your own robot face
for this package, please refer to the ReadMe file.13

6.4 Package Description and Code Examples

Speech Recognition The speech recognition component is divided into an Android
app and a ROS node that converts the recognized text into a ROS conform message.
The recognition is able to understand different languages that can be changed in
the android system settings. An active internet connection improves the recognition
results, but is not mandatory. Currently, the speech recognition needs to be started
by pressing the Recognize button. If needed a topic for starting the recognition and
sending a start recognition request can be easily integrated.

Robot FaceThegraph in Fig. 21 shows the twonodes contained in therobot_face
package with all topics. The creation of phonetic features including speech synthesis
is handled by the FestivalSynthesizer node, while the RobotFace node
creates the corresponding animations. When using an Android device, festival still
creates the phonetic features for animation. However, the Google speech API takes
care of the actual speech synthesis.

The topics are explained in the following:

Publishers

/robot_face/talking_finished (std_msgs/String): Published once the
robot_face has completed the speech synthesis and stopped speaking. This is
used to synchronize the animation and can be used in your application to know
when the speech is finished.

13A ReadMe is available online in the software repository.

248 V. Seib et al.

Fig. 21 Nodes and topics involved in the robot_face package

Subscribers

/robot_face/speak (std_msgs/String): Text to be spoken and displayed
below the face.

/recognized_speech (std_msgs/String):Text recognizedby the speech recog-
nition. It will be displayed below the face.

/robot_face/ImageDisplay (robot_face/ImageDisplay): Used to display
an std_msgs/Image message instead of the face for a specified time.

/robot_face/ImageFileDisplay (robot_face/ImageFileDisplay):Used to
display an image from hard disk instead of the face for a specified time.

To use all features of the robot_face in your application, please include the
robot_face as build and run dependency in your package’s package.xml file.
Further, robot_face has do be added to the find_package section and as
a dependency to the catkin_package section in the CMakeLists.txt file.
Note, that this is only needed if you want to use the robot_face to display images
instead of the face, since custommessages are used for this functionality. An example
header to use the robot_face could look like this:

1 #include <ros/ros.h>
2 #include <std_msgs/String.h>
3 #include <sensor_msgs/Image.h>
4 #include <robot_face/ImageDisplay.h>
5

6 class FaceExample {
7 public:
8 FaceExample(ros::NodeHandle nh);
9 virtual ˜FaceExample(){};

10 private:
11 void speak(std::string text);
12 void talkingFinishedCallback(const std_msgs::String::ConstPtr& msg);
13 void imageCallback(const sensor_msgs::Image::ConstPtr& msg);
14 void send_image(std::string& path_to_image);
15 ros::Publisher speak_pub_;
16 ros::Publisher image_pub_;
17 ros::Subscriber talking_finished_sub_;
18 ros::Subscriber image_sub_;
19 };

A ROS-Based System for an Autonomous Service Robot 249

In your class implementation you can use the following code snippets. First, include
the example header and initialize all subscribers and publishers in the constructor:

1 #include"FaceExample.h"
2

3 FaceExample::FaceExample(ros::NodeHandle nh)
4 {
5 speak_pub_ = nh.advertise<std_msgs::String>("robot_face/speak", 1);
6 image_pub_ = nh.advertise<robot_face::ImageDisplay>
7 ("/robot_face/ImageDisplay", 1);
8 talking_finished_sub_ = nh.subscribe("robot_face/talking_finished",1,
9 &FaceExample::talking_finished_callback, this);

10 image_sub_ = nh.subscribe("/camera/rgb/image_color",1,
11 &FaceExample::image_callback, this);
12 }

Use the following function to send speech commands to the face:

1 void FaceExample::speak(std::string text)
2 {
3 std_msgs::String msg;
4 msg.data = text;
5 speak_pub_.publish(msg);
6 }

As soon as the face finishes talking, the following callback will be called:

1 void FaceExample::talkingFinishedCallback(
2 const std_msgs::String::ConstPtr& msg)
3 {
4 ROS_INFO_STREAM("Finished speaking");
5 }

Apart from displaying text, the robot_face can be used to display images
instead of the face. The following code snippet demonstrates how to display a
sensor_msgs/Image message from an RGB-D camera:

1 void FaceExample::imageCallback(const sensor_msgs::Image::ConstPtr& msg)
2 {
3 robot_face::ImageDisplay img_msg;
4 img_msg.time = 0; // display time [s]
5 img_msg.Image = *msg;
6 image_pub_.publish(img_msg);
7 }

A display time of 0 seconds means that the image will be displayed until another
message is received. To use this code, make sure that a camera is connected to your
computer and the corresponding driver is loaded, e.g. by typing

roslaunch openni_launch openni.launch

250 V. Seib et al.

To display an image from the hard disk use the following function:

1 void FaceExample::send_image(std::string& path_to_image)
2 {
3 robot_face::ImageFileDisplay img_msg;
4 img_msg.time = 0; // display time [s]
5 img_msg.filename = path_to_image;
6 image_pub_.publish(img_msg);
7 }

7 Conclusion

In this chapter we presented several components that are crucial for autonomous
service robots and components that enhance human robot interaction. The presented
mapping, navigation and object recognition are closely integrated into a graphi-
cal user interface. We believe that this close integration into a common graphical
interface facilitates the development, control and monitoring of autonomous robots.
Additionally, the speech recognition and animated robot face provide important inter-
faces for human robot interaction. We hope that this extensive tutorial together with
the presented software components and videos are a valuable contribution to the ROS
community.

Acknowledgments The presented software was developed in the Active Vision Group by research
associates and students of the practical courses with the robots “Lisa” and “Robbie”. The authors
would like to thank Dr. Johannes Pellenz, David Gossow, Susanne Thierfelder, Julian Giesen and
Malte Knauf for their contributions to the software. Further, the authors would like to thank Baharak
Rezvan for her assistance in testing the setup procedure of the described packages.

References

1. I. Albrecht, J. Haber, K. Kahler,M. Schroder, H.P. Seidel,May i talk to you?:-)-facial animation
from text. In: Proceedings 10th Pacific Conference on Computer Graphics and Applications,
2002. (IEEE, 2002) pp. 77–86

2. H. Bay, T. Tuytelaars, L.J. Van Gool. SURF: Speeded up robust features. ECCV, pp. 404–417,
2006

3. C. Breazeal, Toward sociable robots. Robot. Auton. Syst. 42(3), 167–175 (2003)
4. C. Breazeal, B. Scassellati, How to build robots that make friends and influence people. In:

Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999.
IROS’99, vol. 2, (IEEE, 1999), pp. 858–863

5. W. Eric, L. Grimson, D.P. Huttenlocher, On the sensitivity of the hough transform for object
recognition. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 12(3), 255–274 (1990)

6. J. Gustafson, M. Lundeberg, J. Liljencrants, Experiences from the development of august—a
multi- modal spoken dialogue system. In: ESCA Workshop on Interactive Dialogue in Multi-
Modal Systems (IDS-99) (1999), pp. 61–64

7. David G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004)

A ROS-Based System for an Autonomous Service Robot 251

8. I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B.Wrede, S. Wachsmuth, G. Sagerer, The biele-
feld anthropomorphic robot head flobi. In: 2010 IEEE International Conference on Robotics
and Automation, (IEEE, Anchorage, Alaska, 2010) 5

9. M. Mori, K.F. MacDorman, N. Kageki, The uncanny valley [from the field]. Robot. Autom.
Mag. IEEE 19(2), 98–100 (2012)

10. M. Muja, Flann, fast library for approximate nearest neighbors (2009). http://mloss.org/
software/view/143/

11. A.Niswar, E.P.Ong,H.T.Nguyen, Z.Huang, Real-time 3d talking head froma synthetic viseme
dataset. In: Proceedings of the 8th International Conference on Virtual Reality Continuum and
its Applications in Industry, (ACM, 2009), pp. 29–33

12. J. Ruiz-del-Solar, M. Mascaró, M. Correa, F. Bernuy, R. Riquelme, R. Verschae, Analyzing
the human-robot interaction abilities of a general-purpose social robot in different naturalis-
tic environments, RoboCup Symposium 2009, Lecture Notes in Computer Science (Springer,
Berlin, 2009), pp. 308–319

13. V. Seib, J. Giesen, D. Grüntjens, D. Paulus, Enhancing human-robot interaction by a robot face
with facial expressions and synchronized lip movements, ed. by V. Skala. 21st International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision
(2013)

14. Viktor Seib, Michael Kusenbach, Susanne Thierfelder, and Dietrich Paulus. Object recognition
using hough-transform clustering of surf features. In:Workshops on Electronical and Computer
Engineering Subfields, (Scientific Cooperations Publications, 2014), pp. 169–176

15. S. Sosnowski, A. Bittermann, K. Kuhnlenz,M. Buss, Design and evaluation of emotion-display
eddie. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006 (IEEE,
2006), pp. 3113–3118

16. S. Wirth, J. Pellenz, Exploration transform: A stable exploring algorithm for robots in rescue
environments. In: IEEE International Workshop on Safety, Security and Rescue Robotics, 2007.
SSRR 2007, (2007), pp. 1–5

17. A. Zelinsky, Robot navigation with learning. Aust. Comput. J. 20(2), 85–93 (1988). 5
18. A. Zelinsky, Environment Exploration and Path Planning Algorithms for aMobile Robot using

Sonar, Ph.D. thesis, Wollongong University, Australia, 1991

Author’s Biography

Dipl.-Inform. Viktor Seib studied Computer Sciences at the
University of Koblenz-Landau where he received his Diploma
in 2010. In 2011 he became a PhD student at the Active Vision
Group (AGAS) at the University of Koblenz-Landau, supervised
by Prof. Dr.-Ing. Dietrich Paulus. His main research areas are
object recognition and service robotics. He has attended multi-
ple RoboCup and RoCKIn competitions and is currently team
leader and scientific superviser of the RoboCup@Home team
homer@UniKoblenz.

http://mloss.org/software/view/143/
http://mloss.org/software/view/143/

252 V. Seib et al.

B.Sc. Raphael Memmesheimer finished his Bachelor in Com-
putational Visualistics and is currently in his master studies
focusing on robotics and computer vision. His special interests
are visual odometry, visual SLAM and domestic service robots.
As research assistant he is working in the Active Vision Group
(AGAS) and has successfully attended multiple RoboCup and
RoCKIn competitions. Currently he is technical chief designer
of the homer@UniKoblenz RoboCup@Home team and states
that “Robots are the real art”!

Prof. Dr.-Ing. Dietrich Paulus obtained a Bachelor degree in
Computer Science from University of Western Ontario, London,
Ontario, Canada, followed by a diploma (Dipl.-Inform.) in Com-
puter Science and a PhD (Dr.-Ing.) from Friedrich-Alexander
University Erlangen-Nuremberg, Germany. He worked as a
senior researcher at the chair for pattern recognition (Prof. Dr. H.
Niemann) at Erlangen University from 1991–2002. He obtained
his habilitation in Erlangen in 2001. Since 2001 he is at the insti-
tute for computational visualistics at the University Koblenz-
Landau, Germany where he became a full professor in 2002.
From 2004-2008 he was the dean of the department of computer
science at the University Koblenz-Landau. Since 2012 he is head
of the computing center in Koblenz. His primary research inter-
est are active computer vision, object recognition, color image
processing, medical image processing, vision-based autonomous
systems, and software engineering for computer vision. He has
published over 150 articles on these topics and he is the author
of three textbooks. He is member of Gesellschaft für Informatik
(GI) and IEEE.

Lisa is the robot of team homer@UniKoblenz. She first partic-
ipated in the RoboCup GermanOpen and the RoboCup World
Championship in 2009. Since then, her design was continuously
changed and improved to better adapt to the requirements of
service robot tasks. Lisa is developed by PhD, master and bach-
elor students in practical courses of the Active Vision Group.
Lisa and team homer@UniKoblenz won the 1st Place in the
RoboCup@Home World Championship 2015 in Hefei, China.

Robotnik—Professional Service Robotics
Applications with ROS

Roberto Guzman, Roman Navarro, Marc Beneto and Daniel Carbonell

Abstract This chapter summarizes our most relevant experiences in the use of ROS
in the deployment of Real-World professional service robotics applications: a mobile
robot for CBRN intervention missions, a tunnel inspection and surveillance robot, an
upper body torso robot, an indoor healthcare logistic transport robot and a robot for
precision viticulture. The chapter describes the mentioned projects and howROS has
been used in them. It focuses on the application development, on the ROS modules
used and the ROS tools and components applied, and on the lessons learnt in the
development process.

Keywords Professional service robotics applications with ROS · Civil protection ·
Agriculture robotics · Logistic robotics · Service robotics · Autonomous robots ·
Mobile robots · Mobile manipulators · AGVS · UGVS

1 Contributions of the Book Chapter

ROS has become a standard for the development of advanced robot systems. There
is no other platform that integrates a comparable community of developers. This
chapter describes a number of professional service robotics applications developed
in ROS. ROS was designed for the development of large service robots [1] as the
ones presented in this chapter.

R. Guzman (B) · R. Navarro · M. Beneto · D. Carbonell
Robotnik Automation, SLL, Ciutat de Barcelona, 1H,
P.I. Fte. Del Jarro - Paterna Valencia, Spain
e-mail: rguzman@robotnik.es
URL:http://www.robotnik.eu

R. Navarro
e-mail: rnavarro@robotnik.es

M. Beneto
e-mail: mbeneto@robotnik.es

D. Carbonell
e-mail: dcarbonell@robotnik.es

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_10

253

254 R. Guzman et al.

While it is relatively easy to find R&D projects using it, the number of publicly
documented Real-World applications and in particular in product development and
commercialization is still relatively low as can be deducted from the last editions of
the ROSCon (ROS Conference) [2] programmes.

This chapter presents as main contribution the description of five real products
that use ROS, detailing the principal challenges found from the point of view of a
ROS developer.

2 RESCUER: Robot for CBRN Intervention

Intervention in dangerous environments requires the use of robots to monitor and
interact remotely without putting human life at risk. There are several robots in the
CBRN market but few of them based on ROS. RESCUER [3] is a robot proto-
type developed for the Spanish military emergency unit (UME) to be used in CBRN
(Chemical, Biological, Radiological andNuclear) environments. It’s amobilemanip-
ulator able to operate in extreme environments. The robot has two available kinematic
configurations, wheels or “flippers”, that can be set before every mission, depending
on the type of terrain.

This part includes a brief description of the system and work done, the different
components and packages used and developed, the developed HMI and the problems
found in some points, like the communication/teleoperation in low latency networks.

Due to the nature of the project and associatedNDA(NonDistributionAgreement)
with the end user, the packages of this robot are not available.

2.1 Brief Description of the System

RESCUER was designed as an intervention robot to be used in the following set of
missions:

• Detection and alert of aggressive agent concentrations
• Identification of aggressive agents
• Recognition and sampling (take field samples of liquid, solid and mud) for further
lab analysis

• Assistance in industrial accidents or terrorist action scenarios
• Environment protection and safeguarding
• Human rescue

RESCUER is amodular robot for interventionmissions. It has IP67 enclosure class
andhas beendesignedwith the focus on systemdecontamination.As adifferencewith
many robots in the market, RESCUER is able to operate in CBRN environments and
it is easy to decontaminate after themission bymeans of standard and fast procedures.
The following pictures show the robot in the two main kinematic configurations and
including the arm, sensor set, winding unit and CBRN sensor unit (Fig. 1).

Robotnik—Professional Service Robotics Applications with ROS 255

Fig. 1 Rescuer platform with flippers (left) and wheel (right)

Robot Configuration

RESCUER implements an innovativemodular system that allows the following kine-
matic configurations:

• Skid steering with 4 flippers (8 axes): high mobility—medium speed (0.75m/s),
the robot is able to surpass obstacles, gaps and climb ramps and stairs. With the
combined motion of the flippers (all axes can rotate indefinitely) an incomparable
mobility is obtained.

• Skid steering with 4 wheels (4 axes): high speed (5m/s)—medium mobility. The
robot does not have the mobility performance of previous configuration, but it still
has all-terrain capability and a very high speed which can be critical in reconnais-
sance or rescue missions (Fig. 2).

Fig. 2 Rescuer platform with flippers (right) and wheels (left)

256 R. Guzman et al.

The wheels and flippers, the arm, the winding unit and the sensor unit, implement
a unique electro-mechanical interface. I.e. the connector acts not only as an electrical
interface, but also provides the mechanical connection between the device and the
platform.

The robot chassis contains the batteries,motors, the robot controller (an embedded
PC using Ubuntu 12.04 and ROS), etc.

Robot Arm

RESCUERmounts a special IP67 version of the Terabot arm (Oceaneering). The arm
has 5DOFand is providedwith internal clutches that protect the joints of torque peaks
in collisions. The arm mounts an electric two-finger gripper with interchangeable
fingers and able to use a set of tools (drill machine, wire cutter, etc.).

Robot Sensors

The set of sensors can be classified in the following groups:

• Navigation, motion and internal state: Inertial measurement unit, wheel encoders,
flipper absolute encoders,DGPS (DifferentialGlobal PositioningSystem), outdoor
laser range-finder, internal temperature.

• Platform cameras: front and rear IR (Infra-Red) Cameras (plus focus leds), 360◦-
PTZ (Pan-Tilt-Zoom) camera.

• Arm cameras and distance sensor: thermal camera, gripper camera, wrist camera,
and laser telemeter.

• Bidirectional audio: IP67 audio (microphone and amplified loudspeaker).
• CBRN Sensor Suite: Radiation sensor, gas sensor, CWA/TIC (Chemical Warfare
Agents/Toxic Industrial Chemicals) sensor, biological war-agents detector and
pressure temperature and humidity sensor.

Communications

The RESCUER communication system permits the interconnection of the robot
with the operator HMI and the control base station. RESCUER implements a multi-
protocol communication system. The used interfaces are:

• Fiber Optic Ethernet Cable: 100Mbps, winding unit able to release cable and
recover it autonomously. The winding unit mounted a standard length of 100m
but is easily extensible.

• WiFi: 100Mbps, distance with high gain antennas up to 75m with LOS (Line Of
Sight).

• Radio (900MHz): 120Kbps, distances up to 50Km with NLOS (Near Line Of
Sight).

The use of alternative communication interfaces in the mentioned scenario provide
robustness as the system is configured as fallback, i.e. it is programmed to select the
highest bandwidth channel from the available.

Robotnik—Professional Service Robotics Applications with ROS 257

HMI

RESCUER HMI is arranged in two main cases. The main HMI case includes the PC
and mounts a dual tactile array screen configuration. The second case includes the
batteries, communication equipment and antennas. The top screen displays the robot
state (arm, flippers, robot attitude), cameras, telemeter, laser, etc. while the bottom
screen displays the CBRN sensor data. The top screen allows the configuration of the
cameras, and the selection of the operational mode. Depending on the operational
mode, the HMI joysticks control the robot arm, the platformmotion or flipper motion
or pan-tilt-zoom camera motion (Fig. 3).

The RESCUERHMI was implemented using rqt [4], rqt is a Qt-based framework
for GUI development for ROS. The rqt_robot_dashboard infrastructure was used
for building robot plugins. In order to control the RESCUER robot a number of
rqt plugins were developed to control the mobile platform, robot arm, input/output
(front focus, rear focus, arm focus,winding unit), control of the pan-tilt-zoomcamera,
display the different specific CBRN sensors and cameras, or display robot general
information (battery, control mode arm/base, etc.). A set of packages (non rqt) were
also developed to bring up the whole HMI, monitor the network, control the robot
components (base platform, arm and gripper, input/output, ptz camera) via the HMI
joysticks, use interactive markers attached to base_link to show the robot state (robot
state, position and battery), or visualize GPS (Global Positioning System) data in
order to track the robot route via external GIS (Geographic Information System) tool
(e.g. GoogleEarth [5]).

Fig. 3 Rescuer HMI dual tactile screen control box (left). HMI screen capture during testing (right)

258 R. Guzman et al.

The use of rqt with the tactile array was optimal. The main difficulties were in
the configuration of a dual tactile array with different resolutions due to the lack
of configuration examples for this configuration. After many tests, the right system
configuration was found and worked.

One pitfall of rqt for this kind of interfaces is the lack of an option to set the
rqt layout fixed to disable the accidental edition, since you can drag and drop any
component and set the size by hand. This issue could not be solved and remains
present in the interface.

The ROS version used for this project (in the robot platform and in the HMI) was
Groovy, running on a Intel PCs with Ubuntu 12.04.

2.2 Challenges

2.2.1 Communications

Real world intervention missions impose complex communication requirements.
There is a number of missions where the robot will not have line-of-sight conditions
nor short distances. In particular, missions to be carried on inside buildings, subways,
parkings, etc., cannot be executed relying only on standard Wi-Fi networks. In order
to cope with the different limitations in terms of coverage, range and bandwidth, a
multi-protocol architecture was designed.

During the project there were important hardware challenges, e.g. a fiber optic
winding unit with the specific mission requirements was not available in the market
so it had to be designed from scratch. The number of devices and architectures tested
would be also of interest but are out of the scope of this text. The final selected
architecture is described in the following picture (Fig. 4).

As explained the system includes six cameras, a set of CBRN sensors, the internal
robot sensors, and bidirectional audio. The data flow is principally from the robot to
the HMI, while the amount of data sent from the HMI to the robot is limited to task
commands (arm tasks, platform configuration tasks), control commands (platform
teleoperation) and voice stream (the robot in this case is used to send voice commands
to the humans in the mission area). The following table shows an estimation of the
data bandwidth requirements of the system cameras (Table1).1

Due to the nature of the intervention mission, the available bandwidth can change
at any time without prior notice. E.g. if the robot enters in a building and it is
communicating via Wi-Fi at some point the effect of the walls and distance may
reduce the bandwidth to some Kbps. These bandwidth changes will lead to packet
loss. The ROS version used in this project (Groovy), supports TCP/IP-based and
UDP-based message transport. However, during the software development stage the
UDP-based message transport available in ROS was limited to C++ libraries. As the

1Front, Rear, Arm.

Robotnik—Professional Service Robotics Applications with ROS 259

Fig. 4 Rescuer multi-protocol communication hardware architecture

HMI was developed using rviz and rqt and both tools depend on python, it was not
possible to use UDP-based message transport within the ROS framework.

The first implementations of the architecture used therefore TCP for all the com-
ponents. As a consequence, when the communication bandwidth was too low and
after some time the retransmission of TCP frames caused a major fault in ROS being
necessary a system restart.

To overcome this problem, the video and audio streams were finally transported
via UDP, i.e. data was received and displayed by ROS nodes, but the data was not
transported using the ROS middleware. From the presented bandwidth table, it is
clear that the major part is used for the cameras and audio (up to 10Mbps depending
on configuration), while only a minor part is needed for the sensors and control
(usually less than 50Kbps).

A second level of adaptation to the available bandwidth occurs via the robot HMI.
The system starts with a low bandwidth configuration, and the operator may ask
to increase it by activating more cameras, or increasing frame rate or definition.
If at some point, the requested bandwidth is not available, this condition is imme-
diately marked in the screens, and the operator can compare the data throughput
requested with the system monitor network bandwidth measured, thus being able
to disconnect some cameras and adjust frame rates. The described communication
architecture proved to be reliable and functional, failing only in those cases where
the communication channel was completely lost for long periods.

260 R. Guzman et al.

Ta
bl

e
1

C
am

er
a
ba
nd
w
id
th

an
d
st
or
ag
e
re
qu
ir
em

en
ts

C
am

er
a

F,
R
,A

F,
R
,A

F,
R
,A

F,
R
,A

PT
Z

PT
Z

FL
IR

FL
IR

C
om

pr
es
si
on

H
.2
64

H
.2
64

H
.2
64

H
.2
64

H
.2
64

H
.2
64

M
PE

G
-2

M
PE

G
-2

R
es
ol
ut
io
n
[p
x]

12
80

×
10
24

12
80

×
10
24

70
4

×
48
0

70
4

×
48
0

70
4

×
57
6

70
4

×
57
6

32
0

×
24
0

32
0

×
24
0

V
id
eo

qu
al
ity

M
ax
im

al
St
an
da
rd

M
ax
im

al
St
an
da
rd

M
ax
im

al
St
an
da
rd

M
ax
im

al
St
an
da
rd

1
fr
am

e
[K

b]
13
.9

5.
35

4.
29

1.
64

5.
14

1.
97

4.
2

1.
6

A
cq
ui
si
tio

n
fr
eq
ue
nc
y
[f
ps
]

8
8

8
8

8
8

1
1

B
an
dw

id
th

1.
74

M
bp
s

66
9
K
bp
s

53
5
K
bp
s

20
5
K
bp
s

60
0
K
bp
s

24
6
K
bp
s

66
K
bp
s

25
K
bp
s

2
h
st
or
ag
e

16
.8
5
G
b

6.
48

G
b

5.
18

G
b

1.
99

G
b

5.
6
G
b

2.
3
G
b

62
6
M
b

23
7
M
b

Robotnik—Professional Service Robotics Applications with ROS 261

2.2.2 Robot Control

As the mobile robot platform can be switched from 4-axis wheels to 8-axis flippers,
the system had to be launched with two different launch configurations. The one
with the flipper urdf and controller, that launched also the absolute encoders of the
flippers and the onewith thewheel urdf and controller that did not launch the absolute
encoders node. As the two configurations used different hardware, it was possible to
detect in which one the robot had been switched on and configure the launch files
accordingly automatically. The configuration change was detected by launching the
node to read the absolute encoders (of the 4 flippers). If it is possible to establish the
connection with the absolute encoders, the node sets an environment variable and
sets a parameter to “flippers” in the parameter server, if it is not possible to establish
the connection the environment variable is set to false and the ROS parameter is set
to “wheels”.

As we did not find a standard procedure for the flipper position control, the way
the flippers were controlled via remote operation was developed experimentally. The
final implementation permitted to move each flipper independently and to pair the
front and back to receive the same position or velocity reference. Excluding some
specific operations (e.g. gap cross passing or high obstacle overpassing), the most
easy and intuitive way to move the flippers was using the front pair and rear pair as
separated joystick inputs.

In any case the continuous monitoring of the flipper absolute position and robot
state was of major concern for two main reasons:

• The range of states that the platform can achieve by controlling the flipper position
is high, e.g. it is possible to lift the robot making it rest on the flipper tips or make
it sit on the two rear ones, etc. This provides very high mobility but the control has
to be done carefully as a wrong decision can compromise the platform stability.
Controlling the platform from the viewpoint of the operator is easy, however, this
becomes very complex from the viewpoint of the robot (by using the cameras). For
this reason, the platform inclination and exact position of each flipper is displayed
on the HMI.

• The kinematics permitted the potential collision of the front and rear flipper, and
also the collision between the arm and the flippers. The flipper rotation motors are
powerful and provide a very high torque able to damage the arm or other flipper
in case of collisions. A collision of the arm against the flipper should not cause
damage as the arm joints are protected by clutches. However, it is possible to trap
the arm between the flipper and the chassis when the arm is accessing soil on the
robot sides, in this case the collision of the flipper against the arm may break it.

In summary, potential collisions between them and between the flippers and the
robot arm have to be avoided. The way to deal with this was implementing
a SelfCollisionCheck function (calls planning_scene::checkSelfCollision) in the

262 R. Guzman et al.

Fig. 5 Control of the end effector viaMoveIt InteractiveMarkers (left), tcp positionsmarked (right)

rescuer_robot_control package. This function computed a collision distance between
the robot elements on each iteration, once a predefined threshold is surpassed, only
new motions that increase the collision distance are permitted.

The arm control and trajectory generator is based onMoveIt! libraries. MoveIt! is
state of the art software for mobile manipulation, incorporating the latest advances
in motion planning, manipulation, 3D perception, kinematics, control and naviga-
tion [6]. The arm controller implements a JointTrajectoryAction server. It is based on
MoveIt! components (moveit::planning_interface::MoveGroup,moveit::core::Robot
Model, moveit::core::RobotState, etc.) to allow the Cartesian/Euler, joint-by-joint
control and check self collisions.

A requirement of the Military Emergency Unit was related with the TCP (Tool
Center Point) selection. The arm can mount a set of tools and the TCP can also be
used to control the arm cameras. We did not find an easy way to dynamically change
the TCP as the input to MoveIt! is the .srdf file generated by the setup assistant. The
way we solved this issue was creating a set of TCPs in the robot urdf file, relating
themwith each camera and tool and creating a set ofMoveIt groups with the arm plus
each of the predefined TCPs, thus allowing the TCP selection as a group selection
(Fig. 5).

Another major issue was related with the solution of the 5-DOF Terabot Arm
inverse kinematics. At the time the robot was developed the KDL library [7] was not
able to solve it. All our attempts to create a working plugin using ikfast failed also,
so we finally ended modifying the KDL plugin and adapting the solution for 5-DOF.

The operator can move the arm bymoving the end effector via interactive markers
in the interface, or with the joysticks (joint-by-joint and cartesian/euler control). This
teleoperation task is assisted by the robot state feedback of rviz, the telemeter data
(distance to grasp) visualized in rviz and the cameras, especially the arm and gripper
cameras. In addition, the operator had a set of predefined arm locations and tasks:
pick&place of tool i, move arm to pre-grasp, pick & place radiation gauge, fold arm,
etc., that automate part of the teleoperation work.

Robotnik—Professional Service Robotics Applications with ROS 263

3 R-INSPECT: Mobile Robot for Tunnel Inspection

In order to bring security and reliability to the new high voltage power line between
France and Spain, Robotnik has developed a fleet of 4 robotic trains intended to
supervise the state of all the tunnel sections.

The line has a length of 64.5km, 33.5 in France and 31 in Spain, crossing the
Pyrenees thought a 8.5km tunnel in the middle part of the route. This is an ambi-
tious European project developed by corporation formed by the public electricity
companies of each country.

The objectives of the interconnection between both countries are the optimization
of the electrical power stations daily production, increase the opportunities to operate
with renewable energies and the improvement of supply conditions.

The main tasks of the vehicles are: perform autonomous missions to scan and
record all the data obtained by their sensors, in order to post-process and detect any
problem the tunnel; provide tele-operation capabilities to the maintenance workers;
provide manual transport to the maintenance workers and firefighters.

Due to the nature of the project and associated NDA agreements with the end
user, the packages of this robot are not available.

3.1 Brief Description of the System

The vehicles are distributed between France and Spain (two on every entry of the
tunnel). One of the two vehicles is reserved for rescue/emergency operations.

A normal use case would be:

• The operator selects the vehicle and initializes an autonomous scan of entire the
tunnel.

• The vehicle performs the mission and saves all the data.
• The vehicle returns to its garage and post-process all the recorded data, generating
a report, available for the allowed users.

• If there were any errors, the operators of each part of the tunnel would have to
coordinate with the other part to access it by using the tele-operated or manual
mode of the vehicle (Fig. 6).

Each vehicle is controlled by a PC-based controller running ROS. It is intended
to control and read from the following components:

• Motor controllers
• Input/Outputs devices
• Batteries components
• Lasers (safety and measurement)
• Cameras
• Other sensors

264 R. Guzman et al.

Fig. 6 R-INSPECT Autonomous Inspection Robot inside the tunnel

– Humidity/temperature sensor
– Oxygen sensor
– Nitrogen monoxide and dioxide sensors
– Carbonic monoxide and dioxide sensors
– Methane sensor

The ROS version used is Hydro running on Ubuntu 12.04. The controller has an
i7 processor with 16GB of memory and at least 4TB of hard disk.

3.2 Challenges

3.2.1 Simulation

One of the most important project challenges was the creation of a real and reliable
model of the vehicles and the environment, that allows the development and tests of
most of the parts the software system.

The vehicles and a reduced and simplified part of the tunnel was modelled and
simulated with Gazebo [8]. This was difficult at the beginning because the trains
and tunnel models had to be modeled and got running properly. However, these
simulations allowed to begin to work in the global behaviour of the whole system,
to try different fleet management systems and collision detection algorithms in a
safe environment, even without having visited the facilities and even though during
the manufacture of the robots. Robot system simulation is a necessary development

Robotnik—Professional Service Robotics Applications with ROS 265

Fig. 7 Gazebo simulation of the tunnel infrastructure, robot and sensor systems

tool almost in every project. Simulation allows to prototype, develop and test the
whole system independently and reducing significantly the integration time in the
real environment (Fig. 7).

To model the traction of the vehicle two effort_controllers/JointEffortController
controllers were used, one for the frontal wheels and another for the rear ones. The
rails were modelled as depicted in the Fig. 8.

All the sensors and cameras were modelled by using Gazebo standard plugins:
libgazebo_ros_camera.so for the cameras, libgazebo_ros_openni_kinect.so for the
3D lasers, libgazebo_ros_laser.so for the 2D lasers. All the cameras except one are
located in the frontal part; the 3d sensors are in both parts; the 2d lasers are mounted
one in the horizontal plane for safety purposes and one in the vertical plane to scan
the environment when the robot is moving.

3.2.2 Point Cloud Library

Although Point Cloud Library(PCL) [9] is currently a stand-alone library, it was
developed by Willow Garage as part of the ROS core in precedent distributions,
that’s why it’s easy to include in new ROS projects and there are a lot of packages
minded to convert from and to both format types. PCL was used in this project for
two main purposes:

266 R. Guzman et al.

Fig. 8 Vehicle’s wheel in contact with the rail in Gazebo

• Safety: Two 2D lasers are mounted in the bottom of the robot for the basic safety
checking with an approximate range of 40m. However, there are a lot of areas that
are outside of this plane. In order to avoid this problem, a 3D camera is mounted
on the top of the robot. This camera gets a complete 3D representation of the 10
posterior meters of the tunnel. An algorithm was developed using PCL to filter a
projection of the surface of the train through this point cloud, if there are some
point inside this volume, is considered that there is an obstacle and the train will
brake according to the distance to it.

• Inspection: In order to get a 3D representation of the tunnel to work with the PCL
libraries, two other 2D measurement lasers were mounted in upward direction.
With this measurements, the robot pose and the use of the corresponding methods
of PCL, it is possible to generate a 3D representation of the tunnel. Afterwards,
it is possible to use other methods and filters of the library to get the interesting
parts of the cloud (for example, the cable sections) and perform a further analysis
with this simplified cloud (Fig. 9).

3.2.3 Multimaster

Another important challenge is the coordination between the different robots. The
robots communicate with the control servers via WiFi. The tunnel has an installation
of WiFi nodes in a roaming configuration that allows the continuous communication
between the vehicles and the servers. To coordinate and communicatewith the robots,
the following solutions were considered:

Robotnik—Professional Service Robotics Applications with ROS 267

Fig. 9 PointCloud representation of a tunnel’s section

• Manage all the system/networkwith a single roscore node, depending all the robots
on this core.

• Create two cores, one to manage the robots in each part.
• Create one master per train and per control room, creating each of this a private
network, and communicate them through a common network using the package
multimaster_fkie [10], this package offers a set of nodes to establish and manage
a multimaster network.

The third option was considered the best one; with this method each train is indepen-
dent from the others, allowing to keep the complete system running independently
even if one of the trains loses the communicationwith the control room. Furthermore,
deploying this kind of network is pretty easy using this package and it requires only
a minimal configuration (by default, all the topics are shared between the different
masters, but it can be changed to reduce the bandwidth charge).

Once the system is deployed, the communication between topics and services of
the different networks are completely transparent, and it seems like all the system is
running in a huge common network, but with the advantage that one master could
die without fatal consequences for the other masters (Fig. 10).

3.2.4 User Interface

A complex system like this one needs to be accessed in the simplest possible way.
The user interface has to provide four main functionalities:

268 R. Guzman et al.

Fig. 10 Example diagram of the multimaster architecture

• Robot teleoperation: as the names stands, it allows to control every robot in remote-
manual mode.

• Autonomous missions: it allows to configure and send a mission to the robots.
There are three types of missions: “Tunnel scan”, “Go to”, “Rescue mode” and
“Charge batteries”.

• Monitoring of the system: it checks the state of the system or other robots.
• Reports: it allows the access to the previously generated reports.

The selected technology to implement the HMI is web. Using a web page based
user interface has some advantages over other systems:

• Easy integration with ROS, by using the package rosbridge_suite [11], rosbridge
provides a JSON API to ROS functionality for non-ROS programs.

• Integration with other technologies like MySQL, Django and Bootstrap.
• As the system has to bemultilingual (Spanish/French), the use of awebpage allows
to create different versions of the web page easily.

• Possibility to access the interface from different devices.

The webpage UI was developed using the framework Bootstrap [12] as the front-
end framework and Django [13] as the application/base framework of the website.
Bootstrap is a popular HTML, CSS, and JS framework for developing responsive,
mobile first projects on the web. Django is a high-level Python Web framework that
encourages rapid development and clean, pragmatic design. Django was selected
because it provides a powerful and simple way to create a database-driven website,
in addition to the simplicity to integrate ROS and Django thanks to Python and
the roslibjs library provided by the rosbridge_suite. Furthermore, the template web
structure of Django facilitated the multilingual support of the web. Regarding the
design, Bootstrap is an excellent tool for the creation of responsive webpages. These
webpages can be shown in devices with different resolutions, providing a clear and
nice design.

Robotnik—Professional Service Robotics Applications with ROS 269

Fig. 11 Example of the screen to monitorize the vehicles, connected to Gazebo simulation

There are several users (with different permissions) that can access to the appli-
cation. MySQL databases were chosen to save all the user information, to save some
information related to the missions and reports and to save some kind of log infor-
mation (Fig. 11).

4 CROM: Upper Body Torso Robot

This part describes the experience in the development of CROM, an upper body
robot conceived and intended for research and development of Human Robot Inter-
action(HRI) in manufacturing environments (Fig. 12).

Working in a safe HRI manufacturing environment has become an important field
in robotics and some robots are being developed to fill this market. CROM is a robot
created from the integration of advanced components in the market, like Barrett and
Schunk devices.

This section presents a description of the work and the different components and
packages used and developed.

The main topics involved in this development were: URDF / Xacro [14], Gazebo
[8], MoveIt [6], robotwebtools [15].

The simulation packages for the CROM torso can be found in:

https://github.com/RobotnikAutomation/crom_sim
https://github.com/RobotnikAutomation/crom_common

The ROS version used is Groovy and Hydro running on Ubuntu 12.04. The con-
troller has an i7 processor with 8GB.

https://github.com/RobotnikAutomation/crom_sim
https://github.com/RobotnikAutomation/crom_common

270 R. Guzman et al.

Fig. 12 CROM Torso

4.1 Brief Description of the System

The Robot is composed by the following components:

• Two LWA4.P Schunk arms.
• One WSG-50 Schunk gripper with an attached camera.
• One BH8-282 hand from Barrett Technology with an attached camera.
• A torso made of aluminum.
• A head made with a module PW70 from Schunk for the movements, two cameras
in a stereo vision configuration and a Kinect.

• A floor mount chassis. This section has a Schunk PRL120 module to permit one
degree of freedom in the torso waist.

The following picture shows the different sections of the robot configuration
(Fig. 13).

Weight 105 kg

Payload 6 kg

Total DOF 23

Arm DOF 6

Hand DOF 7

Gripper DOF 1

Head DOF 2

Waist DOF 1

Communication Wifi /
ethernet

Fig. 13 CROM robot main parts

Robotnik—Professional Service Robotics Applications with ROS 271

Fig. 14 CROM torso in operation

The Right arm is formed by one Schunk LWA4.P arm, one BH8-282 from Barrett
Technology and one 1.3MP camera from Point-Grey. The Left arm is formed by one
Schunk LWA4.P arm, one WSG-50 gripper from (Weiss Robotics) and one 1.3MP
Point-Grey camera. The head is formed by one PW-70 Schunk pan-tilt module, one
Kinect RGBD camera and two 2.0MP Cameras from Point-Grey.

The Torso is formed by an aluminium chassis that joints the two arms, the head
and the floor mounting chassis, and one cylinder made of plastic that has inside a
PRL+ 120 module by Schunk. All the control equipments of the torso are mounted
inside of it.

The floor mount chassis is formed by an aluminium structure. This structure
forms a cabinet that contains the safety electrical components and the power supplies
(Fig. 14).

4.2 Main Topics Covered

4.2.1 URDF/Xacro

Sources: crom_description
For the proper work and simulation of the torso, the robot’s model description is

needed. Every robot part is distributed in several urdf files and assembled in a main
crom.urdf.xacro file. It is important to keep the parts as independent as possible in
order to improve the modularity and maintainability of the robot.

$ roslaunch crom_description crom_rviz.launch

272 R. Guzman et al.

Fig. 15 CROM TFs tree and Gazebo simulation

4.2.2 Gazebo

Sources: crom_sim/crom_gazebo, crom_sim/crom_control
Packages developed to simulate the robot in Gazebo. Configuring the motor con-

trollers types is a critical part to make actuators moving and behaving correctly in
Gazebo. The arms have to be able to move correctly to the desired position, be able
to pick and lift objects and be as similar as the real one.

For CROM, the great number of different actuators are properly configured to run
all together as arms, head and torso (Fig. 15).

$ roslaunch crom_gazebo crom.launch

4.2.3 Moveit

Sources: crom_sim/crom_moveit
Moveit config package of the robot. All the components are distributed in different

groups (arms, torso, head, arms+torso, etc.) to be used through MoveIt libraries and
tools (Fig. 16).

$ roslaunch crom_sim_bringup gazebo_moveit.launch

Robotnik—Professional Service Robotics Applications with ROS 273

4.2.4 Robotwebtools

On one hand, the front-end of the site is based on Bootstrap [12], a useful and faster
framework for web development including responsiveness support. On the other
hand, the browser connection with all the ROS infrastructure is performed by the
library roslibjs. This library usesWebSockets to connect with rosbridge [11]. Finally,
with all these elements it is possible to declare message publishers, subscribers,
service calls, actionlib clients andmany others essential ROS functionalities (Figs. 17
and 18).

Fig. 16 CROM running RVIZ Moveit plugin

Fig. 17 CROM HMI

Fig. 18 Agvs robot

274 R. Guzman et al.

5 AGVS: Indoor Healthcare Logistics Transport Robot

Robots substitute humans in indoor transport of trolleys (roller containers) in modern
hospitals.Newhospitals are built taking into account the requirements of the transport
robot fleet. The robot fleet autonomously transports storage, clothes, waste, food,
etc., thus releasing the humans of the reduced added value task of transporting heavy
trolleys for some decens of km per day.

This part describes the characteristics of this logistics transport robot, how ROS
has been used in the robot software implementation (planning, control and navi-
gation) and how the robot fleet is being simulated using the ROS framework and
V-REP.

The main topics covered in this section are: gazebo [8], vrep [26], navigation.
The simulation packages for the Agvs robot can be found in:

https://github.com/RobotnikAutomation/agvs.git
ROS wiki: http://wiki.ros.org/agvs

5.1 Brief Description of the System

The Robot is composed by the following components:

• 1 traction motor
• 1 direction motor
• 2 SICK S3000 safety laser
• 2 safety bumpers
• 1 lifting unit
• 1 gyroscope

Main features:
The main goal of the robot is to carry autonomously heavy trolleys from one location
to another one (mainly in hospitals). Localization is based on amcl and magnetic
landmarks set through the path.

The robot is intended to work in crowded areas guaranteeing the safety of the
people. Two safety lasers and bumpers provides this safety.Apart fromavoiding robot
collisions, lasers provide the robot with a 2D scan of the environment, necessary for
the robot localization.

Several robots can work together sharing the same resources (paths, elevators,
docking stations, etc.) without interfering with each other. This is controlled by the
Fleet Control System.

https://github.com/RobotnikAutomation/agvs.git
http://wiki.ros.org/agvs

Robotnik—Professional Service Robotics Applications with ROS 275

Weight 250 kg

Payload 500 kg

Max. speed 1.25 m/s

Enclosure class IP53

Autonomy 8 h

Communication Wifi /
ethernet

Fig. 19 Agvs specifications

5.2 Main Topics Covered

5.2.1 Gazebo

Sources: agvs/agvs_gazebo, agvs/agvs_control, agvs/agvs_robot_control
Packages developed to simulate the robot in Gazebo [8]. This package sets the

motor controllers and configuration to run the platform in the simulator. It is an
example of how the Ackermann kinematics can be set in Gazebo.

$ roslaunch agvs_gazebo agvs_office.launch

5.2.2 VREP

Sources: agvs/agvs_description/vrep, files to simulate the AGVS robot in V-REP
Additional packages needed: vrep_common, vrep_plugin, vrep_joy
This package contains the configuration files needed to run this robot in V-REP.

It offers the possibility of running the same robot in two different simulators and
compare the differences. For further information, follow the steps in http://wiki.ros.
org/agvs/tutorials (Figs. 19 and 20).

5.3 Navigation

Sources: agvs/purepursuit_planner
Package that implements the Pure-Pursuit algorithm of a path. Since the robot is

based on Ackerman kinematics, move_base package does not work for this kind of

http://wiki.ros.org/agvs/tutorials
http://wiki.ros.org/agvs/tutorials

276 R. Guzman et al.

Fig. 20 Agvs simulated in Gazebo and VREP

Fig. 21 Pure Pursuit
algorithm concepts

robots. The Pure-Pursuit algorithm finds a point that belongs to the path (sequence
of waypoints) that is at a certain distance ahead from the robot (this distance is called
lookahead distance). Once this Goal point is found, a curvature is computed to reach
it as depicted in the Fig. 21.

In order to localize the robot in the environment, Agvs can use either amcl along
with a map created previously or magnetic landmarks installed along the path. While
amcl provides higher flexibility and easy and fast mapping, magnetic landmarks
implies a tedious installation and the mapping of every mark. However, magnetic
landmarks provide much higher accuracy and independence of environment or map
modifications (Fig. 22).

5.4 Challenges

5.4.1 Fleet Control System

Coordination amongst robots sharing the same environment required a higher level
component to control all the movements in order to manage the fleet planning and
scheduling, and efficient resource sharing while avoiding system interlocks.

The planning problem is to some point similar to the planning and scheduling
problem of an operating system. A set of n AGVS are commanded to perform a

Robotnik—Professional Service Robotics Applications with ROS 277

Fig. 22 RVIZ view of Agvs running amcl

number of transport missions inside a building. The set of missions have all the
same structure: either a transport of trolley x from location Li to location Lj, or a
displacement from current location to Li.

Each mission may have a priority level or a deadline (this is the case of food trans-
port, that should be delivered on specific time frames). The missions are generated
externally, in a way completely transparent to the AGV Fleet Control System (FCS),
i.e. missions can be ordered by the users by setting directly a transport task in the
queue, or programming a scheduled transport.

The AGV Fleet Control System (FCS) decides the missions to be performed
according to the overall system state and the missions received. The overall system
state includes the fleet state (the localization of the robots, their battery levels, etc.),
but also the trolley locations (if a given dock is free or not, if there are no free positions
to unload a trolley, etc.).

The FMS divides each mission into a set of tasks to be performed by each AGV.
The fleet has therefore a centralized control.

A standard building has several floors and elevators to access them. The shared
resources inside this type of building are: 1 Way Corridors, Elevators, Crossings,
Doors and Locations.

The FCS communicates with components in the building like elevators or doors
(viaEthernet or,most commonly, via decentralised periphery). Someof these systems
may be temporarily out of order. Whenever possible, the system has to adapt to carry
out the missions using different resources. This is the case e.g. if the building has
several elevators and one of them is out of order, or if a corridor is blocked and there
is an alternative path. If a resource is missing after the initial start of the mission, the
system should be able to reschedule the tasks to fulfill the mission.

278 R. Guzman et al.

Fig. 23 Agvs path graph

Apart from that, the FCS component has to control and manage all the other
hardware/software resources of the system (reading I/O from PLCs, taking control
of elevators, switching ON/OFF battery chargers, etc.).

Manage Path

Routes in the environment are represented in a graph with nodes, and robots move
from one node to another following the shortest route. Figure23 shows an example
of routes defined as a set of nodes (waypoints) and arcs (paths).

The FCS reserves a set of nodes for a robot and sends it to the last node in the
list. Once the robot has passed a node, the FCS frees this node/group of nodes to be
available for another robot that needs to pass through this path.

6 VINBOT: Robot for Precision Viticulture

Vinbot is an all-terrain autonomous mobile robot with a set of sensors capable of
capturing and analyzing vineyard images and 3D data by means of cloud computing
applications, to determine the yield of vineyards and to share information with the
winegrowers. Vinbot responds to a need to boost the quality of European wines by
implementing precision viticulture (PV) to estimate the yield (amount of fruit per
square meter of the vine area). Wineries and vine growers will be able to make
accurate yield predictions to organize the production and marketing their wines,
coordinating the mixing of grapes of homogeneous quality to efficiently market a
range of wines by quality and price. In addition, Vinbot estimates the amount of
leaves, grapes and other data in the vine throughout the entire vineyard via computer
vision and other sensors and generates online yield and vigour maps to help wine
growers to optimize their management strategies.

This part describes how ROS is used in the implementation of the robotized
solution, from simulation to the complete system development including localization
and navigation as specific vineyard data acquisition solutions.

Robotnik—Professional Service Robotics Applications with ROS 279

Vinbot is an EU project (Powerful precision viticulture tool to break traditional
yield estimation in vineyards) funded under the FP7 SME program. Vinbot is formed
by a consortium of developers and end-users (more information can be found in
http://vinbot.eu/). The project is currently under development and the information
presented in this chapter represents only the robotics developments that are not under
protection and carried on during the first year of the project.

Main topics covered:

• navigation
• gazebo
• v-rep
• robot_localization
• matlab
• ros-io-package

The simulation packages for the Summit XL robot can be found in:

https://github.com/RobotnikAutomation summit_xl_sim, summit_xl_common

The specific Vinbot open source packages can be found in:

https://github.com/VinbotEU/vinbot_common
https://github.com/VinbotEU/vinbot_sim

6.1 Brief Description of the System

The VINBOT platform consists of:

• A robotic platform: durable, mobile, wit1h ROS Hydro/Indigo and Ubuntu
12.04/14.04.

• Color cameras to take high-precision images of the vine
• 3D range finders to navigate the field and to obtain the shape of the canopies
• Normalized Difference Vegetation Index sensors to compute the vigour of the
plants

• A small computer for basic computational functions and connected to a commu-
nication module

• A cloud-based web application to process images or create 3D maps

The Vinbot robot platform is based on a Summit XL HLmobile base able to carry
up to 65kg. Figure24 shows the platform base with a 3D mapping sensor set and
the robot with the specific precision viticulture sensing unit (RGB and near infrared
cameras, outdoor Hokuyo lidar, SBAS GPS and inertial measurement unit).

http://vinbot.eu/
https://github.com/RobotnikAutomation
https://github.com/VinbotEU/vinbot_common
https://github.com/VinbotEU/vinbot_sim

280 R. Guzman et al.

Fig. 24 Vinbot Summit XL HL mobile robot platform testing in vineyards (left). Vinbot Summit
XL HL platform with mounted precision viticulture sensing unit (right)

6.2 Challenges

6.2.1 Dynamic Stability Analysis

Vinbot has the objective to reach autonomous navigation at 1m/s on vineyards.
Besides the robot localization and navigation problem, that will be addressed next,
the first problem to be considered is related with the platform stability. The center of
gravity of the base platform is close to the ground, but adding cameras and sensors
that must be mounted at heights of (>1m) elevates the center of gravity. The over-
turning and tilting limits can be computed according to the center of gravity height,
wheelbase, acceleration and decelerations, but the characteristics of the field (soil
unevenness, gradient, etc.) cannot be neglected to have an accurate estimation of the
dynamic vehicle response. For this purpose, the robot dynamics has been modeled in
Gazebo andV-REP and the robot with the specific payload has been simulated. There
is no special reason for testing the robot in both simulators, the results can probably
be reproduced in both. However, to some extent V-REP is a bit more user friendly
for the environment and robot modelling, so at the time the dynamic analysis was
carried on the robot dynamic model was a bit more detailed in V-REP, this is why
the robot dynamics were tested in both environments. The behavior of the simulated
model matches the real one, thus allowing fine vehicle parameter tuning (wheelbase,
wheel diameter, overall width, acceleration/deceleration limits, components mass
distribution, etc.) (Fig. 25).

Robotnik—Professional Service Robotics Applications with ROS 281

Fig. 25 Dynamic testing of the platform in Gazebo (left) and V-REP (right)

6.2.2 Sensor Suite Selection

Vinbot has as objective the development of a precision viticulture system that can
be provided to farmers and winegrowers at an affordable price. Many of the project
objectives are easier to achieve with expensive sensors, i.e. RTK-DGPS systems
provide RT2 location estimations with ±2cm accuracy that could be used to navi-
gate inside vineyards, and a similar principle can be applied to many of the devices
(cameras, laser range-finders, etc.). So an important part of the research and devel-
opment effort is related with the selection of the solutions able to do the task without
exceeding the budget, in summary to find a compromise between price, reliability
and simplicity (easy deployment) of the solution. For this specific task ROS and
Gazebo are providing an important support. We have modeled vineyards in 5 dif-
ferent growing stages reducing a 90% the number of polygons of commercial 3d
vineyards. The same model is used for both visualization and collision in each vine-
yard since the simulated laser “sees” in the collision layer. Thus we can simulate a
realistic environment and get a first estimation of the data that could be provided by
the sensor suite.

In addition,we can test the specific sensors on the field and store the corresponding
datasets. The range of sensors tested includes range-finders, cameras, gps devices,
low cost dgps devices and associated antennas, inertial measurement units, 3D lasers,
stereo cameras, optical flow devices, etc. The measured data is later characterized,
analyzed and compared with other sensors and solutions (Fig. 26).

The obtained datasets in simulation are being used only for the development of
the navigation and localization solution, but part of the information obtained with
these sensors can also be used for the specific precision viticulture data analysis:
canopy assessments (height, wideness, leaf layer number, exposed leaf area, etc.)
and analysis of clusters and fruits.

282 R. Guzman et al.

Fig. 26 Robot navigating in a simulated vineyard in gazebo (left), robot navigating in a real field
(right)

6.2.3 Navigation and Localization

Simultaneously with the sensor suite selection and performance evaluation under the
real world field conditions, navigation and localization algorithms are being tested.
The evaluation in this case affects not only the capability of the sensors to operate
in the given conditions, but also the state of the art of algorithms that can use the
provided information. Some of the selected sensors and algorithms can provide a
better odometry estimation, others can also provide localization estimation and or
mapping. The development process for the navigation solution follows a simplified
version of the cycle described in [16], and is depicted in Fig. 27.

Most of the tests have been carried on in simulation or even in the lab. In some
cases the algorithms have been tested using rosbags from data acquisition on the
field. Some algorithms were considered at a point where the possibility of running
the field data acquisition during the night was still under consideration. This is the
case of all rgbd based algorithms, that have ultimately been discarded due to the need
to operate in direct sunlight. Other algorithms in the table are still under evaluation
and consideration (Table2).

In parallel with the testing of the mentioned localization algorithms, we have been
researching the idea of combining these with other low cost sensors and get benefit of
the specific characteristics of the vineyard arrangement. Vinbot addresses vineyards
raised in espalier, an agricultural practice of controlling the plant growth for the

Fig. 27 Navigation development cycle

Robotnik—Professional Service Robotics Applications with ROS 283

Table 2 Algorithms tested for localization and mapping or odometry estimation

Type Sensor Algorithms tested

slam3d laser2d gmapping, amcl, hector mapping

slam 6d rgbd rgbd-slam, ccny-rgbd, demo-rgbd

slam 6d motorized laser2d Loam (laser odometry and mapping) back and
forth

monocular slam 6d camera Ptam (parallel tracking and mapping)

visual odometry camera Fovis (fast odometry from vision), svo (fast
semi-direct monocular visual odometry)

Laser odometry laser2d laser_scan_matcher

slam 6d stereo vision (or rgbd
or 3d laser)

Rtabmap (real-time appearance-based mapping)

landmark rgbd ar_track_alvar (qr code tracking),
visp_auto_tracker

production of fruit by pruning and tying branches to a fixed frame. This creates a
kind of structured environment with organized rows and also some poles in the whole
field. The following images show an example of the addressed environment.

The possibility of using previously created 2d/3d maps has to be considered
carefully, as the data acquisition has to be done autonomously and continuously
during the year, and the plant canopy evolution will completely change the maps due
to the branches and leafs growth. A 2D/3D map close to the ground may provide a
less changing environment, but at the same time with less information.

With the objective of avoiding the use of expensive RTK-DGPS devices, the
following strategies have been tested:

• gmapping and amcl based localization: the performance is good evenmeasuring
close to the ground and seeing mostly the plant trunks and the field poles as
in the following picture. However, the estimation does not provide the required
reliability due to the environment changes and due to the characteristic particle
filter uncertainty in long corridors. The particles (red arrows under the robot) can
be seen in Fig. 28.

• beacon based localization: this localization solution makes use of a standard
2d range finder. By measuring not only the distance, but the reflected intensity,
it is possible to identify reflective beacons previously installed in the field. This
kind of beacon is used for localization by standard industrial navigation solutions
as those provided by Sick [17], it has also been used as landmark (detection of
the row end) for navigation in vineyards [18]. We have tracked them by using a
standard hokuyo laser and processing the intensity values. For the development of
the algorithms theMatlab ROS I/O Package has been tested. ROS I/O Package is a
MATLAB®extension that provides the capability to interactwithRobotOperating
System (ROS) from MATLAB [19]. This software, allows an easy interface with
ROS and is useful for fast testing of algorithms combined with existing software
running on ROS prior to their implementation in C++ or Python. ROS I/O Package

284 R. Guzman et al.

Fig. 28 Robot following programmed waypoints (green arrows) using Amcl localization on a
vineyard raised in espalier (map created with gmapping)

permits MATLAB programs to subscribe to ROS published data and to advertise
and publish MATLAB data in ROS (Fig. 29).

• reactive navigation: reactive navigation has proven to work well and has been
also tested by other research groups [20, 21]. In summary, the geometric map is
replaced by a topological one (or geometric-topological). The navigation relies on
the simple reactive behavior of row following. The rows are identified by means
of the laser range finder and the corresponding lines extracted by RANSAC. The
algorithm is able to follow the left or right row or both. The mission according to
this scheme can be defined as a sequence of waypoints and behaviours (follow row,
follow left, turn left on row end, etc.), implemented in a state machine (Fig. 30).

• sbas localization and low-cost rtk-dgps devices: different devices and antennas
have been tested and evaluated. The GPS-SBAS device (GNSS uBlox LEA-6P)
provides a location estimation with the standard SBAS accuracy of ±0.5m rms
error. In order to converge to a differential solution with geostationary satellites,
SBAS usually requires full sky view, which is the standard condition in vineyards.
In order to measure the accuracy of different antennas, a 24h tests is carried
on keeping the gps antenna fixed on a given location. We have realized that the
accuracy is highly dependent on the antenna quality, and that the original accuracy
value of ±0.5m rms can be improved. In addition, it has to be noticed that the
accuracy value is referred to a 24h cycle, but SBAS can provide a higher precision
for a specific time frame. Even with a reduced accuracy, GPS information can in
this context be useful, first to determine the end of a robot behaviour (e.g. end
of row) but also to geolocalize precision viticulture data. In the last years other
low-cost, high-performance GPS receivers with Real Time Kinematics (RTK)
have arrived on the market. These are able to provide centimeter level relative
positioning accuracy at an affordable price. The first device of this class under
evaluation is the Piksi (swift-nav) [22]. We have recently received one of the
pre-serie devices and have been updating the firmware. To date the results are
promising but the firmware still includes some errors that will sure be debugged
in the coming firmware versions.

Robotnik—Professional Service Robotics Applications with ROS 285

Fig. 29 Beacon based localization testing (left) and beacon based localization in real field (right)

Fig. 30 Ransac row detection

• hybrid approaches: the final solution points to a combination of reliable localiza-
tion inputs with reactive navigation. More field testing is needed but in summary
there will be a localization solution and a reactive navigation solution coexisting.
The following picture describes the proposed hybrid approach (Fig. 31).

An HMI implemented with interactive markers over the ROS visualization tool
permits the definition of a set of waypoints and actions to configure and define the
robot mission.

There is a map and an absolute robot localization to command waypoints in field
areas where the robot cannot use reactive navigation (e.g. to move from one field to
the next one, to move from one row to the next one if these are not contiguous, etc.).
In this state, the robot is commanded by a high level planner that sends a sequence of
waypoints to move_base (navigation stack). Alternatively the mission defines also

286 R. Guzman et al.

Fig. 31 VinBot navigation architecture (hybrid reactive)

pointswere reactive behaviours start and end (e.g. row following). For the localization
estimation, the robot_localization [23] package is used. The outputs of amcl, beacon
based localization and GPS (or other algorithm inputs) are fused by means of the
robot_localization nonlinear state estimator, to provide the transform from map to
odom (fusion of global absolute position data). At the same time, the same node is
used to fuse the odometry input sources (imu, encoders, other odometry sources) to
provide the transform from odom to base_link (fusion of continuous position data).

The proposed scheme permits the use of different solutions even for the same task
(e.g. navigation in a row could be achieved by reactive navigation or by absolute
localized waypoints). The final weight of reactive navigation versus absolute local-
ization will ultimately depend on the reliability of the localization inputs and on the
installation and deployment costs.

7 Summary and Conclusions

In the previous sections, a number of service robotics applications using ROS have
been described. In most cases several robot units have been manufactured and deliv-
ered to specific customers and the robots are currently in operation.

The advantages of using ROS in these kind of applications have exceeded our
initial expectations when we installed the boxturtle and decided to follow this path.
At that time Robotnik was using custom software components for service robotics
and PlayerStage [24] and OpenJAUS [25] for R&D robots. The high quality and
reliability of the ROS architecture, the availability of powerful development tools,
the possibility of using simulators and the wide range of devices and algorithms
supported have increased the development speed considerably. All this has allowed
us to provide hardware and service solutions that are modular, scalable and open
source as the ones presented in this chapter.

Robotnik—Professional Service Robotics Applications with ROS 287

The importance of the simulation tools deserves a specialmention. The facilities to
model a robot, its actuators and sensors and the environment allows getting realistic
data streams and test control concepts in early stages of the projects. Despite the
high specialization required, Gazebo (or V-REP) have demonstrated to be extremely
useful in reducing the costs as they permit the parallel development of hardware and
software, but most importantly because this development cycle allows to detect and
correct many concept errors in early stages.

The number of advantages and the good acceptance of the ROS architecture from
the customers makes difficult even to consider alternatives.

All these advantages have contributed to improve our efficiency and allowed us to
provide a specialized service with a measurable added value. Nevertheless, a number
of technical issues have to be also mentioned; at some point the fast version releases
and incompatibilities have been a major cause of troubles in the continuous effort to
adapt our software to the version most used by the community. Other issues related
with the lack of documentation, limitations of the middleware (most will be solved
in ROS2.0) and with the limitations of the physical engines of the simulators are also
topics that forced us to make large efforts and that should be improved in the near
future.

Despite the minor drawbacks, ROS has enabled a wide number of applications,
increased the capabilities and fulfilled the promise of code reutilization.

References

1. M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS:
an open-source Robot Operating System, in ICRA Workshop on Open Source Software (2009)

2. ROS Conference. http://www.roscon.org (2015)
3. R. Guzman, R. Navarro, J. Ferre, M.Moreno, RESCUER: development of a modular chemical,

biological, radiological, and nuclear robot for intervention, sampling, and situation awareness.
J. Field Robot. (2015). doi:10.1002/rob.21588

4. rqt. http://wiki.ros.org/rqt (2015)
5. Google Earth. https://www.google.com/earth/ (2013)
6. MoveIt! http://moveit.ros.org/ (2015)
7. Kinematics and Dynamics Library KDL. http://www.orocos.org/kdl (2013)
8. Gazebo. http://gazebosim.org/ (2015)
9. PointCloud Library. http://pointclouds.org/ (2015)
10. multimaster_fkie, retrieved 2015, from http://wiki.ros.org/multimaster_fkie
11. rosbridge_suite, retrieved 2015, from http://wiki.ros.org/rosbridge_suite
12. BootStrap. http://getbootstrap.com/ (2015)
13. Django. https://www.djangoproject.com/ (2015)
14. URDF Unified Robot Description Format. http://wiki.ros.org/urdf (2015)
15. Robot Web Tools. http://robotwebtools.org/ (2015)
16. A. Linz, A. Ruckelshausen, E.Wunder, Autonomous service robots for orchards and vineyards:

3D simulation environment of multi sensor-based navigation and applications, in ICPA (2014)
17. A.G. Sick, NAV200 Operating Instructions. http://www.sick.com. Accessed 12 Feb 2007
18. M. Bergerman, S.M. Maeta, J. Zhang, G.M. Freitas, B. Hamner, S. Singh, G. Kanto, Robot

farmers: autonomous orchard vehicles help tree fruit production. IEEE Robot. Autom. Mag.
54–63

http://www.roscon.org
http://dx.doi.org/10.1002/rob.21588
http://wiki.ros.org/rqt
https://www.google.com/earth/
http://moveit.ros.org/
http://www.orocos.org/kdl
http://gazebosim.org/
http://pointclouds.org/
http://getbootstrap.com/
https://www.djangoproject.com/
http://wiki.ros.org/urdf
http://robotwebtools.org/
http://www.sick.com

288 R. Guzman et al.

19. R.S. Nah, Y. Zhang, R. Pillat, ROS Support fromMATLAB, Presentation in ROSCon Chicago,
Sep 2014

20. S. Marden, M. Whitty, GPS-free localisation and navigation of an unmanned ground vehicle
for yield forecasting in a vineyard, in Recent Advances in Agricultural Robotics, International
workshop collocated with the 13th International Conference on Intelligent Autonomous Systems
(IAS-13)

21. H. Mousazadeh, A technical review on navigation systems of agricultural autonomous off-
road vehicles. J. Terramech. 50(3), 211–232 (2013). doi:10.1016/j.jterra.2013.03.004. ISSN:
0022-4898

22. Swift Navigation. http://www.swift-nav.com (2015)
23. ROS robot_localization
24. The Player Project. http://playerstage.sourceforge.net/ (2015)
25. OpenJAUS. http://openjaus.com/ (2015)
26. Coppelia Robotics V-REP. http://www.coppeliarobotics.com/ (2015)

Authors’ Biography

Mr. Roberto Guzman (rguzman@robotnik.es) owns the degrees of Computer Science Engineer
(Physical Systems Branch) and MSc in CAD/CAM, and has been Lecturer and Researcher in the
Robotics area of the Department of Systems Engineering and Automation of the Polytechnic Uni-
versity of Valencia and the Department of Process Control and Regulation of the FernUniversität
Hagen (Germany). During the years 2000 and 2001 he has been R&D Director in “Althea Pro-
ductos Industriales”. He runs Robotnik since 2002.

Mr. Roman Navarro (rnavarro@robotnik.es) owns the degree of Computer Science Engineer
(Industrial branch) at the Polytechnic University of Valencia. He works in Robotnik since 2006
as software engineer and in the R&D department.

Mr. Marc Beneto (mbeneto@robotnik.es) owns the degree of Computer Engineer (Industrial
branch) at the Polytechnic University of Valencia. He works in Robotnik since 2011 as software
engineer and in the R&D department.

Mr. Daniel Carbonell (dcarbonell@robotnik.es) received the degree in electrical engineering
(Industrial branch) from the Polytechnic University of Valencia in 2014. He also was a scholarship
student in the ETH Zürich in 2012 where he started to feel interested in mobile robotics.

http://dx.doi.org/10.1016/j.jterra.2013.03.004
http://www.swift-nav.com
http://playerstage.sourceforge.net/
http://openjaus.com/
http://www.coppeliarobotics.com/

Standardization of a Heterogeneous Robots
Society Based on ROS

Igor Rodriguez, Ekaitz Jauregi, Aitzol Astigarraga, Txelo Ruiz
and Elena Lazkano

Abstract In this use case chapter the use of ROS is presented to achieve the
standardization of a heterogeneous robots society. So on, several specific packages
have been developed. Some case studies have been analized usingROS to control par-
ticular robots different in nature and morphology in some applications of interest in
robotics such as navigation and teleoperation, and results are presented. All the devel-
oped work runs for Indigo version of ROS and the open source code is available at
RSAIT’s github (github.com/rsait). Some videos can be seen at our youtube:
channel https://www.youtube.com/channel/UCT1s6oS21d8fxFeugxCrjnQ.

Keywords Heterogeneous robots · Old robot renewal · Standardization · Teleop-
eration · Human-robot interaction · Navigation · Speech recognition

1 Introduction

The Robotics and Autonomous Systems Lab (RSAIT) is a small research group that
focuses its research on applying new machine learning techniques to robots.

The group was founded around year 2000 and inherited a B21 robot (RWI). Since
then, the group has grown up and, in its development, has acquired different robots.

I. Rodriguez (B) · E. Jauregi · A. Astigarraga · T. Ruiz · E. Lazkano
Faculty of Informatics, Robotics and Autonomous Systems Lab (RSAIT),
UPV/EHU, Manuel Lardizabal 1, 20018 Donostia, Spain
e-mail: igor.rodriguez@ehu.eus
URL:http://www.sc.ehu.es/ccwrobot

E. Jauregi
e-mail: ekaitz.jauregi@ehu.eus

A. Astigarraga
e-mail: aitzolete@gmail.com

T. Ruiz
e-mail: txelo.ruiz@ehu.eus

E. Lazkano
e-mail: e.lazkano@ehu.eus

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_11

289

https://www.youtube.com/channel/UCT1s6oS21d8fxFeugxCrjnQ

290 I. Rodriguez et al.

In our experience, robot maintenance is laborious, very time consuming, and does
not provide immediate research results. Moreover, robots from different suppliers
have their own control software and programming framework that require senior
and incoming members to be trained once and again. This makes robot maintenance
harder. That’s why robotics labs often become scrap yards in the sense that old
robots are often retired instead of upgraded and broken robots are discarded instead
of repaired. But small research groups often do not have enough budget to invest in
new robots, so that upgrading and repairing robots become mandatory.

We now own a heterogeneous set of robots, consisting of an old B21 model from
RWI named MariSorgin; a Kbot-I from Neobotix; Galtxagorri a Pioneer 3DX and
the PeopleBot Tartalo, both fromMobileRobots; a humanoid NAO from Aldebaran;
five Robotino-s from Festo (these ones used for educational purposes in the Faculty
of Informatics). Each one came with its own API and software, most running on
Linux. Thanks to ROS we now have a standard tool to uniformly use this society of
heterogeneous robots.

Contributions of the book chapter: several case studies are presented in which
some new ROS drivers and packages have been developed for navigation and gesture
and speech based teleoperation that can be used for robots different in nature. Those
applications are fully operative in real environments.

2 Robot Description

A brief description of the robots and the modifications and upgrades suffered during
their operational life follows up, together with a reference to the software used to
control them.

2.1 MariSorgin

Our heirloom robot is a synchro-drive robot that dates from 1996. It is a B21 model
from Real World Interface provided with a ring of ultrasound, infrared and tactile
sensors for obstacle avoidance.Opposite to its successor, thewell knownB21rmodel,
it was not supplied with a laser sensor. In 2002 its motor controllers were damaged
and sent to RWI for replacement, but they never came back to us. Ten years later,
those boards were replaced with Mercury motor controllers from Ingenia Motion
Control Solutions [8]. The two internal i386 PCs were replaced with a single newer
motherboard. So, after 10 years MariSorgin became again fully operational.

In the beginning the original API, named BeeSoft [19] was replaced by a home
made library that better suited to our control architecture development philosophy
(libB211). We combined it with Sorgin [2], a framework designed for developing

1Developed by I. Rañó at Miramon Technology Park, 2001 [17].

Standardization of a Heterogeneous Robots Society Based on ROS 291

Fig. 1 Sorgin: example program

behavior-based control architectures. Sorgin allowed us to define and communicate
behaviors in a way similar to ROS topics and nodes. Topics equivalents were arrays
of floats defined as io_data structures, and nodes were behavior_t structures,
with different associated functions (initialization, main loop and stop) launched in
separated threads. Thus, Sorgin’s modular structure resembled ROS procedural orga-
nization and communication but in a more modest implementation. Figure1 shows
what a Sorgin program looks like.

After the “resurrection”, we had no doubt: we must adapt it to ROS. So, we
developed the necessaryROSdrivers for themotor controllers andmounted aHokuyo
URG-30 laser on top of the enclosure, a Kinect camera and aHeimann thermal sensor
(see Fig. 2).

292 I. Rodriguez et al.

Fig. 2 MariSorgin and its URDF model. a Renewed B21, b URDF model visualized in Rviz

2.2 Tartalo and Galtxagorri

Two differential drive robots fromMobileRobots. Galtxagorri, a Pioneer-3DX robot
suffered some modifications from its initial configuration. On the one hand, a Leuze-
RS4 laser sensorwasmounted on top of its body (fed externally to extend the duration
of the internal batteries and so, the robot’s autonomy). Speakers have been added
together with an amplifier (Fig. 3). Besides, Tartalo is a PeopleBot robot that facili-
tates human-robot interaction. Both platforms have a MAMBAVL-EBX-37A board
with a 2.26GHz Intel(R) Core(TM2) Duo CPU.

These two robots came with Aria, a framework that again did not fulfill our
control architecture development schemata. Before ROS came up, our trend was to
use Player/Stage (see [27]). Player/Stage offered us a wide set of drivers and a proper
tool for developing our own algorithms without imposing restrictions in the type of
control architecture being developed.

Player/stage shares with ROS the definition of what a robot is, i.e. a set of devices
(sensors and actuators), each one with its own driver that gives access to the device
data. Player offered an abstract layer of interfaces that allowed to access differ-
ent devices similar in nature using the same code. Combining Player with Sorgin
turned out to be straight forward (Fig. 4). This coupling allowed us to work with
MobileRobots platforms in a flexible and suitable way for several years. But Player
focusedmore on developing drivers than algorithms and stopped evolvingwhenROS
appeared.

ROS provides the P2OS package that allows to control Tartalo and Galtxagorri’s
base. Moreover, it also offers the appropriate driver for the Leuze RS4 laser scanner.
Thus, only the URDF models were needed to set up for the two robots.

Standardization of a Heterogeneous Robots Society Based on ROS 293

Fig. 3 P2OS robots and their URDF models. a Galtxagorri. b Galtxagorri in Rviz. c Tartalo.
d Tartalo in Rviz

2.3 Robotino-s

Those are omnidirectional circular platforms from Festo Didactic that we mainly
use for education. They are provided with several sharp GP2D12 infrared sensors,
a bumper ring, a webcam and a Hokuyo URG-04LX sensor in order to be able to
experiment with mapping and planning techniques. The control unit, placed on top
of the wheeled platform, contains a 500MHz PC104 processor that runs RTLinux.

294 I. Rodriguez et al.

Fig. 4 Sorgin+Player:
organization

All the software is installed in a 4GB Compact Flash card. The unit also offers an
Ethernet port and a WLAN access point, 2 USB ports and a VGA connector.

RobotinoView is the interactive, graphic programming environment for Robotino.
Besides, Robotino ships with an application programming interface (RobotinoAPI2)
allowing the user to create programs using different programming languages like C,
C++, Java and more. Communication between the control program and Robotino
is handled via TCP and UDP and is therefore fully network transparent. The new
API2 is based on a RPC like infrastructure. The REC-RPC library is an interprocess
communication middleware similar to ROS. It is completely based on Qt and does
not have any other dependencies.

Migration to ROS has been straight forward, since packages for Robotino can be
found at wiki.ros.org/robotino.

2.4 NAO

NAO is an autonomous programmable humanoid robot developed by Aldebaran
Robotics. NAO’s human like shaped body is about 58cm tall and weights about
4,8 kg. It is built in polycarbonate and ABS (a common thermoplastic) materials that
allow better resistance against falls and it has a lithium battery with which it can
get an autonomy of 90 min approximately. Its heart is composed by a 1.6 GHz Intel
Atom processor running Linux. 25 servos enable to control the 25◦ of freedom of the
robot. Regarding to robot motion, NAO can move in any direction (omnidirectional
walking), it uses a simple dynamic model (linear inverse pendulum) and quadratic
programming. It is stabilized using feedback from joint sensors. It can walk on a
variety of floor surfaces, such as tiled and wooden floors, and he can transition
between surfaces while walking.

NAO sees using two 920p cameras, which can capture up to 30 images per second.
Also, it uses four microphones to track sounds and two loudspeakers to talk or play
sounds.

Standardization of a Heterogeneous Robots Society Based on ROS 295

Choregraphe is the original programming software of NAO. It is a multi platform
desktop application that allows to create animations and behaviors, test them on a
simulated robot, or directly on a real one and monitor and control the robot. Chore-
graphe allows to create very complex behaviors (e.g. interaction with people, dance,
send e-mails, etc.) without writing a single line of code. In addition, it allows the
user to add her own Python code to a Choregraphe behavior.

The behaviors created with Choregraphe are written in its specific graphical lan-
guage that is linked to the NAOqi Framework, the main software that runs on the
robot. NAO interprets them through this framework and executes them.Choregraphe
also interacts with NAOqi to provide useful tools such as the Video monitor panel,
the Behavior manager panel, the Toolbar, the Robot view or the Timeline Editor.

Again, transition to ROS was easy. ROS drivers for NAO can be found at http://
wiki.ros.org/nao.

2.5 Kbot-I

A differential drive robot built by Neobotix in 2004 for acting as a tour guide at
the Eureka Museum of Science in San Sebastian. Supplied with a Sick S3000 laser
scanner, the robot held a touch screen for receiving orders. An application specifically
developed for the robot to act as a guide in the museum was running on the onboard
Windows 2000 Professional machine. In 2006 the robot was damaged and stored
in a garage until 2014. The robot was transferred to the University of the Basque
Country (UPV/EHU). In spite of the lack of any detailed manual, our groupmanaged
to locate and repair broken connections. The onboard PC was replaced by a Zotax
MiniPC with a NVIDIA graphics card, and the webcam on its head was removed
and instead, a Kinect sensor has been mounted. The rigid arms that supported a huge
touch monitor were also removed and replaced by plates built with a 3D printer
(another invaluable tool for robot maintenance!).A smaller Getich monitor has been
placed on the back side of the body. Fortunately, the source code of the drivers
was available and only small modifications were needed to compile that code and
make the necessary libraries under Linux. Albeit the time spent in code surfing, it
was rather straightforward to implement the necessary ROS drivers to get it back
running2 (Fig. 5).

3 Working Areas of RSAIT Research Group

Navigation is a fundamental skill that mobile robots need in order to be autonomous.
The navigation task has been approached in different ways by the main paradigms
of control architectures. RSAIT has focused its navigation methodology within the

2Thanks to Marco Beesk from Neobotix for agreeing to make public our Kbot-IROS nodes.

http://wiki.ros.org/nao
http://wiki.ros.org/nao

296 I. Rodriguez et al.

Fig. 5 Kbot-I and its URDF model. a Renewed Kbot-I, b Kbot-I visualized in Rviz

behavior-based philosophy (see for instance [9]) that focuses on biology to inspire
its navigation strategies ([12]). But probabilistic approaches seem to increase adepts
and some techniques are being distributed within the ROS community for mapping,
localization and planning. No definitive solution exists nowadays but clearly, ROS
navigation stack makes possible to compare different approaches. Therefore, it is
worth to setup this stack for our robots.

Besides, in our research groupwe areworking on different applications for natural
human-robot interaction. On the one hand, we have developed two different ROS
packages to enrich the teleoperation of robots: speech-based teleoperation in Basque
Language (Euskara) and gesture-based teleoperation using the Kinect [18].

On the other hand, we have developed a system, called Bertsobot, which is able
to construct improvised verses in Basque (named bertsoak) according to given con-
straints on rhyme and meter, and to perform them in public (see [1]). NAO is the
robot that gives shape to the Bertsobot system. It is capable of understanding some
“orders”, composing and playing traditional Basque impromptu verses, also repli-
cating the movements made by the impromptu verses singers. This project allowed
us to combine diverse research areas such as body gesture expressiveness, oral com-
munication and human-robot interaction in a single project.

Table1 summarizes the developed ROS packages. The experiments described
in the following sections will explain how these skills have been integrated in the
different robots, according to their sensorial capabilities.

Standardization of a Heterogeneous Robots Society Based on ROS 297

Ta
bl

e
1

Su
m
m
ar
y
of

ba
si
c
R
O
S
m
od
ul
es

U
se
d
R
O
S
m
od
ul
es

A
da
pt
ed

R
O
S
m
od
ul
es

N
ew

R
O
S
m
od
ul
es

G
en
er
al
us
e

-
S
p
e
e
c
h
_
e
u
s
:B

as
qu
e
T
T
S
an
d
A
SR

m
od
ul
es

-
h
e
i
m
a
n
:t
he
rm

op
ile

dr
iv
er

G
al

tx
ag

or
ri

-
p
2
o
s
_
d
r
i
v
e
r

-
g
a
l
t
x
a
_
d
e
s
c
r
i
p
t
i
o
n
:U

R
D
F
m
od
el

-
g
a
l
t
x
a
_
t
e
l
e
o
p
_
s
p
e
e
c
h
_
e
u
s

-
r
o
t
o
s
c
a
n
_
n
o
d
e

-
g
s
c
a
m

Ta
rt

al
o

-
p
2
o
s
_
d
r
i
v
e
r

-
t
a
r
t
a
l
o
_
d
e
s
c
r
i
p
t
i
o
n
:U

R
D
F
m
od
el

-
t
a
r
t
a
l
o
_
t
e
l
e
o
p
_
s
p
e
e
c
h
_
e
u
s

-
s
i
c
k
l
m
s

-
t
a
r
t
a
l
o
_
n
a
v
i
g
a
t
i
o
n
:p

la
nn

er
an
d
co
st
m
ap

pa
ra
m
s

-
g
s
c
a
m

R
ob

ot
in

o
-
r
o
b
o
t
i
n
o
_
n
o
d
e

-
A
ll
pa
ck
ag
es

ca
tk
in
iz
ed

-
o
p
e
n
n
i
_
n
o
d
e

-
s
k
e
l
e
t
o
n
_
t
r
a
c
k
e
r
:o
p
e
n
n
i
_
t
r
a
c
k
e
r
m
od
ifi
ed

-
r
o
b
o
t
i
n
o
_
t
e
l
e
o
p
_
g
e
s
t
u
r
e
s

-
o
p
e
n
n
i
_
l
a
u
n
c
h

K
bo

t-
I

-
s
i
c
k
s
3
0
0

-
k
b
o
t
_
d
e
s
c
r
i
p
t
i
o
n
:U

R
D
F
m
od
el

-
o
p
e
n
n
i
_
n
o
d
e

-
k
b
o
t
_
p
l
a
t
f
o
r
m
:d

ri
ve
rs
fo
r
dr
iv
in
g
m
ot
or
s,

he
ad

til
tm

ot
or

an
d
in
te
gr
at
ed

se
ns
or
s
(U

S)

-
o
p
e
n
n
i
_
l
a
u
n
c
h

-
k
b
o
t
_
t
e
l
e
o
p
_
j
o
y
:p

la
tf
or
m

an
d
he
ad

til
t

m
ot
or

co
nt
ro
l

-
k
b
o
t
_
g
u
i
d
e
_
q
t
:i
nt
er
ac
tiv

e
us
er

in
te
rf
ac
e
fo
r

na
vi
ga
tio

n

M
ar

iS
or

gi
n

-
m
a
r
i
_
d
e
s
c
r
i
p
t
i
o
n
:U

R
D
F
m
od
el

-
h
o
k
u
y
o
_
n
o
d
e

-
c
a
n
m
:m

er
cu
ry

m
ot
or

co
nt
ro
lle
r
dr
iv
er

-
i
m
u
_
u
m
6

-
m
a
r
i
_
t
e
l
e
o
p
_
j
o
y
:p

la
tf
or
m

co
nt
ro
l

-
o
p
e
n
n
i
_
n
o
d
e

-
m
a
r
i
_
t
e
l
e
o
p
_
s
p
e
e
c
h
_
e
u
s

-
o
p
e
n
n
i
_
l
a
u
n
c
h

-
m
a
r
i
q
t
:u

se
r
in
te
rf
ac
e
fo
r
sp
ee
ch

ba
se
d

te
le
op

er
at
io
n

-
h
e
i
m
a
n
:t
he
rm

op
ile

dr
iv
er

(c
on
tin

ue
d)

298 I. Rodriguez et al.

Ta
bl

e
1

(c
on
tin

ue
d)

U
se
d
R
O
S
m
od
ul
es

A
da
pt
ed

R
O
S
m
od
ul
es

N
ew

R
O
S
m
od
ul
es

N
A
O

-
n
a
o
q
i
_
b
r
i
d
g
e

-
s
k
e
l
e
t
o
n
_
t
r
a
c
k
e
r
:o
p
e
n
n
i
_
t
r
a
c
k
e
r
m
od
ifi
ed

-
n
a
o
_
t
e
l
e
o
p
_
g
e
s
t
u
r
e
s
:m

ot
io
n,

ha
nd
s
an
d

he
ad

co
nt
ro
lle

r

-
n
a
o
_
r
o
b
o
t

-
n
a
o
_
t
e
l
e
o
p
_
s
p
e
e
c
h
_
e
u
s

-
n
a
o
_
m
e
s
h
e
s

-
n
a
o
_
b
e
r
t
s
o
b
o
t

-
n
a
o
_
i
n
t
e
r
a
c
t
i
o
n

-
n
a
o
_
e
x
t
r
a
s

Standardization of a Heterogeneous Robots Society Based on ROS 299

4 Case Study 1: Setup of the Navigation Stack

Navigation refers to the way a robot finds its way in the environment [13]. Facing this
is essential for its survival. Without such a basic ability the robot would not be able
to avoid dangerous obstacles, reach energy sources or return home after exploring
its environment. Navigation is therefore a basic competence that all mobile robots
must be equipped with. Hybrid architectures tackle the problem of navigation in
three steps: mapping, localisation and planning. These are old problems from the
perspective of manipulation robotics and are nowadays treated in a probabilistic
manner.Hence the nameof thefieldprobabilistic robotics [26], thatmakes explicit the
uncertainty in sensormeasurements and robotmotion by using probabilisticmethods.
ROS offers several stacks that use probabilistic navigation techniques and allow to
empirically use, test and evaluate the adaptability of those techniques to different
robot/environment systems. So for, and taking as starting point the navigation stack
available for the P2OS robots, it has been setup in Kbot-I.

Since Kbot-I is now ready again for human-robot interaction, an interactive user
interface has been developed using rqt (kbot_guide_qt) to retake the original
task Kbot-Iwas designed for: be a guide within our faculty. The most frequently
demanded sites of our faculty are located at the first floor. Hence, in this attempt
a map of the first floor has been created with ROS mapping utilities and that map
is being used as the floor plan of the developed GUI. This floor plan has been
populated with several interaction buttons corresponding to the important locations
people might be interested in, such as the administration, the dean’s office, the lift,
several labs and so on. Information about actual and destination locations is also
displayed on the interface. Figure6 shows what the GUI looks like.

The robot morphology makes door crossing insecure and thus, for the time being
the GUI limits the robot guiding task to the front of the door that gives access to the
desired location.

Fig. 6 Kbot navigation interaction window and costmap

300 I. Rodriguez et al.

System evaluation: Regarding the setup of the navigation stack, it is not a friendly
process. Although the documentation has been improved, many parameters have to
be set empirically, without any explicit methodology. The ROS navigation stack is
based on probabilistic navigation techniques and it is known that they don’t adapt
well to dynamic environments. The system fails when there are severe mismatches
between the current sensor readings and the storedmap. Therefore, crowds should be
avoided in front of the robot during the tours and all people must be advised to stay
on the back of the robot so that the map remains reliable and the planner could find a
way to the goal. Moreover, the application needs to know the robot’s initial position
in order to be able to plan routes to the goal. Hence, it is not able to face the global
localization problem. It will be a great improvement to enhance the navigation stack
with global localization capabilities to overcome this problem and to make it more
robust and general to use.

But more important is to mention that, after ROSifying the robot, we got a naviga-
tion application running, working and prepared to be used in public in just a couple
of weeks, but without the need of reimplementing the whole system. The application
has been used for the first time in an open door event at our faculty on March 12
(2015). About 100 candidate students came to visit the faculty and they were divided
on 6 small groups of 15–20 students. They were supposed to visit different labs and
sites on different floors of the building. The robot was located on the first floor and
guided the teams over the different places they should arrive to. Basque TV (EiTB)
came to record the event and broadcasted it at the news (Fig. 7).

Fig. 7 Kbot making guided tours in the faculty

Standardization of a Heterogeneous Robots Society Based on ROS 301

Still we can improve the system integrating door crossing abilities. Also, the
system should be complemented with the maps of the second and third floors. Our
plan is to set Tartalo in the second floor and MariSorgin in the third one, so that
connection among floors will be done via the lift. Robots will not entry the lift but
will communicate to be aware that they need to welcome “tourists” sent from other
locations.

5 Case Study 2: Kinect Based Teleoperation

The term teleoperation is used in research and technical communities for referring
to operation at a distance. Teleoperated robots are used in many sectors of society.
Although those robots are not autonomous they are very useful e.g. in medicine for
surgery [4, 5], for space exploration [3] or for inspection in nuclear power plants
[16].

Different devices can be used for teleoperating a robot (joystick, smart phone,
wii-mote) but gesture based teleoperation is increasing adepts ([6, 15, 25]) specially
due to availability of cheap 3D cameras such as Microsoft’s Kinect sensor. Real-
time teleoperation of humanoid robots by detecting and tracking human motion is
an active research area. This type of teleoperation can be considered as a particular
way of interaction between a person and a robot, because it is a natural way to
interact with robots. It is an interesting research topic and related work is abundant.
For instance, Setapen et al. [21] use motion capture to teleoperate a NAO humanoid
robot, using inverse kinematic calculations for finding the mapping between motion
capture data and robot actuator commands. Matsui et al. [14] use motion capture
to measure the motion of both, a humanoid robot and a human, and then adjust the
robot motion to minimise the differences, with the aim of creating more naturalistic
movements on the robot. Song et al. [22] use a custom-built wearable motion capture
system, consisting of flex sensors and photo detectors. To convert motion capture
data to joint angles, an approximation model is developed by curve fitting of 3rd
order polynomials. Koenemann and Bennewitz [10] present a system that enables
a humanoid robot to imitate complex whole-body motions of humans in real time,
ensuring static stability when the motions are executed and capturing the human data
with an Xsens MVN motion capture system consisting of inertial sensors attached
to the body.

The above mentioned methods are limited in the sense that the human needs
to wear different types of sensors in order to interact with the robot. This can be
avoided with the Kinect sensor, moreover, the cost of the equipment is declined.
That is why researchers have become more interested in Kinect. Song et al. [23]
propose a teleoperation humanoid robot control system using a Kinect sensor to
capture human motion and control the actions of remote robot in real-time. Suay and
Chernova [24] present a new humanoid robot control and interaction interface that
uses depth images and skeletal tracking software to control the navigation, gaze and
arm gestures of a humanoid robot.

302 I. Rodriguez et al.

Fig. 8 Robotino and its teleoperation interface. a Robotino, b The teleoperation interface

ROS offers drivers for the Kinect together with a package that extracts and tracks
the human skeleton from sensor data. Thus, taking as base tool these two packages
(openni_launch and openni_tracker), a gesture-based teleoperation system has been
developed for a holonomic wheeled robot and, afterwards, enriched to teleoperate a
humanoid robot.

5.1 The robotino_teleop_gesture Package

The development of a gesture based teleoperation system requires first to identify
the degrees of freedom that are going to be controlled and define the set of gestures
that will control the robot. Robotino-s are holonomic wheeled robots and thus, can
be moved along the plane in any direction without changing the robot heading.
Also, a rotational velocity can be assigned. The defined gesture set is based on arm
movements although internally is implemented through hand positioning (see Fig. 8).
The gesture set consists of:

• Moving right arm tilt controls forward/backward movements (lineal velocity in x)
• Right arm pan movement controls side movements (linear velocity in y)
• Left arm yaw movement controls left/right rotation (rotational velocity)
• Lowering both arms at the same time stops the robot.

The developed teleoperation system has two sides: the user detection process and
the robot motion control process. On the one hand, the user detection step is based
on the openni_tracker package, but several changes have been introduced to
produce an skeleton_tracker:

Standardization of a Heterogeneous Robots Society Based on ROS 303

1. The node that tracks the skeleton now publishes the joint position information of
the skeleton in the skeleton topic.

2. A new node makes available the Kinect image that includes the graphical repre-
sentation of the skeleton links on it.

On the other hand, the robotino_teleop_gesture node contains a sub-
scriber that receives messages published by skeleton_tracker in the
skeleton topic. When a message is received, the operator’s position is analyzed.
Andaccording to that position the robot executes the correspondingmotion.Although
each arm movement controls a velocity value, different gestures can be combined,
i.e. move forward while turning.

System evaluation: The skeleton tracker performs properly when the only moving
element of the scene is the teleoperator and so, the background needs to be static.
Moreover, the system setup is designed for a single person sat on a chair in front
of the kinect. But when the application is used with children, they must stand up so
that size does not affect the calibration process. The application is fully operational
for real indoor environments and is being used as a game/demo in several yearly
events like the week of sciences (2013–2014), meetings with undergraduate students
(2012–2015), robotics day (2013). Since its early development, it has been adapted
for several ROS distros and OpenRobotinoAPI versions. Up to now, it is catkinized
for Indigo and OpenRobotinoAPI version 0.9.13.

5.2 The nao_teleop_gesture Package

The gesture-based teleoperation system developed for the Robotino-s has been
adapted and extended to be used with NAO. The skeleton tracking system is exactly
the same, the only difference is that more degrees of freedom are to be controlled
and, thus, the gesture set needs to be redefined and extended.

NAO’s human like morphology allows not only the motion of the robot in the
plane but also the movement of the arms. Thus, it is not adequate to use the operator
arms to control the velocities of the robot. In this case, the selected gesture set is the
following:

• If the operator steps forward/backward the robot walks forward/backwards.
• The lateral steps of the operator cause the side movements of the robot.
• Raising the left shoulder and lowering the right one causes clockwise rotation.
• Raising the right shoulder and lowering the left one causes ccw rotation.
• Left/right arm movements are used to control robot’s left/right arm.
• Head pan and tilt movements are used to control NAO’s head.

The new package, named nao_teleop_gesture contains three nodes:
1.- nao_motion_control: basically, this node has the same functionality as
the node developed for the Robotino-s. It has to perform the following two main
tasks:

304 I. Rodriguez et al.

• Receive messages published by the skeleton_tracker package.
• Publish NAO’s walking velocities.

The nao_motion_control node has a publisher that publishes the omnidi-
rectional velocity (x, y, and theta) in the cmd_vel topic for the walking engine. The
velocity with which the robot moves has been set to a constant value. If the walking
velocity is too high the robot starts to swing. Thus, the linear velocity and the angular
velocities have been assigned low values.
2.- nao_arm_control: This node is in charge of sending to the robot the neces-
sary motion commands to replicate the operator’s arms motion. The node performs
tasks by:

• Receiving the messages published by the skeleton_tracker package.
• Publishing NAO’s joint angles with speed.

Therefore, nao_arm_control is subscribed to the skeleton topic in order
to receive the operator’s skeleton messages published by skeleton_tracker.

On the other hand, the nao_arm_control node has a publisher that publishes
the joint angles with speed in the joint_angles topic, which allows the commu-
nication with the nao_controller node. The NAO’s joints motion speed is set
to a constant value appropriate for the robot to mimic the operator arms motion in
“real” time.
3.- nao_head_control: This node is responsible of moving the robot’s head.
Similar to the way that nao_arm_control gets the arm joint angles, this
node calculates the head joint pitch and yaw angles, and publishes them into the
joint_angles topic.

The robot imitates human actions in real-time with a slight delay of less than
30ms. This delay is approximately the time the system needs to capture the operator’s
arms/head motion, calculate the angles that make up the operator’s arms/head joints
(see [18]), and send motion commands to the robot via WiFi.

Only walking action movements (forward, backward, left, right) with rotational
motions can be combined. No arm movement is allowed while walking so that the
stability of the robot is not affected. Moreover, when the robot holds something on
its arms the center of gravity (COG) of the walking robot needs to be lowered and
backwarded, so that the COG is maintained within the support polygon (see Fig. 9).
Thus the walking behavior has been modified for those cases in order to increase the
stability.

A GUI has been created (this time with existing rqt plugins) in order to help the
operator to know the system state. The GUI is divided into two main parts (Fig. 10).
The top side is composed by the Topic Monitor and the Rviz interface. The Topic
Monitor shows all the topics and messages sent by the nodes that are in execution.
Rviz shows the NAO 3D model moving in real-time. The bottom side shows visual
information from the cameras; Image View shows the image received from NAO’s
top camera and the right window shows the image captured by the Kinect together
with the skeleton of the tracked body.

Standardization of a Heterogeneous Robots Society Based on ROS 305

Fig. 9 Modified walking position. a Original. b Modified

Fig. 10 Teleoperation display

The system starts with NAO in crouching position and when the operator enters
the Kinect’s view, the calibration process starts. NAO tells the operator that the
calibration ended successfully saying “Kinect control enabled” and then, the operator
can control the robot with his/her body.

306 I. Rodriguez et al.

System evaluation: Imitation is an important way of skill transfer in biological agents.
Many animals imitate their parents in order to learn how to survive. It is also a way
of social interaction. A sociable robot must have the capability to imitate the agents
around it. In a human society, people generally teach new skills to other people
by demonstration. We do not learn to dance by programming, instead we see other
dancers and try to imitate them. Hence, our artificial partners should be able to learn
from us by watching what we do. That idea pushed us to evaluate our application
based on the imitation ability of the robot.

Two experimentswere defined to evaluate the system.Those experiments involved
several people that should give qualitative measures of the system performance by
means of a questionnaire that participants completed after carrying out each exper-
iment. Experiments were performed until each participant achieved the aim of the
experiment at least once (see [18]). The experiments revealed three aspects thatmight
be improved:

• The lack of side viewmakes more difficult the guidance of the robot. This problem
is now alleviated with the addition of the head motion control.

• Although the selection of gestures is correct (natural) and the movements are quite
precise, a short period of training is needed by the operator to get used to distances.

• The robot can loose balance when walking with the arms raised.

6 Case Study 3: Speech Based Teleoperation in Basque

Human-robot interaction (HRI) is the study of interactions between humans and
robots. HRI is a multidisciplinary field with contributions from human-computer
interaction, Artificial Intelligence, robotics, natural language understanding, design,
and social sciences. A requirement for natural HRI is to endow the robot with the
ability to capture, process and understand human requests accurately and robustly.
Therefore it is important to analyse the natural ways by which a human can interact
and communicate with a robot.

Verbal communication should be a natural way of human-robot interaction. It is
a type of communication that allows the exchange of information with the robot.

To serve a human being, it is necessary to develop an active auditory perception
system for the robot that can execute various tasks in everyday environments obeying
spoken orders given by a human and answering accordingly. Several systems have
been recently developed that permit natural-language human-robot interaction. Fos-
ter et al. [7] propose a human-robot dialogue system for the robot JAST, where the
user and the robot work together to assemble wooden construction toys on a common
workspace, coordinating their actions through speech, gestures, and facial displays.

A speech based teleoperation interface should provide the user the possibility
to teleoperate the robot giving predefined orders [28]. The system also should give
feedback to the operator when an instruction is not understood and this feedback
should also be verbal. Three elements are identified in an architecture for speech-
based teleoperation:

Standardization of a Heterogeneous Robots Society Based on ROS 307

1. The automatic speech recognition system (ASR)
2. The text to speech (TTS) system
3. The robot control system

The first two elements are robot independent and, thus, have been integrated
in a single package named speech_eus. This package contains two nodes, one
responsible of the speech recognition step and the second one, responsible of the
text to speech translation. Let’s describe the nodes that compose the speech_eus
package.

1.gspeech_eus node: Our robots are supposed to interact in Euskara (Basque,
a minority language spoken in the Basque Country) and thus, a tool adapted to this
requirement was needed. ROS gspeech package gives ASR capabilities to the robot
and can be configured for many languages, including Basque. But this package needs
some modifications in order to be useful in a real-time teleoperation scenario. These
are the introduced changes:

• When the native gspeech runs the Google Speech Service, it is executed only
once, i.e. when the user starts speaking, the audio is captured and sent to Google.
There it is analysed and the text “corresponding” to the received audio is returned
with a confidence level; then, the program ends. It could be tedious for the user to
run the speech recognition node each time she/he wants to order something to the
robot, or each time she/he receives an error message. Hence, the new node now
runs iteratively avoiding the problem of having to launch the node each time the
user wants to talk.

• When the Google Speech Service does not recognize the spoken words, it returns
an error message and then the node is forced to quit. Now, error messages received
from Google Speech Service are specially treated. If an error message is received,
gspeech_eus publishes a Repeatmessage in the google_speech topic to
advertise the user that his/her spoken words are not being recognized.

• The original gspeech node only prints the response received, it does not publish
any messages or services, so it can not communicate with other nodes. After the
modifications, the confidence level of the hypothesis received fromGoogle Speech
is processed and, if it is lower than a predefined threshold (0.15 for the performed
experiments), the response is declined and treated as an error message.

2.tts_eus node: This is the node in charge of converting the text into speech using
the AhoTTS tool [11]. That system, developed by the Aholab group in the University
of the Basque Country, is a modular text to speech synthesis system with multithread
and multilingual architecture. It has been developed for both, Euskara and Spanish
languages. The TTS is structured into two main blocks: the linguistic processing
module and the synthesis engine. The first one generates a list of sounds, according
to the Basque SAMPA code [20], which consists of the phonetic transcription of
the expanded text, together with prosodic information for each sound. The synthesis
engine gets this information to produce the appropriate sounds, by selecting units and
then concatenating them and post-processing the result to reduce the distortion that

308 I. Rodriguez et al.

Fig. 11 Setup for the experiments

appears due to the concatenation process. This tool is required for communicating
in Basque Language, but it would not be required for English interlocution.
tts_eushas a subscriber that receivesmessages from thetext_speech topic.

When a text message is received, this node converts it into speech (an audio file) and
plays the audio over robot’s speakers.

6.1 Speech-Based Teleoperation in MariSorgin

Again, this teleoperation system has two sides: the instruction interpretation process
and the motion controller. Regarding to the instruction interpretation part, and as
mentioned before, our robots are supposed to interact in Euskara. The oral com-
mands are captured by a microphone and sent to the Google Speech Service by the
gspeech_eus node. Once the answer is received, the text is matched with our
dictionary.

On the other hand, the robot control system must be defined, i.e. the meaning of
the voice orders must be translated to actions. MariSorgin is a synchro-drive robot
and as such, two degrees of freedom can be controlled: linear velocity and angular
velocity. Thus, the orders that can be given are limited to moving forward/backward,
rotating left/right, stopping and accelerating/decelerating. Figure11 shows how the
system is distributed and communicated over the net.

Although in a first attempt linear and angular velocities could be set independently,
that is, setting the linear velocitywouldn’t affect the current angular velocity (and vice
versa), we found that controlling the robot in that manner was rather complicated
and that a high level of expertise was needed. Thus, in the final propotype linear
and angular velocities are not independently assigned. Modifications of the angular
velocity imply that linear velocity is set to zero, and vice versa.

A Qt interface has been developed using rqt that shows the state of the speech
recognition process and the velocity values at each time step. The interface includes
minimum distances to obstacles at front, left and right sides, obtained from the laser
readings, and the image captured by the robot so that the operator can see what the
robot is facing to. Figure12 shows what this simple interface looks like.

Standardization of a Heterogeneous Robots Society Based on ROS 309

Fig. 12 MariSorgin teleoperation window

Fig. 13 Experimental setup

System evaluation: In order to measure the suitability of the system a experiment
has been designed and performed in which 5 persons (3 males and 2 females), all
but one not directly involved in the development of the system, were told to give
the robot the oral instructions necessary to make the robot reach a predetermined
goal from a starting position (see Fig. 13), and results can be seen in Table2. The
theoretical minimum number of instructions refers to the number of steps required
by the designed trajectory (forward, left, forward, right, forward and stop). Besides,
the empirical min number of instructions refers to the real minimum number of steps
done by one of the volunteers.

310 I. Rodriguez et al.

Table 2 Results Theoretical min number of instructions needed 6

Empirical min number of instructions 6

Mean num. of instructions per trip 9.2

Percentage of correctly understood instructions 79%

Mean time needed to reach the goal 2min 30s

Minimum time required to reach the goal 1min 38s

The results of the experiment are not quite significant. The only meaningful thing
that can be said is that after a period of training the robot can be operated properly
in a real environment. But MariSorgin’s laser location is not adequate for obstacle
avoidance. The robot will require hard structural changes to get the laser located in
an optimal position. This problem is reflected in the teleoperation system, because
the obstacle information that the operator can reach does not provide information
about table and chair legs, for instance. This could be overcome setting the laser
on the old pan-tilt unit and using the laser_assembler package to reconstruct the
obstacles laying on the floor and offering the teleoperator the resulting pointcloud.
But the main drawback is the delay between the speech identification and the robot
action (about 2 s) that makes the system a bit dangerous specially when the robot is
speeded up too much, or when the operator does not anticipate enough the order.

Note that it is straightforward to use this package in any of the wheeled robots.

6.2 The nao_teleop_speech_eus Package

MariSorgin is rather limited in its body expressiveness. It is not very appropriate for
body language communication. NAO’s morphology is much more suitable for HRI
and has a huge potential for body language communication and, thus, for exploiting
dialogues with humans.

Within the available ROS packages for NAO, the nao_speech node3 provides
the necessary tools for making NAO understand and speak in English. But this node
is of no use when another language is required, as it is the case.

Again, the robot control system must be defined, i.e. the meaning of the voice
orders must be translated to actions.

A new package named nao_teleop_speech_eus) has been developed.
Within this package, the nao_teleop_speech node allows the user to control
NAO’s movements using several voice commands. The operator, situated in the tele-
operation cab (the place where the remote PC is located), gives orders to the robot
using a microphone. The robot is able to perform these movements: Stand up, Sit
down, Move forward, Move backward, Move left, Move right, Turn left, Turn right
and Stop.

3Developed by M. Sarabia, at the Imperial College London, 2012–2013.

Standardization of a Heterogeneous Robots Society Based on ROS 311

As we previously said, commands are given in Euskara. With the intention to
communicate with the robot in a more natural way, the user has more than one
choice for each possible command. That is, if the operator wants the robot to stand
up, he can say: “Altxatu”, “Tente jarri”, “Zutik jarri”, etc. Therefore a dictionary
of some predefined words has been created, including several synonymous for each
command. When the user gives a voice command (it can be a long sentence), the
voice is converted to text, and processed afterwards. The system tries to find matches
between the dictionary and the text received from Google Speech Service. If a match
is found, the robot performs the movement corresponding to the received command,
otherwise the robot says that it could not understand the order and asks the user to
repeat it.

Thus, nao_teleop_speech is in charge of receiving messages from
gspeech_eus, finding any matches in the predefined commands dictionary and
deciding which is the action that NAO must perform. It has a subscriber to receive
messages that gspeech_eus publishes on the google_speech topic, and two
publishers; one to set NAO’s walking velocity according to the given command, and
another one to publish the text messages that NAO has to say.

In order to test the speech capabilities in a HRI context, we integrated theASR and
TTS modules in our Bertsobot project [1]. The Bertsobot project was showed to the
general public in a live performance entitled “Minstrel robot: science or fiction”4 in
wich NAO robot showed his verse-improvisation and speech-based communication
capabilities. ZientziaClub or Club of Sciences is an initiative that aims to disclose
science and technologies to the society. RSAIT showed some advances in human-
robot interaction by presenting a monologue with NAO: https://www.youtube.com/
watch?v=NEiDw\discretionary-JBER9M.

We are now working on improving NAO’s body language while speaking in
order to show a more human-like behavior and to be more emphatical. For the same
reason, NAO’s verbal communication capabilities should be improved so that it could
give the same semantical answer using sentences of different gramatical structures,
and of course, to perceive feedback from the public or the interlocutor and express
accordingly.

7 Conclusions

In this paper, some ROS packages have been described and some of the applications
given to those nodes were more deeply explained as case studies in concrete robot
platforms.Of course, all the developed applications are setup for the rest of the robots.
Some videos of life shows can be seen in RSAIT’s youtube video channel (https://
www.youtube.com/channel/UCT1s6oS21d8fxFeugxCrjnQ) and in our website.

4http://www.badubada.com/badubadatzen/es/robot-bertsolaria-zientzia-ala-fikzioa/.

https://www.youtube.com/watch?v=NEiDwdiscretionary {-}{}{}JBER9M
https://www.youtube.com/watch?v=NEiDwdiscretionary {-}{}{}JBER9M
https://www.youtube.com/channel/UCT1s6oS21d8fxFeugxCrjnQ
https://www.youtube.com/channel/UCT1s6oS21d8fxFeugxCrjnQ
http://www.badubada.com/badubadatzen/es/robot-bertsolaria-zientzia-ala-fikzioa/

312 I. Rodriguez et al.

ROS has provided us a tool to standardize this society of robots, different in
nature and with different hardware, and has given us the opportunity to set up the
same programming and control environment for all the robots. The decision to setup
all our robots with ROS allows us to more easily understand, use and maintain them.

It has been hard to reach the actual state. It took time to setup all the robots, to
develop the missing drivers and to establish a uniform configuration for all of them.
ROS versioning has been a drawback. But it has been worth. Now, it is rather easy to
adapt a behavior/application to a different robot. New lab members/students adapt
rather quick to ROS basics and can work with any of the platforms. No need to
learn several APIs and software environments, neither to know hardware differences
among the robots further than movement restrictions and sensor nature.

Thus, rather than a programming tool, ROS has became a methodology for
research in robotics. We are willing for ROS 2.0 to have a network of robots com-
municating to each other and performing operational work inside the faculty.

Acknowledgments This work was supported by the Basque Government Research Team Grant
(IT313-10), SAIOTEKProject SA-2013/00334and theUniversity of theBasqueCountryUPV/EHU
(Grant UFI11/45 (BAILab).

References

1. A. Astigarraga, M. Agirrezabal, E. Lazkano, E. Jauregi, B. Sierra, Bertsobot: the first minstrel
robot, in Human System Interaction, (2013), pp. 129–136

2. A. Astigarraga, E. Lazkano, B. Sierra, I. Rañó, I. Zarauz, Sorgin: A Software Framework for
Behavior Control Implementation, in 14th International Conference on Control Systems and
Computer Science (CSCS14), (Editura Politehnica Press, 2003)

3. J. Badger, M. Diftler, S. Hart, C. Joyce, Advancing Robotic Control for Space Exploration
using Robonaut 2, in International Space Station Research and Development, (2012)

4. G. Ceccarelli, A. Patriti, A. Bartoli, A. Spaziani, L. Casciola, Technology in the operating
room: the robot, Minimally Invasive Surgery of the Liver (Springer, Milan, 2013), pp. 43–48

5. C. Doarn, K. Hufford, T. Low, J. Rosen, B. Hannaford, Telesurgery and robotics. Telemed.
e-Health 13(4), 369–380 (2007)

6. G. Du, P. Zhang, J. Mai, Z. Li, Markerless kinect-based hand tracking for robot teleoperation.
Int. J. Adv. Robot. Syst. (2012)

7. M.E. Foster, M. Giuliani, A. Isard, C. Matheson, J. Oberlander, A. Knoll, Evaluating Descrip-
tion andReferenceStrategies in aCooperativeHuman-robotDialogueSystem, in IJCAI, (2009),
pp. 1818–1823

8. Ingenia motion control solutions (2008). http://www.ingeniamc.com/En
9. E. Jauregi, I. Irigoien, B. Sierra, E. Lazkano, C. Arenas, Loop-closing: a typicality approach.

Robot. Auton. Syst. 59(3–4), 218–227 (2011)
10. J. Koenemann, M. Bennewitz, Whole-body Imitation of Human Motions with a NAO

Humanoid, in 2012 7th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), (IEEE, 2012), pp. 425–425

11. I. Leturia, A.D. Pozo, K. Arrieta, U. Iturraspe, K. Sarasola, A. Ilarraza, E. Navas, I. Odriozola,
Development and Evaluation ofAnhitz, a Prototype of a Basque-SpeakingVirtual 3DExpert on
Science and Technology, in Computer Science and Information Technology, 2009. IMCSIT’09,
(2009), pp. 235–242

12. H. Mallot, M.A. Franz, Biomimetic robot navigation. Robot. Auton. Syst. 30, 133–153 (2000)

http://www.ingeniamc.com/En

Standardization of a Heterogeneous Robots Society Based on ROS 313

13. M.J. Matarić, The Robotics Primer (MIT Press, 2009)
14. D. Matsui, T. Minato, K. MacDorman, H. Ishiguro, Generating Natural Motion in an Android

byMapping HumanMotion, in 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005. (IROS 2005), (IEEE, 2005), pp. 3301–3308

15. F. Mohammad, K. Sudini, V. Puligilla, P. Kapula, Tele-operation of robot using gestures, in 7th
Modelling Symposium (AMS), (2013)

16. K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura,
T. Yoshida, E. Koyanagi, M. Fukushima, S. Kawatsuma, Emergency response to the nuclear
accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field
Robot. 30(1), 44–63 (2013)

17. I. Rañó, Investigación de una arquitectura basada en el comportamiento para robots autonomos
en entornos semiestructurados, Ph.D. thesis, University of Basque Country, UPV/EHU, (2003)

18. I. Rodriguez, A. Astigarraga, E. Jauregi, T. Ruiz, E. Lazkano, Humanizing NAO robot teleop-
eration using ROS, in Humanoids, (2014), pp. 179–186

19. RWI (1995). Beesoft user’s guide and reference. http://mobilerobotics.cs.washington.edu/
docs/BeeSoft-manual-1.2-2/beeman�.htm

20. SAMPA, Speech assessmentmethods phonetic alphabet. EECESPRIT Information technology
research and development program, (1986)

21. A. Setapen, M. Quinlan, P. Stone, Beyond Teleoperation: Exploiting HumanMotor Skills with
Marionet, in AAMAS 2010 Workshop on Agents Learning Interactively from Human Teachers
(ALIHT), (2010)

22. H. Song, D. Kim, M. Park, J. Park, Teleoperation Between Human and Robot Arm using
Wearable Electronic Device, in Proceedings of the 17th IFAC World Congress (Seoul, Korea,
2008), pp. 2430–2435

23. W. Song, X. Guo, F. Jiang, S. Yang, G. Jiang, Y. Shi, Teleoperation Humanoid Robot Control
System Based on Kinect Sensor, in 2012 4th International Conference on Intelligent Human-
Machine Systems and Cybernetics (IHMSC), vol. 2 (IEEE, 2012), pp. 264–267

24. H.B. Suay, S. Chernova,HumanoidRobot Control usingDepthCamera, in 2011 6th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), (IEEE, 2011), pp. 401–401

25. R.Y. Tara, P.I. Santosa, T.B. Adji, Sign language recognition in robot teleoperation using
centroid distance Fourier descriptors. Int. J. Comput. Appl. 48(2), 8–12 (2012)

26. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, (MIT Press, 2005)
27. R.T. Vaughan, Massively multi-robot simulations in stage. Swarm Intell. 2(2–4), 189–208

(2008)
28. B. Wang, Z. Li, N. Ding, Speech Control of a Teleoperated Mobile Humanoid Robot, in IEEE

International Conference on Automation and Logistics, (IEEE, 2011) pp. 339–344

http://mobilerobotics.cs.washington.edu/docs/BeeSoft-manual-1.2-2/beeman~5.htm
http://mobilerobotics.cs.washington.edu/docs/BeeSoft-manual-1.2-2/beeman~5.htm

Part IV
Real-World Applications Deployment

ROS-Based Cognitive Surgical Robotics

Andreas Bihlmaier, Tim Beyl, Philip Nicolai, Mirko Kunze,
Julien Mintenbeck, Luzie Schreiter, Thorsten Brennecke,
Jessica Hutzl, Jörg Raczkowsky and Heinz Wörn

Abstract The case study at hand describes our ROS-based setup for robot-assisted
(minimally-invasive) surgery. The system includes different perception components
(Kinects, Time-of-Flight Cameras, Endoscopic Cameras, Marker-based Trackers,
Ultrasound), input devices (Force Dimension Haptic Input Devices), robots (KUKA
LWRs, Universal Robots UR5, ViKY Endoscope Holder), surgical instruments and
augmented reality displays. Apart from bringing together the individual components
in a modular and flexible setup, many subsystems have been developed based on
combinations of the single components. These subsystems include a bimanual tele-
manipulator, multiple Kinect people tracking, knowledge-based endoscope guidance
and ultrasound tomography. The platform is not a research project in itself, but a basic
infrastructure used for various research projects. We want to show how to build a
large robotics platform, in fact a complete lab setup, based on ROS. It is flexible and
modular enough to do research on different robotics related questions concurrently.
The whole setup is running on ROS Indigo and Ubuntu Trusty (14.04). A repository
of already open sourced components is available at https://github.com/KITmedical.

Keywords Cognitive robotics · Medical robotics · Minimally-invasive surgery ·
Modular research platform

1 Introduction

Research into the robot-assisted operating room (OR) of the future necessitates the
integration of diverse sensor and actuator systems. Due to the rapidly progressing

A. Bihlmaier (B) · T. Beyl · P. Nicolai · M. Kunze · J. Mintenbeck · L. Schreiter ·
T. Brennecke · J. Hutzl · J. Raczkowsky · H. Wörn
Institute for Anthropomatics and Robotics (IAR), Intelligent Process Control
and Robotics Lab (IPR), Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe, Germany
e-mail: andreas.bihlmaier@kit.edu

H. Wörn
e-mail: woern@kit.edu

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_12

317

https://github.com/KITmedical

318 A. Bihlmaier et al.

Fig. 1 Overview of our modular ROS-based research platform for robot-assisted minimally-
invasive surgery (cf. [4]). The system contains several components to perceive the environment, the
patient and the user. Physically actions can be executed by different robots. Interchangeability of
components is essential, i.e. higher level algorithms should not have to know which robot, tracking
system or camera is used. The whole setup also exists as a virtual model for the robotics simulator
Gazebo. Thus algorithms can be evaluated in simulation on a single host without the necessity of
accessing the real lab setup. This benefits both researchers and students by reducing the problem
of scheduling lab access

state of the art, the volatility of project funding and the diversity of research questions,
a modular and flexible platform is essential. Instead of each researcher developing a
separate setup for his project, synergies can be taken advantage of if the core platform
is used and extended by multiple researchers.

The ROS-based OP:Sense platform [9] tries to accomplish this for robot-assisted
minimally-invasive surgery (MIS). Figure1 shows the currently integrated compo-
nents. Some components are directly used in the research applications. For these
ROS provides a standardized and network transparent interface to use them—
concurrently—from any computer within the lab network. This way many lab
resources can be shared and do not have to be under exclusive control, e.g. sen-
sors. Other resources require arbitration, e.g. control of robot manipulators. Yet, it
is still advantageous that they are not bound to a specific control host. However, the
more interesting platform subsystems are those relying on multiple resources and
present these resources as more capable components to research applications. For
example, it is either possible to control the redundant lightweight robots directly
from the application or to interface them through a subsystem. This subsystem uses

ROS-Based Cognitive Surgical Robotics 319

the environment sensors to optimize their redundant degree of freedom automati-
cally. Examples of research applications include an automated endoscopic camera
guidance robot [2], intuitive human robot interaction in the OR based on multiple
fused Kinect cameras [1] and probabilistic OR situation recognition [7].

The remainder of the chapter consists of the following topics:

• First, a brief introduction to robot-assisted surgery and current research topics in
this field are provided.

• Second, the general lab setup in terms of computing and networking hardware is
described.

• Third, an overview of the diverse components that are integrated into the plat-
form. For some components we rely on packages provided by the ROS commu-
nity. These will be referenced and briefly discussed. The components that were
either heavily adapted or created in our lab and released to the community will
be treated in greater detail. Our components comprise different perception com-
ponents (Kinects, Time-of-Flight Cameras, Endoscopic Cameras, Marker-based
Trackers, Ultrasound), input devices (Force Dimension Haptic Input Devices),
robots (KUKA LWRs, Universal Robots UR5, ViKY Endoscope Holder), surgi-
cal instruments and augmented reality displays.

• Fourth, following the single components, this part focuses on subsystem, which
provide higher level functionality through the combination of multiple compo-
nents. The subsystems include a bimanual telemanipulator, multiple Kinect people
tracking, knowledge-based endoscope guidance and ultrasound tomography.

• Fifth, we will focus on organizational and software engineering aspects of the
overall setup. In our case the robot actually is the whole lab. Therefore, change
and configuration management are particular problems to be addressed.

2 Background

Research in the field of surgical robotics has seen a similar shift to research in indus-
trial robotics. Instead of aiming for fully automated systems with a minimum of
human involvement, the goal is to provide the surgeon and more general the oper-
ating room (OR) staff with cooperating assistance systems. These systems require
information about the current situationwithin theOR, in particular about the tasks and
activities of the OR staff. The robots in the ORmust also be sensitive to their immedi-
ate surroundings instead of simply executing a pre-programmed task. Research ques-
tions pertain to improve the robot’s capabilities of perception, planning or action. In
order to facilitate research that relies on progress in multiple of these dimensions,
we designed a ROS-based modular platform for cognitive surgical robotics.

320 A. Bihlmaier et al.

Fig. 2 An example slave
side of the telemanipulation
scenario featuring three
different types of robots:
Two manipulating robots
(LWR, UR5) with attached
articulated tools in the
minimally-invasive
configuration and the ViKY
system holding the
endoscopic camera

3 ROS Environment Configuration

Although industrial robot manipulators are part of our lab setup, the actual robotic
system is the whole operating room. For that reason, each component and subsystem
of the platform will be described on its own in the following chapters. Beforehand,
only a few basic points about the complete computing and networking hardware are
presentedhere. Thefirst part of the computational infrastructure are the coremachines
that provide aROSabstraction to the components and subsystems.The secondpart are
the individual researchers’ client machines, which run the high-level applications.
In the core platform a large Gigabit Ethernet switch serves as central networking
hub. Some large components contain an additional internal network hierarchy that is
connected to the central switch (e.g. Sects. 4.4 and 4.5). Core computing is distributed
across about 15 computers. For the most part these consist of commodity desktop
machines, some with high-end graphics cards (see Sect. 4.6), some small form-factor
PCs and a few single-board computers. All core machines run Ubuntu Linux.

4 Components

4.1 Robots

KUKA LWR IV Each of the KUKA LWR arms (cf. left robot in Fig. 2) has seven
degrees of freedom with position and torque sensors in each joint. Both robots are
controlled from a single PC. The communication protocol between the robots and
the PC—the Fast Research Interface (FRI)—is provided by KUKA and is based on
UDP. We control the robots with 1kHz update rate, so the computer has to respond
within 1ms. If the computer does not meet the cycle deadline, i.e. does not respond
in time to the measured joint data with new target parameters, the robot control per-

ROS-Based Cognitive Surgical Robotics 321

forms an emergency stop of the robot. Thus, for each robot there are two threads.
One thread is running at the highest Linux kernel priority handling the FRI com-
munication. FRI joint positions and torques are stored and converted into Cartesian
position and forces/torques. Then one interpolation step towards the current target is
performed, either only in joint space or first in Cartesian space and then validated and
truncated within joint space. The other thread with normal priority manages the ROS
communication. Its update rate is decoupled from the robot and flexible, depending
on the task.

We decided to use the publisher/subscriber mechanism since the actionlib
is not suited for our scenario where we have constantly changing target positions.
These are due to the fact that we operate in a highly dynamic and unpredictable
environment. The robot is controlled online by a human instead of moving on a
predefined trajectory. Messages to the robot will not be forwarded directly, instead
they update the target for the interpolation, so velocity and acceleration constraints
are handled by the controller and the pose update rate is flexible. For robot control
in joint space we use sensor_msgs/JointState, both for reading the current
robot position and commanding a new target. In the second case, the semantics of
the velocity field are adapted to command the maximum joint velocity and the effort
field is used to command the maximum joint acceleration. For Cartesian control we
use geometry_msgs/Pose and specify fixed velocity and acceleration limits in
an initialization file. The robot controller PC handles some further low level control
strategies like hands-on mode and an optimization for the elbow position (the robot
redundancy). In hands-on mode, each joint accelerates into the direction of external
torque (the compensation of gravity and dynamic torques is done by the KUKA
controller), while heavily decelerated by viscous friction, so the robot comes to halt
quickly after being released. To optimize the elbowposition, a cost function is created
which considers the following aspects: distance of each joint to its limits, distance
of each hinge joint to its stretched position (to avoid singularities), distance of the
elbow to an externally specifiable target. The last point is used for interacting with
surgical personnel, which is further described in Sect. 5.3.

Universal Robots UR5 The UR5 robot is supported out of the box through the
universal_robot stack provided by the ROS Industrial community. However, in addi-
tion to the actionlib interface, we added the same topic interface as described for
the LWR IV above. Furthermore, a Gazebo plugin was developed that exposes the
manufacturer proprietary network format (see Sect. 5.6).

Trumpf ViKY A ROS interface for the motorized endoscope holder ViKY was
developed that allows servo position control over the network. The interface is the
same as for the two other types of robots. But since the ViKY only has three degrees
of freedom (DoF) a Cartesian topic is not provided, instead trocar coordinates are
exposed. The latter consist of spherical coordinates centered in the remote center of
motion, which is defined by the small trocar incision in the patient’s abdominal wall.

322 A. Bihlmaier et al.

Path Planning and Collision Avoidance For both lightweight manipulators, to be
more precise for any combination of manipulators and tools attached to the OR
table, a URDF robot description has been created.1 Based on the robot’s URDF we
use MoveIt! for path planning and collision avoidance. Path planning is an optional
component in some configurations of the system (cf. Sect. 5.1). However, collision
avoidance is always active with respect to all static parts of the environment.

4.2 Endoscope Cameras

Endoscopic cameras are a prerequisite for minimally-invasive surgery, thus the plat-
form provides not only one but two kinds of endoscope cameras. The first camera is a
medical device, R. Wolf Endocam Logic HD, which is interfaced through a HD-SDI
connection with a PC-internal video capture card, Blackmagic Design DeckLink.
A ROS driver, decklink_capture, was developed which provides the images using
image_transport. The second camera is an industrial GigE Vision camera, Allied
Vision Manta G-201, which is compatible with the community provided prosil-
ica_driver package. Proper use of ROS name remapping and of the information
provided in sensor_msgs/Image ensures that higher level applications trans-
parently work with both cameras.

4.3 OR Perception System

One major focus of OP:Sense is the perception of the robotic system and its envi-
ronment, especially people acting around and interacting with the robots. As the
environment in the OR is often very crowded, we developed a dense sensor system
to avoid occlusions. The sensing system consists of the following components that
each publishes its data under a separate topic namespace:

• an optical tracking system (ART): /art/body1..n
• a time-of-flight (ToF) 3D camera system (PMD): /pmd/S3/camera1..n
• a structured light 3D camera system (Kinect): /kinect/camera1..n

Figure3 gives an overview of the realized network topology for the whole perception
system. Figure4 shows a picture of the real setup as realized in the laboratory. In the
following, the components and their implementation as parts of our ROS network
are explained in more detail.

1To cope with the many possible combinations, we defined the models in a hierarchical manner
using the Gazebo SDF format, which we convert to URDF using the sdf2urdf converter provided
by our pysdf package.

ROS-Based Cognitive Surgical Robotics 323

Fig. 3 Network topology of perception subsystems

Fig. 4 One side of our sensor rig with different cameras: Kinect (top left and top right), ToF
cameras (PMD S3, outermost), optical tracking system (ART, with two visible red LEDs), Kinect
server (center, with visible green circle)

4.4 Marker-Based Optical Tracking

For high-accuracy 6D pose tracking e.g. of medical instruments, the ARTTrack2
system by ART is used. We use a six-camera configuration in order to reliably
track rigid bodies in a volume over the OR table in presence of occlusions, e.g. by
robots or humans. The tracking system provides a network stream of the tracked
data in a simple proprietary network protocol. For usage in the ROS-based OP:Sense
environment, a ROS node was implemented that provides the pose of tracked

324 A. Bihlmaier et al.

objects both as a ‘raw’ data stream with all values provided in original ART
format (Float64MultiArray) and as a PoseStamped message with correct
frame_id to be directly accessible in ROS nodes and via the ROS command line
tools.

The scientific value of the tracking system is the precise tracking of rigid bodies,
e.g. to record and analyse the motions of surgical instruments during an intervention.
From a technical point of view, we use it as a day-to-day tool for conveniency tasks,
such as quickly acquiring an object’s location, and routine tasks such as registration.
The coordinate system defined by the optical tracking system is used as a world
coordinate system, where applicable. Registration methods have been developed for
the different sensors and actors present in our system, such as cameras (3D and
2D, e.g. endoscopic), robots (end effectors equipped with marker spheres), medical
phantoms and systems for augmented reality (projector and LED array).

4.5 Time-of-Flight Cameras

For low latency, low resolution 3D scene perception a multi-ToF-camera system is
used. It consists of six pmd[vision] S3 cameras (64× 48 px) and one pmd[CamCube]
2.0 (204× 204 px). This camera system is for applications where speedmattersmore
than high resolution, e.g. safety critical applications such as human-robot-interaction
in a shared workspace and collision avoidance.

As ToF cameras are prone to interference when used in the same space, we imple-
mented a time- and frequency-based multiplexing synchronization. The cameras are
controlled via their proprietary API from a dedicated PC over Ethernet segments sep-
arate from the ROS network (and USB in case of the CamCube). The data acquisition
and processing/publishing have been split into two different threads, thus a slower
processing/publishing (e.g. publishing to many subscribers via TCP) does not affect
the rate with which the cameras are triggered.

Acquired data is lightly preprocessed (filtering typical ToF artifacts such as jump-
ing pixels) and published onto the ROS network with the according data types, e.g.
sensor_msgs/PointCloud2 for point clouds and using image_transport for
the amplitude, depth and (in case of CamCube) greyscale images. As the low-level
details of the camera control such as time-multiplexed triggering are hidden from
the ROS network, there is also no direct low-level per camera control exposed via
ROS (such as offered in the pmd_camcube_3_ros_pkg package). Instead, control is
implemented as a service that allows to reconfigure the camera system to different
preconfigured modes, e.g. a mode with high frame rate and reduced integration time
(resulting in higher noise) or with high integration times and subsequent triggering
that offers the best data quality.

ROS-Based Cognitive Surgical Robotics 325

4.6 RGB-D Cameras

In order to allow a high resolution supervision of the scene, which is of great impor-
tance for human action detection within the operating room, RGB-D cameras are
used in OP:Sense. More specifically, we utilize the Microsoft Kinect 360 cameras
of which four are attached to a ceiling-mounted camera rig (see Fig. 4). The Kinect
camera depth sensing is based on a structured light pattern which is projected onto
the scene. This pattern in the infrared spectrum is observed using an infrared camera.
The principle is based on stereo vision using an active component. Through the use of
an astigmatic lens system, the light dots of which the structured light is composed are
observed as ellipses with orientation. Their geometric relation and size is dependent
on the position of the surface the light is projected, relative to the camera sensor and
can therefore be used to reconstruct the 3D scene information. The output data of the
Kinect cameras is a 11 bit depthmapwith 640× 480 pixels resolution. In our system,
this depth map is directly used for people tracking (Primesense NITE framework) in
addition to the calculation of point clouds. The four Kinect cameras are mounted in
a rectangular configuration of approximately 1.80× 2.10m over the OR table. The
center of the field of view of each camera is in the center of the rectangle to observe
the operating table and it’s surrounding with the highest possible resolution that can
be achieved with Kinect cameras.

TheMicrosoft Kinect 360 cameras are integrated into the ROS environment using
the OpenNI package which allows for using the Kinect cameras from within a ROS
system. To keep the Kinects’ footprint in the OR as small as possible, we split the
access and processing of Kinect data between different computers. Each two Kinects
are connected to a small form-factor PC (Zotac ZBOX nano AD10, featuring two
USB host controllers and a 1 GBit Ethernet port). This Kinect server runs the driver
component of the OpenNI package and publishes the depth map and unprocessed
RGB image on the network. The processing of all connected Kinect cameras is
done on a central server located further away from the OR table, where sterility and
space usage are not an issue. This approach allows for a flexible number of Kinect
cameras which can easily be adapted to local requirements. The current small Kinect
servers, which have been integrated in 2011, still use internal fans for cooling, which
is problematic in the sterile OR environment. By today, the same system could be
easily realized with passive-cooled Kinect servers.

In addition, a new Kinect-based camera system using the Time-of-Flight based
Kinect One is currently being integrated. This system uses a four camera configura-
tion like the system described above. However, for the upcoming Kinect One system
we use a small computer for each camera runningWindows 8.1 that already performs
initial data processing such as point cloud calculation and user tracking based on the
Microsoft Kinect SDK 2.0.

The processed data is published to ROS using a custom bridge based on win_ros.
At time of implementation, win_ros was available only for Visual Studio 2010
whereas Kinect SDK 2.0 requires Visual Studio 2012, sowe split the ROS bridge into

326 A. Bihlmaier et al.

two components that exchange their data using shared memory. Data is published
using the following message types:

• sensor_msgs/PointCloud2: Organized, 512× 424 px RGB point cloud
(extended with a “uid” field that encodes the user id if the according point corre-
sponds to a tracked user).

• sensor_msgs/Image: 1920× 1080 px RGB image.
• geometry_msgs/PoseArray: Joint poses per tracked human.
• UInt8MultiArray: Tracking state for each joint per tracked human (as defined
by Kinect SDK 2.0: not tracked, inferred, tracked).

To deal with the expected data volume, a new 10 GBit Ethernet segment is cur-
rently added to our ROSnetwork throughwhich the published datawill be transferred
to a Ubuntu-based workstation for further processing.

4.7 Input Devices

One of themain research topics in the scope of OP:Sense is human robot cooperation.
Therefore interfaces that allow for a natural interaction with the system are required.
In the telemanipulation scenario the surgeon directly controls the robotic arms using
haptic input devices accessible from amaster console. The input system is composed
of a left hand device, a right hand device and a foot pedal.Monitors are included in the
master console providing an endoscopic view together with additional information
about the environment as well as the system and intervention state. The haptic input
devices are 7 axis devices from Force Dimension. In OP:Sense we use the Sigma.7
device (right hand) and the Omega.7 device (left hand). The devices are composed of
a delta kinematic for translational movement in Cartesian space coupled to a serial
kinematic for rotational input. Additionally, a gripper is attached at the handle of
the input device to actuate medical grippers or coagulators attached to the medical
robot. The Omega.7 device (Fig. 5) is capable of displaying translational forces and
gripper forces to the user. The Sigma.7 device additionally allows to render torques
on the rotational axis.

Fig. 5 The Omega.7 haptic
input device mounted at the
master console

ROS-Based Cognitive Surgical Robotics 327

For the integration of these devices, a ROS wrapper based on the available Linux
driver of the haptic input devices has beenwritten. This wrapper is a ROS nodewhich
is run for each device. It allows to access the pose of the device using a topic of type
geometry_msgs/PoseStamped. The gripper position can be accessed via a
topic of type std_msgs/Float32. In order to render forces and torques on the
devices, a topic of type std_msgs/Float32MultiArray with 3 translational
entries, 3 rotational entries and 1 value for the gripper opening is used. The foot
pedal component includes two pedals and is used in the telemanipulation scenario
as a clutching system (deadman switch) and to change the scaling factor. The pedal
component is a medical pedal that has been connected to a USB I/O adapter that
can be accessed using an open source driver. Our ROS wrapper publishes all I/O
channels as std_msgs/Float32MultiArray.

4.8 OpenIGTLink-ROS-Bridge

OpenIGTLink (Open Network Interface for Image Guided Therapy) is a standard-
ized network protocol, used for communication among computers and devices in
the operating room. The protocol provides a simple set of messaging formats, e.g.
pose data, trajectory data, image data or status messages. Reference implementations
are available in C/C++, Matlab and Java. OpenIGTLink is supported, among others,
by 3D Slicer, IGSTK, MeVisLab, MITK and Brainlab. In order to connect compo-
nents using OpenIGTLink with OP:Sense a bridge between OpenIGTLink and ROS
was implemented. This bridge provides user-defined duplex communication chan-
nels between ROS nodes and OpenIGTLink connections. OpenIGTLink clients and
servers are supported. The channels convert the messages into the required target
format. Each channel is able to

• subscribe messages from ROS topics, convert them and send the converted mes-
sages to OpenIGTLink connections;

• receive messages from OpenIGTLink connections and publish them on ROS
topics.

Table1 shows the currently supported OpenIGTLinkmessage types and themapping
to ROSmessage types. Due to the complexity of the OpenIGTLink IMAGEmessage,
it had to be split into 3 ROS messages.

Table 1 The mapping between OpenIGTLink and Ros messages

OpenIGTLink message type ROS message type

POSITION geometry_msgs/PoseStamped

TRANSFORM geometry_msgs/TransformStamped

IMAGE sensor_msgs/Image tf/tfMessage
geometry_msgs/Vector3Stamped

328 A. Bihlmaier et al.

4.9 Ultrasound Imaging

TheOP:Sense platform provides an ultrasound system for intraoperative imaging and
navigation. The functionality of the system allows tracked live ultrasound imaging,
acquisition of 3D volumes, ultrasound-guided interventions, intraoperative naviga-
tion and preoperative imaging fusion [5]. As hardware components the Fraunhofer
DiPhAS ultrasound research platform, a 2D transducer with tracker marker mount,
a tracking system and a workstation computer for data processing are used. The
transducer can be mounted to a robot. As software components, the Plus toolkit for
navigated image-guided interventions and 3D Slicer for visualization and planning
are used. The components are connected viaOpenIGTLink. AnyOpenIGTLink com-
patible device can be used for tracking system or imaging. Alternatively, any device
supported by Plus can be used.

The integrationwithOP:Sense is realized by theOpenIGTLink-ROS-Bridge com-
ponent. Plus as the central component receives pose data from the bridge node
which acts as an OpenIGTLink server. Pose data can be received from any ROS
topic that provides either messages of type geometry_msgs/PoseStamped or
geometry_msgs/TransformStamped. The tracked image stream is provided
by Plus via an OpenIGTLink server. The OpenIGTLink-ROS-Bridge connects to the
Plus server and makes the stream available in the ROS network.

4.10 Surgical Instruments

OP:Sense can be used with different types of surgical instruments

• Rigid instruments: Instruments that can be used for open surgery and are rigidly
attached to the end effector of the robots, such as scalpels.

• Articulated minimally-invasive instruments: Standard minimally-invasive instru-
ments with a motor for opening/closing of the instrument and one for the rotation
along the instrument shaft.

• Flexible Surgical Instruments: Research instruments with flexible shafts that allow
for better manoeuvrability and dexterity.

Articulated Minimally-Invasive InstrumentsThe instruments are standard laparo-
scopic instruments with a modified gripping mechanism and a motorized rotation
along the instrument shaft. These instruments are used in the minimally-invasive
telemanipulation configuration of the OP:Sense system. Faulhaber brushless DC-
servomotorswith an integratedmotion controller and aCAN interface providemotor-
ization. An instrument control node serves as a bidirectional wrapper between ROS
messages and appropriate CANmessages. After calibration, the node accepts a grip-
per opening angle on a std_msgs/Float64 topic (in percentage of maximum
angle) and publishes its current opening angle on another topic of the same type. The
same also holds for the rotation angle of the instrument shaft rotation.

ROS-Based Cognitive Surgical Robotics 329

Fig. 6 Instrument holder
with flexible instruments

Flexible Surgical InstrumentsFor interventions in the abdominal area, a higher dex-
terity of the instruments than that achievable by traditional laparoscopic instruments
can be benefitial. For this case, an instrument holder with three flexible instruments
(see Fig. 6) was designed, that can be attached to the end-effector of a robot [8].
Using this holder, all three instruments can rotate around a common axis and move
individually on a translational axis. The flexible part of the instrument, 180mm in
length and with a diameter of 10mm, is composed of two segments. Each segment
with a length of 90mm consists of a stack of alternating rigid and soft elements,
which are equipped with two Degree of Freedom (DoF) that are actuated individu-
ally by cables. The rigid elements are stereolithograpically printed, whereas the soft
elements are made out of vacuum casted silicone. By pulling the cables, the silicone
elements are deformed and the segment bends into the according direction. Addition-
ally, in the center axis of the flexible structure a channel is realized where an optical
sensor is integrated, capturing the current shape of the instrument. A gripper with
one DoF is fixed at the tip of two instruments and a chip-on-the-tip camera module
is attached to the third instrument. From the kinematical point of view, each flexible
segment features 54DoF. These are reduced to two main axis of motion, represented
as revolute DoFs around the x- and y-axis per silicon element. The control of one
instrument via ROS is realized by a sensor_msgs/JointState topic for the
instrument holder and each instrument. Due to the negligible velocity of the joints,
only the position field contains the x- and y-axis values for both segments. In the
same way, there are topics for the grippers.

4.11 Augmented Reality

With respect to the field of human-machine-interaction, OP:Sense integrates modali-
ties for spatial augmented reality, where information is directly provided in the scene
without assistant devices such as AR glasses. For projecting information onto the
situs, a full HD short-distance projector (Benq TH 682ST) is mounted over the OR

330 A. Bihlmaier et al.

Fig. 7 Exemplary live
scenario for spatial
augmented reality for
minimally-invasive
interventions with projected
instrument shaft, tip point
and view cone of the
endoscopic camera

table and is connected to one of the Kinect servers (see Sect. 4.6). Connection via
HDMI is possible by the configuration of the vendor-specific graphics card driver in
order to have a non-modified 1920× 1080 pixel output signal.2

Rendering of content is performed using openframeworks, which we extended
with a ROS interface. For displaying basic geometric information like project-
ing the trocar points and instrument poses onto a patient, we use the scalable
vector graphics (SVG) format. We implemented a SVG preprocessor as part of
our augmented reality node that parses the SVG string for a custom tf exten-
sion and replaces the tf frame ids with the correct coordinates from the point of
view of the projector. If for example an application needs to highlight the robot’s
end effector (which pose is available on tf), it can simply send an SVG graph-
ics that contains <circle *tf [cx|cy] RobotToolTip /tf* r=100
fill=blue (...) />. The augmented reality node will receive this message,
continuously evaluate it based on the tf transformations available on theROSnetwork
and project the according image. Figure7 shows a demonstration scenario with live
projection based on current system data available on tf. To keep the network load
low, we realized a continuous reactive projection, e.g. onto a target that provides
position updates with 100 Hz, by sending only one initial message to the projection
node.

5 Subsystems

5.1 Telemanipulation

Telemanipulation is a concept to use robots in a master-slave mode. This means
that input devices (masters) are used to control the robots (slaves) of a system. The
concept can be used in hazardous environments such as chemistry labs. In medicine,
telemanipulation is usually applied to minimally-invasive surgery (MIS) to allow the

2In our case, for an AMD graphics card on Ubuntu, the required command is:
aticonfig–set-dispattrib=DFP2,sizeX:1920 and ,sizeY:1080 as well as
,positionX:0 and ,positionY:0.

ROS-Based Cognitive Surgical Robotics 331

Fig. 8 Overview of a large
part of the components (see
Sect. 4) in our lab setup in a
configuration for
telemanipulation (see
Sect. 5). Front Master
console with haptic input
devices, foot pedals and
screens. Back Different
robots mounted to the OR
table. Top Perception and AR
system

surgeon to work more similar to open surgery than is the case in traditional MIS.
Additional goals are improvement of ergonomics and accuracy, e.g. by providing a
scaling factor between human input and instrument motion.

Our system is composed of a master console with haptic input devices and slave
robots, mounted to the operating bed, to which the surgical tools are attached. The
system is depicted in Figs. 8 and 2. A third robot such as the UR5 or the ViKY is
utilized to hold the endoscope providing vision to the situs. The instruments of the
robots are introduced to the patient’s body through trocars which are the remote
center of motion for the telemanipulation task. This remote center of motion creates
the fulcrum effect which causes a mirrored motion of the tip of the instruments
compared to the surgeon’s hand motion. In non-robotic surgery, this effect can only
be compensated by the surgeon through practical experience.With a telemanipulated
robot, this effect can be compensated in software. Additionally, the remote center
of motion restricts the movement of the tooltip to four degrees of freedom (rotation
around the tool shaft, three translations of the tooltip), whichmeans that two rotations
(hand wrist movement) are lost as long as no additional joints at the tooltip are used.

332 A. Bihlmaier et al.

Finally, a problem inMIS is that the image from the endoscopic image is displayed
on a monitor which is in most cases not registered to the surgeon’s hand, thereby
producing an additional cognitive load. In OP:Sense the complete system is regis-
tered with respect to the endoscopic camera whose image is displayed at the master
console. Thus, the surgeon’s vision of the instruments is in the same coordinate
frame than his/her eyes, i.e. the instrument’s position and orientation corresponds
to the surgeon’s hand position and orientation. The configuration of the telemanip-
ulation system, e.g. setting which input device controls which robot, is completely
controlled by launch files and can therefore be adapted to various combinations of
input device and robot. The telemanipulator directly uses the robot controllingmech-
anisms of OP:Sense described above, i.e. the input and output of the telemanipulator
is a geometry_msgs/Pose. This means that for a bimanual setup the telemanip-
ulation system is launched twice with different robot-input device configurations.

The telemanipulation system is registered optically using the optical tracking
system and the endoscopic image, working in the base frame of the tracking system.
In addition, tracking is used to acquire the current position of all components during
the operation. This allows to move the robots and the camera during the procedure
while providing a stable coordinate system to the surgeon. The telemanipulation
system is composed of the nodes listed below, which are implemented as nodelets to
minimize the latency and the (de)serialization overhead:

• Input device node: The haptic device node described in Sect. 4.
• Telemanipulation node: This node receives the input device position, the robot
position and in case of articulated instruments also the instrument position. Addi-
tionally, the node reads the calibration and periodically published tracking poses
(geometry_msgs/Pose). The system is triggered through the update rate of
the haptic input devices, that thereby serves as clock generator of 1kHz. Each
cycle new positions for the instrument tooltip are computed, which are published
as geometry_msgs/Pose messages.

• Trocar node: A trocar point can be defined by means of an optically tracked
pointing device. The device is pointed at the desired position at which moment a
std_srvs/Empty service is called. The trocar node reads the current position
of the pointing device and uses its position as trocar point. When the service is
called for the first time, the trocar algorithm is activated. As soon as the trocar
algorithm is running, it continuously calculates the necessary pose of the robot
end effector while abiding to the trocar constraint (for each instrument pose, the
trocar point has to be along the shaft of the instrument). This results in a robot
pose that holds the instrument tip at the desired position, but neglects the desired
orientation of the instrument. In case of the use of an articulated instrument, the
trocar node also computes the required pose for the instrument. The final output
of the trocar node is a topic of type geometry_msgs/Pose which is passed to
the robot controller and a topic of type std_msgs/Float64 representing the
desired rotation of the rotation axis of the instrument in radian.
The telemanipulator can also be used in an open surgery mode where no tro-
car is used. In this case the trocar algorithm is bypassed and the output of the

ROS-Based Cognitive Surgical Robotics 333

telemanipulation mode is directly used to compute the new robot end effector
pose based on the calculated tooltip pose. Articulated instruments are not used
in this case as in open mode no trocar point is present and all 3 rotations and
translations of the robot can be used.

• Robot controller: The robot controller directly drives the robot to the desired pose
computed by the trocar node without using path planning. This is possible as
the increments of the path in telemanipulation mode are small enough given an
appropriate update rate of the telemanipulator.

As described above, the pedal serves as a dead man switch (which disconnects
the robot when not pressed) and for setting the motion scaling. The pedal’s current
configuration is passed to a pedal node which passes the state of the clutching pedal
as a std_msgs/Bool to the telemanipulation node.Whenever the clutch is closed,
the telemanipulation node performs a registration routine after which any movement
of the input devices and the robot is computed relative to the position of the robot
and the haptic input device at the time the clutch closed. The second pedal switches
between a set of scaling factors. Every time the scaling is changed, the current scaling
factor is passed to the telemanipulation node as a topic of type stdmsgs/Float32
where it is used to scale the motion of the haptic input device with respect to the
robots movement.

5.2 Multi-RGBD People Tracking

Another important part in the scope of OP:Sense is the semantic perception of the
environment. To allow for sophisticated human robot interaction such as situation
detection or the optimization of the robot posewith respect to the human, information
about the human pose is needed. For this purpose we utilize the Kinect system
where each Kinect camera is registered to a reference one. The approach is based
on OpenCV and PCL. For registration, we first detect a checkerboard in both RGB
cameras (reference camera and camera to be registered), then we use the depth
camera to find the 3D positions of the checkerboard corners in both Kinect frames.
The resulting correspondences are then used to estimate the transform between the
cameras. This is repeated until all cameras are registered to each other. In a second
registration step we use the reference camera and the RANSAC plane detection
algorithm to detect the floor plane which is later on used for the computation of
people positions.

The aim of the people detection system is to integrate information about the posi-
tion of the humans, the points representing the humans and the skeletal configuration
of the humans. As written in Sect. 4.6, one workstation is dedicated to perform all
computations on both theRGBand the depth images from theKinect. Afilter pipeline
implemented as nodelets is used to perform a fusion on the heterogeneous data from
the Kinect. The components of this pipeline are:

334 A. Bihlmaier et al.

• People detection node: The Primesense NITE algorithm is used to detect and track
people in the camera frames. The algorithm runs for every camera and extracts a
depth image that only includes the pixels representing a human (other pixels are
black). NITE is capable of detecting up to 16 humans at a time so we compute
16 depth images. We then perform an erosion operation on the depth images to
remove some of the noise introduced by the use of multiple Kinect cameras. For
each camera we then publish 16 topics whereas each topic is used for one of
the users depth images.3 Additionally we add the skeletal configuration of each
human that is computed by the NITE algorithm with respect to the camera frame
where the human is detected to the tf tree. Finally, we publish topics of type
std_msgs/Float32 to provide the keys of users detected and the keys of
users of which tracking information are available for following computations.

• User image processor node: This node computes a 3D pointcloud for each human
detected in a Kinect camera using the known transfer function of the Kinect. In
the human detection system, this node runs once for every Kinect camera and sub-
scribes to the 16 depth image topics representing the users. After the computation
of a point cloud for every user, we perform an additional noise removal step using
the statistical outlier removal algorithm fromPCL. This produces a low noise point
cloud for every human detected in the scene. For every possible detected human
a sensor_msgs/PointCloud2 topic is created which is used to publish the
point clouds representing the users. When four Kinect cameras are used, this cre-
ates 64 topics that are either empty or contain information associated to a detected
human.

• Fusion: This node is not triggered by the camera driver as the Kinect cameras are
not running synchronously. Instead, it uses its own computation loop for clock
generation. It subscribes to all point clouds representing users and to the array
of detected users published by the NITE node. The purpose of this node is to
combine the clouds of corresponding users that are detected by multiple cameras.
As a measure to determine these correspondences, the centroid of each point-
cloud representing a human is computed using the according PCL algorithm and
projected to the floor. To allow for a more robust correspondence estimation,
we project the centroids of the point clouds to the floor. The Euclidean dis-
tance between the centroids is used to concatenate the point clouds of humans
which were detected in multiple cameras. The final point clouds are published as
sensor_msgs/PointCloud2. Additionally we use a custom message hold-
ing a 2D array that provides the information about corresponding humans in mul-
tiple camera views.

• Distance computation: This node computes features that can be used to infer
information about the current state in the OR. Features include distances between
humans and different parts of the robots or between human and human. One
particular feature is the distance between the human closest to the two robots. It is

3Unfortunately, the NITE nodes cannot be run as nodelets.

ROS-Based Cognitive Surgical Robotics 335

used as a simple low-dimensional input to the robot cost function in Sect. 4.1. The
node subscribes to the combined point clouds of the Fusion node and uses CUDA
to perform brute force Euclidean distance computation between the point clouds
and CAD models of scene items. An example for such a CAD model is the robot
in its current joint configuration.

5.3 Human-Robot-Interaction

In the design of a large modular surgical robotic platform, ease of use and intuitive
interaction has to be considered, but also safety for the medical staff, the patient
as well as the technical devices. Therefore, we combine probabilistic models and
rule based functions in order to interpret the context information in an ongoing
surgery. Context information can be modelled by using workflows. These workflows
are composed of individual workflow steps presented as Hidden Markov Models
(HMM). For each workflow step, a different HMM was trained using previously
acquired training data. In Fig. 9 a representation of the target workflow (autonomous
switching to the hands-on mode) is given. During the training phase we recorded
various features to fit each HMM individually.

In the following example we employ four workflow steps and thus four HMMs
(‘s’ = start, ‘a’ = touch EE, ‘b’ = move robot, ‘l’ = release EE). Additionally,
we annotate each step by capturing the corresponding keyboard input, including the
ROS time to synchronize the recorded features and the keyboard input afterwards.
The quality of the online classification strongly depends on the selected feature vec-
tor. One representative feature for the workflow is the minimal distance between the
human and the robot end effector as calculated by theMulti-RGB-D People Tracking
subsystem (cf. Sect. 5.2) and provided as a std_msgs/Float. Another feature is
the robot’s velocity which is included in the sensor_msgs/JointState mes-
sages provided by its controller (see Sect. 4.1). The last feature “approach” indicates
if the human is moving towards or away from the robot derived from minimal dis-
tance feature. The implementation was done in Python, for which a Gaussian HMM

Fig. 9 Intuitive switching of a robot from position mode into Hands-On mode and back, based
on the perception subsystem using Hidden Markov Models. a Start position ‘s’. b Touch EE ‘a’.
c Move robot ‘b’. d Release EE ‘l’

336 A. Bihlmaier et al.

model is provided within the package scikit. After training of the HMMs, they can
be used for realtime online classification in OP:Sense. The feature vector is passed
to each HMM and evaluated by using the log likelihood probability implemented in
scikit. The HMMwith the highest likelihood will be set as the most likely state. The
result state is published as a std_msgs/String for other subcomponents.

5.4 Endoscope Guidance

The teamwork between the surgeon and the human camera assistant in minimally-
invasive surgery poses many challenges and opportunity for improvement. There-
fore, we research having a robot instead of a human assistant guiding the endoscope.
Motorized endoscope holders, such asViKY(seeSect. 4.1), are already commercially
available. However, they require that the surgeon manually controls every reposi-
tioning, thus further increasing his cognitive load. A cognitive endoscope guidance
system is currently being researched that provides autonomous endoscope reposi-
tioning by means of a knowledge base. Since this assistance system is not developed
standalone, but based on our ROS platform, many synergies can be exploited and
additional functionality is provided to the surgeon. For further information, we refer
to the detailed description in [2].

5.5 Ultrasound Tomography

The ultrasound imaging component can be used to create 3D volumes using the
freehand-3D-ultrasound ability. To acquire more detailed volumes with fewer dis-
tortions a robotic ultrasound tomography was implemented. Using a robot mounted
transducer it is possible to record equidistant and parallel slices which allows a direct
volume reconstruction. In addition, the area of interest can be scanned from several
directions, which can decrease speckle noise. Due to the force control scheme of
the LWR robot, it is possible to acquire scans by following uneven surfaces with the
probe such as the human body. As a tracking system, the pose data from the optical
tracking system is subscribed. Alternatively it is possible to use the robot position as
tracking data. The robot and ultrasound imaging system, using the OpenIGTLink-
ROS-Bridge, is controlled from a Python ROS node. As an HMI, a GWT GUI using
rosjs was implemented, so any device with a browser can be used for inputs. The
results are displayed in 3D Slicer. The reconstructed volume can be published to the
ROS network using the OpenIGTLink message type IMAGE.

5.6 Simulation

Due to the cost and complexity of the complete platform, only a single instance of it
exists in our institute. It is shared bymultiple researchers and their students. Naturally

ROS-Based Cognitive Surgical Robotics 337

this leads to a bottleneck in scheduling time for complex experiments. Themodularity
and network transparency provided by ROS mitigate the problem to some extent,
because sensor components and subsystems can be used in parallel. However, in the
common case thatmultiple researchers require exclusive access to some components,
e.g. the OR table mounted robots, another solution is required. Providing an accurate
simulation of large parts of the setup, of which multiple instances, running on office
desktop computers, can be used independently from each other, helped us a lot.
More details about our use of the Gazebo simulator for this purpose and how the
simulation can help to perform advanced unit and regression testing (Robot Unit
Testing) is published in [3].

5.7 Software Frameworks

Table2 provides an overview of important libraries and frameworks, besides ROS,
that are used in our setup.

6 Organization and Software Engineering

6.1 Registration and Calibration

In OP:Sense, calibration and registration are organized in a separate ROS package.
The usual reference for calibration is the optical tracking system. For calibration

Table 2 Major software frameworks used in our surgical robotics platform

Name Website Version(s)

3D Slicer http://www.slicer.org/ 4.4

Chai3D http://www.chai3d.org/

Gazebo http://gazebosim.org/ 4.0; 5.0

Matlab http://de.mathworks.com/products/matlab/

MITK http://mitk.org/

MoveIt! http://moveit.ros.org/

OpenCV http://www.opencv.org 2.4; 3.0-beta

Openframeworks http://openframeworks.cc/

OpenIGTLink http://openigtlink.org/ 2

Plus https://www.assembla.com/spaces/plus/wiki 2.2

Point Cloud Library (PCL) http://www.pointclouds.org

Scikit-learn http://scikit-learn.org/stable/ 0.15.2

http://www.slicer.org/
http://www.chai3d.org/
http://gazebosim.org/
http://de.mathworks.com/products/matlab/
http://mitk.org/
http://moveit.ros.org/
http://www.opencv.org
http://openframeworks.cc/
http://openigtlink.org/
https://www.assembla.com/spaces/plus/wiki
http://www.pointclouds.org
http://scikit-learn.org/stable/

338 A. Bihlmaier et al.

purposes we use a tracking pointer with a rigid tip location which is found using
pivotisation. Using the transformation acquired by pivotisation, we can now compute
the position of the pointer’s tip with reference to the optical tracking system. The
pointer is then used to register other devices such as cameras to the optical tracking
system using landmarks in the scene that can be touched with the pointer and can at
the same time be detected within the camera’s image. Using OpenCV we compute
the transformation from the camera coordinate frame to the optical tracking system.
If the camera body itself is equipped with markers, e.g. in case of the endoscopic
camera, we can compute the transformation between the optical frame and the frame
of the markers, allowing to precisely calibrate the optics to the tracking system.
The calibrated pointer is also used for online calibration tasks such as setting new
trocar points for the telemanipulation system. If a new transformation is computed
through registration, the translation and the quaternion representing the pose are
saved to file. These registration files can be loaded through a pose publishing node
that is controlled via a launch file to publish the registration information on the tf
tree and/or on a dedicated geometry_msgs/Pose topic.

6.2 TF and Pose Topics

OP:Sense uses both the tf tree and a geometry_msgs/Pose based mechanisms
to send transformations. tf is usually selected if a transformation has to be visualized.
Additionally, tf is beneficial if the publishing frequency of a transformation is low or
average. For complex transformation chains this can easily deliver the transformation
from a frame to any other frame in the tree. Unfortunately, tf is not as performant as
publishing transformations onPose topics and degrades furtherwhen transformations
are published with high frequency. For fast transformation publishing such as in the
telemanipulation use case (1000Hz) we solely rely on sending transformations on
dedicatedgeometry_msgs/Pose topics and perform the framemultiplications in
the node. During the development phase, we usually keep the publishing frequencies
low and use tf. At the end of a development cycle when the frequency is increased we
switch to topics which enables most of the nodes to use both mechanisms. Additional
benefits of this method are that transformations can at any time be visualized using
RViz and the load on the tf is reduced to a minimum level.

6.3 Windows/Matlab Integration

The research and development process for the realization of math intensive compo-
nents such as flexible instruments (see Sect. 4.10) or inverse kinematics for robots
requires the use of a rapid prototyping environment. In our case Matlab/Simulink
is the tool for development of the robotic system kinematics, workspace analyses
and control design. However, the problem in our setup is, that Matlab runs on a

ROS-Based Cognitive Surgical Robotics 339

Fig. 10 Infrastructure to connect Gazebo via ROSwithMatlab onWindows through a virtual Linux
machine

“Windows-Desktop-PC” and the roscore of the lab on a Linux system. In order to
control and interact with both systems, the lab setup, where the final hardware runs,
as well as the prototyping system and simulation in Matlab onWindows, we decided
to use virtualization (see Fig. 10). Inside the Linux guest system, Ubuntu 14.04 is
installed including ROS (Indigo) and Gazebo (4.0). The communication from Win-
dows to the lab environment is established by a physical network adapter with a
dedicated static IP. Additionally, there is a virtual bridge from the virtual machine
also using the physical network adapter of the host system. Now, it is possible to send
ROS messages from Windows to the lab’s ROS network in the same way as to the
virtual one. The configuration inside the virtual machine is limited to starting a local
roscore and setting up the environment variables accordingly. Regarding the Matlab
part in this setup, the ROS I/O package for Matlab 2013b is used to communicate
with ROS. Therefore, a Matlab class-object is implemented to create nodes, topics
and the associated publishers and subscribers. For future work, the latest Matlab
release 2015a with full ROS support via the Robotic System Toolbox will be used,
thereby achieving the integration of ROS, Gazebo, Simulink and real-time hardware.

6.4 Software Repositories and Configuration Management

The balance between independence of each researcher on the one hand and keeping
all components and subsystems working together on the other is difficult to get right.
After trying out many different ways to organize the software and configuration of
our platform, we suggest the following best practices for such a large setup: First,
maintain one source code repository for each part that is usable on its own. Second,
changes to core components that change an interface visible to the ROS network
must be documented and agreed upon beforehand. Third, have one repository with a

340 A. Bihlmaier et al.

hierarchical set of launch files to bring up different parts of the core components and
subsystems. Fourth, alwaysmind the software engineering principles of “Single Point
of Truth” (SPOT) or “Don’t Repeat Yourself” (DRY) [6] with regard to code and
configuration information. Fifth, maintain a (virtual) blackboard listing all available
system functionality and links to documentation on how to use it.

References

1. T. Beyl, P. Nicolai, J. Raczkowsky, H.Worn,M.D. Comparetti, E. DeMomi,Multi Kinect People
Detection for Intuitive and Safe Human Robot Cooperation in the Operating Room. In: 2013
16th International Conference on Advanced Robotics (ICAR) (2013), pp. 1–6

2. A. Bihlmaier, H.Wörn, Automated Endoscopic Camera Guidance: AKnowledge-Based System
towardsRobotAssisted Surgery. InProceedings for the Joint Conference of ISR 2014 (45th Inter-
national Symposium on Robotics) and ROBOTIK 2014 (8th German Conference on Robotics)
(2014), pp. 617–622

3. A. Bihlmaier, H. Wörn, Robot Unit Testing. In Proceedings of the International Conference on
Simulation, Modelling, and Programming for Autonomous Robots (SIMPAR 2014), (2014), pp.
255–266

4. A. Bihlmaier, H. Wörn, ROS-based Cognitive Surgical Robotics. In Workshop Proceedings of
13th International Conference on Intelligent Autonomous Systems (IAS-13) (2014), pp. 253–255

5. T. Brennecke, N. Jansen, J. Raczkowsky, J. Schipper, H.Woern, An ultrasound-based navigation
system for minimally invasive neck surgery. Stud. Health Technol. Inf. 196, 36–42 (2014)

6. A. Hunt, D. Thomas, The Pragmatic Programmer: From Journeyman to Master (Addison-
Wesley, Boston, 1999)

7. L. Schreiter, L. Senger, T.Beyl, E.Berghöfer, J. Raczkowsky,H.Wörn, ProbabilistischeEchtzeit-
Situationserkennung im Operationssaal am Beispiel von OP:Sense. In: 13. Jahrestagung der
Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V, (2014), pp. 177–
180

8. J.Mintenbeck, C. Ledermann, R. Estana, H.Wörn, EndoSnake–ASingle-Arm-Multi-PortMIRS
System with Flexible Instruments. In: 13th International Conference on Intelligent Autonomous
Systems (IAS-13) (2014)

9. P. Nicolai, T. Brennecke, M. Kunze, L. Schreiter, T. Beyl, Y. Zhang, J. Mintenbeck, J.
Raczkowsky, H. Wörn, The OP: sense surgical robotics platform: first feasibility studies and
current research. Int. J. Comput. Assist. Radiol. Surg. 1(8), 136–137 (2013)

ROS-Based Cognitive Surgical Robotics 341

Authors’ Biography

Andreas Bihlmaier Dipl.-Inform., obtained his Diploma in computer science from the Karlsruhe
Institute of Technology (KIT). He is a Ph.D. candidate working in the Transregional Collabora-
tive Research Centre (TCRC) “Cognition-Guided Surgery” and is leader of the Cognitive Medical
Technologies group in the Institute for Anthropomatics and Robotics-Intelligent Process Control
and Robotics Lab (IAR-IPR) at the KIT. His research focuses on cognitive surgical robotics for
minimally-invasive surgery, such as a knowledge-based endoscope guidance robot.

Tim Beyl Dipl.-Inform. Med., received his Diploma in Medical Informatics at the University of
Heidelberg and University of Heilbronn. He is working as a Ph.D. candidate in the medical group
at the IAR-IPR, KIT. His research focuses on human robotic interaction for surgical robotics, tele-
manipulation, knowledge based workflow detection and scene interpretation using 3D cameras.

Philip Nicolai Dipl.-Inform., received his a Diploma in computer science at Universität Karl-
sruhe (TH). He is working as a Ph.D. candiate in the medical group at the IAR-IPR, KIT. His
research focuses on safe applications of robots to medical scenarios, safety in human-robot inter-
action based on 3D scene supervision and application of augmented reality for intuitive user inter-
action.

Mirko Kunze M.Sc., received his master’s degree in mechatronics at Ilmenau University of Tech-
nology. He is working as a Ph.D. candidate in the medical group at the IAR-IPR, KIT. His research
focuses on workspace analysis for redundant robots.

Julien Mintenbeck M.Sc., received his master degree in mechatronics at the university of applied
science of Karlsruhe. He is working as a Ph.D. candidate in the medical group at the IAR-IPR,
KIT. His research focuses on active controllable flexible instruments for minimally invasive
surgery and autonoumous microrobots for biotechnological applications.

Luzie Schreiter Dipl.-Inform. Med., received her degree at the University of Heidelberg and
University of Heilbronn. She is working as a Ph.D. candidate in the medical group at the IAR-
IPR, KIT. Her research focuses on safe and intuitive human-robot interaction as well as workflow
identification in a cooperative systems, such as surgical robotics systems for minimally-invasive
surgery.

Thorsten Brennecke Dipl.-Inform., received his Diploma in computer science at TU
Braunschweig. He is working as a Ph.D. candidate in the medical group at the IAR-IPR, KIT.
His research focuses on sonography aided computer assisted surgery.

Jessica Hutzl Dipl.-Ing., received her Diploma at the Karlsruhe Institute of Technology (KIT).
She is a Ph.D. candidate working in the TCRC “Cognition-Guided Surgery” and is a member of
the Cognitive Medical Technologies group in the IAR-IPR, KIT. Her research focuses on port
planning for robot-assisted minimally invasive surgery with redundant robots.

Jörg Raczkowsky Dr.rer.nat, is an Academic Director and Lecturer at the Karlsruhe Institute of
Technology. He received his Diploma in Electrical Engineering, and Doctoral Degree in Informat-
ics from the Technical University of Karlsruhe in 1981 an 1989 respectively. From 1981 to 1989
he was a Research Assistant at the Institute for Process Control and Robotics working in the field
of autonomous robotics and multi sensor systems. Since 1995 he is heading the Medical Robotics

342 A. Bihlmaier et al.

Group at the Intelligent Process Automation and Robotics Lab at the Institute of Anthropomatics
and Robotics. His current research interests are surgical robotics, augmented reality and workflow
management in the OR.

Heinz Wörn Prof. Dr.-Ing., is an expert on robotics and automation with 18 years of indus-
trial experience. In 1997 he became professor at the University of Karlsruhe, now the KIT, for
“Complex Systems in Automation and Robotics” and also head of the Institute for Process Control
and Robotics (IPR). In 2015, he was awarded with the honorary doctorate of Ufa State Aviation
Technical University, Russia. Prof. Wörn performs research in the fields of industrial, swarm, ser-
vice and medical robotics. He was leader of the Collaborative Research Centre 414 “Computer-
and Sensor-assisted Surgery” and is currently in the board of directors and principal investiga-
tor for robotics in the Transregional Collaborative Research Centre (TCRC) “Cognition-Guided
Surgery”.

ROS in Space: A Case Study on Robonaut 2

Julia Badger, Dustin Gooding, Kody Ensley, Kimberly Hambuchen
and Allison Thackston

Abstract Robonaut 2 (R2), an upper-body dexterous humanoid robot, was devel-
oped in a partnership between NASA and General Motors. R2 has been undergoing
experimental trials on board the International Space Station (ISS) for more than
two years, and has recently been integrated with a mobility platform. Once post-
integration checkouts are complete, it will be able to maneuver around the ISS in
order to complete tasks and continue to demonstrate new technical competencies
for future extravehicular activities. The increase in capabilities requires a new soft-
ware architecture, control and safety system. These have all been implemented in the
ROS framework. This case study chapter will discuss R2’s new software capabilities,
user interfaces, and remote deployment and operation, and will include the safety
certification path taken to be able to use ROS in space.

Keywords Space robotics · Safety architecture · Human-robot interaction

1 Introduction

Robonaut 2 (R2), an upper-body dexterous humanoid robot, has been undergoing
experimental trials on board the International Space Station (ISS) for more than two
years [1]. Thus far, R2 has been restricted to working from a stanchion on orbit [2],

J. Badger (B) · D. Gooding · K. Ensley · K. Hambuchen
NASA- Johnson Space Center, Houston, TX 77058, USA
e-mail: julia.m.badger@nasa.gov

D. Gooding
e-mail: dustin.r.gooding@nasa.gov

K. Ensley
e-mail: kody.g.ensley@nasa.gov

K. Hambuchen
e-mail: kimberly.a.hambuchen@nasa.gov

A. Thackston
Oceaneering Space Systems, Houston, TX 77058, USA
e-mail: allison.thackston@nasa.gov

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_13

343

344 J. Badger et al.

Fig. 1 Robonaut 2 with
mobility upgrade

but it has recently been integrated with a mobility platform, shown in Fig. 1. Once
post-integration checkouts are complete, it will be able to maneuver around the ISS.
Its objectives are twofold. First, R2 will strive to reduce time spent by astronauts on
routine duties by completing maintenance and cleaning tasks inside the ISS. Some
example tasks are inventory management, handrail cleaning, vacuuming filters, and
data collection, such as air flow measurements. Second, the operational experience
R2 gains inside the ISS will be essential in guiding mechanical, operational, and
control system designs for a Robonaut unit to operate outside for extravehicular
activities (EVA) in the future.

There were many important and unique challenges associated with creating a
software control system for Robonaut 2. First, with its 58◦ of freedom and sophisti-
cated set of sensors, any controller must be able to handle the complexity while still
creating a stable and useful platform for the challenging applications planned for
R2 [3]. Second, stringent safety requirements are in place for any system on board
the International Space Station, and R2 is no exception. Because R2 will be moving
around inside of the ISS in close proximity to crew members, a two fault-tolerant
software safety architecture has been certified to provide three levels of safing actions
when required [4]. Finally, software deployment and robotic operations to a remote
system using a latent, bandwidth-limited and uniquely configured network require
specialized solutions.

ROS in Space: A Case Study on Robonaut 2 345

All of this work was done using native ROS tools and capabilities. In particu-
lar, Orocos [5] is used within the ROS framework to coordinate the many degrees
of freedom while maintaining precision and dynamic controller performance that
is required for the application. The safety system involves four processors plus all
embedded controllers, hundreds of sensors, and over 100 different checks and mon-
itors, nearly all of which are driven by the ROS messaging environment. Software
deployment and operational commanding use more open-source tools that have been
shown to work well with the ROS environment, such as OpenVPN (https://openvpn.
net/).

The case study chapter will cover the design and implementation of the software
architecture, user interfaces, and software deployment scheme of Robonaut 2, with
an emphasis on the centrality of ROS to the entire system.

• The overall architecture will be presented in Sect. 2.
• The novel control software will be discussed in Sect. 3.
• The safety system will be discussed in Sect. 4. Section4 will also discuss safety
certification of R2’s software, including the certification path for ROS and the
other open source tools used.

• Higher level control elements, including machine vision capabilities, will be pre-
sented in Sect. 5.

• The R2 simulation and other custom user interfaces developed for or integrated
with the system will be described in Sect. 6.

• Deployment and operations challenges and solutions will be presented in Sects. 7
and 8, with a discussion on the benefits and drawbacks of using ROS with respect
to the maintainability of the overall software load.

• Finally, results of experiments with R2 will be presented in Sect. 9, along with a
discussion of the merits and concerns for implementing an EVA robotic control
system in ROS.

Throughout the chapter, best practices and lessons learned will be emphasized.

2 Architecture Overview

2.1 System Architecture

The Robonaut 2 upper body has two seven degree of freedom arms with complex,
tendon driven hands that feature another twelve degrees of freedom each. R2’s neck
has three joints for expanded viewing capabilities, particularly for teleoperators, and
the upper body has a joint at its waist. R2 features series elastic actuators that are
torque-commanded in the waist and the five major joints of each arm. Force and
torque can also be measured in the six-axis load cells in each shoulder and forearm.
The head features several vision sensors, including analog “teleoperation” cameras,
machine vision cameras, and a time of flight sensor. The fingers have several strain
gauges to simulate a sense of touch.

https://openvpn.net/
https://openvpn.net/

346 J. Badger et al.

The mobility upgrades to R2 brought many changes to the original system. R2
was outfitted with two seven degree of freedom legs that were designed to be long
enough to climb between nodes inside the ISS. Each leg has a gripping end effector
capable of grasping handrails internal to the ISS. Each of the seven leg joints are
series elastic actuators that are capable of being torque-controlled. The end effector
is an over-center locking mechanism with a manual release in case of emergency.
The end effector has a sensor package that includes a machine vision GigE camera,
a 3D time-of-flight sensor, and a six-axis load cell. In both the upper body and the
legs, the joints all communicate with the central processors (or “Brainstem”) via a
communication protocol loosely modeled after the M-LVDS standard.

R2 now has three Core i7 processors running Ubuntu as part of the mobility
upgrades. The processors each have different functions in the control and safety
monitoring of the robot. There is one processor whose primary job is control of the
robot, the “pilot;” a second processor, the “captain,” monitors joint telemetry and
runs the same calculations as the primary control processor as a check. The third
processor, the “engineer,” connects to the other two via ethernet and compares these
calculations as anothermonitor. The third processor is also used for vision processing
and other high-level supervisory control functions. All robot code on these Brainstem
processors runs in the ROS framework.

R2 will be upgraded at a future time with a battery backpack to allow for wire-
less climbing through the ISS. R2 will connect to the ISS wireless network via an
embedded processor called the Cortex, which speaks ROS in a Digi Linux operating
system. This Cortex guards the ISS network from the traffic on the robot’s internal
network, limiting what data can be passed in or out to the ground control station.
The Cortex also adds some safety monitoring capabilities to R2.

2.2 Software Architecture

The overall software architecture is depicted in Fig. 2. The control architecture is
unique in many ways. The architecture consists of model-based, joint-level (embed-
ded) impedance control components designed to accurately track command inputs
from the centralized coordinated dynamic trajectory controller, RoboDyn. The
Robonet I/O system directs the high-speed communication protocol between the
coordinated control Brainstem processor and the joints. The JointApi section acts as
an abstraction layer between the different data and control needs of different types of
joints (i.e., series elastic versus rigid, or simple versus complex) and the coordinated
controller. Above the control layer sits the safety system, which consists of a set of
controls and monitors that protect for two major hazards, excessive force and the
inadvertent release of both gripping end effectors. Also in this layer is an arbiter
that manages which processes have control of the robot. The supervisory control
layer consists of controllers and estimators (such as machine vision processing) that
are resident to the robot and provide autonomy to R2. These processes are outside
of the safety-controlled functionalities and must use a specific API to access the

ROS in Space: A Case Study on Robonaut 2 347

Fig. 2 Software architecture diagram

robot’s control interfaces. This is similar to the set of user interfaces that exist off-
board the robot. These user interfaces could be scripts, supervisory control elements,
teleoperation, or other interfaces as needed.

A key feature of this architecture is that it allows a separation between safety-
critical and non-safety critical code, even when they are resident on the same
processor. This separation is largely constructed as the difference between Orocos
components and ROS capabilities. For example, any command that can be received
via ROS topic or service is not safety-critical, but instead part of the API to the robot.
Commands that could affect the safety system of the robot are limited to Orocos or
rttlua, its real-time script engine environment, interfaces only (i.e., ports, properties,
component configuration). This is useful since elaborate safety certification testing
is required for most changes to the safety-critical code base, which would severely
hinder any technology development process using R2. Instead, technology devel-
opment can happen in the non-safety critical supervisory and user interface layers
without requiring any special testing or procedures.

3 Control Software

This section outlines the basic control system for R2. This software is considered
safety-critical, and generates the general control API for the robot. The RoboNet
I/O system, the JointApi abstraction layer, and the novel Robodyn controller are all
described in detail.

348 J. Badger et al.

3.1 RoboNet

Robonaut 2 utilizes an M-LVDS hardware bus and custom protocol, RoboNet, for
communication between the Brainstem and embedded joint controllers.

RoboNet is a packet-based request-reply protocol and is used to atomically set
and get values on the joint controllers. The M-LVDS bus master device (specifically,
an Acromag XMC-SLX150 in the Brainstem) is programmed with a round-robin
communications loop, continuously reading and writing data from each M-LVDS
bus node device (specifically, FPGAs on the joint controllers). The bus master can
be put into one of two modes: data synchronization or streaming. In “data mode”
(used for nominal runtime), the communications loop synchronizes 512B blocks of
memory between the bus master and each bus node, and can support up to 12 M-
LVDS channels with 15 bus nodes on each channel. In “streammode” (used for joint
controller configuration), the master communicates with a single node, transferring
an arbitrary number of named values to and from the node.

Brainstem access to the M-LVDS memory blocks is handled using a two-layer
driver. At the “access driver” layer, a Linux kernel module provides basic read/write
and ioctl capabilities to the busmaster block device. Then at the “policy driver” layer,
user-land C++ classes provide constrained calls to the access driver, giving a well-
described, always-safe interface to the bus master. The bus master is provided with a
description of what nodes exist and which memory offsets to synchronize. Figure3
describes the RoboNet component architecture that is implemented in Orocos [5].

Component Details The DataWarehouse is a name-value abstraction for accessing
data fromRoboNet nodeswhile the RoboNetmaster is in data synchronizationmode.
It provides a way for high-level processes to easily access exactly the information

Fig. 3 RoboNet component-level architecture diagram

ROS in Space: A Case Study on Robonaut 2 349

they need without having to use the arcane process of directly offsetting into a block
of memory. Essentially a C++ std::map, the DataWarehouse is accessible across all
processes running on R2, giving a uniform, easy-to-use view into low level data.

The DataWarehouse is populated via the DataClient. The DataClient is periodi-
cally triggered to synchronize groups of data between the RoboNet master and the
DataWarehouse. Data elements are grouped by direction (e.g., read, write) and func-
tion (control, monitoring, etc.). In this way, “frames” of data are created, allowing
for consistent status and control of joint controllers. The DataClient itself is provided
with a description of each data element and what memory offset it lives at.

The StreamClient, upon request from a high-level process or the robot operator,
reads a set of named values from a configuration file and sends them to a specific joint
controller. The StreamClient temporarily places the RoboNet master into streaming
mode during its execution, and returns the RoboNet master to data synchronization
mode when it is finished.

A manager named RobonetMaster instantiates all of the above (the driver layers,
the DataWarehouse and DataClient, and the StreamClient) and handles their inter-
connections and moding requests. It is a standard C++ class that can be utilized by
any high-level process that needs to interact with RoboNet nodes. R2 makes use of
the Orocos Real-Time Toolkit (RTT) and has an Orocos component wrapper around
RobonetMaster. This component makes available many of the RobonetMaster meth-
ods via OperationCallers as well as a number of Orocos DataPorts for triggering
RobonetMaster actions and streaming status information.

Another Orocos component, the LoopManager, used during nominal runtime of
R2, has a description of which data groups exist and at which rates they should
be synchronized. The LoopManager sends triggering messages to RobonetMaster,
which causes DataClient to synchronize data between the RoboNet master and the
DataWarehouse. Simultaneously, the LoopManager notifies the RTT environment
(via DataPorts) that new data is available in the DataWarehouse. Ultimately, via
the LoopManager, the control loops in R2’s Brainstem are triggered by RoboNet
data synchronization events, providing end-to-end execution synchronization for the
robot.

Benchmarks Table1 lists benchmarks for RobonetMaster that were conducted on a
quad-core Intel i7-2715QE running at 2.10Ghz with 8Gb RAM. Each measurement
was taken as an average of 3 runs of 1000 iterations.

There is a significant amount of overhead associated with the DataClient syn-
chronizing the RoboNet master and DataWarehouse. The computational price has a
tangible benefit though, namely that access to RoboNet data is human understandable
which reduces debugging time and enables rapid development of new software.

350 J. Badger et al.

Table 1 RoboNet benchmark results

Benchmark Primary call Iteration frequency
(Hz)

Data transfer rate
(MB/s)

Single read readMemory() 393442.62 1.5

Single write writeMemory() 932835.82 3.56

Channel read readChannelMemory() 88.09 1.29

Channel write writeChannelMemory() 174.75 2.56

R/W “command” group transferDataGroup() 176.9 0.89

R/W all groups transferDataGroup() 106.32 0.85

3.2 JointApi

R2 has various types of joints that make up its 58◦ of freedom (DOFs). Some of
R2’s joints are simple rigid joints, some are series elastic, and some are complex
mechanisms. Some of the embedded joint controllers are fully capable of achieving
desired positions and torques on their own, while some are limited to pulse-width
modulation (PWM) control of an actuator. Some of the embedded controllers were
designed during the original torso design, and newer ones, with different capabilities,
were designed during the mobility upgrade. The need for a standard, consistent
interface to all these DOFs is essential, and thus R2 employs the notion of two “Joint
APIs” that makes common both the control/moding and the commanding of each
degree of freedom.

Controlling the mode of a joint in R2 is achieved by setting bits in 16-bit registers
that are sent to the joint from the Brainstem. Unfortunately, R2’s upper body was
designed separately from its lower body, and the embedded joint controllers that
manage the two halves have different features and require unique control register
values to achieve similar modes. Additionally, keeping track of which bits and masks
are what across the different controller types is tedious.

As a solution, a utility was created that maps user-friendly names for bits to their
bit offsets and sizes. Then, by convention, developers gave matching names to bits
that performed the same tasks across joint controllers (e.g., engaging the brake),
thus abstracting away how the joint in question performed the control task. Building
on this naming convention, a set of modes were identified that all of R2’s joints
supported: OFF, PARK, DRIVE, NEUTRAL, etc. A set of layered state machines
then manages the safe transition from one mode to another, ensuring safety-related
prerequisites are met and users are notified when transitions fail.

Finally, an Orocos component responsible for managing the state of every joint
listens for cues from users and other processes to safely change joint modes across
the robot. This Joint Control API component can listen to ROS messages or data on
Orocos ports, giving flexibility to how R2 is moded.

In a similar fashion to managing modes of different joint controllers in a common
way, dissimilar joints in R2 are commanded in a common way. R2 has four different

ROS in Space: A Case Study on Robonaut 2 351

styles of joints (simple rigid, series elastic, various complex mechanisms where
actuator space and joint space are not easily mapped, and mechanisms), and some
joints require low-level control loop closure at the Brainstem. Forcing the overall
control system to uniquely command each type of joint is unrealistic, so a Joint
CommandAPIwas designed to provide a common commanding interface, regardless
of joint-type specifics.

Actual joint commands are sent to the joints from the Brainstem in the form
of integers and floats (e.g., desired position, desired torque). A utility was created
to give user-friendly names for these values and value memory locations to easily
map between “control space” and “I/O space” (see Sect. 3.1). On top of this util-
ity, a set of “API” C++ classes exist, one for each joint type, that accepts standard
sensor_msgs/JointState commands and translates them into joint type-specific I/O
commands. For the complex finger and wrist mechanisms, the API class also instan-
tiates a Brainstem-side version of the embedded control loop found on R2’s rigid and
series elastic joints, so these joints can achieve positions (as their joint controllers
only accept actuator commands).

Finally, a pair of Orocos components (one for joints with embedded control loops
and one for joints that needBrainstem-side control loops) are instantiated thatmanage
theAPI classes.The “embedded” JointCommandAPIOrocos component is triggered
at 30Hz and the “Brainstem” component is triggered at 210Hz. These two rates
provide a consistent command flow that maps from generic high-level control loop
output to hardware-specific embedded joint controller inputs.

The ros_control packages (http://wiki.ros.org/ros_control) provide very similar
functionality to R2’s Joint Command API. The functionality of ros_control’s “Con-
troller” and “hardware_interface” layers are approximated in the individual API C++
classes previously discussed and Joint Command API’s Orocos component layer is
similar to ros_control’s “Controller Manager” layer.

The choice between using ros_control or writing the Joint API components was
decided in twoways. First, there was a concern, at the time of development, with how
real-time safe the ros_control code would be, so writing Orocos components would
mitigate that risk. Second, ros_control was very new at the time, and ROS itself
was in a phase of large changes to now-stable interfaces. Since software changes
for space systems are difficult, the decision was made to write a custom layer for
mapping the high-level control system to the I/O layer. R2’s Joint APIs have worked
well for multiple configurations of joints and joint capabilities and has proven itself
safe.

3.3 Robodyn

The Multi-Loop embedded controller forms the foundation upon which the overall
control system is built by ensuring that each joint tracks its commanded trajectory
while conforming to desired dynamic performance characteristics and safety thresh-
olds. It achieves this by employing four cascaded high rate (5kHz) control loops,

http://wiki.ros.org/ros_control

352 J. Badger et al.

each consisting of sensor-fed, model-based feed forward control terms and tradi-
tional PID controllers to achieve tight tracking performance. The feed forward terms
have been designed to largely compensate for the non-linear physical characteristics
of the R2 joints, thus minimizing and linearizing the contributions needed from the
PID control loops.

The Robodyn controller handles the coordinated control calculations necessary
for smooth, integrated Cartesian control of R2. It sends synchronous commands to
the joint embedded Multi-Loop controllers such that, if the embedded controllers
achieve those commands, then the desired Cartesian trajectory is accomplished. A
block diagram of the controller is shown in Fig. 4. Robodyn can be broken up into
kinematic and dynamic components. These components are tightly coupled via inputs
and outputs as well as in execution order for smooth coordinated motion.

The kinematic part takes joint and Cartesian commands from the user or from
a supervisory control component and creates joint trajectories to achieve the com-
mands. It generates position, velocity, and acceleration references per joint. These
velocity and acceleration references are fed to the dynamic part, which creates feed-
forward torques to compensate for inertia and gravity. The dynamic part also outputs
a stiffness and damping for each joint based on each joint’s calculated effective iner-
tia and desired natural frequency and damping ratio. Finally, it outputs joint torque
limits. The Synchronator component is used to synchronize all the commands to be
sent to the joint each time step.

All components are written in the Orocos framework and component triggering
is designed such that all calculations are completed in a tight sequence each time
step. Several ROS topics are available to interface with the Robodyn controller,

Fig. 4 Robodyn: Brainstem control architecture for Robonaut 2

ROS in Space: A Case Study on Robonaut 2 353

in both sending commands and receiving data. Trajectory monitoring accepts joint
and Cartesian reference commands and tracks the progress of these requests. The
Monitor can also be configured to customize the tracking performance required by
the specific task. If trajectory tracking does not occur within the specified parameters
for any reason, the commanded trajectory is smoothly canceled.

The maximum velocity and acceleration used by the trapezoidal trajectory gen-
erator for both joint and Cartesian moves can be set. External forces can be added to
the inverse dynamics calculation as necessary. This functionality is very useful for
testing in gravity offload test facilities. Finally, joint desired dynamics data (natural
frequency, damping ratio, and integrator windup) as well as joint torque limits can
be commanded.

4 Safety System and Certification

The safety monitoring system involves nearly all of the available torque and position
sensing on R2, as well as all of the processors. For the ISS safety requirements
involving excessive loads, there are three different types of force monitoring that
are present in this system. Each of those (static, dynamic, and crushing) will be
detailed in this section. Two other types of safety monitoring are also described.
System health monitoring is required by the ISS safety community to ensure that
the robot has redundancy equivalent to the criticality of the perceived risk of R2’s
excessive force capabilities. An overall component-level illustration of the safety
system required to achieve two fault tolerance in excessive force is shown in Fig. 5.
Trajectory monitoring is not a required part of the safety monitoring system, but is
used to reduce the occurrences of potential robot safing actions due to other force
monitors reaching a limit.

Three Brainstem processors (pilot, captain, and engineer) are used for creating
two fault tolerance to excessive force. All three processors are connected via ethernet
and communicate using the same roscore, resident on the engineer, as shown in Fig. 5.
All safety monitors and controls are implemented as Orocos components.

The other major control requirement imposed by the ISS safety community
restricts R2 to always have at least one attachment to structure (handrail or seat track).
In order to avoid inadvertent release, a sophisticated control system is required to
avoid commanding an end effector open if there is no other verified attachment point
(the manual release mechanism will still function, however, in case of emergencies).
The controller essentially filters all commands to enable or release a gripper through
several conditions; if all the conditions are not met, the gripper remains parked and
locked. This control will be outlined in this section as well.

354 J. Badger et al.

Fig. 5 Safety architecture for the excessive force catastrophic hazard

4.1 Static Force

The ISS safety community has imposed a requirement that R2 may not create a
static load of more than 45.45 kg (100 lbf) on any structure, equipment, or crew on
board the ISS. R2 monitors static force by calculating the force that each limb is
exerting at any time, as well as calculating the system or body force. This force is
calculated using two different sets of sensors. First, the joint sensor package in the
series elastic actuators is used to calculate the torque on each joint and a forward
dynamics calculation finds the effective force and moment at each end effector (Joint
ForceMonitor). These forces are translated and combined in the body frame to ensure

ROS in Space: A Case Study on Robonaut 2 355

that the body is not imposing a force greater than the limit in the case that more than
one end effector is contacting structure. Because of the many sensors that can be
used to determine the torque and position in each joint, it is possible to consider this
calculation redundant with health monitoring, which will be described later.

A similar calculation is performed using the six-axis load cells in each appendage.
These direct force and moment measurements are transposed to the end effector
frame for both arms and both legs (Sensor Force Monitor). Also, the measured
forces are transposed and summed in a body frame to get the system force. As these
measurements are not affected by singularities in the kinematic chain as the previous
calculations are, this calculation is the sole source of force data on an appendage if
that appendage becomes singular.

If any of the calculated force or moment values exceed the required limit, a safing
event occurs. Once a safing event has been triggered, the motor power is removed
from the system in three redundant ways.

4.2 Dynamic Force

Instances of dynamic force must also be accounted for and controlled in a safe man-
ner. To limit the amount of dynamic force that can be applied by R2, the amount of
momentum that is generated is monitored. An accurate mass model is used to calcu-
late the inertia of each link (which comes from the Robodyn dynamic components),
which is then multiplied by the velocity of each link, calculated from the forward
kinematics of the robot, to produce momentum. To create a meaningful momentum,
a base reference frame for the velocity calculation must be chosen. For R2 there are
two scenarios that would produce high momentum, the end effectors separately and
the body as a whole. Therefore the momentum is calculated on each end effector
chain, as well as from a base world frame. For the end effector chains, the base is
taken at the center body frame. For the body momentum, the base must be set at
a frame connected to world. For R2, this frame coincides with the gripper that is
attached to station, and therefore changes as R2 traverses throughout ISS (Momen-
tum Monitor). In order to determine an appropriate limit for momentum, the robot
was commanded to impact a force plate at various speeds. The impulse produced
from the impact was then analyzed. The requirements for the ISS limit R2’s peak
load to 1000 lbf for short durations. This translates into approximately 34 N-s for
metal on metal contact. By controlling the amount of momentum an individual end
effector as well as the whole body can produce, the maximum dynamic force that
can be produced by the system is limited to within safe parameters. If any calculated
momentum value exceeds the required limit, a safing event occurs.

356 J. Badger et al.

4.3 Crushing Force

The end effectors on the legs, shown in Fig. 6, must clamp tightly around handrails in
order to support moving the robot’s large inertia. The hands are not used for support
of R2 and so they are not a part of this discussion. Because the clamping mechanism
requires some amount of motor torque to drive it over center, caution must be taken
with ensuring that the end effectors are only using the minimal force required during
closing and clamping in order to not crush pipes, conduits, and wires that may be
mistakenly grabbed while reaching for a handrail. There are two major ways that
crushing force is limited. The force at the end effector is limited to a constant value
while the jaws are not closed. Once the jaws reach a position that has been defined as
closed, this force limit is increased to allow the motors to drive the mechanism over
center. In order to achieve this constant force limit, current to the motors are limited
based on jaw position. The second protection is a pulse width modulation (PWM)
duty cycle limit that is constant throughout all jaw positions.

Fig. 6 Robonaut 2 end
effector assembly

ROS in Space: A Case Study on Robonaut 2 357

4.4 Health Monitoring

In order to ensure that the sensors required for all the essential force, moment, posi-
tion, and momentum calculations are working correctly, system health monitoring
has been implemented as part of the safetymonitoring system. The healthmonitoring
is very complex, with many comparisons between more than 100 sensors happening
on various processors (Sensor Comparator) and on various calculated values from the
measurements (Comm Stats Monitor, Sensor Force Comparator, Joint Force Com-
parator,MomentumComparator). The essential theme of the system is, however, that
each sensor is compared against others to ensure that values are consistent. If any
comparisons fail, a safing event occurs, stopping the robot so that more investigation
can occur. The position sensors (two absolute position sensors, an encoder, and a
hall effect sensor per series elastic joint) are compared in several places as calculated
position and velocity. The load cells are compared against the calculated force and
moment at each end effector while the corresponding limb is not singular. As control
of the limb is difficult near singularities, most operation occurs in regions where the
force comparison is valid. Critical Orocos components on all three processors are
checked for health using the Software Watchdog components.

The health monitoring aspect of the safety system also serves as protection for
random bit flips due to radiation hits, as sensor values and important calculations
are checked and computed on two processors, published on ROS topics, and then
compared on the third processor. If any calculation or sensor value is affected on one
processor, that will be caught by another processor and this discrepancy will cause
the robot to safe.

4.5 Trajectory Monitoring

Because the monitors discussed thus far are required by the ISS safety community to
satisfy the risk assessment for R2 and the force requirement on board the ISS, when
one of those monitors are triggered, the robot must safe itself by removing motor
power. Once a safing event occurs, there is a process that must be followed in order
to clear the safing event. This process often involves contacting several people in the
operational chain, including the flight director. In order to reduce the number of safing
events to increase the up-time of the robot, a soft stop has been implemented at warn
limits that are slightly inside the limits that trigger the safing events for the static
force, dynamic force, and health monitors. This soft stop does not remove motor
power, but instead only smoothly interrupts and arrests any commanded trajectories.
This is very useful to guard against commanding the robot into a safing event while
not affecting the safety monitors that will still guard against any failure situation that
may trigger run-away conditions.

358 J. Badger et al.

Fig. 7 Trajectory
monitoring allows R2’s arm
to be stopped with little effort

Another “unofficial” protection, similar to the warn limits, is trajectory monitor-
ing, that is described in Sect. 3.3 above. Because the joint torque limits can be set
very low due to the accuracy of R2’s mass model, this protection enables R2 to be
stopped using very little effort. Figure7 shows trajectory monitoring in action.

4.6 Inadvertent Release

Figure2 shows the overall control architecture. There is an arbitration component
between the user and the supervisory level inputs and the coordinated control system,
Robodyn. Since enabling the gripper is considered to be unsafe when it is the sole
attachment point to structure, the commands to enable or park the gripper motors
are handled only through a gripper supervisor in the coordinated controller. Any
command to change the state of the gripper motors are rejected by the Mode Arbiter.

The user or supervisory controllers can command the grippers to open, close, and
lock, however. The command to lock is always allowed, as long as the gripper is not
currently in the locked state. Commands to open or close the grippers, however, are
only allowed when certain conditions have been met. The non-commanded gripper
must be locked, there must be no faults in its joint-level controller, the motor state
must be parked, and the grippermust have beenverified as a base frame.Commands to
grippers that are sent together in one package are handled separately and sequentially,
so that commands to open two grippers that both satisfy the requirements will result
in one gripper opening and the command to open the other gripper being rejected.

Grippers can be verified as a base frame through a special maneuver designed
to determine that the gripper is indeed locked to structure. This command, called
a “push-pull” command, is actually a supervisory controller that runs through a
state machine to verify the attachment points of the robot. The push-pull command
is only valid when both grippers are locked, healthy, and parked. The supervisor,
once enabled, locks out and changes settings such as the desired dynamics and
joint torque limits of the leg joints, and then sends up to two trajectories to the
legs. The first trajectory is a roll maneuver about the gripper coordinate frame. If

ROS in Space: A Case Study on Robonaut 2 359

a gripper is not truly over-center and locked, this would cause the jaws to open. If
the trajectory succeeds or if the jaws open, the base frame verification fails and the
push-pull supervisor releases control. If the trajectory fails and the grippers remain
locked, a second trajectory is sent. This trajectory includes both a roll in the opposite
direction about the gripper coordinate frame as well as a short “pull” away from the
attachment point. If this trajectory succeeds or if the gripper jaws open, the base frame
verification fails, and the push-pull supervisor releases control. If the trajectory fails
and the jaws remain locked, the verification succeeds. Both grippers are marked as
verified base frames and the push-pull supervisor releases control. Trajectory success
and failure are judged using the trajectory monitoring described in the last section.
This supervisor is the only supervisor implemented as an Orocos component due to
its criticality. All other supervisors are implemented as ROS nodes.

Finally, in order to have a redundant system throughout, one more protection on
the gripper joint enable is needed. When a successful gripper command is issued, the
gripper supervisor on two separate processors must identify the command as a valid
one andboth processorsmust send a gripper enable request to the third processor. That
processor will issue a positive reply when two such requests happen within a short
time frame, which then allows the gripper supervisor on the controlling processor to
issue a gripper enable command to the joint-level controller. The third processor, the
engineer, also monitors the state of the gripper motors via data on ROS topics and
issues a safing event if it sees a gripper enabled without recently approving a request.
This avoids the joint-level controllers from enabling the motors without a command.

4.7 Certification

The safety requirements on R2 were dictated by the ISS Safety Review Panel, which
also provides the oversight on all software safety testing and changes that happen. The
safety solution was created by assuming that all outside commands and code (includ-
ing the operating system and the ROS framework) provides hazardous commands
and conditions to the robot. The robot in turn must be able to reject all hazardous
commands, even with one to two separate failures, and still protect against inad-
vertent release and excessive force respectively. This is achieved using a fail-safe
philosophy. The monitors all trigger safing events that remove motor power for the
excessive force events; the over-center locking mechanism requires motor power to
release the grippers. So in either case, the removal of motor power ensures that the
robot remains safe. The software safety certification testing involves more than 100
separate tests to show that all safety monitors and controls will correctly and safely
react or act. An extensive fault matrix analysis proves that after any two classes of
failures, at least one hazard control remains for excessive force, and any one failure
for inadvertent release. Hardware and processor errors (such as runaway threads or
inexplicable failure to calculate correct numbers) are allmodeled in the faultmatrices.

360 J. Badger et al.

Fig. 8 Overall vision architecture

5 Vision and Supervisory Elements

An important part of the software architecture is the separation between safety critical
and non-safety critical software. The supervisory controllers and machine vision
elements, which are expected to change frequently as tests are run on board the
ISS, are part of the non-safety critical software. This allows the development team
to rapidly iterate on these components and uplink them to the robot as required.
Since this framework is based on ROS, it also provides a robust interface to the
robot controller which aids in integrating research from outside groups quickly and
efficiently. By utilizing the ROS framework, Robonaut 2 is able to easily use any
visual processing algorithm, supervisor, or other peripheral package developed in
the ROS community.

In general, the vision architecture is based on nodelets and deployed as shown
in Fig. 8. Nodelets were chosen as the base framework because they provide a zero
copy transport between nodelets within the same manager, and because they are
dynamically loadable at runtime.

Cameras that reside on the robot (locations shown in Fig. 9) are triggered to start by
loading the corresponding driver nodelet. This reduces bandwidth usage and required
processing power by only loading the componentwhen it is needed. Then the imagery
can go through the ROS-provided image pipeline1 to perform common tasks such
as rectification. This saves time and development resources since these common
tasks are often done for any perception algorithm. From there, specific perception
algorithms can be developed and deployed. Since the perception algorithms are
developed to use the ROS framework, they can be deployed anywhere, on the robot
or on the ground machine, as shown in Fig. 8. Although the algorithms lose the
advantage of zero copy transport if loaded outside of the main vision manager, this

1http://wiki.ros.org/image_pipeline.

http://wiki.ros.org/image_pipeline

ROS in Space: A Case Study on Robonaut 2 361

Fig. 9 Sensor locations on Robonaut 2

flexibility is helpful in debugging and testing algorithms. The loading/unloading of
these algorithms is controlled via ROS service calls from the ground work station
using a custom Robot Task Commander (RTC) software [6] or through supervisors
through the standard nodelet interface.

One example of a vision algorithm is a handrail detection algorithm which iden-
tifies and locates obstacle free handrail sections. This algorithm uses a Point Grey
Research Flea camera and a Camboard Nano depth sensor, both of which are located

362 J. Badger et al.

on R2’s climbing leg end effectors. These sensors are used in combination with
functions in the open source Point Cloud Library (PCL) and the OpenCV library to
determine the position and orientation of a handrail, along with the sections of the
handrail that are obstacle free. This information is published on a ROS topic and is
fed to related user interfaces and supervisory controllers.

The supervisory control architecture, depicted in Fig. 10, allows for behaviorman-
agement, autonomy, and complex task and skill development for Robonaut 2. Super-
visors can be triggered from users or from other supervisors. Basic supervisorial
components can be thought of as behavioral units. These behavioral units can then
be chained together in other supervisors to form more complex actions.

A key component is the Mode Arbiter, which activates and deactivates the super-
visors in a controlled way. The ground control computer starts controlling the robot
by setting itself as the “master.” At that point, the ground computer is able to transfer
control of the robot to supervisors, but also to interrupt supervisory control when
necessary. Supervisors are called via ROS messages from the current controlling
node (or master) to the Mode Arbiter component. The Mode Arbiter component
then triggers the appropriate supervisor by name. Control can be temporarily trans-
ferred to other supervisors using the same topic but by also using in the “incumbent”
field. Then, when the called supervisor releases control, control is returned to the
incumbent supervisor. If no incumbent is specified, control returns to the master.

Continuing the handrail rendezvous example, the vision algorithm is associated
with a supervisory control element that takes in the vision data and drives the appro-
priate point of reference on the robot to interface with obstacle-free sections of the
handrail. The supervisor, when called, waits for vision data, and drives the robot

Fig. 10 Depiction of the supervisory architecture

ROS in Space: A Case Study on Robonaut 2 363

to either reposition for reviewing (in the case of no obstacle-free handrail regions
detected) or drives into the handrail. The supervisor relinquishes control when either
it has driven to the handrail or has been unsuccessful in its second attempt to find
a clear section of handrail. This simple supervisory action takes in vision and robot
state data and sends Cartesian position commands to the robot. A more complex
supervisor that completes a full automatic handrail docking procedure, with gripper
locking and verification tasks, could call this handrail rendezvous supervisor as part
of the greater state machine, with its name in the incumbent field so that control
returns appropriately.

6 Simulation and User Interfaces

6.1 Simulation

A simulation of R2 (both upper and lower body) that works with Gazebo [7] has
been provided at https://bitbucket.org/nasa_ros_pkg. The simulation is compatible
with ROS Fuerte and Hydro only, but provides the API to the robot control system.
Different world and object models have also been provided, such as the US Lab
module of the ISS, handrails, and the taskboard that R2 has interacted with on board
the ISS. The R2 simulation has been an invaluable tool in collaborations with outside
groups as a framework in which to integrate their technology before attempting
integration on the actual robot. Documentation and a description of the ROS topic
API can be found at thewiki (https://bitbucket.org/nasa_ros_pkg/nasa_r2_simulator/
wiki/Home).

6.2 Affordance Templates

The operations concept forRobonaut 2 on ISS involves control fromground operators
over a latent and bandwidth-restricted communication network that experiences loss
of signal (LOS) periods. Operations of a semi-autonomous robot, such as R2, under
these circumstances could be enhanced by supervisory control interfaces that allow a
human operator to monitor the robot and command it at a high level [8]. A predictive,
interactive visualization approach was selected for supervisory control of R2, similar
to previous work with NASA-Johnson Space Center mobile robots [9]. The approach
involves the Affordance Template framework, developed for use with the Valkyrie
robot during the DARPA Robotics Challenge [10, 11]. Affordance Templates are
based on RViz and tools provided for that visualization, plus other ROS-based pack-
ages to enrich the operator’s experience.

An affordance defines the relation between an object/environment and an agent
that affords the opportunity for an action to be performed by that agent [12]. Affor-

https://bitbucket.org/nasa_ros_pkg
https://bitbucket.org/nasa_ros_pkg/nasa_r2_simulator/wiki/Home
https://bitbucket.org/nasa_ros_pkg/nasa_r2_simulator/wiki/Home

364 J. Badger et al.

dance Templates provide a robot operator with an interactive interface to define
an affordance for a robot for particular tasks. For example, a valve affords turning
behaviors. The affordance template for a valve should define for the robot how to
accomplish a task for turning said valve. This can be accomplished in a multitude
of ways, from defining joint angles for the robot’s manipulators to turn the valve, to
defining waypoints for the robot’s end effector to move to turn the valve, to defining
the internal force required to keeping the end effectors on the valve to complete the
task. Currently for this framework, affordances are defined as end effector waypoints,
whether they are hands, grippers or feet.

Interactive markers provided for use with RViz are the basis of affordance tem-
plates. Interactive markers are used in combination with visual meshes for an object
template. Each end effector waypoint is also an interactivemarker, complete with no-
to 6-DOF controls. Parameters for the task afforded by the template are associated
with it and can be altered by the user in real-time. The interactive marker controls
allow the operator to move templates about the 3D visualization environment, while
the interactive marker menus provide both standard template options and customized
options based on the parameters for that template. To handle multi-component tasks,
multiple affordance templates can be combined together. For example, an item such
as an electrical or communication cable can exist as a single template, while its
connection location can be defined separately. Combining these templates provides
an overall affordance to the robot of how to connect a cable to its outlet. Along
with defining affordances, the templates can also provide predictive planning for
the operator. MoveIt! is currently integrated into the framework to visualize plans
from a robot end effector’s current position to a desired waypoint. MoveIt! sends this
information as a MarkerArray to RViz for visualization of the plan. This allows an
operator to see a robot’s motion before it is executed, and decide whether or not a
specific plan should be sent on to the robot. If the predicted plan is acceptable, the
affordance template can then be used to command the robot. Currently, two modes
of control are available: 6DOF Cartesian waypoint commands or joint trajectory
commands for single end-effectors.

An affordance template can be created easily using a pre-defined JSON format.
This format allows for stringing together multiple templates to create a single com-
plex template. It also allows for multiple end effector waypoints to be defined and
whether or not those waypoints have 6DOF controls. The framework exists so that
end effector definitions can be generalized, allowing for a single affordance template
to work with many varying robots. RViz Panels are also provided with the templates
to allow for stepping between waypoints (both forward and backward), for com-
manding an entire series of waypoints and for monitoring where the robot is with
respect to the affordance template.

Figure11 shows an example of an affordance template for an ISS IVA handrail.
Figure11a shows a single handrail with R2 leg end effector waypoints, while Fig. 11b
shows the same handrail with R2 arm end effector (hand) waypoints. The waypoints
define locations to which the end effectors should move to ensure efficient grasp-
ing. The waypoints themselves can be relocated in real-time using their controls. In
Fig. 11c, the handrail is shown in atop visualized data from R2’s depth sensor, which

ROS in Space: A Case Study on Robonaut 2 365

Fig. 11 a ISS IVAHandrail affordance templatewith R2 leg gripper waypoints. b ISS IVAHandrail
affordance template with R2 hand waypoints. c Handrail affordance template matched to R2’s
sensory data showing predicted motion to grasp waypoints (using MoveIt!). d R2 grasping handrail
as commanded using handrail affordance template

is represented as PointCloud data. This figure demonstrates how using a human-in-
the-loop can handle perception inabilities that the robot may not be able to manage
autonomously. The human can locate the handrail based on noisy data, and during
real-time operations, move the template based on feedback from other sensors (i.e.
cameras and image_pipeline data). This also allows for operations with imperfectly
calibrated sensors. Also shown in this figure is the predicted path to the initial way-
point, as provided by the MoveIt! planner. The predicted locations are shown as a
MarkerArray message type. Finally, Fig. 11d shows R2 using the handrail affordance
template to grasp the actual handrail.

Currently, the affordance templates are being tested on the ground-based R2 for
use with single manipulators. Waypoints for end effectors are used as the affordance
definitions for template-related tasks. Tunable parameters currently available are
scaling of the templates and the state of the end effector. Several features are planned
in the near future. These include providing perceptual registration of a template
to sensory data, so that initial placement of the template is decided by the robot

366 J. Badger et al.

itself; providing a plug-in component for planning of robot motion in relation to
a template, specifically so that whole-body motions can be considered (MoveIt!
does not currently support this); and adding force- and contact-based parameters to
templates for managing compliance and stiffness of the robot during real-time task
execution.

6.3 Vanguard

The ISS community imposes very strict rules regarding the operational safety of the
systems on board. To abide by these rules, R2 was designed to accept “potentially
hazardous commands” from the ground and to continue to be safe with help from
a tool named Vanguard. In particular, all potentially hazardous commands would
be sent from Vanguard clients on the ground and the Vanguard service running
on R2 would screen all commands received and reject unsafe ones. An example
of a potentially hazardous command is changing a safety-critical text file on the
robot; Vanguard is meant to prohibit such operations while allowing the operator the
flexibility to do similar operations that do not affect safety-critical components or
files.

Vanguard was designed from the ground up to be service-based. A service-based
architecture lends itself to writing small, simple services that can be composed to
achieve complex tasks. Additionally, these small services can individually manage
safety concerns they uniquely have authority over. Finally, Vanguard’s services use a
request-reply communications paradigm, so R2 operators can easily know whether
commands were successful, failed, or were rejected (and why). The underlying tech-
nologybehindVanguard isZeroMQ’sMajordomoProtocol (MDP).Vanguard’sMDP
clients and workers exchange strongly-typed Google Protobuf-based requests and
replies, and were written in Python and C++. In addition to the ability to control
different quality of service parameters not covered by the current ROS transport, the
choice was made to implement Vanguard outside of ROS in order to separate the
robot commands from the other potentially hazardous commands, since ROS com-
munication has no notion of authentication or authorization to prohibit or restrain
certain messages or message senders.

Vanguard’s service-based architecture and strongly-typed messages allowed it to
support multiple UI choices for operators. Simple command-line clients as well as
simple graphical clients are obvious choices.But, just as easily,Vanguard requests can
be embedded into otherwise complexUIs to provide amore seamless user experience,
without the need to run a potentially hazardous command from a special UI and
normal commands from another UI.

Vanguard helps manage R2’s overall state, both when R2 is simply a computer
(with no robot control software running, “OS mode”) and when R2 is actively con-
trolling its joints (“robot mode”). To be both safe and flexible for users, Vanguard
operates differently in those two states. In OS mode, Vanguard uses a blacklist to
prevent known-hazardous commands from executing (generally, changing safety

ROS in Space: A Case Study on Robonaut 2 367

critical software and parameters). But in robot mode, Vanguard uses a whitelist to
only allow known-safe commands (a very small set). Vanguard also manages the
transition between those two states, and only allows robot mode to start if approved
safety-critical software is present on R2’s computers.

7 Software Deployment

R2 operates in a very unique environment, so it was very important to carefully
design its network configuration and software deployment process to meet the ISS
requirements. Network communication on the Robonaut 2 platform is split between
two devices, the Brainstem and the Cortex. The primary processing center for the
robot is called the Brainstem. Housed within the Brainstem are three Concurrent
Technologies second generation Intel Core i7-2715QE Single Board Computers and
two Kontron CP932 5+1 Port Gigabit Ethernet Switches. Each of these single board
systems, or cards, are based on the Eurocard PCB spec and interface with a Compact
Peripheral Component Interconnect (CPCI) backplane. The devices in the Brainstem
primarily communicate through the gigabit ethernet interface on each card.

The Cortex is a Digi ConnectCore Wi-i.MX53 embedded system-on-module
attached to a custom breakout board. The Cortex has two 10/100 Base-T Ether-
net ports, one designated “internal to the robot,” the other designated “external to the
robot.” The Cortex additionally offers a 802.11g/n (2.4/5 GHz) interface which has
been bonded to the “external to the robot” Ethernet interface. This allows the Cortex
to automatically switch between wired and wireless depending on the presence of a
physical Ethernet connection.

The internal Cortex Ethernet interface connects to the Brainstem. The external
Cortex interfaces connect to the outside world. This abstraction of internal versus
external is enforced bymore than convention. In order to alleviate concerns that rogue
commands on the ISS network could adversely affect the integrity of the robot, a
virtual private network (VPN) is used to isolate network traffic. The Cortex runs a
VPN server that allows users on the external network to securely access the network
devices on the internal Cortex network through it. Each VPN client computer is
issued a key from the Cortex VPN Server guaranteeing another controlled layer of
access to the robot on the ISS.

R2 employs Ubuntu 12.04 Server as the primary operating system on the Brain-
stem. Ubuntu was selected primarily because ROS supports Ubuntu, though it also
offered the Robonaut team a fully featured OS to develop against. Ubuntu is built
from Debian and utilizes Debian packages to distribute and install libraries and exe-
cutables. In an effort to ensure traceability and standardization across robots, the R2
code is compiled into Debian packages that are hosted on a private Debian repository.
Debian packages allow quick validation of what version of the packages are installed
on a given machine. Additionally, the md5sums file in the header of each Debian
package allows verification of the state of every file contained within the Debian
package.

368 J. Badger et al.

The software development process forR2 is doggedly organized, documented, and
controlled. The Robonaut team employs the git distributed revision control system.
Git is enhanced with Atlassian Stash, a software that enforces a high granularity
permission set to each branch of code. The standard git branching model is followed.
In this model, there are two primary branches of code, the master branch and the
develop branch. The master branch contains the last stable tested release of code,
whereas the develop branch contains the next stable version of code. Additionally,
this branching model allows software developers to create any number of feature
branches. Feature branches are clones of another branch of code in which developers
may make unrestricted changes.

The granular control offered by Atlassian Stash ensures software developers may
only clone code from a safety critical branch, and developers cannot push their
changes back into the develop (or master) branch of code. In order for a software
developer to push their code back into a safety critical branch of code, it must first
go through a peer review, then the developer must document changes to the code and
what systems and configurations he or she used to test their code. Once this process is
complete, designated repository heads merge the feature branch back into the safety
critical code branches.

After internal testing and verification are completed on the release candidate,
all release candidate branches are committed to the master branch of code. The
final master branch code is then compiled into Debian packages and an official,
comprehensive safety test is conducted with Quality Assurance/Quality Engineering
supervising. The guidelines for the official safety test are outlined in the Safety Data
Package, though the implementation is revised for each official test.

Following the successful completion of the official safety test, the ISS Safety
Review Panel (SRP) must review the results of the official safety test, and ultimately
approve the deployment of the latest version of code to the R2 on the ISS. To ensure
the Debian packages under review by the SRP are the same ones delivered to the R2
on the ISS, a copy of the md5sums file in each safety critical Debian is delivered to
the SRP.

Once the SRP signs off, the Debian packages are sent to the Robonaut 2 onboard
the ISS. However, before these packages can be installed, each safety critical Debian
package is verified against the copyof themd5sumsgiven to theSRP.This verification
is performed by Vanguard, introduced in Sect. 6.3. Vanguard additionally performs
this md5sums verification every time the R2 software is enabled.

8 Remote Operations

Remote operation of complex research hardware such as R2 poses significant chal-
lenges in areas of communication and configuration management. Communication
methods between ground operators and R2 must handle latency, variability, and loss
of signal in graceful ways. Round-trip communication can be as bad as 3 s, and loss of
signal can last for 40min. Keeping R2 operating in a safe manner with an unreliable

ROS in Space: A Case Study on Robonaut 2 369

communications path requires a number of key technologies. Likewise, keeping both
R2 and operator consoles in a working configuration at all times requires diligence
and planning.

To gracefully handle loss of signal, R2 utilizes a UDP-based OpenVPN2 service.
Even though stateful connections are established through the VPN, OpenVPN keeps
themalive through longnetworkdisconnections.This ensures thatROS topic streams,
like joint states and camera views, continue through disconnectionswithout requiring
a restart of topic subscribers. Over the VPN, the ISS network safety for R2 is ensured
in that all R2 communication happens over 2 ports: one for direct SSH connections
and one for VPN traffic.

To account for delayed communication and also handle loss of signal, R2 uses a
multi-master ROS network, MultiMaster FKIE.3 One roscore exists on the ground
and one exists on R2 itself. This distributed layout ensures that communication
between on-robot processes do not suffer from space-to-ground latencies during con-
figuration and can query their rosmaster at any time, regardless of network conditions.
Similarly, ground-based user interfaces do not need to manage ground-to-space net-
work latencies or disconnections, as their rosmaster is local. The multimaster_fkie
packages offer operators insight into what nodes, topics and services are alive on
each roscore and give the ability to inspect their contents and settings. Deploying
ROS nodes locally and remotely is also supported, which helps operators manage
task-specific software on R2 as needed.

Because of the overall complexity of both R2 and the network configuration in
which it operates, having a well-tested, stable configuration for both the robot and the
operator console is essential for R2’s success. NASA’s Johnson Space Center (JSC)
has facilities in its Mission Control Center (MCC) for commanding ISS and some
payloads, but the MCC could not meet the needs of the R2 project. The Robonaut
Control Center (RCC)was created to house R2’s specific software configurations and
network requirements. TheRCC’s network can be configured to connect toR2on ISS,
or to theR2 certification unit on the ground.When in “certification configuration,” the
RCC’s consoles can be tested with a flight-like robot prior to actual space operations,
to ensure robust operation and that operator preferences are met. Similarly, the R2
certification unit is loaded with the same software that will eventually be installed
on R2 on ISS, and operators are able to verify that safety requirements are met and
operational milestones are achievable. When in “flight configuration,” RCC consoles
are only allowed to communicate through the VPN and SSH services to R2 on ISS –
all other network traffic is blocked. This ensures that no outside systems can interfere
with operations, and operators have a distraction-free environment to work in. The
RCC has hosted multiple successful operations for R2 on ISS and more are planned
for the future.

2https://openvpn.net/.
3http://wiki.ros.org/multimaster_fkie.

https://openvpn.net/
http://wiki.ros.org/multimaster_fkie

370 J. Badger et al.

9 Discussion

The control and safety system for R2 combine to create a responsive, high-
performance, safe system. Two experiments to illustrate this performance were con-
ducted at different maximum Cartesian velocities. In one experiment, the peak force
when the end effector of the robot runs full-speed into a force plate was recorded.
In the second, deviation from commanded positions over a 1-m long rectangular
trajectory was measured. Results from both are shown in Fig. 12.

One of the major reasons that the control system has this performance while
still maintaining low torque limits is the quality of the model that informs the inverse
dynamics algorithm that calculates the feed-forward torque value per joint. Figure13
shows a plot of the modeled and actual joint torque of two arm joints over a scripted
motion. The difference between the modeled and actual joint torque values dictate
the joint torque limit needed to accomplish this move at the given speed. For this
move, joint torque limits as small as 10 Nm could be used to command this motion.
For the trajectory monitoring system using nominal configuration parameters, that
would then require only 15 Nm of torque to overcome motion on any joint.

On-orbit deployment of the software has been successfully accomplished. Net-
work connection to the robot over the VPNworks well to protect data and commands
to the robot over latent and low bandwidth connections. Commanding to the robot
has occurred, already proving the need for things like latched ROS topics and reliable
communication constructs. An important lesson learned from trying to command a
robot over a lossy, latent connection is the ability to connect separate roscores, as
the distance between the robot’s roscore and the user interfaces on the ground causes

Fig. 12 Force and deviation from commanded position versus maximum Cartesian velocity

ROS in Space: A Case Study on Robonaut 2 371

Fig. 13 Comparison of actual versus modeled joint torque for two R2 arm joints

major communication issues. TheMultiMaster FKIE package is a promising solution
to this problem.

Another lesson is the need for supervisory interfaces to command the robot, such
as the affordance templates introduced in Sect. 6.2. It is difficult to transfer machine
vision algorithms, such as localizing features on objects, to cameras that have been
vibrated by a rocket, have pixel loss due to radiation, and experience unique lighting
conditions. Therefore, it is important to give supervisory control to human users to
adjust for these inaccuracies in the vision system.

Lessons learned from the previous control and safety system on the R2 torso
that was demonstrated through several tasks on the ISS show that it is important to
maintain asmuch up-time on the robot as possible. Thismeant spending development
time trying to reduce the false positives that trigger the safety system and creating
a more robust I/O system to ensure reliable data transfers in both directions. All
of these improvements have dramatically increased up-time on the ground-based
certification robot. Testing on the on-orbit robot is forthcoming, depending on crew
schedule constraints.

The fail-safe nature of the current safety system (if a monitor triggers, the robot
safes) is important in certifying ROS, Orocos, and Ubuntu for safety-critical space
software. Essentially, the open source software is treated like the other non-safety
critical robot software. The safety certification proves that any error in these (i.e.,
partial shutdown, run away processes, segmentation faults) will only trigger a safing
action from the robot, never an unsafe action. Since an extravehicular version of
Robonaut would likely have to have some ability to continue to operate through

372 J. Badger et al.

one or more failures, it would be much more difficult to complete that certification.
However, the experience gained from the R2 experiment will be invaluable for the
future of ROS in safety-critical robotic operations.

10 Conclusions

The Robonaut 2 IVA Mobility system is a unique case study for ROS usage. R2 has
stringent requirements placed on its control, safety, deployment, and use that are,
as a whole, different from any other system on Earth. However, the solutions and
lessons learned on this system are certainly applicable tomany other robotic systems.
The use of ROS in space gives it a whole new dimension and set of solutions that
has promise for robotic systems that could be used to aid in disaster relief, military
operations, or other applications.

Acknowledgments The authors would like to acknowledge Joshua Mehling, Vienny Nguyen,
Philip Strawser, and the many former members of the software team for their contributions to this
work.

References

1. M. Diftler, J. Mehling, M. Abdallah, N. Radford, L. Bridgwater, A.M. Sanders, R.S. Askew,
D. Linn, J. Yamokoski, F. Permenter, B. Hargrave, R. Piatt, R. Savely, R. Ambrose, Robonaut
2—the first humanoid robot in space, in Proceedings 2011 IEEE International Conference on
Robotics and Automation (2011), pp. 2178–2183

2. M. Diftler, T. Ahlstrom, R. Ambrose, N. Radford, C. Joyce, N. De La Pena, A. Parsons, A.
Noblitt, Robonaut 2 initial activities on-board the ISS, in Aerospace Conference, 2012 IEEE.
(IEEE, 2012), pp. 1–12

3. J.M. Badger, A.M. Hulse, R.C. Taylor, A.W. Curtis, D.R. Gooding, A. Thackston, Model-
based robotic dynamic motion control for the Robonaut 2 humanoid robot, in Proceedings of
IEEE-RAS International Conference on Humanoid Robots (IEEE, 2013)

4. J.M. Badger, A.M. Hulse, A.Thackston, Advancing safe human-robot interactions with Robo-
naut 2, in Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics
and Automation in Space (2014)

5. The Orocos Project (2013), http://www.orocos.org/
6. S. Hart, P. Dinh, J.D. Yamokoski, B. Wightman, N. Radford, Robot task commander: a frame-

work and IDE for robot application development, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014), (IEEE, 2014) pp. 1547–1554

7. O.S.R. Foundation, Gazebo (2014). http://gazebosim.org/
8. T.B. Sheridan, Telerobotics, Automation, and Human Supervisory Control (The MIT Press,

Cambridge, 1992)
9. R.R. Burridge, K.A. Hambuchen, Using prediction to enhance remote robot supervision across

time delay, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2009 (IEEE 2009), pp. 5628–5634

10. N.A. Radford, P. Strawser, K. Hambuchen, J.S. Mehling, W.K. Verdeyen, A.S. Donnan, J.
Holley, J. Sanchez, V. Nguyen, L. Bridgwater et al., Valkyrie: NASA’s first bipedal humanoid
robot. J. Field Robot. 32(3), 397–419 (2015)

http://www.orocos.org/
http://gazebosim.org/

ROS in Space: A Case Study on Robonaut 2 373

11. S. Hart, P. Dinh, K. Hambuchen, The affordance template ROS package for robot task pro-
gramming, in 2015 IEEE International Conference on Robotics and Automation (IEEE, 2015)

12. J.J. Gibson, The theory of affordances (Hilldale, USA, 1977)

Authors’ Biography

Julia Badger is the Software and Applications Lead and Deputy Project Manager for the Robo-
naut Project at NASA-Johnson Space Center in Houston, TX. She develops applications and tests
for Robonaut 2 on board the International Space Station and also leads the software effort for the
Robonaut Mobility System flight payload. She has previously worked at developing autonomous
control and planning algorithms for the various robotics projects in her group, including the Space
Exploration Vehicle and Robonaut 2. Julia has a BS in Mechanical Engineering from Purdue Uni-
versity, a MS in Mechanical Engineering from the California Institute of Technology, and earned
her PhD in Mechanical Engineering from Caltech in 2009.

Dustin Gooding has a bachelors degree in Applied Mathematics from Texas A&M University.
He has worked at NASA-Johnson Space Center for over ten years in areas of robotics software
development, IT security response, and project management. His professional interests include
solving complex problems with elegant software solutions and improving utility and reliability
in software development processes. Dustin is currently the Software Architect for the Robonaut 2
project, advising project leadership on software development best practices and steering software
design decisions to help ensure holistic success.

Kody Ensley graduated from Salish Kootenai College in 2012 with a BS in Computer Engineer-
ing. Kody completed over two years of internships with the Robonaut 2 group before joining the
team full-time in 2012. He is currently the Flight Software Lead for Robonaut 2. This role includes
advising and coordinating safety tests on new releases of code as well as deployment and installa-
tion of code to R2. His personal interests are education outreach, making complex systems easier
to interact with, and configuration management.

Kimberly Hambuchen is the Deputy Manager for the Human Robotic Systems project, funded
through NASA’s Space Technology Mission Directorate. Since 2004, she has been a robotics
engineer in the Software, Robotics and Simulation division at NASA-Johnson Space Center. She
received a B.E. in Biomedical Engineering and Electrical and Computer Engineering (1997), and
M.S. (1999) and Ph.D. (2004) degrees in Electrical Engineering, all from Vanderbilt University.
She is a former NASA Graduate Student Research Program fellow and previously held a post-
doctoral position at NASA through the National Research Council. Dr. Hambuchen is an expert
in developing novel methods for remote supervision of space robots over intermediate time delays.
She was the User Interface Lead for JSC’s entry into the DARPA Robotics Challenge, using her
expertise in remote supervision of robots to guide operator interface development for the DRC
robot, Valkyrie.

Allison Thackston is the Lead Engineer for Robotic Perception on Robonaut 2, the first humanoid
robot on the International Space Station. She has a degree in Electrical Engineering from Georgia
Tech and a graduate degree in Mechanical Engineering from the University of Hawaii at Manoa.
Her thesis focused on collision avoidance in supervised robotic manipulation. She currently works
at the Johnson Space Center on the Robonaut project where she is responsible for software devel-
opment and applied vision research to facilitate cooperation between robots and humans.

ROS in the MOnarCH Project: A Case Study
in Networked Robot Systems

João Messias, Rodrigo Ventura, Pedro Lima and João Sequeira

Abstract Networked Robot Systems (NRS) have a wide range of potential
real-world applications. However, these systems have functional requirements that
lie outside of those considered in the typical use cases of ROS. This chapter describes
the use of ROS in the context of the ongoing MOnarCH FP7 project on social robot-
ics. We describe the software architecture used in the MOnarCH NRS, focusing on
the decentralized information sharing framework we developed called Situational
Awareness Module (SAM), and present some of the current results of our project
that showcase the applicability of our ROS packages in real-world environments.

Keywords NetworkedRobot Systems ·Social robots ·Multi-master ·Sensor fusion

1 Introduction

The MOnarCH1 project is about having (social) robots in real social environments,
behaving in a socially acceptableway, and studying the establishment of relationships
between humans and robots [1, 7].

The projectmain test environment is the Pediatricward of anOncologicalHospital
(see Fig. 1) in which the premises include the main corridor, a playroom, and a class-

1Multi-Robot Cognitive Systems Operating in Hospitals. Project reference: FP7-ICT-2011-9-
601033. Web: http://monarch-fp7.eu.

J. Messias · R. Ventura (B) · P. Lima · J. Sequeira
Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa,
Av. Rovisco Pais 1, 1049–001 Lisbon, Portugal
e-mail: rodrigo.ventura@isr.ist.utl.pt

J. Messias
e-mail: jmessias@isr.ist.utl.pt

P. Lima
e-mail: pal@isr.ist.utl.pt

J. Sequeira
e-mail: jseq@isr.ist.utl.pt

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_14

375

http://monarch-fp7.eu

376 J. Messias et al.

Fig. 1 Camera images from the pediatric ward of the IPOL hospital, showing the deployment of a
MOnarCH robot during tests

room. The robots will engage in activities such as interactive playing, and perform-
ing basic teaching assistant activities in the classroom. The ultimate objective is
the improvement of the quality of life of inpatient children. A key scientific thesis
underlying the MOnarCH research is that current technologies make possible the
acceptance of robots by humans as peers.

Supporting these objectives are the extensive work on (i) autonomous and Net-
workedRobot Systems (NRS) [6], enabling sophisticated perception and autonomous
decision-making and navigation, and (ii) interfaces for human-robot interaction,
allowing robots to be expressive and natural. MOnarCH addresses the link between
these two areas, having robots playing specific social roles, interacting with humans
under tight constraints and coping with the uncertainty common in social environ-
ments. The project builds on the success of pioneer projects involving NRS, namely
FP6 URUS [5] and Orebro Universitys PEIS Ecology [4], as well as the Japanese
NRS project [9].

The hospital environment imposes a number of constraints on the usual engineer-
ing development cycle, namely (i) at no time the experiments can interfere with the
regular operation of the ward, (ii) admissible sensing is constrained by regulations,
and (iii) the specific social rules enforced at the hospital are to be verified at all times.

TheMOnarCH hospital setup comprises up to two robots, static cameras covering
the common areas the robots can use, and a central server machine running multiple
algorithms, namely those related to the image acquisition and processing. The robots
include two computers, RFID reader, two RGB-D cameras, two laser range finders,
among other devices, namely those used for human-robot interaction purposes. The
devices onboard the mobile robots and static on the environment are thus nodes of a
network endowed with its own specific dynamics.

The social robots in MOnarCH (shown in Fig. 2) are required to interact in a nat-
ural way with the children, parents, staff, and visitors. Even though humans are often
resilient to changes in their social environments, preliminary results clearly suggest
that small changes in the dynamics of the robots can have major effects in what is

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 377

Fig. 2 The two versions of the MOnarCH robots: the Socially Oriented (SO) one on the left and
the Perception Oriented (PO) one on the right. The core platform is essentially the same, differing
only on the set of actuation devices. The SOs are targeted for human-robot interaction, while the
POs are targeted to perceive the environment from a mobile platform

perceived by an observer. Small changes such as having the robot turning the head as
it moves are immediately noticed by the observers. For example, in the preliminary
experiments this small change was often referred by observers as “the robot begin
more interactive”. This sensitivity has thus to be taken into account when designing
a system such as MOnarCH, namely by insuring small latencies in the communica-
tions such that the dynamics of the behavior is made dependent, exclusively, on the
behavior. In the aforementioned example a delay in moving the neck would have a
behavioral meaning, e.g., the robot is not worried with the interaction. In a sense,
this suggests that adequate control of each component in the network is a key issue
for the success of the system.

The aforementioned resiliency of humans to change is expected to filter out some
of the less adequate behaviors the robots may eventually generate. However, in sce-
narios such as the MOnarCH project, strict social norms are enforced, meaning that
it is expected that both humans and robots strictly comply with them, and that it
cannot simply be expected that humans adapt to the potential inadequacies of robots.
Therefore, adapting the behaviors of the robots over time, as the characteristics of
the inpatient population changes, is also of paramount importance for the success of
the whole project.

Designing robots for social purposes has been a trendy topic in the last decades.
The literature in this area is vast and yields valuable lessons (see for instance [11]).
However, experiments where robots and people coexisted for long periods of time,
outside lab environments, i.e., for periods longer than the transient in the dynamics of
human expectations, have seldom been reported [2]. Robustness and dependability
issues are critical in such a hospital application and further justify the use of a
framework able to account for rapid prototyping, high flexibility in adjustments.

378 J. Messias et al.

Even though system development is ongoing, it is already possible to make a
positive assessment. Figure1 is just one example of the interest one of the systems
mobile robots is generating among the children and adults at the hospital.

Developing and running such a system dependably requires carefully-thought
software integration procedures, since a multitude of subsystems for perception,
decision-making and control that operate at different levels of abstraction are involved
and interact among them. These subsystems must be able to communicate informa-
tion reliably, both at a local level—for subsystems running on the same physical
machine; and at the network level—for subsystems running in different network
locations. As the complexity of the system (and its respective subsystems) increases,
it becomes progressively harder to define and implement each of the communication
mechanisms that must exist between different software modules. For a large-scale
system, an unmanaged, decentralized implementation of the communication between
different processes is not feasible, since this not only potentiates serious design errors
and simultaneouslymakes them difficult to track down (e.g. if the type of information
sent by process A is unknowingly misinterpreted by process B), but it also makes the
networked system brittle to communication failures, if they can happen at any point
in the software architecture.

In terms of implementation, the choice of ROS as middleware framework is a
natural one. We followed an implementation strategy using COTS2 components
whenever possible, in order to minimize development time. In particular, we use
AMCL3 for single robot localization, SMACH4 for behavior implementation, TF5

for geometric transformationsmanagement, and actionlib6 for behavior/functionality
activation and supervision, and rosbag7 for data logging.

Even though data streaming inROS is peer-to-peer, node/topic/service registration
still requires a centralized node, the ROSMaster. In large NRSs, a centralizedMaster
can be a liability, since it is a single point of failure for the entire system (i.e. if the
Master fails then the functionality of the whole system is compromised). This is an
especially relevant concern for NRSs that are intended to operate over long periods
of time (days, weeks) as it is the case in MOnarCH. To attain a both efficient and
decentralized architecture, we have chosen to use separated ROS Master instances
in each NRS agent (including robots and servers). To support information sharing
amongagents, a novelmodulewasdeveloped, calledSituational Awareness Module
(SAM). Since this module was developed from scratch to address the needs of the
MOnarCH NRS, while being generic enough to be used outside this project, we will
devote the bulk of this chapter to the technical description of SAM. We claim that
SAM provides a powerful framework on top of which robust and fully decentralized
NRS can be implemented.

2Components Off-The Shelf.
3http://wiki.ros.org/amcl.
4http://wiki.ros.org/smach.
5http://wiki.ros.org/tf.
6http://wiki.ros.org/actionlib.
7http://wiki.ros.org/rosbag.

http://wiki.ros.org/amcl
http://wiki.ros.org/smach
http://wiki.ros.org/tf
http://wiki.ros.org/actionlib
http://wiki.ros.org/rosbag

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 379

Fig. 3 System architecture of MOnarCH, showing the data flow between SAM and all the other
modules as grey arrows, together with the decomposition of a plan, coming out from the planner
(SAP) down to the robot functionalities (flow shown as dark arrows)

This chapter is structured as follows: the architecture of the MOnarCH NRS is
described in Sect. 2, followed by a thorough description in Sect. 3 of SAM. Then,
we will report the current results of the project, focusing on the usage of SAM in
Sect. 4. Section5 discusses related work and Sect. 6 wraps up the chapter with some
concluding remarks.

2 System Architecture

The NRS in use in MOnarCH comprises a centralized part, consisting in a central
server, and a distributed part, consisting of robots and distributed sensors, e.g., video
cameras. The overall system architecture is shown in Fig. 3.

Each computational entity (robot onboard computers and central server) is based
on theROS framework running a single, individualROSMaster. The data flowamong
these entities is supported by the Situational Awareness Module (SAM), which will
be thoroughly described below. This module functions on top of a multi-master ROS
solution,8 thus allowing seamless communication among local ROS environments.

All perceptionmodules, comprising not only the processing of the distributed sen-
sors on the central server, but also sensor data processing onboard the robots relevant

8In the MOnarCHNRS, we have chosen the multimaster_fkie package for this purpose (http://wiki.
ros.org/multimaster_fkie). However, any other package that allows for the sychronization of topics
between different ROS Masters could be used.

http://wiki.ros.org/multimaster_fkie
http://wiki.ros.org/multimaster_fkie

380 J. Messias et al.

to the NRS, feed the SAM. In addition, SAM contains internal data processing for,
e.g., sensor fusion and symbolic grounding. In both of these cases, data is read and
written to SAM (more concrete examples will be given further ahead).

The Socially-Aware Planner (SAP) is responsible to generate a consistent plan,
incorporating social aspects that the system as a whole is required to comply, e.g.,
social norms [10]. This plan is then broken down into behaviors that are dispatched
to individual robots. These behaviors can either be purely individual, e.g., a robot
going from a point A to a point B, or cooperative, e.g., a team of robots looking for
a specific child in the environment. The dispatch of individual behaviors is carried
out jointly by the Global Behavior Manager (GBM), which receives them from SAP,
and the Local BehaviorManager (LBM) that activates them in individual robots. The
GBM runs on the central server, while each robot runs one instance of the LBM. All
data flow between GBM and LBM is supported by SAM.

At the robot level, the LBM instance is responsible for activating behaviors to be
executed internally. If a behavior requires a coordinating among several robots, e.g.,
formation control of a fleet of robots, each one runs one instance of that behavior,
coordinating with other instances in other robots through SAM.

At the lowest level of the architecture we have the core functionalities of robots,
namely in what concerns autonomous navigation [3] and human-robot interaction.
Autonomous navigation requires accurate localization of the robot, being tightly
coupled with the navigation algorithms via local ROS communication. Localization
accuracy may be improved using data fusion methods, combining onboard sensor
readings, e.g., from the laser-range finders, with external sensors, e.g., the distributed
video camera network. The sensor fusion can be performed by SAM, receiving data
from different network nodes, and distributed among the NRS via SAM.

3 Situational Awareness Module (SAM)

The goal of the Situational Awareness Module is to provide the MOnarCH software
architecture with a managed, (conceptually) centralized information sharing frame-
work. It can provide sensor-fusion, decision-making and control algorithms in the
NRS with a consistent global picture of the whole system. Each client process and
its corresponding software module can access the SAM to retrieve information from
other modules, which possibly reside elsewhere in the network, and can then process
the data in a way that it is suitable for its use. When (and if) that data is written back
into the SAM, future clients will already know its form, purpose, and producer, and
will only be able to access the data in some conditions that are known to be error-free.

SAM can manage intranetwork communication, so that end-users do not need to
worry about which network node is providing themwith their data; and handles com-
munication failures so that client software modules can have (as much as possible)
a consistent history of the data that is flowing in the NRS.

As an example use-case of SAM, the Observer in the Constraint-Satisfaction
Planner (CSP) [10], could implement ROS nodes that compute the values of logical

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 381

predicates based on information provided by SAM slots containing perceptual data,
use that information to describe its own view of the world state, and possibly write
the logical values back in the SAM and share it across the network so that other
modules can also access these values for their own use (e.g. for HRI purposes).

In short, the most relevant differences between the use of the SAM as an infor-
mation/communication manager, and the use of the native publish/subscribe mech-
anisms of ROS, are the following:

• The ROS publish/subscribe paradigm is unmanaged and anonymous. Any node
can communicate with any node without restrictions, and it is difficult to guar-
antee system-wide properties with respect to communication (for example, that
there are no information loops, or that all messages should contain timesteps). The
communication paradigm implemented by SAM is managed and not anony-
mous. All of the producers and consumers of data are known to the SAM, and
they can only communicate with each other after being authorized to do so. This
allows the architecture designer to place restrictions on the rate and contents of
the communication channels between different nodes.

• ROS publish/subscribe does not work natively for multi-master systems, and
even if specialized packages are used for that purpose, these do not manage com-
munication on their own. SAM operates over the multi-master communication
layer that is implemented by those modules, and abstracts it, providing a transpar-
ent way of sharing data between nodes running under different ROS Masters with
minimal configuration. It also executes consistency checks to ensure that commu-
nication failures are handled in such a way as to minimize the inconsistency of the
data being accessed by client software modules in different network locations.

3.1 Definitions and Overview of the Concepts

We assume a network of sensors and mobile robots (with sensors and actuators),
as well as other possible actuators. The Situation Awareness Module (SAM) is a
distributed information management system that is composed of:

• A set of Situation Awareness Repositories (SARs), each of them uniquely asso-
ciated to a ROS Master (each ROS Master is assumed to contain at most one
SAR);

• A set of slots, within each SAR, each associated a semantic description of a fea-
ture of the NRS (e.g., “Robot N Localization Estimate”, “Person B Localization
Estimate”, “Group A Recognized Activity”). Slots can be read from and written
to. A slot in a SAR can be shared to other repositories, in which case a “read-only”
copy of that Slot is created in all other SARs, making its data accessible to other
network locations;

• A set of SAR Managers, one for each SAR. Managers mediate the flow of
read/write operations to SAR slots, by imposing a set of restrictions on those
operations that are designed to ensure that there is a valid data flow between all

382 J. Messias et al.

Slot S1

Slot (1,1)

Slot (1,M)

SAR #1
(ROS Master #1)

Slot (1,1)

Slot (2,1)

Slot (2,M)

Slot (2,1)

Slot (N,1)

Slot (N,M)

Slot (N,1)

Slot S2

Slot S1

Slot SK

Slot S2

Slot S1

Slot SK

Slot S2

SAR #2
(ROS Master #2)

SAR #N
(ROS Master #N)

Situation Awareness Module

multimaster
communication

In
te

rf
ac

e

SAR Manager #1

Writers Readers

SAR Manager #2

Writers Readers

SAR Manager #3

Writers Readers

MOnarCH architecture

M
an

ag
em

en
t

R
ep

os
ito

rie
s

Slot SK

Fig. 4 An overview of the proposed organization for the SAM. SA Slots S1 through SK are shared,
in the sense that they are replicated in multiple (potentially all) SARs. Slots (i, 1) through (i, M)

contain local information that is only present in SAR #i

client software modules. Managers also handle the communication of shared slot
data between multiple ROS Masters.

A graphical overview of these concepts, and their organization, is shown in Fig.4.
To operate the SAM, we assume the following:

• A multi-master communication module that enables the communication between
different ROS Masters, and that supports both fixed-rate and approximately asyn-
chronous communication modes;

• That all network nodes are synchronized with respect to an external clock.

SAR Slots. SAR Slots are abstract “containers” of the data that is intended to flow
across different MOnarCH modules, and that provides, as a whole, a coherent view
of the “state” of the MOnarCH networked robot system and its environment. As
such, SAR slots may represent any type of information that is deemed to be relevant
to the operation of the MOnarCH software modules. In the typical case, SAR Slots
will represent:

• Processed sensor data, or features representing the data at any point of the data
processing pipeline, that are deemed to be relevant to the operation of one or more
software modules besides their producer (e.g. the position of a robot or a human
as detected by one of the overhead cameras);

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 383

• Perceptual information resulting from the fusion of data from two or more sources
that may reside in different network locations (e.g., position of person_B as the
result of the visual observation by static cam3,mobile robot 2 cam, and information
provided by person_B RFID);

• High-level symbolic information, such as logical predicates, that can be obtained
by abstracting the lower-level perceptual data; or by appropriately defined trans-
formations over other existing data at that level (e.g. predicates defined through
propositional formulas containing other predicates, such aswhether there is a robot
in the vicinity of a detected human).

Note that, even though Slots are viewed by data producers and consumers as read-
able/writable data containers, they do not necessarily store data within themselves
(except eventually for synchronization purposes). Functionally, Slots most typically
act as mediators of the communication of the associated data between its producers
and consumers.

Shared Slots. Each slot is assumed to be a unique object within the SAM. By
default, slots that are created and maintained in a given network location are visible
and accessible only by the processes that are being executed in that location (i.e. it
represents locally writable/readable data). However, slots can be shared by one SA
Manager to any others. In this case, the data represented by that slot can be read by
clients that reside elsewhere in the network.

When the same data slot is present in more than one SAR, the SAM will enforce
that the data contained in each copy is consistent, in the sense that:

• With hypothetical (ideal) instantaneous communication between the various ROS
Masters, and negligible processing delays, the information contained in each copy
would always be exactly the same;

• In the realistic case that there is potentially unreliable and sporadic communication,
and there are processing delays when updating the information in each SAR slot,
the error between the different copies of the same slot is minimized whenever
communication is available.

Readers & Writers. SAMReaders andWriters can be instantiated by each producer
or consumer of data in software modules that are external to SAM. They provide a
structured way to access the SAM data, and through their identification, they make it
possible to analyze the flow of information across different software modules, even
if they are located in different ROS Masters. This abstraction also warns users about
any information loops in the system, which may have been inadvertently created
(e.g. fusing Slots A and B into Slot C, and then using Slot C to update Slots A or B).

Slots can have multiple Readers, but they can only have one Writer. Shared Slots
can also only have one Writer, regardless of its location in the network. SAM clients
that intend to fusemultiple sources of information can register as Readers of multiple
Slots, and should write the result of that fusion process back into the SAM under a
different Slot.

After being registered in the SAM, Readers and Writers interact with each other
in much the same way as a standard ROS subscriber and publisher (respectively).

384 J. Messias et al.

That is, the communication rate is driven by the Writer, and the Reader is asynchro-
nously woken up through a callback whenever new data arrives. If the writer is also
asynchronous (for example when writing predicate values), then the entire execution
loop will not have a fixed rate.

Managers. SAR Managers provide the services that client software modules need
to use in order to access the SAM, and they supervise the access of Readers and
Writers to Slots. They also abstract the communication mechanisms involved in the
access of a network node to the data contained in the SAM. For example, Robot
A can instantiate a SAR Reader to access the position of Child X , without needing
to know which ROS Master is actually keeping that information (i.e. which other
robot or server is observing Child X).9 SARManagers also carry out the consistency
checks of shared Slots, and can initiate synchronization procedures that update the
contained information if it is detected to be inconsistent.

What this Means to the User. From the perspective of the softwaremodules thatwill
make use of the SAM, SARs can be thought of as repositories of abstract information
that can be written to/read from in a controlled manner. However, at its core, the most
important function of theSAMis not to containdatawithin itself, but rather tomanage
the flow of information from producers to consumers in a way that is not anonymous
(contrarily to the default ROS publish/subscribe system); and that is agnostic with
respect to the network locations of the clients and their respective communication
protocols (meaning that a client does not need to know where the data is hosted nor
how it is communicated, which is not natively possible in a multi-master layout of
ROS).

Using the above concepts, the software modules that are external to the SAM
and that implement sensor fusion algorithms can receive information from sensors
located in the same device or from sensors distributed across several devices. To do
this, theymust simply instantiatemultiple SARReaders for each of the relevant Slots,
irrespectively of where they are being written. Alternatively, local instances of these
sensor fusion algorithms can be run in each ROSMaster where the fused information
is to be available, in which case the respective algorithms should be exactly the same,
or at least they must they must produce the same output given the same sequence of
inputs; or they can be run in a central network location (for example a server), from
where their result can be distributed to an arbitrary number of clients.

Although one of the main purposes of SAM is to facilitate sensor fusion in the
NRS, SAM itself does not place any restrictions on the sensor fusion algorithms that
can be implemented for that purpose. These algorithms will run on self-contained
ROSNodes that act as SAMReaders/Writers, and thatmay consume and produce any
type of data that is required for their operation. For example, cooperative perception
algorithms can take into account data recency (e.g., when a time-tag is much older
than current time, the information is discarded) and information agreement (e.g., two

9The information that the Robot receives back will allow the agent to know who produced that
data, since that can be important for decision-making purposes. However, the agent does not need
to know that information a priori in order to request it.

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 385

estimates of the same object position at a Mahalanobis distance larger than a given
threshold are not fused).

SAM requires a considerable number of design options to be taken at the NRS
design-time, following from the specifications for the desiredNRSperformance (e.g.,
desired accuracy for person location):

• devices that support SAM distributed components;
• slots to be located in each device’s local SAR;
• cooperative perception (sensor fusion for NRS) algorithms and their implementa-
tion in software modules for all the cases where information fusion is required.

3.2 An Example of the Use of SAM

The following scenario exemplifies the use of the Situational Awareness Module.
Consider the situation shown in Fig. 5 in which two robots, A and B, observe the
same object, a ball, which lies on a flat surface over which two topological areas
are defined, rooms L and R. Both robots are equipped with the same hardware and
software. Each robot can locally estimate the following variables that are relevant
for the purposes of this example:

• The pose of the robot in the world frame (returned by its self-localization algo-
rithm), with an associated description of its uncertainty;

• The position of the object, both in the robot frame and in the world frame (returned
by its object detection/tracking algorithm), with an associated description of its
uncertainty;

• The time elapsed in the system (returned by the local clock of each robot);
• The value of a logical predicate that can be used for decision-making purposes,

IsBallInRoomL, which should be true when the ball is in Room L;

Room L

Room R

Robot A

Robot B

(1)
(2)

(3)

Fig. 5 A situation in which robots have contradictory information. (1) The position of a ball as
seen by Robot A; (2) The actual position of the ball (in Room R); (3) The position of the ball as
seen by Robot B

386 J. Messias et al.

The purpose of SAM, in this scenario, is to mediate the process of fusing the
local estimates of that each robot has regarding these variables. This is intended to
mitigate the effect of local estimation errors and disambiguate possible contradictory
information from local sources. To see why this is relevant, suppose that the object
detection subsystem of each robot has an unmodeled bias with respect to the object
distance, that is, it returns a position for the object that is closer to (or farther from)
the robot than the actual ground truth measurement of that position. Then, the local
estimates of the values of the predicate can be contradictory. That is, for Robot A,
IsBallInRoomL is true, while for Robot B it is false. A centralized logic-based planner
cannot rely on this contradictory information.

To resolve this problem,weneed to produce a joint or fused estimate of the position
of the ball in the world frame—that is, the estimated position of the ball when taking
into account the local estimates of each robot and their associated uncertainties. The
value of the logical predicate should then be computed over this joint ball position
estimate, instead of being evaluated over the local estimates of either robot.

As described in the previous section, a SAR is expected to run locally in each
Robot, as each of them runs its ownROSMaster. In accordance with the expected use
cases of the MOnarCH NRS, a third Master is expected to run on another network
location, hereafter referred to as the “SAP Server”, where the Social Aware Planner
(SAP) will be executed. In this scenario, the SAR that is running in the SAP Server
has the following slots, writers and readers:

The Readers and Writers identified above, and shown in Table1, are actual ROS
Nodes that implement an associated data transformation/fusion process. The network
locations where the nodes are being executed are also identified in the table (for
example, both robots have their own instance of the localization and ball detection
algorithms).

The crux of this particular sensor fusion problem is addressed by a specialized
algorithm that fuses the locally estimated ball positions of both robots by taking into
account the poses of each robot and the respective uncertainties (here named “Ball
Fusion Algorithm Z”). The most important concept that this example attempts to
demonstrate is that, although the data regarding robot poses and ball positions is
written locally by each robot into their own SARs, by sharing those Slots when they
are created, they become visible in the SAP Server’s own SAR, from where they can
be read. These Slots cannot be written to by the Server, since they already have one
writer in the network (either of the robots). Recall that a Slot can only have a single
writer. If that Slot is shared, this property also holds regardless of where that writer
is located in the network.

The sensor fusion algorithm is implemented in as a self-contained ROS Node
running on the SAP Server, and its result is written back into the SAM (“Joint
Ball Position”). Using that information, another ROS Node evaluates the Predicate
“IsBallInRoomL”, which the Social-Aware Planner can then use directly.

This organization of SA Slots, Readers andWriters is shown graphically in Fig. 6.
Note that this is but one example scheme to solve this particular sensor fusion

problem. Other equally valid alternatives would be:

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 387

Table 1 Slots and respective readers/writers of the SAR of the SAP Server in the example above

Name Type Shared Written by Read by

Robot A Pose Pose + Uncertainty Yes Localization
Algorithm X (Robot
A)

Ball Fusion
Algorithm (SAP
Server)

Robot A Ball
Position

3D Position +
Uncertainty

Yes Ball Detection
Algorithm Y (Robot
A)

Ball Fusion Algorith
(SAP Server)

Robot B Pose Pose + Uncertainty Yes Localization
Algorithm X (Robot
B)

Ball Fusion
Algorithm (SAP
Server)

Robot B Ball
Position

3D Position +
Uncertainty

Yes Ball Detection
Algorithm Y (Robot
B)

Ball Fusion Algorith
(SAP Server)

Joint Ball Posi-
tion

3D Position +
Uncertainty

No Ball Fusion
Algorithm Z (SAP
Server)

Predicate Update
(SAP Server)

IsBallInRoomL Predicate (Boolean) No Predicate Updater
(SAP Server)

SAP (SAP Server)

Robot A Pose
Robot A

Ball Position Robot B Pose
Robot B

Ball Position

IsBallInRoomL

Localization
Alg. X (RA)

Ball Detection
Alg. Y (RA)

Ball Fusion
Algorithm Z

(HAP Server)

Predicate
Updater

(HAP Server)

Multimaster Communication

ROS Node

Shared SAM Slot

SAM Slot

Localization
Alg. X (RB)

LabelsBall Detection
Alg. Y (RB)

Robot A SAR

Robot A Pose
Robot A

Ball Position Robot B Pose
Robot B

Ball Position

SAP Server SAR

Robot B SAR

Joint Ball
Position

HAP
(HAP Server)

Fig. 6 The organization of SAR Slots and sensor fusion/processing ROS nodes in the ball fusion
example

• To share poses andball positions between robots, and calculate locally in each robot
an estimate of the fused target position, according to that robot. That estimate could
be sent back to the SAP Server or used locally for other purposes (e.g. navigation).

388 J. Messias et al.

However, keep in mind that in this case the SAP would receive N fused estimates
for N robots (in N different Slots), which it would need to post-process into a
single quantity;

• To evaluate the predicates locally based on each robot’s estimated joint ball posi-
tion (using the info of all other robots), and communicate the predicates to the
SAP Server, where a consensus function could then be used (e.g. majority ruling)
to determine the final value of the predicate.

3.3 Technical Description

In this section, we will describe the operation of SAM and its implementation as a
ROS module for the MOnarCH project.

The simplified UML class diagram represented in Fig. 7 shows how the main
concepts of SAM (Managers, Repositories and Slots) are related to each other from
an implementation standpoint. In each of the following subsections we will discuss
each of these components.

Slots are objects that can be described by the following main attributes:

• a name, that should be descriptive of the information that is associated to the Slot
(e.g. Robot 1 Pose);

• a readable, short explanation of the slot’s purpose (e.g. The local estimate of the
pose of the robot);

• an associated data type (can be any valid ROS message);
• an indication of whether the Slot is shared or not;
• an indication of whether the Slot is latched, that is, whether new Readers should
be provided with the last data that was sent to the Slot, regardless of the age of
that data (otherwise, new Readers will only be woken up at the next time that the
Slot receives new data from its Writer).

In addition to the above attributes, a Slot instance maintains (not exposed to the
user):

• an alias, which is a ROS-compatible representation of its name;

Fig. 7 A simplified UML class diagram of SAM. Private methods are omitted

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 389

• a list of Readers (the names of the nodes that are authorized to access the Slot),
and the identity of a Writer;

• an input topic, to which the Writer should publish the Slot’s data;
• an output topic, to which the Slot’s Readers should subscribe;

Functionally, a Slot acts as a controllable latch in ROS’ publish/subscribe system.
That is, instead of having the publisher sending data directly to its subscribers, this
data is sent through a SAM Slot. This allows us to manage the access of the SAM
clients to that Slot and control the flow of information therein, possibly restricting
it, storing it for communication reliability purposes, or modifying it as needed. Note
that, as in the case of the standard ROS publish/subscribe system, the data flow
through a SAM Slot is asynchronous. Whenever data is written into a Slot via its
input topic, it will immediately appear in in its output topic, and its respectiveReaders
will be consequently “woken up”.10

A Slot can only be successfully created if no other Slot with the same name or the
same alias exists. There are two possible ways of creating a Slot: either by calling
a Service that is provided by the associated Manager; or by specifying the above
attributes in a configuration file.

Shared Slots. From a technical standpoint, the only functional difference between
a shared Slot and a regular (private) Slot is that data written into shared Slots is
distributed to all ROSMasters running SAM, through amulti-master communication
module that is not exposed to the user. That is, an auxiliaryROSnode,whichmediates
inter-master communication, subscribes or publishes to the output or input topics
(respectively) of that Shared Slot. From the standpoint of the user, the process of
creating/writing to/reading from shared Slots is exactly the same as it is for regular
Slots (this is one of the major requirements of the SAM implementation).

Slot Groups. In multiagent systems, it is often necessary to represent and share
information that characterizes the state of each agent (e.g. the pose of each robot), or
information that possesses a global meaning but that is subjective, depending on the
perception of each agent (e.g. the pose of a certain child according to each robot).
In order to use SAM for these cases, it is necessary to instantiate multiple Slots that
are functionally equivalent, in that they possess the same characteristics, differing
only in their identification, and possibly on their sets of Readers and their Writers.
In these cases, the user can define Slot Groups, to facilitate the creation of, and
access to, multiple Slots that are semantically equivalent but subjective to multiple
agents. A Slot group is simply a set of slots that all share the same public attributes
except for their name. A group is defined through a representative Slot that specifies
the characteristics of all of the Slots in that group, as well as a base name for the
group (e.g. “ Pose”); and a set of hosts which represent those agents for which the
representative Slot should be instantiated (e.g. Robots 1 and 2). Afterwards, the slot
can be accessed by using both its base name and its host (e.g. “Pose” of Robot 1).
Note that this is functionally the same thing as explicitly creating individual Slots

10Evidently, if a Writer writes data synchronously into a Slot (i.e. at a fixed rate), its Readers will
also be woken up at a fixed rate, so the whole process can be made synchronous by the Writer.

390 J. Messias et al.

Fig. 8 An example of an SAR dependency graph. Nodes in gray represent client ROS Nodes

for each agent. Furthermore, a Slot group is a different concept than that of a shared
Slot. Slot groups do not provide any additional functionality to SAM, they simply
represent sets of similar slots. It is possible to have a private (non-shared) group of
Slots entirely within a single SAR.

Repositories. A repository is fundamentally a container of Slots (see Fig. 7). We
isolate its implementation from that of the Manager in order to precisely control the
processes of creation, deletion, and access to Slots. In particular, we ensure that each
Slot that is added to the repository is associated with an unique integer identifier, and
that no two Slots can have the same name or alias.

Managers. As it was previously discussed, each Manager is associated with a par-
ticular Repository. Managers provide the services that SAM users can use in order
to interact with their respective repositories, namely, services to:

• create new Slots;
• register new Readers to a Slot;
• register a Writer to a Slot;
• list out the contents of the Repository in a format that can be parsed and that is
also human-readable (YAML);

Internally, Managers maintain at all times a graph of dependencies between Slots
and SAM clients. The Manager ensures that this graph is always acyclic. Before a
new Reader or Writer is registered, the Manager determines if that would form an
information loop in the system, which cannot be allowed due to error propagation
issues. This dependency graph can also be printed out for visualization (see Fig. 8).

Managers also distribute the information flowing through shared slots through
any active masters running SAM.

3.4 Using SAM in Your Own NRS

SAM is publicly available as a Catkin ROS package at: https://github.com/larsys/
monarch_situational_awareness. A wiki is maintained alongside the code repository.
There, it is also possible to find documentation and examples on how to use SAM
from your own code.

https://github.com/larsys/monarch_situational_awareness
https://github.com/larsys/monarch_situational_awareness

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 391

The interface between SAM and its client nodes can be accomplished through
a set of native ROS services; or by using the contained sam_helpers library, which
provides C++ and Python APIs to facilitate the creation of Readers and Writers.

4 Current Results

In order to provide empirical support of the validity of the MOnarCH software
architecture as an adequate solution for the control of a NRS, the operation of the
full systemwas evaluated while in use in theMOnarCH project demos. As the second
yearly review meeting of the project, the following demos were ran at the testbed of
IST (see Fig. 9):

Human-aware patrolling—Ambot (short forMOnarCHrobot) is visiting in sequence
a list of waypoints; when a person is visible by the networked cameras, the robot
approaches and interacts with him/her in different ways depending on whether
that person is holding a RFID tag. This interaction include speech synthesis, e.g.,
a verbal salutation appropriate to the person. The people localization tracker is
running on the central server, being fed by the networked cameras, and updating
a SAM slot with person detection and location data. This location is then used by
the mbot to navigate towards the detected person.

Interactive game—A mbot plays the popular Flow Free game with a human on a
3× 4 or 4× 4 board projected on the floor. There are two modes: tutorial mode,
where the next square the human player should go is blinking, and reactive mode,
where the human should decide where to go on his/her turn, while the system
checks for the rules compliance. SAM is used in this demo to close the loop
between the NRS and the human player: it stores an updated location of the
human player, used by the game engine to determine the mbot next move, which
is then conveyed to the mbot to take the appopriate behavior.

Fig. 9 Photos of three of the demos described in the text, from left to right human-aware patrolling,
interactive game, and formation control

392 J. Messias et al.

SAP integration—Ambot is patrolling the environment, while a low battery situa-
tion is simulated; when this happens, the robot interrupts patrolling and goes to
the docking for charging at once. SAM is used to store the mbot battery status;
when the SAP detects a low battery situation, it triggers, through SAM, the robot
to interrupt the current behavior and go to the charging station.

Formation control—Twombots navigate along the environment in a leader-follower
formation, that is, a leader mbot is performing patrolling while the follower aims
at staying on the back of the leader at a specified distance, while avoiding obsta-
cles. SAM is here used to convey updated location of each robot, that is, each
robot runs a formation control algorithm with each robot location as input, taken
from SAM, and the robot velocity as output.

All of these demos fully exploited SAM to share information among the robots
involved and the central server. The modules involved were the following, while
denoting with [C] of [L] whether the module runs Centrally or Locally on each
robot: the global [C] and local [L] behavior managers, the patrolling behavior [L],
the people localization tracker [C], the game engine [C], the robot game interface
[L], the SAP [C], and the graph-based formation control [L].

In Fig. 10, we show a plot of the rate of messages being passed through SAM on
the formation control demo, and respective throughput. The relatively lowmaximum
throughput (ca. 8 kb/s) is indicative of the type of information that is being passed
between robots—that is, high-level data such as robot posture and control signals,
but not raw sensor data.

A second set of experiments was carried out with the purpose of evaluating the
effect of the use of SAM on the latency of the communication between ROS nodes,
when compared with standard ROS topics. A set of 1000 round-trip message pairs
(also known as ping) containing timestamped headers were exchanged at a rate of
1Hz between two ROS nodes in the following conditions and the round-trip timewas
collected. A pair of SAM slots (or standard ROS topics) were used, one for the “ping”

Fig. 10 Rate and throughput of messages passed through SAM in the formation control demo for
a the leader robot and b the follower robot

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 393

message and the other for the reply. All experiments were performed simultaneously
in order to factor out wireless throughput variability.

• Using a single ROS Master, and running both nodes on the same machine;
• Using a single ROSMaster, but running each node at a different network location,
with a single ROS Master running on one of the machines;

• Using a single SAM instance, and running both nodes in the same machine;
• Using a single SAMinstance, but running each node at a different network location,
with the SAM instance running on one of the machines;

• Using two SAM instances, running each node at a different network location, with
the multimaster layer mediating both SAM instances.

These results are shown in Table2. As can be expected, direct connection between
nodes via standard ROS outperforms SAM in terms of latency, since the latter must
validate each message, and it involves the overhead of multimaster synchroniza-
tion. However, these results show that the latency values—order of magnitude of
100ms—are compatible with the time-scale of data flowing through SAM, e.g.,
people detection events, behavior activation, robot and people tracking data.

Finally, the throughput in these network setups was also tested, by running a
publisher at a high volume of data: a 1MB random string was sent between nodes
at 100Hz. The respective results are shown in Table3, and show that SAM had no
impact on the throughput, even in multi-Master mode.

Current experiments focus on the basic human-robot interaction, namely the base-
line assessment of the acceptance of the robot by the children. These experiments
last for several hours, with the robot navigating autonomously in the Pediatrics ward
of the hospital and with interactions with the children being triggered (some of
them autonomously other using aWizard-of-Oz technique) at sparse instants (see [8]
for a summary of the experiments). The assessment includes (i) metrics related to
dependability and (ii) to acceptance of the robot. The notion of dependability used
in MOnarCH requires that the robot do not disturb the normal operation of the ward,

Table 2 Network latency, in miliseconds, in five different node-to-node network setups

Scenario Min Median Mean Max Stddev

Local ROS Master 0.177 0.352 0.347 0.794 0.035

Remote ROS Master 2.163 6.483 18.807 241.867 34.822

Local SAM 39.230 59.706 59.645 79.829 9.824

Remote SAM 12.770 49.774 61.845 490.569 40.368

Shared SAM 70.980 119.538 126.969 432.701 38.191

Table 3 Throughput, in MB/s, in four different node-to-node network setups

Local ROS Local SAM Remote ROS Remote SAM (Multimaster)

Throughput (MB/s) 98.10 74.25 0.674 0.690

394 J. Messias et al.

in addition to the common requirement of zero software/hardware failures. In both
operation modes, i.e., fully autonomously and semi-autonomously (Wizard-of-Oz),
running over the networked environment, no software failures were registered over a
total running time in excess of 70h (as of June 2015), with uninterrupted runs lasting
between 2 and 4h).

5 Related Work and Alternatives

Recent efforts towards the design of ROS 211 aim at addressing some limitations of
the current version of ROS . Although the design of ROS 2 is not yet finished, current
proposals aim at the use of the industry standard DDS communication infrastructure,
a fully distributed communication mechanism. Another feature proposed for ROS 2,
of interest for NRS, is the auto-discovery of network nodes. Both of these features
are already addressed by the multimaster module being used in SAM. However, their
integration into a new ROS infrastructure would be preferable.

Another related framework, currently under development, is Robotics in Con-
cert (Rocon).12 This framework provides an abstraction layer over a multirobot and
devices ecology. It is based on a pool of services, provided by anonymous network
nodes (robot of other devices). However, even though it follows a zeroconf philoso-
phy, it depends on a central hub, unlike SAM.

6 Conclusion

In this chapter, we have described our case-study on using ROS in the MOnarCH
NRS. The most characteristic requirements of this system are its reliance on multiple
ROSMasters as a way of increasing system-wide robustness to failures; and the large
number of softwaremodules that must be designed in parallel throughout the lifetime
of the project, and interact across different network locations in a reliable way.

We have introduced the SAM, a communication manager for NRSs that was
developed in order to satisfy these requirements, and that has been made publicly
available for use in other NRSs.

Finally, we have presented some of our current results in the MOnarCH project,
which have shown that our complete NRS can operate reliably; and that the use of
SAM has minimal impact on the communication latency and throughput between
nodes.

The ultimate goal of the MOnarCH project is to develop a socially intelligent
NRS that can operate real-world domains for the benefit of the public. Future work
inMOnarCHwill see the deployment of ourNRS in its target environment, a pediatric

11http://design.ros2.org.
12http://www.robotconcert.org.

http://design.ros2.org
http://www.robotconcert.org

ROS in the MOnarCH Project: A Case Study in Networked Robot Systems 395

hospital, over extended periods of time. This will not only provide further validation
of our software architecture in practice, but it is expected to produce valuable results
in the domain of social robotics.

References

1. MOnarCH project website. http://monarch-fp7.eu/
2. I. Leite, Long-term Interactions with Empathic Social Robots. Ph.D. thesis, Instituto Superior

Técnico, Universidade de Lisboa, 2013
3. J. Messias, R. Ventura, P. Lima, J. Sequeira, P. Alvito, C. Marques, P. Carrico, A Robotic

Platform for Edutainment Activities in a Pediatric Hospital, in Proceedings of the IEEE Inter-
national Conference on Autonomous Robot Systems and Competitions, (2014)

4. A. Saffiotti, M. Broxvall, PEIS ecologies: Ambient Intelligence Meets Autonomous Robot-
ics, in Proceedings of the 2005 Joint Conference on Smart objects and Ambient Intelligence:
Innovative Context-aware Services: Usages and Technologies, (ACM, (2005)), pp. 277–281

5. A. Sanfeliu, J.Andrade-Cetto,UbiquitousNetworkingRobotics inUrbanSettings, inWorkshop
on Network Robot Systems. Toward Intelligent Robotic Systems Integrated with Environments.
Proceedings of 2006 IEEE/RSJ International Conference on Intelligence Robots and Systems
(IROS2006), (Beijing, China, October (2006))

6. Alberto Sanfeliu, Norihiro Hagita, Alessandro Saffiotti, Special issue: network robot systems.
Robot. Auton. Syst. 65(10), 791–791 (2008)

7. J. Sequeira, P. Lima, A. Saffiotti, V. Gonzalez-Pacheco, M.A. Salichs, Monarch: Multi-robot
Cognitive Systems Operating in Hospitals, in ICRA 2013 Workshop on Many Robot Systems,
(2013)

8. J. Sequeira, I. Ferreira, Deliverable: D8.8.4—long-run monarch experiments at ipol, Technical
Report, MOnarCH (FP7-ICT-2011-9-601033), (2015)

9. M.Shiomi, T.Kanda,H. Ishiguro,N.Hagita, Interactive humanoid robots for a sciencemuseum.
IEEE Intell. Syst. 22(2), 25–32 (2007). March

10. S. Tomic, F. Pecora, A. Saffiotti, Too Cool for School—Adding Social Constraints in Human
Aware Planning, in Proceedings of the 9th International Workshop on Cognitive Robotics,
CogRob 2014 (ECAI-2014 Workshop), (2014)

11. Kazuyoshi Wada, Takanori Shibata, Toshimitsu Musha, Shin Kimura, Robot therapy for elders
affected by dementia. Eng. Med. Biol. Mag. IEEE 27(4), 53–60 (2008)

http://monarch-fp7.eu/

Case Study: Hyper-Spectral Mapping
and Thermal Analysis

William Morris

Abstract A study of the development of a car-mounted system for mobile hyper-
spectral mapping that integrates thermal cameras, near-infrared cameras, and 3D
LiDAR data. The data produced by this system is used for city scale thermal energy
analysis, which allows property owners to determine the most cost effective energy
efficiency improvements for their buildings. The data collection system uses ROS
to record several terabytes of data during each night of operation. This case study
will consider our internal best practices and lessons learned during development of
a robust system running ROS for thousands of miles.

Keywords Thermal · Mapping · Perception · Best practices

1 Introduction

ROS was originally designed as a framework providing tools for the development
and control of robots and autonomous systems, however in our experience it has
been shown that ROS is also a capable platform for high volume multi-sensor data
acquisition. This case study will consider the commercial use of ROS for hyper-
spectral mapping and thermal analysis; one that operates in both the longwave and
near-infrared sections of the electromagnetic spectrum. Furthermore, it will provide
information on our internal best practices and lessons learned deploying a system
which has an uptime requirement measured in thousands of miles. This system is the
commercial implmentation of Ph.D. thesis [1, 2] research from the Field Intelligence
Lab at Massachusetts Institute of Technology.

W. Morris (B)
Essess, Inc., 51 Melcher Street, 7th Floor, Boston, MA 02210, USA
e-mail: bill.morris@essess.com
URL:http://www.essess.com/

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_15

397

398 W. Morris

1.1 Company Information

Essess (http://www.essess.com) is a Boston, Massachusetts based startup, providing
a Software as a Service platform that enables city-scale data analytics for the energy
industry. Reports generated by this platform provide energy companies and their
customers a novel insight into the energy efficiency of their building envelopes.
Using this information, homeowners can prioritize home improvements that will
maximize return on investment.

1.2 Vehicle Overview

The imaging vehicle (shown in Fig. 1) is used to acquire city-scale datasets which are
post-processed to produce energy efficiency reports. The data acquisition systemwas
built on a Toyota RAV4 sport utility vehicle and while the vehicle itself is operated
by a human driver and navigator, the system is otherwise fully automated and utilizes
many of the same technologies found on self-driving cars.

1.3 Operating Environment

Scanning is performed from sunset to sunrise during the winter months to optimize
the performance of the thermal sensors. Generally the best performance is achieved
on clear nights with low air temperatures. While some work has been done to enable
operation under less than ideal conditions, the system is not currently operated if there

Fig. 1 Energy diagnostics imaging vehicle (EDIV)

http://www.essess.com

Case Study: Hyper-Spectral Mapping and Thermal Analysis 399

is any precipitation. This constraint is mostly to simplify operation and removes the
need for humans to clean the sensitive optics. The car is driven at a constant 10
miles/h to reduce motion blur and provide sufficient exposure time for the near-
infrared cameras.

2 Hardware

Much of the hardware platform was developed prior to the decision to use ROS, and
one of the critical factors in deciding to use it was the comprehensive out-of-the-box
hardware support for many of the sensors already in use. Other benefits include a
comprehensive calibration infrastructure for sensors and thewide range of simulation
and visualization tools available, these are discussed further in Sect. 3.

2.1 Imaging

The Energy Diagnostics Imaging Vehicle (EDIV) is equipped with several giga-
bit Ethernet machine vision cameras for continuous imaging of building facades.
An example of this output is shown in Fig. 2. The radiometric thermal camera was

Fig. 2 Example thermal output

400 W. Morris

Fig. 3 Sensor locations and coverage

selected to provide a wide enough field of view to image 80% of the target structures
within a single image while still maximizing image quality.

For the system to get sufficient coverage of buildings that are multiple stories,
additional pairs of cameras are aimed upwards 30◦ on both sides of the car. Figure3
shows the sensor position and orientation. It also shows the coverage areas for the
Velodyne [3] LiDAR along with two of the thermal cameras on the passenger side of
the car. Hardware and software synchronization of all of these cameras was one of the
key challenges for stitching and registering the multiple thermal and near-infrared
images into a single output. The left half of Fig. 4 shows two of the thermal cameras
from one side of the car stitched together, while the right half of the image shows
the registration of the thermal image (red) and the near-infrared image (blue).

The system is equipped with four radiometric FLIR [4] long-wave infrared
thermal cameras running a custom driver. The optics provide a field of view of

Fig. 4 Sitched(l) and registered(r) images

Case Study: Hyper-Spectral Mapping and Thermal Analysis 401

45◦ (H)× 37◦ (V). Environmental protection is provided by an anti-reflective coated
germanium window. The thermal cameras were only capable of providing accurate
radiometric measurements when operating at 30Hz.

In addition to the thermal cameras, there are four Allied Vision [5]Manta G-223B
Near-Infrared Cameras. Given the i/o constraints and the sparse support for 16 bit
images in OpenCV, the cameras were configured to output 8 bit images.

The near-infrared cameras are used by the system to provide texture information
for computer vision algorithms to detect features such as brick walls. Camera selec-
tion was optimized for maximum sensitivity while avoiding interference from the
Velodyne LiDAR operating at 905nm.

The near-infrared cameras utilize the prosilica_driver [6] which provided
all necessary functionality out of the box.

The near-infrared cameras use Kowa JC10M series fixed focus optics that provide
a 54◦ (H) × 41.9◦ (V) field of view. It was found that a circular polarization filter
helped reduce high-intensity reflections from roadsigns being illuminated.

The imaging system uses a hardware sync signal to capture near-infrared images
at 10Hz, phase aligned with the thermal cameras running at 30Hz.

2.2 Laser Rangefinder

3D reconstruction is made possible by utilizing multiple LiDARs. On the front
bumper, a Sick LMS111 2D LiDAR is mounted in a jazz hands configuration for
pushbroom scanning. This sensor has proven extremely tough, having survived a col-
lision with the curb during testing. The Sick LiDAR is complimented by a Velodyne
HDL-32E 3D LiDAR which uses 32 lasers built into a rotating assembly. Point-
clouds generated by the Velodyne are dense horizontally, but fairly sparse in the
vertical direction normal to rotation. An example of data generated by the LiDAR
can be seen in Fig. 5 where it is projected on to a thermal image. LiDAR data has
been useful for semantic segmentation of images allowing for removal of obstacles
such as trees and cars from thermal analysis.

The Sick LMS111 uses the ros-indigo-lms1xx driver and the Velodyne
HDL-32 uses the ros-indigo-velodyne driver for pointcloud generation.

2.3 Position and Orientation Sensors

The car has been equipped with an iMAR iMWS-V2 magnetic wheel encoder
attached to a brake caliper which avoids exposing the mechanism to the elements.
This is a significant consideration for operating outdoors in the winter where roads
are often covered with snow and ice.

402 W. Morris

Fig. 5 Velodyne LiDAR output with ground plane removal

An in-house driver provides access to the Velodyne IMU and GPS information. A
SparkFun 9 Degrees of Freedom—Razor IMU provides additional information via
the ros-indigo-razor-imu-9dof package.

2.4 GPS

After testing several asset tracking and survey grade GPS units, we found that the
NovAtel [7] ProPak6 equippedwith an additional L-Band antennamet our needs. The
ros-indigo-novatel-span-driver worked well after some configuration
and modifications [8] to disable SPAN and enable RTK. This provided us with not
only a high precision position estimate, but also a continuously updated estimate
of the accuracy of the sensor. This allowed us to confirm when RTK was active
providing centimeter accuracy and enabled diagnostic notification if theGPSdropped
in accuracy due to canyoning or other sources of interference.

2.5 Environmental Sensors

The system is also equipped with a variety of basic environmental sensors to
monitor the condition of the system and to allow for baseline calibration. Sev-
eral DS18S20 and MCP9808 temperature sensors are attached to an Arduino via
ros-indigo-rosserial, along with a SHT15 humidity sensor and a AM2315
humidity and temperature sensor to determine the effects of humidity on the system.

Case Study: Hyper-Spectral Mapping and Thermal Analysis 403

2.6 Processing and Storage

The primary on-board computer utilizes an Intel Core i7-5960X processor which
provides 16 Cores with Hyperthreading enabled. The CPU is cooled with a Corsair
H75 Liquid Cooler, this was chosen to reduce the amount of weight attached to the
CPU to avoid stress each time the car hits a pothole. The CPU is attached to an EVGA
X99 Micro Motherboard with 16GB DDR4 3000 Memory and SATA3 support.

2.7 Network

In the current configuration the average continuous network utilization is well over
1Gbps. However as the cameras are synchronized to transmit frames at the same
time, every 1/30th of a second the instantaneous bandwidth requirements come very
close to fully saturating multiple gigabit Ethernet connections.

We have tried multiple methods but have not been able to directly control the
timing of the image data transmission. This appears to be a limitation of the GigE
Vision SDK [9] being used.

The roof mounted sensor box is equipped with an industrial Ethernet switch
and multiple waterproof M12 x-coded gigabit Ethernet connections that provide the
required bandwidth to the computer stored in the trunk.

A network management interface is provided by a Cradlepoint [10] 4G WiFi
router.

2.8 Data Storage

The operating system and applications are stored on a 256GB Samsung 850 Pro
Series solid-state disk, while all of the sensor and diagnostic data generated by the
system is written as ROS bag files to a 12 terabyte striped RAID 0 disk array using
two 6 terabyte enterprise hard drives.

One of the most useful features of ROS is the ability to record and playback
sensor data while maintaining an internally consistent sense of simulated time [11]
referenced to the system clock when the data was being recorded. This allows bags
to be played back in slowmotion, while API calls will return the time the sensor data
was recorded instead of the current time. The bag file format is well documented
[12] and for some of our applications we found it helpful to unpack data directly into
a Mongo database for processing.

During a nominal night of scanning our system records over 6 terabytes of data
during 12 h of continuous operation, at this point we have cumulatively recorded
several hundred terabytes of sensor data in the ROS bag format. This data is recorded
as a series of 2GB files along with a separate bag file for GPS data that is used as an

404 W. Morris

index during the data import process. We have also tested recording at higher data
rates and have encountered a few interesting features.

If the data is being written to bag files with unlimited buffering, and it exceeds
the disk i/o bandwidth or if compression is enabled and the CPU is unable to keep
up, the system can fail silently. As the system queues old messages it will end up
running out of memory, and once that happens the OOM (out of memory) Killer
[13] will kill the rosbag process. So if your robot stops logging data mysteriously
this might be something to consider checking. For this system to maintain stability
over 12 h, the bandwidth utilization was reduced after initial testing by switching
the near-infrared cameras to 8-bit mode and using on-camera hardware binning to
produce smaller images.

Despite CPU upgrades and several attempts at various compression levels, the
system was unable to compress data fast enough for the volume of data being pro-
duced. The increased storage requirements of uncompressed data are balanced by
the performance improvement in post-processing by removing the need for decom-
pression.

2.9 Hardware Configuration and Introspection

Experience attempting to utilize data from previous experiments has shown that
it is important to store the hardware configuration in the data stream to allow for
later introspection. Publishing camera serial numbers allows us to determine when
hardware changes were made simply by reading the bag files.

Thermal camera calibrations are saved to files named by serial number and are
version controlled in a separate package. The near-infrared cameras store calibration
information in nvram onboard the cameras.

The relative position of sensors is stored in URDF [14], which enables visualiza-
tion in RViz [15] and other tools such as tf [16].

3 Software

TheROS robotics framework provides an extensive set of tools for rapid development
of robotics software, data visualization tools including RViz and the rqt tools [17] for
plotting and data analysis. In addition to the tools provided by ROS, we also found
the glances [18] system monitoring software to be valuable for analyzing system
performance.

Case Study: Hyper-Spectral Mapping and Thermal Analysis 405

3.1 Simulation and Development

Robotics development is often constrained by limited resources and the conflicting
needs of the hardware and software development teams. Given the cost of some
sensors, there is often not be enough equipment to provide software developers
access to physical hardware until the hardware team is finished. ROS was utilized
to record raw sensor output via rosbag [12], this allowed the software team to use
hardware simulations to work on algorithms without waiting for access to physical
hardware. Productivity was also improved by building a test cart (as shown in Fig. 6)
to allow for indoor testing of hardware under development. The left half of Fig. 6
shows the cart with the sensor box attached to the cart, whereas the right half of
the image shows how the sensor box can be removed from the cart for attachment
to the car.

3.2 Diagnostics

We extensively use diagnostic aggregators [19] to provide information to the human
operators. These diagnostic tools monitor topic frequency and provide basic data
validation to check that sensors are working properly. Figure7 shows system status
indicators, red boxes show subsystems that are operating outside of specification,
green boxes show subsystems that are operating nominally, warnings are shown in
yellow. In this example, the Car system is in an error state due to the Environmental

Fig. 6 Descartes development cart: sensor box attached(l) and removed(r)

406 W. Morris

Fig. 7 Diagnostic interface running on a Nexus 9 tablet

subsystem showing an alarm with the humidity sensor. In this case the diagnostic
message is used importing the data into the analytics engine allowing data ofmarginal
quality to be flagged for human review due to high ambient humidity.

3.3 Operator Interface

The interface (Fig. 8) for the system is provided by a Nexus 9 tablet using the Robot-
WebTools [20] JavaScript framework. A scaled and throttled video stream from
the cameras is sent over WiFi using the ros-indigo-web-video-server
package.Additional user interface components allow the human operator to start/stop
logging and reboot the system at the click of a button. The buttons along the top of
Fig. 8 allows the operator to switch between longwave and near-infrared camera
views shown below.

4 Best Practices and Lessons Learned

Our experiences working with ROS have led us to develop a set of internal best
practices that help usmaintain robust performance andminimizemiscommunication.

Case Study: Hyper-Spectral Mapping and Thermal Analysis 407

Fig. 8 Operator interface showing thermal camera output

4.1 Data Storage and Indexing

The rosbag files are automatically named by passing the −o option to rosbag,
(e.g. ediv2_2015-02-14-02-17-31_0.bag) which allows us to differen-
tiate between vehicles. Test data that is sent for full processing is flagged with the
prefix ‘testrun’ to prevent confusion.

Each data drive contains as set of 2GB rosbags which contain the output of the
sensors and diagnostics. An info file is produced from the output of rosbag info
for each bag file. Field engineers can also save text files to the drives to provide notes
to the software engineers for specific data to be reviewed during the data import
process.

After each night of field operation the drives are shipped for processing. After
the drives are received, the rosbag info file is used to provide validation that all of
the data survived shipment. Once imported the diagnostic messages recorded in the
bags are used for initial data validation.

Given the amount of data stored, a separate rosbag containing only timestamped
GPS data is used as an index. This allows the system to generate a variety of reports
for customers on a per zipcode basis without having to extract and process all of the
data collected.

408 W. Morris

4.2 Configuration Management

We have used Chef [21] with ROS on our production systems for configuration
management with mixed results. Some colleagues are using Ansible with ROS and
they seem to think it may be a better choice. Some of the problems we encountered
may be fixable with more experience using Chef.

On a positive note, our software team has found that Chef + ROS works very well
for cloud based processing. It makes it very easy to spin up an unlimited number of
known working instances for parallel off-line processing.

Unfortunately we experienced several problems with using Chef with ROS. The
biggest problem is that system configuration is often opaque to everyone except the
operations team, whereas operations is often unfamiliar with hardware related issues.

For example, at one point we had sensor calibration files installed via Chef, this
caused significant confusion as to which calibration should be installed on a given set
of hardware. It also required additional overheadwhen the calibrations were updated,
as roboticists were making pull requests to an unfamiliar repository. Eventually,
we found it easier to store the configurations in a ROS package and load them
dynamically based on the serial number.

Network configuration management also proved to be problematic. The hardware
platform had multiple Ethernet interfaces that needed IP address configuration based
on MAC addresses. When the hardware team needed to replace a two-port network
card with a four-port card, it also temporarily broke the Chef configuration until
someone on the operations side could update Chef.

To provide a separate environment for production and testing we had Chef install
production.rosinstall and development.rosinstall files and used
rosws [22] to install to ˜/development_ws and ˜/production_ws. This
helped segment ROS development from Chef and made everyone happier and made
tagging git releases easier.

Once everything was working it was fairly easy to generate an ISO installer that
contains the Chef tools needed to bootstrap a system. Debian packages were copied
to the apt cache on the USB drive to cut down on network traffic for the install.

While Chef maintenance and testing was tedious, static production deployments
to multiple systems is where it starts to become invaluable.

4.3 Startup

System startup is managed via upstart scripts based on the ROS System Daemon
[23] package. The ROS launch files are stored in a seperate package along with the
configurations of individual drivers. This allowed for version controlledmanagement
of drivers installed via the system package manager.

Critical sensors utilize watchdog timers to restart drivers for system recovery in
the event of a transient error condition. The thermal camera for example is launched
with the respawn = “true” option [24] and the watchdog timer is checked

Case Study: Hyper-Spectral Mapping and Thermal Analysis 409

against timestamp of the last image transmitted. If the driver has not transmitted an
image within the period specified by the timer, the driver exits and is relaunched by
the ROS master. Otherwise it resets the timer.

5 Conclusion

Utilizing ROS has reduced the product development time and improved the quality
and reliability of the data produced by the system. Beyond providing basic function-
ality, ROS has provided a solid technical foundation for continued development and
proven stable across thousands of miles and hundreds of terabytes.

References

1. L.N. Phan, Automated rapid thermal imaging systems technology. Ph.D. thesis, Massachusetts
Institute of Technology, 2012

2. E.C. Shao, Detecting sources of heat loss in residential buildings from infrared imaging. Ph.D.
thesis, Massachusetts Institute of Technology, 2011

3. Velodyne Acoustics Inc, Velodyne lidar (2015), http://www.velodynelidar.com. Accessed 3
Aug 2015

4. FLIR Systems Inc, Flir systems (2015), http://www.flir.com. Accessed 3 Aug 2015
5. Allied Vision Technologies GmbH, Allied vision (2015), http://www.alliedvision.com.

Accessed 3 Aug 2015
6. Github, Ros driver and the sdk for avt/prosilica cameras (2015), https://github.com/ros-drivers/

prosilica_driver. Accessed 3 Aug 2015
7. NovAtel Inc, Novatel (2015), http://www.novatel.com. Accessed 3 Aug 2015
8. Github, Fork of novatel ros driver (2015), https://github.com/essessinc/novatel_span_driver.

Accessed 3 Aug 2015
9. Pleora Technologies Inc, Pleora ebus sdk (2015), http://www.pleora.com/our-products/ebus-

sdk. Accessed 3 Aug 2015
10. CradlePoint Inc, Cradlepoint (2005), http://cradlepoint.com. Accessed 3 Aug 2015
11. Ros wiki, Clock (2015), http://wiki.ros.org/Clock. Accessed 3 Aug 2015
12. Ros wiki, Bags/format (2010), http://wiki.ros.org/Bags/Format. Aaccessed 3 Aug 2015
13. Malcolm Parsons, Oom killer (2009), http://linux-mm.org/OOM_Killer. Accessed 3Aug 2015
14. Ros wiki, urdf (2014), http://wiki.ros.org/urdf. Accessed 3 Aug 2015
15. Ros wiki, rviz (2014), http://wiki.ros.org/rviz. Accessed 3 Aug 2015
16. Ros wiki, tf (2015), http://wiki.ros.org/tf. Accessed 3 Aug 2015
17. Ros wiki, rqt (2013), http://wiki.ros.org/rqt_common_plugins?distro=indigo. Accessed 3 Aug

2015
18. N. Hennion, Glances (2015), https://nicolargo.github.io/glances/. Accessed 3 Aug 2015
19. Ros wiki, Diagnostics (2015), http://wiki.ros.org/diagnostics. Accessed 3 Aug 2015
20. Robot web tools (2015), http://robotwebtools.org/, Accessed 3 Aug 2015
21. Chef (2015), http://docs.chef.io/. Accessed 3 Aug 2015
22. Ros installation tools (2011), http://docs.ros.org/independent/api/rosinstall/html/, Accessed 3

Aug 2015
23. Ros system daemon (2013), https://github.com/TurtleBot-Mfg/ros-system-daemon-hydro.

Accessed 3 Aug 2015
24. Ros wiki, Roslaunch/xml/node (2015), http://wiki.ros.org/roslaunch/XML/node. Accessed 3

Aug 2015

http://www.velodynelidar.com
http://www.flir.com
http://www.alliedvision.com
https://github.com/ros-drivers/prosilica_driver
https://github.com/ros-drivers/prosilica_driver
http://www.novatel.com
https://github.com/essessinc/novatel_span_driver
http://www.pleora.com/our-products/ebus-sdk
http://www.pleora.com/our-products/ebus-sdk
http://cradlepoint.com
http://wiki.ros.org/Clock
http://wiki.ros.org/Bags/Format
http://linux-mm.org/OOM_Killer
http://wiki.ros.org/urdf
http://wiki.ros.org/rviz
http://wiki.ros.org/tf
http://wiki.ros.org/rqt_common_plugins?distro=indigo
https://nicolargo.github.io/glances/
http://wiki.ros.org/diagnostics
http://robotwebtools.org/
http://docs.chef.io/
http://docs.ros.org/independent/api/rosinstall/html/
https://github.com/TurtleBot-Mfg/ros-system-daemon-hydro
http://wiki.ros.org/roslaunch/XML/node

Part V
Perception and Sensing

A Distributed Calibration Algorithm
for Color and Range Camera Networks

Filippo Basso, Riccardo Levorato, Matteo Munaro
and Emanuele Menegatti

Abstract In this tutorial chapter we present a package to calibrate multi-device
vision systems such as camera networks or robots. The proposed approach is able to
estimate—in a unique and consistent reference frame—the rigid displacements of all
the sensors in a network of standard cameras, Kinect-like depth sensors and Time-
of-Flight range sensors. The sensor poses can be estimated in a few minutes with a
user-friendly procedure: the user is only asked to move a checkerboard around while
the ROS nodes acquire the data and perform the calibration. Tomake the system scal-
able, the data analysis is distributed in the network. This results in a low bandwidth
usage as well as a really fast calibration procedure. The ROS package is available
on GitHub within the repository iaslab-unipd/calibration_toolkit
(https://github.com/iaslab-unipd/calibration_toolkit). The package has been devel-
oped for ROS Indigo in C++11 and Python, and tested on PCs equipped with Ubuntu
14.04 64 bit.

Keywords ROS · Calibration · Camera · Depth · Camera network · Distributed
system · Kinect · RGB-D

F. Basso (B) · R. Levorato · M. Munaro · E. Menegatti
IAS-Lab, Department of Information Engineering (DEI), University of Padova,
Via Ognissanti 72, 35131 Padova, Italy
e-mail: bassofil@dei.unipd.it
URL: http://robotics.dei.unipd.it

R. Levorato
e-mail: riccardo.levorato@dei.unipd.it

M. Munaro
e-mail: matteo.munaro@dei.unipd.it

E. Menegatti
e-mail: emg@dei.unipd.it

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_16

413

https://github.com/iaslab-unipd/calibration_toolkit

414 F. Basso et al.

1 Introduction

Robotic systems and camera networks consist of many heterogeneous vision sensors.
The estimation of the poses of all such sensors with respect to a unique, consistent
world frame, is a challenging and well-known problem. As a matter of fact, a good
calibration of these sensors can be a useful starting point for several applications in
the computer vision field (e.g. 3D mapping, people recognition and tracking [4, 14],
microphone calibration for audio localization [13]) as well as in many robotics appli-
cations (e.g. simultaneous localization and mapping (SLAM) applications, grasping
and manipulation).

However, even most of the time a good calibration is mandatory for the success of
the application, there are still no tools that permit to easily calibrate multiple vision
sensors together in a uniform way. In fact, most of the existing tools are for specific
applications or specific sensors (e.g. stereo cameras); there are only few methods
developed to simultaneously calibrate an heterogeneous sensor network. As stated
by Le et al. [12], the most followed approach is to divide the sensors into pairs and
calibrate each pair independently, even using different algorithms for each one.

Our idea, i.e., the one behind the development of this package, is to go beyond
this calibration technique, and develop an easy-to-use and easy-to-extend calibra-
tion package for ROS, such that users can add their own sensor types, their own
error functions and perform the calibration. Moreover, since calibration is a time-
consuming task, a fast procedure would be a very useful tool, especially when the
involved sensors need often to be moved—and therefore re-calibrated.

We are still far from having a sensor-independent calibration toolbox like the
aforementioned one, however, as we have already demonstrated [3, 13, 15], the very
same calibration procedure can be used to calibrate standard cameras, Kinect-like
and Time-of-Flight depth sensors as well as omnidirectional cameras and actuated
laser scanners. So, we took what we had learned during the development of our
previous works and packed it in a completely new package, heavily based on Eigen
[11] and Ceres Solver [1] libraries.

The package addresses the problem of calibrating networks composed by cam-
eras and depth sensors like the one in Fig. 1. The approach we followed is an exten-
sion of the classical single camera calibration procedure: users are asked to move
a checkerboard pattern in front of each camera and depth sensor and, as soon as
any of the sensors see the checkerboard, the calibration starts. Then, whenever the
pattern is visible by at least two sensors simultaneously, a constraint is added to the
calibration problem. This process goes on until all the sensors are connected to the
others. At the end, all the data are processed inside an optimization framework that
improves the quality of the initial estimation. This procedure has already been tested
on camera-only networks as part of the OpenPTrack1 project [15]. Here we explain
how to configure and use the package as well as the theoretical background behind
the developed algorithm. The remainder of the chapter is organized as follows:

1http://openptrack.org/.

http://openptrack.org/

A Distributed Calibration Algorithm for Color and Range Camera Networks 415

Fig. 1 Example of sensors in a PC network that the proposed package aims to calibrate

• First, we review some of the existing works on camera and sensor network cali-
bration.

• Second, we give a short overview of the calibration problem for camera networks.
• Third, we explain in detail how the calibration is performed from a theoretical
point of view.

• Fourth, we introduce the readers to the package with a real-world example.
• Fifth, we describe how to configure and use the nodes provided by the package to
calibrate a user-defined sensor network.

• Finally, we draw some conclusions.

2 Related Work

In the robot vision field, RGB cameras have been a key technology in the devel-
opment of visual perception. In the last few years, the introduction of RGB-D sen-
sors contributed deeply to the advancement of data fusion in practical applications.
Auvinet et al. [2] proposed a new method for calibrating multiple depth cameras
for body reconstruction using only depth information. Their algorithm is based on
plane intersections and the NTP protocol for data synchronization. The calibration
achieves good results: even if the depth error of the sensor is 10mm, the reconstruc-
tion error with 3 depth cameras is, in the best case, less than 6mm. However, they
have to manually select the plane corners and, above all, they only deal with depth
sensors.

Another approach to solve the calibration problem for a network of cameras and
depth sensors, is the one proposed by Le and Ng [12]: they proposed to jointly
calibrate groups of sensors. More specifically, the groups were composed by a set of
sensors able to provide a 3D representation of theworld (e.g. a stereo camera, anRGB
camera and a depth camera, etc.). First of all they calibrated the intrinsics of each

416 F. Basso et al.

sensor, secondly they calibrated the extrinsic parameters of each group, then they
calibrated the extrinsic parameters of each groupwith respect to all the others. Finally
the calibration parameters were refined in one optimization step. Their experiments
show that this method not only reduces the calibration error, but also requires a little
human intervention. An advantage of having groups that output 3D data is that the
same calibration object can be used to calibrate a group with respect to all the others,
regardless of the sensor type. Also, a joint calibration does not accumulate errors like
a calibration based on sensor pairs do. However, they state that they should combine
this two steps and jointly calibrate all parameters at once, as we proposed in our
works [3] and propose here. In fact, the main drawback of this approach is that they
always need to group the sensors beforehand in order to have 3D data outputs.

Finally, Furgale et al. [10], recently developed a similar ROS package, Kalibr,
that tackles the spatio-temporal calibration of multi-sensor systems composed of
cameras and an IMU. To the best of our knowledge, this is the work most similar to
ours, even though it does not deal with depth sensors.

3 Background

3.1 The Calibration Problem

Definition 1 Let S = {S1, S2 . . . SK } be a set of sensors. For each sensor Si ∈
S, i = 1 . . . K , the goal is to find its pose WSi with respect to a common reference
frameW , namely the world.

To solve such problem, it is important to know the concept of reference frame and
how affine transformation (in a 3D space) works. Moreover, since we are dealing
mostly with cameras, it is mandatory to know how 3D points are converted to pixels
and vice-versa.

3.2 Affine Transformations

Let x = (x, y, z)T be a point in 3D space. For any non-zero real number w,
(xw, yw, zw,w)T is the set of homogeneous coordinates associated to the point
x. In particular, when w = 1, the resulting 4D vector x̃ = (x, y, z, 1)T is called the
normalized homogeneous form.

A rigid transformation in 3D space is represented by a linear transformation
T ∈ SE(3) on normalized homogeneous vectors

T =
[

R t
0T 1

]

where R ∈ SO(3) is the rotation matrix and t ∈ IR3 the translation vector.

A Distributed Calibration Algorithm for Color and Range Camera Networks 417

To transform a 3D point x it is sufficient to left-multiply its normalized homoge-
neous form x̃ by the transformation matrix T

ỹ = T · x̃ .

The resulting vector ỹ is the normalized homogeneous form of the desired 3D point
y. This operation is equivalent to perform an affine transformation in IR3

y = R · x + t .

3.3 Reference Frames

A reference frame F is a coordinate system used to represent and measure position
and orientation of objects. A transformationmatrix T

S T from a source reference frame
S to a target frame T is a transformationmatrix that allows to convert the coordinates
of a point from S to T .

Let, for example, x be a point and let Sx be its coordinates in S, x’s coordinates
in T , namely T x, can be computed as

T x̃ = T
S T · S x̃ .

3.4 Pinhole Camera Model

Let C be a camera and C its reference frame. The pinhole model describes the
mathematical relationship between the coordinates of a 3D point and its projection
onto the image plane. The model assumes that the camera has 4 parameters, namely
intrinsic parameters:

• (cx , cy)
T is the principal point that is usually at the image center;

• fx , fy are the focal lengths expressed in pixel units;

usually arranged in a 3 × 4 matrix KC

KC =
⎡

⎣

fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤

⎦ .

The relationship between the coordinates of a 3D point Cx and its projection onto
the image plane x′ (in pixels) is

s · x̃′ = KC · C x̃, (1)

418 F. Basso et al.

at least theoretically. Unfortunately real lenses usually have some distortion. So, the
pinhole model is extended with a vector of distortion coefficients dC and a distortion
function dC(·). Equation (1) thus becomes

s · x̃′ = KC · dC(C x̃) . (2)

For more details on the distortion function please refer to [6].
In the following, given a camera C, the reprojection of a 3D point onto C’s image

plane, i.e. (2), will be denoted by the function rC(·), that is

x′ = rC
(Cx

)

. (3)

3.5 Notations

We use non-bold characters x to represent scalars, bold lower case letters x to rep-
resent vectors with no distinction between cartesian coordinates and homogeneous
coordinates. Bold upper case letters M represent matrices. Note that matrices can be
seen as ordered lists of vectors, one for each column.

The reference frame of an object B is in calligraphic style B. The coordinates of
an entity e with respect to the reference frame F are denoted by Fe. According to
this notation, the pose of a body A in B’s coordinate system B is denoted as BA and
the relative homogeneous transformation matrix is B

AT.

4 Camera-Only Network Calibration

4.1 Pose Estimation

To solve the calibration problem (Definition 1) for a camera-only network, we use a
checkerboard pattern. So, let B be an R × C checkerboard and let B be its reference
frame. Let also C be a camera with reference frame C, intrinsic parameters KC and
distortion coefficients dC. We can estimate the checkerboard pose C

BT in the camera
reference frame by finding its corners in the image and solving the correspondent
Perspective-n-Point (PnP) problem [9].

That is, let I = {1 . . . R} × {1 . . . C} be the corner indices, let also
BB = {Bbr,c

}

(r,c)∈I

be the checkerboard corners and

B′ = {

b′
r,c

}

(r,c)∈I

A Distributed Calibration Algorithm for Color and Range Camera Networks 419

the correspondent locations in the image. The checkerboard pose C
BT can be estimated

by means of a single function called solvePnP, i.e.

C
BT = solvePnP

(

KC, dC, BB, B′) , (4)

and is the one that minimizes the reprojection error

erC
(C
BT, BB, B′) =

∑

(r,c)∈I

∥
∥b′

r,c − rC
(C
BT · Bbr,c

)∥
∥
2

. (5)

Now, let C1 and C2 be two different cameras, with reference frame C1 and C2
respectively and suppose they both can see the checkerboard at the same time. To be
more precise, let’s define k ∈ IN as an acquisition step, that is, a progressive number
that is incremented each time the checkerboard is moved to a different location and
an acquisition for every camera is triggered at the same instant. Let also W

B T(k) be
the checkerboard pose at step k. Using (4) we can estimate both C1

B T(k) and C2
B T(k).

Starting from these two poses (and the fact the the checkerboard is in the same
location), we can estimate the pose of one sensor with respect to the other C1

C2
T with

a closed formula

C1
C2

T = C1
C2

T(k) = C1
B T(k) · C2

B T(k)−1
. (6)

Then, recalling that affine transforms can be chained

B
AT = B

X T · XAT ,

and that

B
AT = A

B T−1 ,

we can find a solution to our calibration problem for a network composed by N
cameras: we just need to estimate (or set) the pose W

Ci
T of one camera Ci with

respect to the world reference frame W and move the checkerboard around until
every camera pose is computed, using any of the aforementioned equations.

To estimate the pose of a camera Ci with respect to the world reference frameW ,
first of all wemust knowwhether we need to define a world reference frameW in the
environment or not. Actually, if it really does not matter where such reference frame
is, any camera reference frame Ci can be set as the world, that isW = Ci (or equally
W
Ci

T = I) for one i ∈ {1 . . . N }. Otherwise the pose can be set manually: W
Ci

T = W
for some transformation matrix W and i ∈ {1 . . . N }; or estimated by moving the
checkerboard to the desired position and setting W

B T(k) = I, for some k ∈ IN.
At this stage we have good estimations of the sensor poses, however, due to errors

in the measurements, usually

C1
C2

T(k) �= C1
C2

T(l)

420 F. Basso et al.

for two different steps k and l. Therefore we must perform an optimization step
to refine the estimated camera poses, such that the error on the estimated poses is
reduced as much as possible.

4.2 Optimization

Taking a step back to the acquisition part, we can organize the calibration data in
a matrix, like the one in Fig. 2. Following the bundle adjustment approach [19], we
refine both the camera poses W

Ci
T, i = 1 . . . N and the checkerboard poses W

B T(k),
k = 1 . . . K . Indeed, even if we perfectly know the pose of every camera with respect
to the world, the pose of a checkerboard B estimated at step k using two different
cameras, say Ci and C j , is likely to be different:

W
Ci

T(k) · Ci
B T(k) �= W

C j
T(k) · C j

B T(k) .

To achieve a satisfying solution, a good candidate to be minimized is the reprojection
error defined in (5). The complete error function EC that we minimize is therefore

EC =
K

∑

k=1

N
∑

i=1

uik · 1

σ 2
Ci

· erCi

(
W
Ci

T−1 · WB T(k), BB, B′(k)
i

)

(7)

=
K

∑

k=1

N
∑

i=1

uik · 1

σ 2
Ci

·
∑

(r,c)∈I

∥
∥
∥b′(k)

i,r,c − rCi

(W
Ci

T−1 · WB T(k) · Bbr,c
)
∥
∥
∥

2
,

Fig. 2 Matrix view of the calibration data. Each row is associated to a camera Ci and contains both
the camera parameters KCi and dCi , and the camera estimated pose W

Ci
T. The columns are instead

associated to the steps and contain the poses of the checkerboard at every step k, namely W
B T(k). A

cell (i, k) contains the corners locations (in pixels) B′(k)
i of the checkerboard at step k in the image

provided by camera Ci , if the checkerboard is visible

A Distributed Calibration Algorithm for Color and Range Camera Networks 421

where uik is an indication function equal to 1 if camera Ci sees the checkerboard at
step k (otherwise it is 0) and the fraction 1

σ 2
Ci

is instead a normalization factor. The

term σCi is usually set to 1 or 0.5 and indicates the error on the corner’s estimated
position (in pixels) in the images provided by camera Ci .

4.3 Additional Constraints

In one of our first applications of this calibration algorithm, OpenPTrack [15], we
needed to calibrate a camera network in a big room against the floor, i.e. extract the
floor equation and set the world frame somewhere on it. We decided to estimate the
floor coefficients during the calibration procedure, exploiting the fact that positioning
a checkerboard on the floor would have allowed us to define the plane equation as
well as the world reference frame. However, since the room was quite big and the
checkerboard far from every camera, the results were not satisfactory: the plane had
often a non-negligible rotation with respect to the real one. To overcome this issue,
printing a bigger checkerboard was not a viable solution. Instead, we imposed that
two or more checkerboards were lying on the same plane and added the geometrical
constraints to the error model. In fact, if we fix the plane π on which a checkerboard
can move, the checkerboard pose can be defined by a 2D transform P

BT2 with respect
to the reference frame of plane π , namely P .

So, let define a plane by means of its reference frame W
P T, such that the x- and

y-axes are on the plane and the z-axis is its normal, as depicted in Fig. 3. The pose
of a checkerboard lying on π at step k is

W
B T(k) = W

P T · PBT(k)
2 , (8)

Fig. 3 Reference frames of the plane π and a checkerboard B lying on it

422 F. Basso et al.

where the 2D transform P
BT(k)

2 is wrapped into a 3D one to perform the matrix
multiplication

P
BT(k)

2 =

⎡

⎢
⎢
⎣

cos(θ) − sin(θ) 0 tx

sin(θ) cos(θ) 0 ty

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

.

We can now substitute (8) into (7) to refine both the plane and the checkerboard
pose.

5 Extension to a Depth Sensor-Camera Network

5.1 Pose Estimation

In Sect. 4 we have presented a calibration procedure for camera-only networks. Such
procedure works well with cameras, but how can we calibrate a network composed
by both cameras and depth sensors?

A depth sensorD provides an R × C point cloud view of the scene, i.e. an indexed
set of 3D points

DP = {Dpr,c
}

(r,c)∈I ,

where I = {1 . . . R} × {1 . . . C}, reflecting the shape of the scene in the sensor’s
field of view. Obviously, we cannot directly estimate the checkerboard pose using
the corners, as we do for the camera-only network calibration, since they are not
visible. However, we can exploit the 3D data to extract the pattern plane and perform
a plane-to-plane calibration [20]. That is, supposing we have already estimated the
checkerboard pose W

B T(k) at step k, we can define the checkerboard plane Wπ
(k)

B

using three non-collinear corners. We can also estimate the pattern plane Dπ
(k)

B from
the point cloud, using a for example a RANSAC-based [9] plane fitting algorithm.

So, let {k1 . . . kn}, with n ≥ 3, be the intersection between the steps in which depth
sensor D sees the checkerboard and those in which the checkerboard pose has been
estimated, and let the plane equations be of the form nT · x − d = 0. Following [20],
we define

WN =
[
Wn(k1)

B . . .Wn(kn)

B

]T Wd =
[
Wd(k1)

B . . .Wd(kn)

B

]T

DN =
[
Dn(k1)

B . . .Dn(kn)

B

]T Dd =
[
Dd(k1)

B . . .Dd(kn)

B

]T

A Distributed Calibration Algorithm for Color and Range Camera Networks 423

and compute
W
D T =

(W
D R W

D t
0T 1

)

as

W
D t = (WNT · WN

)−1 · WNT · (Wd − Dd
)

,

W
D R = V · UT ,

where U · S · VT is the SVD decomposition of DNT · WN.

5.2 Optimization

For what concerns the error function, we calculate it as a sort of distance between
the plane defined by the checkerboard Wπ

(k)

B at step k, and the plane fitted to the
checkerboard depth data of sensors D j , j = 1 . . . M , namely D j π

(k)

B . So, let pπ (x)

be the line-of-sight projection of a point x onto plane π as described in [17], we can
define the error function ED as

ED =
K

∑

k=1

M
∑

j=1

u jk · 1

σ 2
D j

· epD j π
(k)
B

(
W
D j

T−1 · WB T(k), BB
)

=
K

∑

k=1

M
∑

j=1

u jk · 1

σ 2
D j

·
∑

(r,c)∈I

∥
∥
∥
D j b(k)

r,c − pD j π
(k)

B

(D j b(k)
r,c

)
∥
∥
∥

2
,

where
D j b(k)

r,c = W
D j

T−1 · WB T(k) · Bbr,c ,

and u jk is an indication function equal to 1 if sensor D j sees the checkerboard at
step k (otherwise it is 0) and the fraction 1

σ 2
D j

, as for cameras, is a normalization

factor. But, while for cameras, σD j is usually set to corner estimation error in pixels,
for depth sensor it describes the error on the depth estimation. This means that each
depth sensor may have a different normalization factor. Moreover, there are sensors,
like Kinects v1, for which this error depends on the depth value, that is

σD j (z) = a + b · z + c · z2 , (9)

for some coefficients (a, b, c). Typical values2 for a Kinect v1 are: a = 0, b = 0, c =
0.0035. Taking into account this fact, the error function ED becomes

2http://wiki.ros.org/openni_kinect/kinect_accuracy.

http://wiki.ros.org/openni_kinect/kinect_accuracy

424 F. Basso et al.

ED =
K

∑

k=1

M
∑

j=1

u jk ·
∑

(r,c)∈I

1

σ 2
D j

(

D j z(k)
r,c

) ·
∥
∥
∥
D j b(k)

r,c − pD j π
(k)

B

(D j b(k)
r,c

)
∥
∥
∥

2
(10)

where D j z(k)
r,c is the z component of D j b(k)

r,c .

6 ROS Environment Configuration

6.1 Dependencies

The package depends on some external libraries, well integrated in ROS, such as:

• Boost
• OpenCV
• Eigen 3.2
• PCL 1.7

They are all available in the Ubuntu 14.04 repository and easily installable. For what
concerns the optimization algorithm, instead, the package relies upon Ceres Solver
[1] a library to solve non-linear least squares problems. InUbuntu 14.04, it is possible
to install version 1.8 of such library by selecting the apt package libceres-dev,
however, due to some bugs on that library version, our package does not compile. To
overcome this issue, we have prepared a script to download the latest tested version
and install it. Just type

roscd calibration_toolkit /../ scripts
./ install_ceres.sh

on a terminal, and Ceres Solver as well as its dependencies will be installed on your
system.

The algorithm assumes that all the sensors’ intrinsic parameters are already esti-
mated and expects that each camera publishes its own calibration parameters as a
sensor_msgs/CameraInfo message. This is a common assumption for cam-
eras, for which a lot of specialized tools (e.g. the camera_calibration ROS
package) exist, while it is a bad assumption when dealing with depth sensors. In
fact, for depth sensors, even if it has been demonstrated [5, 7, 8, 16, 18, 22] that
depth measurements are not reliable, this operation is not really common. Unfortu-
nately, up to this time, there is not an established way of calibrating such sensors, not
even a ROS way to deal with their distortion. Users must therefore rely on external
packages, like the ones presented in [5, 8] or [18].

Finally, it’s worth noticing that the package is developed in C++11 and needs a
compatible compiler to work. In particular we are currently compiling with gcc 4.8.

A Distributed Calibration Algorithm for Color and Range Camera Networks 425

6.2 Basic Configuration

In order to allow communication between nodes in different computers, the environ-
ment variable ROS_MASTER_URI on every client PC must be set to the IP address
of the PC where the master node is launched, namely the master PC. Additionally,
the ROS_IP and ROS_PC_NAME environment variables must be set. This can be
done temporarily by typing

export ROS_MASTER_URI =http://<MASTER_IP >:11311/
export ROS_IP=<MACHINE_IP >
export ROS_PC_NAME=<MACHINE_NAME >

on a terminal. Note that the PC names assigned can be whatever the user wants, not
necessarily related to the real names of the PCs. To set them definitively, they can be
added directly to the end of the .bashrc file in the home folder. As an example:

echo "export ROS_MASTER_URI =http ://192.168.1.1:11311/
export ROS_IP =192.168.1.5
export ROS_PC_NAME=Phoenix" >> ~/. bashrc

7 Real-World Example

Suppose all the PCs are configured as explained in Sect. 6, and that we want to
calibrate a network of two cameras connected to two different PCs that are called,
respectively, Phoenix and Gemini. The multi-sensor calibration is performed by
running a master node in a so called master PC, in our case Lyra, and a device
driver in every PC attached to a device (one driver node for each device). First of all,
we have to run the ROS drivers for all our devices. As an example, for a PointGrey
camera, type on a terminal:

roslaunch pointgrey_camera_driver camera.launch

Then, we have to wrap these drivers in our calibration environment so that they can
communicate with the master node in Lyra. To this aim, we run on both Phoenix
and Gemini:

roslaunch multisensor_calibration camera_node.launch \
camera_name := camera image_topic :=/ camera/image \
camera_info_topic :=/ camera/camera_info

where image_topic and camera_info_topic are the real topics on which
the camera drivers publish their data. If everything is fine, wewill see in our terminal:

[/ Gemini/camera_node] All messages received.
[/ Gemini/camera_node/get_device_info] Service started.
[/ Gemini/camera_node/extract_checkerboard] Action

server started.

At this point, Phoenix and Gemini are working as expected, we can therefore
move to Lyra. Here we must let the master node know the network. We create a file

426 F. Basso et al.

called network.yaml in the multisensor_calibration/conf directory,
open our favourite text editor, and fill network.yaml with the two PCs and the
two cameras connected to them:

Network configuration
network:

- pc: "Phoenix"
devices: ["camera"]

- pc: "Gemini"
devices: ["camera"]

Note that the strings in the devices arrays exactly match the value of the argu-
ment camera_name we set when launching camera_node.launch. We must
then define the calibration pattern, i.e. the checkeboard, that we will use during the
calibration procedure. So, let’s create a file named checkerboard.yaml in the
multisensor_calibration/conf directory and fill it with our checkerboard
parameters:

Checkerboard configuration
checkerboard:

cols: 6
rows: 5
cell_width: 0.12
cell_height: 0.12

We can now start the calibration procedure:

roslaunch multisensor_calibration master_node.launch

If all the nodes are launched correctly we’ll have an output similar to the one below:

[/Lyra/master_node] Connected to [/ Phoenix/camera_node/
get_device_info] service.

[/Lyra/master_node] Connected to [/ Gemini/camera_node/
get_device_info] service.

[/Lyra/master_node] Connected to [/ Phoenix/camera_node/
extract_checkerboard] action server.

[/Lyra/master_node] Connected to [/ Gemini/camera_node/
extract_checkerboard] action server.

[/Lyra/master_node] Getting device infos ...
[/Lyra/calibration] Sensor [/ Phoenix/camera] added.
[/Lyra/calibration] Sensor [/ Gemini/camera] added.
[/Lyra/master_node] Initialization complete.

We can then start the data acquisition phase. So, we take our checkerboard and move
it around letting all the sensors see it. Every time we are in a good position we can
publish an empty message on the topic /Lyra/master_node/acquisition
to get one instance of the checkerboard (if visible) from each sensor:

rostopic pub /Lyra/master_node/acquisition std_msgs/
Empty -1

Note that the, instead of publishing a message each time we need, we can let the
publisher run at a fixed rate, substituting –1 with the desired rate –r <rate>. In
this case, we must pay attention not to move the checkerboard too quickly, to avoid
blur calibration errors due to the non perfect synchronization of the sensors.

A Distributed Calibration Algorithm for Color and Range Camera Networks 427

Fig. 4 Screenshots acquired during the calibration procedure.Top-left As soon as one sensor detects
the checkerboard pattern, it becomes part of the tf tree and its pose is published. Top-right Then,
every sensor that sees the checkerboard is added to the tree. Bottom-left As new detections arrive,
the pose of the sensors are refined with the optimization algorithm, the checkerboard visualized is
the last one. Bottom-right When the program is asked to estimate a plane, its pose is published and
can be visualized using Rviz

We can monitor the whole calibration procedure via Rviz (Fig. 4).
It is sufficient to set the world frame as fixed frame, add the tf view and amarker

view on topic/Lyra/master_node/markers and every time the checkerboard
is detected or a sensor pose is estimated we will see it on the screen. In Fig. 4
some screenshots acquired during the calibration are shown. Before finishing the
calibration, we lay the checkerboard on the floor and publish:

rostopic pub /Lyra/master_node/action std_msgs/String "
begin plane" -1

From now on, the calibration algorithm assumes that all the checkerboards are lying
on the same plane (see Sect. 4.3). We perform some acquisitions with the checker-
board lying on the floor and then publish an end plane instruction:

rostopic pub /Lyra/master_node/action std_msgs/String "
end plane" -1

Finally, to get the results of the calibration, we use the service get_results
offered by the master node. On a terminal we run:

rosservice call /Lyra/master_node/get_results

and get the estimated poses, similar to the ones below:

poses:
- frame_id: ’/world ’

child_frame_id: ’/Gemini/camera ’
pose:

position: {x: 0.0, y: 0.0, z: 0.0}

428 F. Basso et al.

orientation: {x: 0.0, y: 0.0, z: 0.0, w: 1.0}
- frame_id: ’/world ’

child_frame_id: ’/Phoenix/camera ’
pose:

position: {x: 1.12064 , y: 0.321081 , z: 0.565662}
orientation: {x: 0.0471913 , y: -0.377825 , z:

-0.0340694 , w: 0.924046}

8 ROS Package

8.1 Architecture

The main purpose of the here-presented package is to allow the calibration of all
the sensors (for now cameras and Kinect-like depth sensors) within a ROS network,
no matter where they are. That is, suppose to have a set of sensors distributed in
a PC network as in Fig. 1, the typical approach for the calibration procedure is to
develop a calibration node that grabs the data generated by all the sensors, elaborate
them and then estimate the sensors’ rigid displacement in the scene (Fig. 5). This
approach is clearly not scalable: more sensors means more bandwidth yet more
computational power needed. To overcome such problem, we propose a different,
distributed, architecture that allows us to both drastically reduce the bandwidth usage
and distribute the computational cost over the network. In fact, we separate the data
analysis from the calibration procedure. As depicted in Fig. 6, there are two sorts of
calibration nodes: device nodes and the master node. A device node is responsible
for elaborating the data provided by its device, it extracts the corners from every
image, creates a message and sends it to the master node that executes the calibration
procedure.

Fig. 5 Typical approach of network calibration algorithms. All the driver nodes are directly con-
nected to a central node that performs the computation. The bandwidth usage is high

A Distributed Calibration Algorithm for Color and Range Camera Networks 429

Fig. 6 Our approach to the network calibration procedure. The data provided by a device are
elaborated by a node on the same PC and only the necessary calibration features are sent to the
calibration node. Here, the thin lines that connect the master node with the device nodes mean that
the quantity of data on the network is limited, with respect to the quantity of the typical approach
(Fig. 5)

Remembering that ROS device drivers typically stream data at a defined frame-
rate, with the proposed architecture we are able to work in a request-reply way: it is
the master node that asks for new data when needed. In particular, since ROS service
calls are blocking, the communication relies on the actionlib stack.

8.2 Device Node

8.2.1 Node Parameters.

A device node is responsible for getting the data from a device and, upon request,
elaborate and send them to the master node. We first need to distinguish between the
word device and sensor. We define a device as an item that can be connected to a PC,
while a sensor, rather physical or virtual, is the item whose pose will be estimated
in the calibration procedure. For example, a Kinect is a device composed by three
different sensors: the RGB camera, the IR camera and a virtual depth sensor [7].

So, from a ROS perspective, a device node subscribes to the image and/or depth
topics of the device sensors and keeps listening to an action topic until a request
from the master node arrives. Then, the last images received are processed and the
extracted calibration features are packed into a message and sent back to the master.

To explain how to configure and run a device node, we suppose we have to create
a launch file for a Kinect v1. We first need to set the name of the device and its serial
in case two or more Kinects are launched on the same PC:

<?xml version="1.0"?>
<launch >

<arg name="device_name" default="kinect1" />
<arg name="device_serial" default="#1" />

430 F. Basso et al.

Then, to avoid conflicts between nodes launched from different PCs, we group every-
thing inside the namespace $ROS_PC_NAME:

<group ns="$(env ROS_PC_NAME)">

Now we include the launcher for the Kinect driver. The argument camera let us
define the namespace for all the topics published by the driver as well as the refer-
ence frames in the Kinect messages: here we add the _driver suffix just to avoid
confusion.

<include file="$(find openni_launch)/launch/openni.
launch">

<arg name="camera" value="$(arg device_name)
_driver" />

<arg name="device_id" value="$(arg device_serial)
" />

<arg name="publish_tf" value="false" />
</include >

The last nodeweneed to add is our device node. The packagemultisensor_cal-
ibration already provides the node as a binary called device_node. So, we
rename it to match our current device, paying attention that, for communication
reasons, the node name needs the suffix _node.

<node pkg="multisensor_calibration" type="
device_node"

name="$(arg device_name)_node" output="screen
">

We then define the Kinect sensors that we want to calibrate. They have to be defined
within the ~device namespace, in particular:

name sets the device name, only for logging purposes;
sensors defines the list of sensors to calibrate, it is divided into:

intensity the sensors that will be treated as pinhole cameras;
depth the sensors that will be treated as depth sensors;

< sensor >] sets, for each sensor defined in sensors:
frame_id its unique frame id;
error the error polynomial defined in (9), where [depth sensors only:

min_degree/max_degree the minimum and maximum degree of the
polynomial (in the example below σ(z) = c0 · z0 + c1 · z1 + c2 · z2);

coefficients the polynomial coefficients ci ;
transforms defines the known transforms between the sensors:

< sensor >] the child sensor;
parent the parent sensor, that is, the frame to which the transform is

defined;
translation the translation between the two sensors;
rotation the quaternion defining the rotation between the two sensors.

A Distributed Calibration Algorithm for Color and Range Camera Networks 431

<rosparam param="device" subst_value="true">
name: "$(arg device_name)"
sensors:

intensity: ["rgb"]
depth: ["depth"]

rgb:
frame_id: "/$(env ROS_PC_NAME)/$(arg

device_name)/rgb"
depth:

frame_id: "/$(env ROS_PC_NAME)/$(arg
device_name)/depth"

error:
min_degree: 0
max_degree: 2
coefficients: [0.0, 0.0, 0.0035]

transforms:
depth:

parent: "rgb"
translation: {x: -0.025, y: 0.0, z: 0.0}
rotation: {x: 0.0, y: 0.0, z: 0.0, w: 1.0}

</rosparam >

Finally, we have to connect the device node to the topics published by the driver.
We use the remapping feature of ROS to set the sensor nodes listen to the right
topics. Both for depth sensors and cameras, the default topics they listen to are of
the form ~/device/<sensor>/<topic type>, where <topic type> is
image for either images or depth images,camera_info for the camera calibration
parameters and cloud for the point clouds:

<remap from="~device/rgb/image"
to="$(arg device_name)_driver/rgb/

image_color"/>
<remap from="~device/rgb/camera_info"

to="$(arg device_name)_driver/rgb/
camera_info"/>

<remap from="~device/depth/cloud"
to="$(arg device_name)_driver/depth/points

" />
<remap from="~device/depth/camera_info"

to="$(arg device_name)_driver/depth/
camera_info" />

</node>
</group>

</launch >

432 F. Basso et al.

8.3 Master Node

8.3.1 Node Parameters.

Let’s take a look to the launch file for the master node to see the parameters it needs
to run. The launch file for the master node is simple:

<?xml version="1.0"?>
<launch >

<arg name="network_file" default="$(find
multisensor_calibration)/conf/network.yaml" />

<arg name="checkerboard_file " default="$(find
multisensor_calibration)/conf/checkerboard.yaml" /
>

<group ns="$(env ROS_PC_NAME)">
<node pkg="multisensor_calibration" type="

master_node"
name="master_node" output="screen">

<param name="network_file" value="$(arg
network_file)" />

<rosparam command="load" file="$(arg
checkerboard_file)" />

</node>
</group>

</launch >

Firstly, we need to set the file containing the network description (network_file
parameter) to let the master node know which are the sensors that are being calibrat-
ing. The network configuration is expected to be in a yaml file of the form:

Network configuration
network:

- pc: "<ROS_PC_NAME_1 >"
devices: ["<DEVICE_NAME_1 >", "<DEVICE_NAME_2 >"]

- ...
- pc: "<ROS_PC_NAME_N >"

devices: ["<DEVICE_NAME_1 >", ..., "<DEVICE_NAME_N >"
]

typically stored in the multisensor_calibration/conf directory of the
master PC. Here, the pc parameters must match the names previously given to
the PCs via the export command, while the strings in the devices array are the
device names. They have to match the first part of a device node, that is, all but the
suffix _node. Note that each device node is expected to be reachable in the
network using the PC name as a namespace. As an example, the device node
camera that runs in the PC named Gemini, is expected to be a node called
/Gemini/camera_node.

The second parameter is checkerboard_file. It must be a yaml file and
contain the checkerboard pattern specifications:

A Distributed Calibration Algorithm for Color and Range Camera Networks 433

Fig. 7 The reference frame of a checkerboard is located internally with respect to one of the
black corner-cells (if present), according to the checkerboard size, that is, with the x-axis along the
columns and the y-axis along the rows. Left The reference frame of a 5 × 6 checkerboard has only
one possible location. Right Here, due to a rotational symmetry, the reference frame of the 5 × 7
checkerboard can be positioned in two different locations, leading to pose estimation problems

Checkerboard configuration
checkerboard:

cols: <internal corners along the x dimension >
rows: <internal corners along the y dimension >
cell_width: <cell size along the x dimension in

meters >
cell_height: <cell size along the y dimension in

meters >

Because of symmetry (see Fig. 7), it is mandatory that one of cols and rows is
odd and the other even, no matter which. Otherwise two different sensors can assign
to the same checkerboard two different reference frames, invalidating the calibration
procedure. In fact, according to our experience, the OpenCV corner detector starts
enumerating the corners from one of the black corner-cells (if present), in row-major
order. We rely on this order to set the reference frame of the checkerboard: the x-axis
along the columns and the y-axis along the rows.

8.3.2 Services and Messages.

As already shown in Sect. 7, it is possible to interact with the master node with
messages and services. The most important topic the node is listening on is
~acquisition. Publishing a message on such topic would result in a data acqui-
sition. Note that, the message queue on the node is set to 1, so even if the node
receives multiple requests while still elaborating previous data, only the last one will
be taken into account. Note also that rostopic pub permits to publish messages
at a defined rate with the flag –r <rate>. Users must pay attention to use such
feature since the sensors may be not perfectly synchronized. In fact, if the data are
acquired while the pattern is still moving, the resulting calibration might be wrong.

The node is also listening to an action topic named ~action. It is used to send
special calibration commands in form of strings. For now the only two commands

434 F. Basso et al.

accepted are begin plane and end plane. The former command tells the cal-
ibration algorithm that, from that instant on, the checkerboards are all lying on the
same plane (see Sect. 4.3). The latter, instead, makes the algorithm go back to its
standard behavior.

Finally, to get the results of the calibration, the master node offers a service called
~get_results. It can be invoked with an empty request and returns a vector of
messages of type calibration_msgs/ObjectPose. In the future we envision
to improve this service with some options like:

• ask for the poses of checkerboards and/or planes;
• set a fixed transform between the world and a sensor in the request, the response
will be filled with the poses transformed according to it.

9 Conclusions

We have presented a ROS package that lets users calibrate networks of sensors com-
posed by cameras and Kinect-like depth sensors. A checkerboard pattern is used
to estimate the relative poses between sensors and everything is optimized with a
state-of-the-art non-linear least squares solver [1]. The choice of using ROS as the
developing framework gives our implementation lots of advantages with respect to,
for example,Matlab-based toolboxes [21]. Themain advantage is theway the sensors
and their synchronization are managed. On the other side, one of the main drawbacks
of the presented approach is that it highly depends on the intrinsic parameters pro-
vided. If they are not well estimated, the calibration results will not be accurate. In
the future we can think of adding the possibility to refine also the intrinsic parameters
of cameras while estimating their pose.

From the implementation point of view, we think that in the future, it will be
really useful to provide a tool to assess the quality of the obtained calibration, in
order to let users verify if the obtained results are reliable or not. Another important
improvement will be at code level. In our idea, the package will be part of a cali-
bration ecosystem for ROS, where contributors can implement their own calibration
algorithms or contribute to the existing ones by adding, for example, new sensors.
Hence, it will be necessary to define some standard interfaces between nodes and
classes to lower the entry barrier for new developers and let the ecosystem grow.

Acknowledgments The authors would like to thank Prof. Mohamed Chetouani, Salvatore Maria
Anzalone and Stéphane Michelet from Université Pierre-et-Marie-Curie (UPMC) and the Institut
des Systèmes Intelligents et de Robotique (ISIR) for their support and help.
The authors would also like to thank Jeff Burke, Alexander Horn and Randy Illum from University
of California, Los Angeles (UCLA) for the extensive collaboration in designing and testing the
calibration methods during the development of OpenPTrack [15]. OpenPTrack has been sponsored
by UCLA REMAP and Open Perception. Key collaborators include the University of Padova and
Electroland. Portions of the work have been supported by the National Science Foundation (IIS-
1323767).

A Distributed Calibration Algorithm for Color and Range Camera Networks 435

References

1. S. Agarwal, K. Mierle et al., Ceres solver, http://ceres-solver.org
2. E. Auvinet, J. Meunier, F. Multon, Multiple depth cameras calibration and body volume recon-

struction for gait analysis, in 11th International Conference on Information Science, Signal
Processing and their Applications (ISSPA), pp. 478–483, July 2012

3. F. Basso, R. Levorato, E. Menegatti, Online calibration for networks of cameras and depth
sensors, in Proceedings of the 12th Workshop on Non-classical Cameras, Camera Networks
and Omnidirectional Vision (OMNIVIS), Hong Kong, China, June 2014

4. F. Basso, M. Munaro, S. Michieletto, E. Menegatti, Fast and robust multi-people tracking from
RGB-D data for a mobile robot, in Proceedings of the 12th Intelligent Autonomous Systems
(IAS) Conference. vol. 193, Jeju Island, Korea, pp. 265–276, June 2012

5. F. Basso, A. Pretto, E. Menegatti, Unsupervised intrinsic and extrinsic calibration of a camera-
depth sensor couple, IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, pp. 6244–6249, June 2014

6. G. Bradski, The OpenCV library. Dr. Dobb’s Journal of Software Tools (2000)
7. A. Canessa, M. Chessa, A. Gibaldi, S.P. Sabatini, F. Solari, Calibrated depth and color cameras

for accurate 3D interaction in a stereoscopic augmented reality environment. J. Vis. Commun.
Image Representation 25(1), 227–237 (2014)

8. M. Di Cicco, L. Iocchi, Grisetti, G.: Non-parametric calibration for depth sensors, in Pro-
ceedings of the 13th International Conference on Intelligent Autonomous Systems, (IAS-13),
Padova, Italy (2014)

9. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395
(1981)

10. P. Furgale, J. Rehder, R. Siegwart, Unified temporal and spatial calibration for multi-sensor
systems, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
1280–1286, Nov 2013

11. G. Guennebaud, B. Jacob et al., Eigen (2010), http://eigen.tuxfamily.org
12. Q. Le, A. Ng, Joint calibration of multiple sensors. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 3651–3658, Oct 2009
13. R. Levorato, E. Pagello, Probabilistic 2D acoustic source localization using direction of arrivals

in robot sensor networks. In: D. Brugali, J.F. Broenink, T. Kroeger, B.A. MacDonald (eds.)
Simulation, Modeling, and Programming for Autonomous Robots. Lecture Notes in Computer
Science, vol. 8810, (Springer International Publishing, 2014), pp. 474–485

14. M. Munaro, F. Basso, E. Menegatti, Tracking people within groups with RGB-D data, in Pro-
ceedings of the International Conference on Intelligent Robots and Systems (IROS), Vilamoura,
Portugal, pp. 2101–2107, Oct 2012

15. M. Munaro, A. Horn, R. Illum, J. Burke, R.B. Rusu, OpenPTrack: People tracking for hetero-
geneous networks of color-depth cameras, in IAS-13 Workshop Proceedings: 1st Intl Workshop
on 3D Robot Perception with Point Cloud Library, Padova, Italy, pp. 235–247, July 2014

16. J. Smisek, M. Jancosek, T. Pajdla, 3D with kinect, in IEEE International Conference on Com-
puter Vision Workshops (ICCV Workshops), ICCVW 2011, pp. 1154–1160 (2011)

17. E. So, F. Basso, E. Menegatti, Calibration of a rotating 2D laser range finder using point-plane
constraints. J. Autom. Mob. Robot. Intell Syst. 7(2), 30–38 (2013)

18. A.Teichman, S.Miller, S.Thrun,Unsupervised intrinsic calibrationof depth sensors viaSLAM,
in Proceedings of Robotics: Science and Systems, Berlin, Germany, June 2013

19. B. Triggs, P.F. McLauchlan, R.I. Hartley, A.W. Fitzgibbon, Bundle adjustment-a modern syn-
thesis, in Vision Algorithms: Theory and Practice, vol. 1883, Lecture Notes in Computer
Science, ed. by B. Triggs, A. Zisserman, R. Szeliski (Springer, Berlin Heidelberg, 2000), pp.
298–372

20. R. Unnikrishnan, M. Hebert, Fast extrinsic calibration of a laser rangefinder to a camera,
Technical report, Carnegie Mellon University (2005)

http://ceres-solver.org
http://eigen.tuxfamily.org

436 F. Basso et al.

21. M.Warren, D.McKinnon, B. Upcroft, Online calibration of stereo rigs for long-term autonomy,
in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany
(2013)

22. C. Zhang, Z. Zhang,Calibration between depth and color sensors for commodity depth cameras,
in IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2011)

Acoustic Source Localization
for Robotics Networks

Riccardo Levorato and Enrico Pagello

Abstract This chapter presents a technical research contribution in the audio for
robotics fieldwhereROSwas used for validating the results.More specifically it deals
with 2D Audio Localization using only the Directions of Arrival (DOAs) of a fixed
acoustic source coming from an audio sensor network and proposes a method for
estimating the position of the acoustic source using a Gaussian Probability over DOA
approach (GP-DOA). This method was thought for robotics purposes and introduces
a new perspective of the audio-video synergy using video sensor localization in
the environment for extrinsic audio sensor calibration. Test results using Microsoft
Kinects as DOA-sensors mounted on robots within the ROS framework, show that
the algorithm is robust and modular and prove that the approach can be easily used
for robotics applications. The second part is dedicated to the detailed description of
the implemented ROS package.

Keywords Acoustic Source Localization (ASL) · Direction Of Arrival (DOA) ·
Audio-sensor network ·Robot audition ·Microsoft kinect ·Robot Operating System
(ROS)

1 Introduction

Audio for robotics is a field that is not well explored yet, as vision for robotics is.
Probably it happens because acoustic skills are considered less important than visual
ones. It is a matter of fact that the visible light frequency range is very important for
living beings (e.g. for navigation purposes or object recognition) but it cannot cover
some particular events which can be detected analysing only the acoustic signals

R. Levorato (B) · E. Pagello
Department of Information Engineering (DEI), IAS-Lab, University of Padova,
via Ognissanti 72, 35131 Padova, Italy
e-mail: riccardo.levorato@dei.unipd.it
URL: http://robotics.dei.unipd.it

E. Pagello
e-mail: enrico.pagello@dei.unipd.it

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_17

437

438 R. Levorato and E. Pagello

(e.g. horn machines, exploding bombs or barking dogs). Considering only audio
skills, we can retrieve also other important information about the environment (e.g.
classification of sounds, room shape construction using echoes and reflections, direc-
tion of arrival (DOA) of the sound source); but, on the other hand, this information
is not always enough to localize properly the acoustic source position in the envi-
ronment. For example, the estimation of the distance of an acoustic source requires
further skills that take into consideration also sound reflections and echoes (i.e. bats
echolocation) [4]. Hence, there is the need for fusing data coming from different
sensors in order to have more information of the surroundings. In our robotics field
we imagine that a robot should find itself in a map (SLAM), hear some sounds and
fuse these data to find what and where the acoustic source is. Moreover, if we deal
with connected robots, we can in addition share the data of each robot with the oth-
ers in order to have a better understanding of the environment by the robots within
the network. To avoid bottleneck problems sharing audio-video data among robots,
we propose a method that shares only the pose of the robot and the DOAs of the
acoustic sources heard. So, from the considerations above and in conjunction with
the spreading use of ROS, we propose a new way of thinking the audio for robotics:
to use video information for robot audio localization.

2 State of the Art

The current state of art offers lots of works that refer to Acoustic Source Localization
(ASL) (i.e. for a detailed and complete overview look up the Ph.D. Thesis of Pertilä
[10] and Salvati [12]). The majority of these works focuses on various techniques
that use the audio signals coming from all the microphones and estimate the position
of the sources fusing all these data. In a robotic environment, this approach cannot
be applied because collecting all the audio signals in a unique master node for the
calculations can cause a network block; furthermore, synchronizing all audio signals
in time [14] could be very challenging.

In the acoustic field, a DOA sensor consists specifically of an array of at least two
microphones. Common tested acoustic sources are human speakers [9], gun shots
and human screams [13], clapping hands and so on. There are various techniques
for calculating the DOA of an acoustic source such as Angle of Arrival (AoA), Time
Difference of Arrival (TDOA), Frequency Difference of Arrival (FDOA), and other
similar techniques [10, 12].

Recently there was an increasing use of sensors networks, that permit to share
audio and video data in a cooperative way, achieving more precise knowledge of the
environment. In an Audio Sensor Network (ASN), by knowing the position and pose
of eachDOA sensor, it is possible to better estimate the position of the acoustic source
by sharing and synchronizing the DOA estimations [1, 3, 9]. Following this idea,
Hawkes et al. [5] proposed an analytic Weighted Least Square method (WLS-DOA)
that minimizes the distance of the estimated point to the estimated DOA line and
achieves good results in 3D space. In his Ph.D. thesis, Pertilä [10] also focused on

Acoustic Source Localization for Robotics Networks 439

s1

s2

s5

s3

s4

x

y

world

Real Source Position

GP-DOA Solution

WLS-DOA Solution

RWLS-DOA Solution

Legend:

Fig. 1 Example of failure of the Robust DOA-Based Localization proposed in [10]

2D DOA-Based Localization and introduced a new approach that tried to eliminate
the sensors with bad acoustic DOA estimations starting from theWLS-DOAmethod
(Robust WLS-DOA (RWLS-DOA)) [5].

Although it was shown that this method performed better than WLS-DOA in
outlier situations, we found that it is error prone, because in some situations it can
discard the DOA sensors that are better than others. A proof of the failure of this
method can be easily given if we consider the example in Fig. 1: we can see that
the Robust WLS-DOA solution (in magenta) is very far from the real one (in blue).
On the other hand the WLS-DOA solution (in green) and our GP-DOA approach (in
red) solutions are closer to the real solution. This is due to the fact that the DOA
estimations of sensors s1, s2 and s3 intersect very close to each other (near the R-DOA
solution), not considering that only sensors s1 and s5 are the only good estimations
and the others (s2, s3 and s4) are outliers. So, it is not advisable to discard any of the
sensors because the real position of the source is unknown and it is not possible to
detect which DOA sensors are outliers if they have the same probability error to be
outliers. In addition, the simple WLS-DOA approach can also lead to errors because
a WLS-DOA estimation is considered as a line without a precise direction. As an
example, in Fig. 1, even if sensor s2 DOA estimation is pointing towards south-east,
the WLS-DOA approach considers also the north-west direction (RWLS-DOA fails
also for this reason).

In our approach, proposed for the first time in [7], we use all the DOA sensors and
propose a new way of thinking DOAs that is based on the probability error over the
angle of each DOA estimation. The difference with all the WLS-DOA approaches is
that our method minimizes the angle (instead of the distance) of the estimated point

440 R. Levorato and E. Pagello

Fig. 2 Acoustic Source
Localization Problem in an
indoor environment. In the
example there are a fixed
Microsoft Kinect, a Pioneer
3-AT equipped with a
Microsoft Kinect and a NAO
robot localizing the position
of an alarm clock

to the estimated DOA. This new approach is not affected by the angle ambiguity
problems of the WLS-DOA approaches. A further contribute is the new concept
of Audio-Video data fusion. More specifically, Audio Localization will be strictly
correlated to Video Calibration: working with mobile robots it would be very hard
to calibrate the relative position of all microphones of all moving robots with non-
invasive techniques (i.e. using an acoustic high-frequency periodic signal as audio
reference) at each time instant. For this reason, using SLAM techniques and knowing
the relative position of the microphones with respect to the visual sensors, will help
robots to share also audio information.

In a Mobile Robot Sensor Network (Fig. 2), to avoid bottleneck problems shar-
ing audio-video data among robots, we proposed in [7] a method that shares only
the pose of the robot and the DOAs of the acoustic sources heard introducing the
GP-DOA approach that uses a probabilistic model of the sensor for finding the
acoustic source position and outperforms the WLS-DOA method. Starting from the
GP-DOAapproach,we analysed in [6] also a faster algorithm for calculating themax-
imum probability point using an adapted binary search, achieving the same result in
Θ(log2 n) time instead of Θ(n2).

The chapter is structured as follows: Sect. 3will summarize theDOA-BasedLocal-
ization Problem and the Sect. 4 will explain the GP-DOA approach. Sect. 5 will show
the proposed fast algorithm both theoretically and practically. The two Sections of
Simulation and Results will follow, ending with a detailed explanation of the ROS
package we implemented and the final conclusions.

3 DOA-Based Localization Problem

This problem is well described in [5] and [10]. Let S be a set of DOA sensors, with
|S| = Ns ≥ 1. In the audio field, A DOA sensor s ∈ S consists in a microphone array
able to compute and estimate the DOA of a generic acoustic source r with respect
to the intrinsic reference system of s. Let sp

k = [sx
k, sy

k]T ∈ R
2 and so

k ∈ [−π, π] rep-
resent respectively the two-dimensional position and orientation of the kth sensor,

Acoustic Source Localization for Robotics Networks 441

r

x

y

...

s1

s2

sk

s
1

2
k

Sensor Reference
System:

world

Legend

Estimated DOA:

Theoretical DOA:

Source position:

r
Sensor pose:

s

so

y

x

Fig. 3 DOA—Based Localization Problem

k ∈ [1, Ns], with respect to the Cartesian plane reference systemworld. A DOA esti-
mation of sk is the angle αk ∈ [−π, π]. The problem consists in finding the closest
estimation of the acoustic source position r = [rx, ry]T ∈ R

2 assuming that all sp
k and

so
k are known and all αk are estimated using a DOA estimation algorithm (Fig. 3).
The problem is very complex and has a lot of variables. From now on, in order deal

with a simplified version of the problem, the following assumptions are considered:

1. all sensors are connected together within a network and can share their pose and
their DOA estimations that can both be error-prone;

2. all DOA estimations are synchronized;
3. there is only one fixed (not moving) acoustic source at time;
4. the precision of all αk estimations depends only on the accuracy of each DOA

sensor and on the DOA estimation methods used;
5. echoes and sound reflection effects are considered to be already managed by the

DOA estimation algorithm.

Assumptions 1 and 2 are provided by the ROS framework by default. Assumption
3 limits the problem to the single source localization problem and points 4 and 5 leave
the precision problems to the DOA estimation methods of the sensors.

The problem solution given by Hawkes et al. [5] is calculated with the following
one-shot formula:

r̂ =
[(

Ns∑

k=1

wk

)

I − AWAT

]−1

Bw, (1)

442 R. Levorato and E. Pagello

where w = [w1, w2, . . . , wNs]T are the weights, W = diag(w), I is the identity
matrix, A = [α1, α2, . . . , αNs]T and
B = [

(I − α1α
T
1)s1, (I − α2α

T
2)s2, . . . , (I − αNsα

T
Ns

)sNs

]

.

4 Gaussian Probability over DOA Approach

The Gaussian Probability over DOA approach was first introduced in [7]. A brief
explanation of the main concept is in the following. Each real DOA estimation αk

has an intrinsic error that depends mainly on the accuracy of the kth sensor. This
error can be modelled as a Gaussian probability error in the angle domain with zero
mean and variance σk using only values in the range φ ∈ [−π, π]. So the angular
probability sensor model Mk is defined as follows:

Mk ∼ N (0, σk)(−π,π] = 1

σk

√
2π

e
− φ2

2σ2k , φ ∈ [−π, π] (2)

At this step it is needed a change of domain from the angular domain to the
Cartesian coordinate system G = (n × n) ∈ Z

2. G is as a spatial 2D grid with a fixed
spatial range (m) and a fixed precision parameter prec (m) such that n = range/prec.
For each generic point q = [qx, qy]T ∈ G it is calculated the angle β

q
k that considers

sp
k as vertex and it is included between a first line that passes through sp

k and q and a
second line given by the axis sy

k (Fig. 4):

β
q
k = atan2(qy − sy

k, qx − sx
k) − so

k , q ∈ G ∧ k ∈ [1, Ns] (3)

The probability Gk(q) for each point q in the grid G is given by evaluating each
angle β

q
k in the angular probability sensor model Mk with respect to the DOA

estimation αk:

Gk(q) = Mk(β
q
k − αk) , q ∈ G ∧ k ∈ [1, Ns] (4)

Fig. 4 Representation of all
considered angles in a DOA
sensor

x

sx

s y

sp

so
q

p

y

r

Acoustic Source Localization for Robotics Networks 443

(a) (b)

Fig. 5 Probability G over G with one and four DOA sensors a Gk : Probability sensor model Mk
of a DOA sensor in the 2D space. b Probability G over G with four DOA sensors

All results of operations among angles in Eqs. (3) and (4) take a value in the range
(−π, π). The graphical representation of a single DOA sensor estimation probability
over the Cartesian plane can be seen in Fig. 5a where red and blue regions have higher
and lower likelihoods respectively.

At this point all the Gk(q) are multiplied point-wise obtaining the multiplication
of all the probabilities of all sensors G(q) in the 2D space domain (Fig. 5b):

G(q) =
Ns
∏

k=1

Gk(q) , q ∈ G (5)

Finally, the point r̂ ∈ Gwith themaximum value of G is considered the estimation
of the solution with the proposed Gaussian Probability over DOA approach:

r̂ = argmax
G

G (6)

In Eq. (5) it is used the product instead of the sum for the fact that if the likeli-
hoods from different DOA sensors are independent, the intersection of sets equals
their product, as stated in [10]. It is worth noting that even though the probability
axiom P(Ω) = 1 is no longer satisfied in Eq. (2), the omission of this axiom will not
compromise the correctness of the procedure. Dealing with multiplication (and not
with sums) of probabilities in Eq. (5), all unused values can be omitted because the
multiplication of numbers ∈ [0, 1] still takes a value ∈ [0, 1]. On the other hand it is
important to set an a priori experimental validated variances σk in order to represent
correctly each angular probability sensor model Mk .

444 R. Levorato and E. Pagello

5 Algorithm Analysis and Optimization

The algorithm showed in Sect. 4 has clearly a computational complexity of Θ(n2)

because it has to calculate all the probabilities in G = (n × n) ∈ Z
2 in order to find

the maximum value in a two-dimensional matrix. In the following we show a smarter
and faster approach proposed in [6] for searching for the maximum value in G which
takes into consideration the shape of G.

Observing the shapes of the probability density function G (e.g. Fig. 5b) it seems
that G is a Gaussian probability function. Unfortunately, each Gk is no longer a
Gaussian likeMk although Gk(q) = Mk(β

q
k − αk). The reason is due to the formula

for calculating β
q
k that translates the values from the Cartesian domain to the angle

domain. This change of domain causes the loss of the property for Gk of being
a Gaussian probability function, preventing from using the property that states that
multiplication of Gaussians is still a Gaussian [11]. On the other hand, in themajority
of problems, it can be noted that Gk is unimodal, hence it has only one absolute
maximum:

Definition 1 A function f (x) is an unimodal function if for some value m, it is
monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In
that case, the maximum value of f (x) is f (m) and there are no other local maxima.

This property occurs when the DOA estimations are quite accurate. But if we
are not under this specific condition it can happen that the maximum is no longer
absolute. Fortunately, tests with increasing error over the DOA estimations will show
that this unpleasant event happens very rarely and in most of that cases the solution
provided by the new search algorithm is still good (see Sect. 6.1.2). Before explaining
the details of this algorithm we suggest a funny riddle:

The Top of the Unimodal Mountain

Suppose you are a special climber that wants to reach the top of an unimodal mountain. You
always know which is your geographical position and altitude but you don’t know where is
the top because there is too much fog. Fortunately you can move safely to any geographical
position youwantwith your special intelligent and autonomous jet-pack.Which is themethod
that lets you reach the top of the unimodal mountain with the smallest number of use of your
special jet-pack?

The solution of this riddle is not very immediate so let’s first concentrate on
a single dimension of a mountain n meters long. If we start from the foot of the
mountain (e.g. from the left) and “walk” towards the climb (on the right), we could
find the top inΘ(n) time. In a smarter way we can take advantage of the unimodality
of the mountain and of our special jet-pack by applying a special Unimodal Binary
Search (UBS) that takes into consideration also the slope of the mountain: for each
point we explore using the binary search, we will explore also the adjacent point
(i.e. the one on the left) and measure their respective altitudes in order to decide in
which direction to jump, in a binary search way. This method will reasonably take
Θ(log2 n) time.

Acoustic Source Localization for Robotics Networks 445

Fig. 6 Example of a
solution of the Top of the
Unimodal Mountain riddle
using the Unimodal Binary
Search (UBS) approach

Before going on, let’s see now a complete simple example in one dimension:
the unimodal mountain in Fig. 6 is long n = 64 = 2log2n where l = log2n = 6 is the
number of levels. Level l = 6: first we check the altitude of position 32 (2l−1) and its
adjacent on the left 31 and we see that the top should be on the left. Level l = 5: now
we jump to the left to the position 16 (32 − 2l−1) and check also position 15. We see
that the altitude in 16 is higher than the one in 15 hence we jump right to position
24 (16 + 8) (Level l = 4). When we check position 23 we see that it has the same
altitude than position 24. We now start walking on the left till we find a different
altitude. Since in position 20 we find a lower altitude, we jump right to position 28
(24 + 4) (Level l = 3). Note that we can “walk” on the left only for 2l−1 position
because the other left position are already been checked. At Level l = 2 we see that
we have to jump to position 30 (28 + 2) where we have to check positions 29 and 31
because we are at the end of the algorithm. Finally the above positions give minor
altitudes so we can state that the top of the mountain is in position 30.

For a two-dimensional unimodal mountain we can use a two-level Unimodal
Binary Search: the first level is a UBS over the rows; for each visited row we apply
another UBS (second level) that finds the position of the maximum of that row in a
UBS way. With this approach we reach the top of the mountain in Θ((log2 n)2) =
Θ(log22 n) time instead of the first naivemethod that tookΘ(n2): a very big amount of
time saved!Working with probabilities and floating-point numbers it can happen that
two adjacent points have the same probability. In this case the above algorithm cannot
decide which way to go. A solution of this problem is, remembering the mountain, to
“walk” always in the same direction until we find a different altitude. So if we have
plain areas that are all m < n long the overall complexity of the algorithm isΘ((m +
log2 n)2) = Θ(m2 + log22 n + m · log2 n). Since we found that in the experimental
tests m � n, the computational time is still Θ(log22 n). Furthermore, if we want to
deal with 3D sound localization, this approach could be even more advantageous
because it would give a solution in Θ(log32 n) time instead of Θ(n3).

446 R. Levorato and E. Pagello

6 Simulation

Simulation was an helpful tool to compare the localization performances of our
approach to the traditional Weighted Least Square method (WLS-DOA) [5]. The
simulation scenarios consisted in groups of Ns DOA sensors in a virtual room G.
At each iteration, all sensors positions and orientations were positioned randomly
in G. All tests had only one acoustic source at time positioned randomly in G. For
all simulations it has been assumed that all sensors were similar, so they had the
same probability error over the DOA estimation and hence same σk_sim. So each
DOA estimation was modified from the real one, for simulation purposes, using the
probability model Mk with the fixed σk_sim for all k. The simulation was repeated
tsim times for each group of sensors. The cardinality of the sensor group was varied
in the range [3, Ns_max]. The case with Ns = 2 was not considered for the reason that
the solution is the trivial intersection of the only two existing DOAs. Simulation code
was implemented in MATLAB. The simulations done were four and are listed here
in chronological order, each encouraging the further inspection of the next one:

1. Simulation for testing the accuracy and precision of the basic proposed algorithm;
2. Simulation for testing the accuracy and precision of the faster proposed algorithm;
3. Simulation for testing the accuracy and precision of the faster proposed algorithm

augmenting only the error over the DOA estimations;
4. Simulation for testing the accuracy and precision of the faster proposed algorithm

augmenting only the error over the position of the DOA sensors.

The localization performance metric used is the Distance Error (DE) that is two-
dimensional distance between the estimated source and the real source positions in
meters. The validation metrics calculated were the mean and variance values of all
DEs.

For each simulation type we used these fixed parameters: range = 10 (m), σk_sim

= 0.1, Ns_max = 20, tsim = 10,000. Conversely, Table1 summarizes all the choices
of the parameters for each simulation. [x : y : z] means that the parameter is varied
from x (included) to z (included) with a step of y.

Table 1 Simulation parameters

Simulation 1 2 3 4

GP-DOA basic prec (m) 0.001 0.01

GP-DOA Fast 1 prec (m) 0.01

GP-DOA Fast 2 prec (m) 0.0001 0.0001 0.0001

eαk (degrees) 5 5 [5:5:50] 5

esk (m) 0 0 0 [0:0.1:1]

Acoustic Source Localization for Robotics Networks 447

6.1 Simulation Results

1. GP-DOA versus WLS-DOA
In Fig. 9awe see that GP-DOAperforms better inmean thanWLS-DOAapproach
and the error diminishes as the number of sensors grows in the environment. On
the other hand, the WLS-DOA variance performs better than GP-DOA variance
(Fig. 9b) that means that GP-DOA has an higher accuracy but lower precision
with respect to WLS-DOA.

2. Slow versus Fast
In Fig. 9c, d we can see the results of the mean and the variance of the first simula-
tion test. Looking first at the mean in Fig. 9c, we can see that both GP-DOA Fast
approaches are better than the WLS-DOA method. Although having the same
precision of the grid of the GP-DOA Basic, GP-DOA Fast 1 is less precise and
less accurate, as we can see also looking at the variance of Fig. 9d. Augmenting
the precision of the grid to 0.0001m it allows to reach practically the same results
obtainedwith the GP-DOABasicmethod both inmean and in variance withmuch
less time. The difference of the computational time taken by both algorithms can
be computed as follows:

n2
GP−DOA_Basic = (range/precGP−DOA_Basic)

2 = 106;

n2
GP−DOA_Fast_2 = range/prec2GP−DOA_Fast_2 ≈ 276.

3. DOA Angle Error
Comparing the results of the approaches with different maximum errors of the
angle of the DOA sensors reveals that GP-DOA Fast 2 always outperforms the
WLS-DOA1 (Fig. 9e). Moreover the source estimation error seems to be linearly
dependent on the angle error. On the other hand, the number of the DOA sensors
maintains its inverse proportionality with respect of the source estimation error.

4. DOA Sensor Position Error
The results varying the accuracy of the DOA sensors reported in Fig. 9f show
that GP-DOA Basic and GP-DOA Fast 2 behave similarly both in mean and in
variance1. Comparing these data with the WLS-DOA approach it can be easily
noted that WLS-DOA starts to outperform the GP-DOA approaches when the
estimation of the position of the sensors in the map has a maximum error of 0.4–
0.5 (m). This threshold can be used in a real environment in order to select the
approach to be used for ASL purposes. Since we are dealing with rooms with a
range = 10 (m), a robot position error of 0.5 (m) can be reasonably considered
as borderline for actual SLAM algorithms.

1The variance chart is omitted because resembles the one of the mean.

448 R. Levorato and E. Pagello

A

B

D
C

RGB-Camera

Center
Cutting Plane

K
RGB

K
C

Microphones
Kc

S

(a) (b)

Fig. 7 Simulation results of GP-DOA versus WLS-DOA a Kinect sensors: Microphones (A-D)
and RGB-camera positions in 3D. b Example of limitation of the Kinect DOA sensor. S is the right
available source position, the red crossed position is the wrong available position

Table 2 Kinect sensors—Microphones (A–D) and RGB-camera—positions over x axis

Mic A (m) RGB sensor (m) Center (m) Mic B (m) Mic C (m) Mic D (m)

−0.1150 −0.0140 0 0.0350 0.0750 0.1150

7 Real Tests

We tested the algorithms in a small real environment with two experiments. We
always used three Microsoft Kinect2 as DOA-sensors. Microsoft Kinect has one
RGB-camera, a 3Ddepth sensor and fourmicrophones positioned as shown inFig. 7.3

Each DOA estimation came from HARK software4 implemented in a ROS package
with an error of ±0.0873 (rad) = 5◦ [8]. For the sensor calibration, we used the
ROS multisensor_calibration software5 [2] developed in our laboratory that helped
us to easily calibrate and find the extrinsic parameters among Kinect RGB-cameras.
Starting from this calibration, we translated each RGB-camera reference point to the
reference point of the DOA estimation given by HARK with respect to the reference
systemworld. The reference point of the DOA estimation given by HARK is exactly
the center point over the x axis of the Kinect as shown in Table2.

For the reason that the four microphones of the Kinect are all positioned on its
Kx

RGB axis (see Fig. 7a and Table2), a DOA estimator that analyses the four audio
signals can mathematically give only the rotation angle (azimuth) of the plane with
the normal perpendicular to theKy

RGB axis (i.e. the normal can be thought as belonging
to the plane created by Kx

RGB and Kz
RGB axes), taking the Kz

RGB axis as zero axis and
KC as zero point for the angle estimation. For example, if the sound source is in front
of the device and its position belongs to the plane created with the point KC and the

2http://www.xbox.com/kinect.
3Note: all figures has the following well-known common notation for 3D axes: x axes are in red, y
axes are in green and z axes are in blue.
4http://winnie.kuis.kyoto-u.ac.jp/HARK.
5https://github.com/iaslab-unipd/multisensor_calibration.

http://www.xbox.com/kinect
http://winnie.kuis.kyoto-u.ac.jp/HARK
https://github.com/iaslab-unipd/multisensor_calibration

Acoustic Source Localization for Robotics Networks 449

Table 3 Sensors positions and orientations in real test

Sensor type k sx
k (m) sy

k (m) so
k (rad)

Kinect 1 −1.05296 0.897504 0

Kinect 2 0 0 0

Kinect 3 0.0314011 0.0343866 0

(a) (b)

Fig. 8 Real test results of GP-DOA versus WLS-DOA a Mean b Variance

two vectors Ky
RGB and Kz

RGB, then the estimated azimuth should be α = 0 degrees.
Note that in this way it is impossible to understand if the sound comes from the front
or behind the device (Fig. 7b), like in the well-known Cone of Confusion problem.

The first real test consisted in setting three Kinects in a line with the positions and
orientations shown in Table3 and clapping hands in different positions. A total of
twenty different positions with rx ∈ [−1, 1], ry ∈ [0.5, 2] and a step of 0.5 (m) are
visible in Fig. 10. Another simulation was done using the same parameters used in
the real test in order to compare the results. For the GP-DOA simulation we used
prec = 0.01 and tsim = 1000 and the mean of the number of samples collected for
each real test number is 35.

In the second test we used three Microsoft Kinect as DOA-sensors, with one of
them mounted over a Pioneer 3-AT with a laser scanner. The real test consisted in
having two fixed kinects and moving the Pioneer in the environment towards the
clapping hands position (Fig. 11). The experiment was repeated twenty times with
different starting positions of the robot.6

6Short video that shows one of the twenty tests made for the second test visible at url https://www.
youtube.com/watch?v=TVAQ-sFSpF8.

https://www.youtube.com/watch?v=TVAQ-sFSpF8
https://www.youtube.com/watch?v=TVAQ-sFSpF8

450 R. Levorato and E. Pagello

7.1 Real Tests Results

Looking to real tests results and its related simulation results shown in Fig. 8a, b
it is possible to see that GP-DOA performs always better than WLS-DOA both in
mean and in variance and that real results does not differ so much to the ones of its
relative simulation. It is evident that errors becomes bigger as the distance between
the acoustic source and the sensors grows.

Results for the second real test (Table4) showed that the algorithm performedwell
with a mean error of 0.37 (m). The error was mainly due to the SLAM algorithm that
didn’t estimate well the initial robot pose in the map.

8 ROS Package Documentation

This section will explain why we used ROS, how to correctly install the package and
how to use it for real experiments.

8.1 Why ROS?

The choice of using the Robot Operating System for developing all the features
explained in the chapter is due to the following factors:

• simplification of sensors signal connections in a network;
• easy data sharing;
• robust data synchronization;
• abstraction of the concept of device and no further driver implementation;
• modular approach using logical nodes;
• orientation towards the large community development and reuse.

Undoubtedly the ROS framework is a very useful tool because it avoids wasting
time with other issues that does not properly concern the field of robotics.

8.2 Package Download

Our package has been implemented in C++ and can be downloaded at the following
url: https://github.com/iaslab-unipd/DOA_acoustic_source_localization

It is written in order to be extended with other features like 3DAudio Localization
and Multiple Sources Localization. The basic version allows to estimate only one
acoustic source at time. A map of the environment can be linked if the user has a
fixed reference.

https://github.com/iaslab-unipd/DOA_acoustic_source_localization

Acoustic Source Localization for Robotics Networks 451

Ta
bl

e
4

D
is
ta
nc
e
er
ro
r
(c
m
)
fo
r
th
e
se
co
nd

re
al
te
st

Te
st
nu
m
be
r

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

D
is
ta
nc
e
er
ro
r
(c
m
)

52
58

25
15

24
31

68
57

42
39

31
11

57
24

36
63

42
12

46
19

452 R. Levorato and E. Pagello

Table 5 HARK Packages

Package name Version Package name Version

harkfd* 2.0.0.6582 harktool4-cui 2.1.0

harkfd-dev* 2.0.0.6582 julius-4.2.3-hark 2.1.0

harktool4* 2.0.0.5427 julius-4.2.3-hark-plugin 2.1.0

flowdesigner-0.9.1-hark 2.1.0 libhark-netapi 2.1.0

hark-designer 2.1.0 libharkio-dev 2.1.0

hark-kinect 1.2.0.4440 libharkio1 2.1.0

hark-music 2.1.0 libharkio2 2.1.0

hark-ros-hydro 2.0.0.6430 libharkio2-dev 2.1.0

8.3 Installation and Required Packages

The current version of the sound_localization ROS package works only under
Ubuntu 12.04 (Precise)with ROS Hydro Medusa. The reason is due to the HARK-
Kinect ROS package we used for the implementation that is compatible only with
the above configuration. After installing ROS environment the HARK-ROS package
should be installed first following the instruction from the HARK site7 and being
careful to select the Ubuntu 12.04 (Precise) part. Then it should be installed the
HARK-KINECT package from the instruction of the HARK site8 and tested with a
real Microsoft Kinect plugged in. The user must verify that the following packages
are installed with the correct version. Other versions of the following packages are
not tested. The packages signed with an * must be installed with a version that is
different from the current one and can be downloaded from the repository of our
package or from the HARK repository (Table5).9

For installing the DOA_acoustic_source_localization package do the following:

1. copy DOA_acoustic_source_localization package in your /rosbuild directory;
2. cd ./your_rosbuild_path/rosbuild
3. rosws set DOA_acoustic_source_localization and then answer “yes”
4. ∼ /.bashrc
5. roscd DOA_acoustic_source_localization
6. make

If there are no errors, the package is correctly installed.

7http://www.hark.jp/wiki.cgi?page=HARK+Installation+Instructions.
8http://www.hark.jp/wiki.cgi?page=HARK-KINECT+Installation+Instructions+%
28as+a+USB+recording+device%29.
9http://www.hark.jp/harkrepos/dists/precise/non-free.

http://www.hark.jp/wiki.cgi?page=HARK+Installation+Instructions
http://www.hark.jp/wiki.cgi?page=HARK-KINECT+Installation+Instructions+%28as+a+USB+recording+device%29
http://www.hark.jp/wiki.cgi?page=HARK-KINECT+Installation+Instructions+%28as+a+USB+recording+device%29
http://www.hark.jp/harkrepos/dists/precise/non-free

Acoustic Source Localization for Robotics Networks 453

8.4 Input Parameters

In this part are detailed all available input parameters:

• is_simulation: type boolean. If set to “true” it disables the subscription to the topic
containing the DOA estimations published by the HARK-Kinect ROS nodes. In
this mode the DOA estimation data can only be set in a file.

• data_simulation_file_path: type string. Absolute path of the file containing the
angles (in degrees) of the DOA estimations of the sensors. Each row contains an
angle and the value in the first row is assigned to the first sensor, the second row is
assigned to the second and so on. Example of file “/home/riccardo/workspace/ros/
angles_sim.txt” containing three angles:

45

90

-45

• n_acoustic_DOA_sensors: type int. Number of DOA sensors in the network.
• audio_signal_power_threshold: type double. Threshold that helps selecting the
acoustic sources with a minimum signal power. Common values goes from 25 to
40. A good choice is for example 35.

• algorithm_type: type int. There are three available algorithms:

1. GP-DOA fast
2. GP-DOA slow
3. WLS-DOA

WLS-DOA solution is always calculated (one shot formula) and it is used as
starting point for the GP-DOA research and refinement. If there are only two
DOAs in the 2D space—trivial problem—all the three algorithms give reasonably
the same solution, so it is calculated only the WLS-DOA one because it has a
one-shot-formula.

• precision_grid: type double. Precision in meters of the grid. Common values are
0.01 or 0.001 for GP-DOASlow and 0.001 or 0.0001. Note that the precision value
of the grid can be very small if it is used with the GP-DOA fast algorithm because
of its high reduction of the computational time with respect to the slower one (see
Sect. 5).

• range: type double. Exploration range in meters. Note that the center point of the
grid G is the WLS-DOA solution.

• tf_world_name: type string. Name of the reference frame to which all the poses
are referred. Example: \world

• tf_solution_name: type string. Name of the reference frame of the published
solution. Example: \sound_source_estimated_position

454 R. Levorato and E. Pagello

• rviz_DOA_line_lenght: type double. Length of the lines that start from the DOA
sensor and represent the DOA. A good value is 20 meters.

• sensor_3D_pose_topic_ < i >: type string. Name of the topic of the ith-DOA-
sensor pose.

• DOA_topic_ < i >: type string. Name of the topic of DOA estimation of the
ith-DOA-sensor.

8.5 Simulation Tests

For testing the package in simulation mode you have first to set the pose (position
and orientation) of the DOA-sensors. You can easily do it by modifying the launch
file that publishes the tf. Here is an example:

<node pkg="tf" type="static_transform_publisher" name="DOA_sensor_1"
args="1 2 0 0 0 0 1 /world /DOA_sensor_1 100" />

where the DOA_sensor_1 is in the position sx,y,z
1 = [1, 2, 0] and the orientation,

written in quaternions, is 180 degrees around z axis. Note that the program takes into
consideration the DOA in the xy-plane and a DOA with 0 degrees is considered to
be on the x axis (see Fig. 7). During the simulation test the user can vary the values
of the data contained in the data_simulation_file; after saving the file the package
will update the values and will show the new solution. For a quick test, launch
the hark_kinect_simulation.launch file that will show an example with three DOA
sensors.

8.6 Real Tests

Real tests need the calibration of the DOA-sensors. Doing it manually can be a very
long process and usually is error prone. Finding the extrinsic calibration parameters
between DOA-sensor is not so easy because the user have to measure the position
of all the microphones and then calculate the position of the DOA starting point.
As we deal with mobile robots, this procedure cannot be done considering only the
microphones because the robot changes its pose and consequently the pose of its
microphones. For this reason it can be helpful to use the vision sensors that normally
do the Simultaneous Localization And Mapping (SLAM) that update the pose of the
robot and provide a link between video and audio sensors. In order to achieve this
aim we used another ROS package that allows to calibrate multiple vision sensors.10

We used this package with the RGB images coming from the Microsoft Kinect.

10https://github.com/iaslab-unipd/multisensor_calibration.

https://github.com/iaslab-unipd/multisensor_calibration

Acoustic Source Localization for Robotics Networks 455

8.6.1 Microsoft Kinect Configuration

Using HARKwith Microsoft Kinect is very simple but there are some details to take
into consideration. First of all, once the RGB calibration is done, we need to consider
the following transform that refers to Fig. 7 and Table2:

<node pkg="tf" type="static_transform_publisher" name="hark_to_rgb"
args="-0.0140 0 0 -0.5 0.5 -0.5 -0.5 /kinect_rgb /hark 100" />

Second we need to link each kinect RGB sensor to the right DOA HARK estima-
tion. This procedure is very important and must be done with high attention. HARK
ROS files contain all the information that HARK needs to localize the sounds. These
data are collected in files with extension “.n”. In our package we provided also some
example files that can be modified for the user needs. The parameters that the user
has to modify are substantially three. One is the plughw value that refers to the audio
hardware to which the Kinect is associated. This value can be found in the computer
by typing:

cat /proc/asound/cards

and looking to the number of the device assigned to the kinect. Here is an example
of output:

0 [MID]: HDA-Intel - HDA Intel MID
HDA Intel MID at 0xd3710000 irq 47

1 [PCH]: HDA-Intel - HDA Intel PCH
HDA Intel PCH at 0xd3714000 irq 48

2 [Audio]: USB-Audio - Kinect USB Audio
Microsoft Kinect USB Audio at usb-0000:00:14.0-2.1, high speed

so in the file “.n” you have to put plughw : 2. Note that if you plug more than one
Kinect to the samecomputer, theplughwwill increase and the uniqueway to associate
the rightHARKsignal to the rightKinect is to plug theKinects one at time, being care-
ful to note the plughw value in order to set the right topic in the launch files. The sec-
ond parameter that the user needs to modify is the TOPIC_NAME_HARKSOURCE
inserting the name of the topic of the DOA. Finally the user have to modify the
A_MATRIX parameter of the node node_LocalizeMUSIC_1 and put the absolute
path of the file kinect_loc.dat that contains the information for localizing sounds in
the kinect (Figs. 9, 10 and 11).

Summarizing, the steps for a real test are the following:

1. plug the usb cable of the Kinects to the computer one at time and label them with
a name or a number that links to the plughw number;

2. calibrate the Microsoft Kinects and find the extrinsic parameters;
3. launch roscore;

456 R. Levorato and E. Pagello

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Simulation results of WLS-DOA approach versus GP-DOA approach in all four simulation
types. WLS-DOA is always in green and GP-DOA in red. In the first two simulations the x-axis is
the number of the sensors Ns and the y-axis is the Distance Error (DE) in meters. In Simulations
3 and 4 the x-axis is the number of the sensors Ns, the z-axis is the Distance Error (DE) in meters
and the y-axis is the Maximum Angle Error emax

αk in degrees and the Maximum Position Error emax
sk

in meters respectively a Simulation 1—Mean b Simulation 1—Variance c Simulation 2—Mean d
Simulation 2—Variance e Simulation 3—Mean f Simulation 4—Mean

Acoustic Source Localization for Robotics Networks 457

F
ig

.1
0

R
ea
l
Te
st
s
re
su
lts
.W

L
S-
D
O
A

an
d
G
P-
D
O
A

po
si
tio

n
es
tim

at
io
ns

ar
e
in

gr
ee

n
an
d

re
d
re
sp
ec
tiv

el
y.
So

ur
ce

an
d
se
ns
or
s
po
si
tio

ns
ar
e
in

bl
ue

an
d

re
d

re
sp
ec
tiv

el
y.
T
he

ax
is
re
pr
es
en
ts
ar
e
co
ns
is
te
nt

to
th
e

w
or

ld
an
d
th
ei
r
sc
al
e
is
m
ea
su
re
d
in

m
et
er
s

458 R. Levorato and E. Pagello

Fig. 11 Real experiment with three Microsoft Kinect as DOA-sensors, with one of them mounted
over a Pioneer 3-AT with a laser scanner. Video available at url https://www.youtube.com/watch?
v=TVAQ-sFSpF8 a Audio Localization with map in Rviz b Screenshots of the video

4. launch the ROS transform publishers and visualize them in rviz;
5. modify the .n files and the launch file of the ROS DOA_acoustic_source_

localization package being careful to assign the correct topics to the correct val-
ues;

6. launch the .n files that start to output the DOAs from the Kinects;
7. launch the ROS DOA_acoustic_source_localization package.

https://www.youtube.com/watch?v=TVAQ-sFSpF8
https://www.youtube.com/watch?v=TVAQ-sFSpF8

Acoustic Source Localization for Robotics Networks 459

9 Conclusions and Future Work

In this chapter it is described a new ROS package for solving the DOA-Based
Localization Problem using the Gaussian Probability over DOA approach. The new
approach has been validated with many tests, both in simulation and in a real envi-
ronment. The chapter also offers a detailed description of the package it provides
different solutions to the problem using three different algorithms (WLS-DOA, GP-
DOA Slow and GP-DOA Fast) and has several input parameters, each one detailed in
Sect. 8. Further research and implementation will focus on managing multiple sound
sources scenarios also in the 3D space.

Acknowledgments We strongly thank the Université Pierre-et-Marie-Curie (UPMC) and the Insti-
tut des Systèmes Intelligents et de Robotique (ISIR) for hosting Ph.D. Student Riccardo Levorato
during the first phases of the project. A special thank goes to Prof. Mohamed Chetouani, Post-Doc
Salvatore Maria Anzalone and Ph.D. student Stéphane Michelet for their indispensable support and
help.

References

1. P. Aarabi, The fusion of distributed microphone arrays for sound localization. EURASIP J.
Adv. Sig. Process. 2003(4), 860465 (2003)

2. F. Basso, R. Levorato, E. Menegatti, Online calibration for networks of cameras and depth
sensors, in OMNIVIS: The 12th Workshop on Non-classical Cameras, Camera Networks and
Omnidirectional Vision—2014 IEEE International Conference on Robotics and Automation
(ICRA 2014) (2014)

3. J.H. Di Biase, H.F. Silverman, M. Brandstein, Robust Localization in Reverberant Rooms,
in Microphone Arrays: Signal Processing Techniques and Applications (Springer, New York,
2001)

4. D.R. Griffin, Listening in the Dark: The Acoustic Orientation of Bats and Men (Yale University
Press, New Haven, 1958)

5. M. Hawkes, Arye Nehorai, Wideband source localization using a distributed acoustic vector-
sensor array. IEEE Trans. Sig. Process. 51(6), 1479–1491 (2003). June

6. R. Levorato, E. Pagello, DOA acoustic source localization in mobile robot sensor networks,
in 2015 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp. 71–76, Apr 2015

7. R. Levorato, E. Pagello, Probabilistic 2D Acoustic Source Localization using Direction
of Arrivals in Robot Sensor Networks, in Simulation, Modeling, and Programming for
Autonomous Robots, Lecture Notes in Computer Science, ed. by D. Brugali, J.F. Broenink,
T. Kroeger, B.A. MacDonald (Springer International Publishing, Switzerland, 2014), pp. 474–
485

8. K. Nakadai, T. Takahashi, H.G. Okuno, H. Nakajima, Y. Hasegawa, H. Tsujino, Design and
implementation of robot audition system “hark”; open source software for listening to three
simultaneous speakers. Adv. Robot. 24(5–6), 739–761 (2010)

9. M. Omologo, R. De Mori, Acoustic Transduction, in Spoken Dialogue with Computers (Aca-
demic Press, New York, 1998)

10. P. Pertilä, Acoustic source localization in a room environment and at moderate distances. Ph.D.
thesis, Tampere University of Technology, 2009

11. K.B. Petersen, M.S. Pedersen, The matrix cookbook, Nov 2012. Version 20121115

460 R. Levorato and E. Pagello

12. D. Salvati, Acoustic source localization using microphone arrays. Ph.D. thesis, Department of
Mathematics and Computer Science, University of Udine, 2012

13. G. Valenzise, L. Gerosa,M. Tagliasacchi, E. Antonacci, A. Sarti, Scream and gunshot detection
and localization for audio-surveillance systems, in IEEE Conference on Advanced Video and
Signal Based Surveillance, 2007. AVSS 2007, Sept 2007, pp. 21–26

14. D.B. Ward, E.A. Lehmann, R.C. Williamson, Particle filtering algorithms for tracking an
acoustic source in a reverberant environment. IEEE Trans. Speech Audio Process. 11(6):826–
836 (2003)

Part VI
Software Engineering with ROS

ROS Web Services: A Tutorial

Fatma Ellouze, Anis Koubâa and Habib Youssef

Abstract This tutorial presents how to integrate the Service-Oriented Architecture
(SOA) paradigm into Robot Operating System (ROS). The main objective consists
in exposing ROS ecosystem as a service that can be invoked by Web Services (WS)
clients. This integration enables end-users and client applications to seamlessly inter-
act with the ROS ecosystem via common WS interfaces while hiding all implemen-
tation details of the applications deployed in the ROS middleware. By the end of this
tutorial, the reader will be able to develop web services that expose ROS topics and
services to the end-users and client applications. This tutorial was developed under
Ubuntu 12.4 and for ROS Hydro version.

Keywords ROS · RESTful/SOAP Web Services · Rosjava

F. Ellouze (B) · A. Koubâa
Cooperative Networked Intelligent Systems
(COINS) Research Group, Riyadh, Saudi Arabia
e-mail: fatma.ellouze@coins-lab.org

A. Koubâa
College of Computer and Information Sciences,
Prince Sultan University, Riyadh, Saudi Arabia
e-mail: akoubaa@coins-lab.org

F. Ellouze
Research Laboratory on Development and Control of Distributed Applications
(ReDCAD Laboratory) ENIS, University of Sfax, Sfax, Tunisia

A. Koubâa
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

H. Youssef
PRINCE Research Unit, University of Sousse, Sousse, Tunisia
e-mail: habib.youssef@fsm.rnu.tn

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_18

463

464 F. Ellouze et al.

1 Introduction

Robotics is a hot research area. It has brought a significant economic impacts to
human lives and is expected to become increasingly integrated into our daily life by
supporting human activities and performing tedious and dangerous tasks. However,
robotic systems are not available to public at large scale because they are usually very
complex to learn and to use, and require a deep knowledge onprogramming at lowand
high level to develop service robots applications,whichmake themheavily dependent
on robotic expert developers. The objective of this chapter is to provide a viable
solution to software developers and users to be able to develop applications for service
robots at a larger scale, without the need to be an expert on robotics. To address this
issue, we take benefit of web services technologies and propose a Service-Oriented
Architecture approach for on demand access to robotic resources for enabling non
technical users to remotely access, interact, manipulate and develop robots through
the web interfaces. One motivation of this work is to develop a software architecture
for service robots in the context of themyBot project [1] that allows easier interaction
with the robot through abstract interfaces. A video demonstration of the myBot
service robot is available in this link [2].

The concept of ROSWeb services was recently proposed in [3] with the objective
to leverage the use ofWeb services to provide new programming abstraction layers to
ROS based on SOAP and REST Web services. The paper presented object-oriented
softwaremeta-models for the integration of SOAP andRESTWeb services into ROS.
In this tutorial, we present a step-by-step tutorial on how to implement ROS Web
services with ROSJAVA, and we present a different implementation methodology of
the meta-model as compared to [3]. The main objective consists in exposing ROS
ecosystem as a service that can be invoked by Web Services clients. This integra-
tion enables end-users and client applications to seamlessly interact with the ROS
ecosystem via common Web Services interfaces while hiding all implementation
details of the applications deployed in the ROS middleware. This avoids using com-
plex message serialization between heterogenous systems such as the one proposed
in [5]. There are two types of Web Services commonly available [4]: (1) SOAP
Web Services, which are based on the SOAP protocol and provide a concrete formal
description of the web service (2) REST Web Services, which represent a lighter
weight approach based on the concept of resource and make extensive use of HTTP
as a transport protocol. By the end of this tutorial, the reader will be able to (1) under-
stand SOAP and REST Web Services, (2) develop SOAP and REST web services
that expose ROS components to the end-users and client applications.

There were a few previous attempts to integrate ROS with Web technologies
[6–8]. In [6], the author proposed RoboWeb, a SOAP- based service-oriented archi-
tecture that virtualizes robotic hardware and software resources and exposes them as
services through the Web. This tutorial paper improves on [6] is that it provides the
integration of SOAP and RESTWeb services with ROS. In [8], the authors proposed
rosbridge to integrate ROS with Web technologies (not Web services) so that to
to use commonly available Internet browsers for non-roboticians users to interact
with a ROS-enabled robot. In [7], the authors proposed ROStful by extending ros-

ROS Web Services: A Tutorial 465

bridge to support REST Web services and developed a lighweight Web server that
exposes ROS topics, services and actions through RESTful Web services. Our work
improves on [7] by proposing a unified framework for both SOAP and REST Web
services, and is completely independent from rosbridge.

The rest of this tutorial is organized as follow. Section2 introduces RESTful
and SOAP web services. Section3 introduces the ROSJAVA API, which we use to
implemented the ROS web services using Java language. In Sect. 4, we provide the
detailed steps of integrating SOAP and RESTful web services with ROS ecosystem.

2 Web Services

WebServices (WS) are software components exposed to the Internet for machine-to-
machine interaction. They represent themain implementation of the concept of Ser-
vice Oriented Architecture (SOA), which basically consists in exposing resources as
services to end-users. They can be seen as online APIs that a developer can remotely
usewithout having to locally add these libraries into his project, but rather, theseAPIs
are remotely invoked on the server. Themain benefit ofweb services is to ensure inter-
operability between heterogeneous systems. Web services are also loosely coupled
systems allowing seamless access, use and transaction between software compo-
nents, independently of the programming language in which they are written and the
(software/hardware) platforms where they are deployed. There are two categories
of web services: (1) SOAP web services, and (2) RESTful Web services. In what
follows, we present an overview of these two types of web services.

2.1 SOAP Web Services

SOAP web services are defined as an implementation of SOA architecture over
the web. It offers communication and exchange of data between heterogeneous,
distributed software components. The service provider and the service consumer
exchange data in XML format using the Simple Object Access Protocol (SOAP).
TheWeb ServicesDescription Language (WSDL) file is a contract file containing the
description of the service. It is published in the registry by the service provider to be
discovered and used by the service consumer. Next, we will present the technologies
used by SOAP Web Services including SOAP protocol, XML message format and
WSDL contract file.

Figure1 shows the typical execution model of SOA. A service provider registers
its service into a public registry so that it can be discovered by clients. A service
consumer fetches and finds services into the registry, and then it binds to the service
of interest with the service providers. Finally, the service consumer (also referred to
as client) invokes the methods of interest provided by the web service.

466 F. Ellouze et al.

Fig. 1 SOA execution
model

SOAPweb services represent themain implementation of previousSOAexecution
model. It is characterized by the following protocols:

• SOAP: It stands for Simple Object Access Protocol. It is aW3C recommendation.
It is defined as an XML-based communication protocol which allows distributed
and heterogeneous applications to exchange data via service transport protocols
such as FTP, SMTP or HTTP. SOAP basically represents a protocol of message
format that two web services entities (a server and a client) exchange to commu-
nicate between each other. The message format is represented through the XML
(eXtensible Markup Language) language.

• WSDL: It stands for Web Services Description Language. It is aW3C recommen-
dation. It is an XML-based document that describes Web Services. It specifies the
location of the service, the functionalities that the service exposes, the communica-
tion protocols the service supports and the correct format of exchanged messages.
WSDL can be seen as a contract that provides clients with all information they
need to interact with the web service.

It has to be noted that, in the early days of SOAP web services, the UDDI (Universal
Description, Discovery and Integration) protocol was proposed as a core protocol
of SOAP web services for automatic service discovery and registration. However, it
was quickly abandoned as it was not proven to be really useful in real deployments.

In the rest of this subsection, we will show how to implement a SOAPweb service
in Java using JAX-WS standard specification. The objective is to give the reader a
little background on how SOAP web services are implemented. If you are already
familiar with SOAP WS implementation in Java, you can skip this subsection.

The following example presents the main steps to create a simple Hello World
application, and exposes it as SOAP web service using JAX-WS API. Typically, we
consider four classes to organize the implementation of SOAP web services: (1) the
HelloWorldInterface.java interface, which is a generic Java interface that
defines the web service’s methods, (2) the HelloWorldWS.java class which
contains the implementation of the web service interface defined above, (3) the
HelloWorldWSPublisher.java class that publishes the web service through
the web service platform (Glassfish, or Tomcat) and exposes it to client application,
and finally, (4) the HelloWorldWSClient.java class, which is a simple Java
client that consumes the published web service.

Note: No prerequisites are required for creating and deploying SOAP Web Ser-
vices because the Java Platform, Entreprise Edition (Java EE) supports the Java API
for XML Web Services (JAX-WS 2.2).

ROS Web Services: A Tutorial 467

Class 1: HelloWorldInterface.java

1 package com . soap . ws ;
2

3 import javax . jws . WebMethod ;
4 import javax . jws . WebService ;
5 import javax . jws . soap . SOAPBinding ;
6 import javax . jws . soap . SOAPBinding . Style ;
7

8 @WebService
9 @SOAPBinding (style = Style . RPC)

10 pub l i c interface HelloWorldInterface{
11 @WebMethod String sayHello () ;
12 }

Class 1 presents a simpleHelloWorld application interface of a SOAPweb service
in Java. It contains one method,called, sayHello(...), that can be invoked by
a client. It must return a String that will be sent back to the client invoking the
Web method. A good programming practice is to separate the interface from the
implementation of the Web Service.

From line 3 to line 6, we import required libraries to implement SOAP Web
Services. It has to be noted that javax.jws package belongs to the JAX-WS API
that is inherently available in the Java EE 6 (version 2.0). Implementing a SOAPweb
service is quite easy. We just need to add the following annotations:

• @WebService annotation is required to indicate that the annotated class is a web
service (line 8).

• @SOAPBinding annotation is optional and used to specify the style of the SOAP
message. The default style is document (line 9).

• @WebMethod annotation is optional and used to indicate that the annotated
method is a web service operation (line 11).

Class 2 presents the web service implementation of the HelloWorldInter
face.java interface and provides the implementation of all methods that will be
exposed as web services.

Class n◦ 2: HelloWorldWS.java

1 package com . soap . ws ;
2

3 import javax . jws . WebService ;
4

5 @WebService (endpointInterface = "com . soap . ws . He l l oWor ld Inte r face ")
6 pub l i c c l a s s HelloWorldWS implements HelloWorldInterface {
7 @Override
8 pub l i c String sayHello () {
9 re turn " h e l l o " ;

10 }
11 }

In line 5, we refer to the HelloWorldInterface.java interface that the
web service class implements by using the attribute endpointInterface in
@WebService annotation.

468 F. Ellouze et al.

Class 3 publishes the web service using the static method publish of the class
Endpoint. Note that it is important to specify the URL that will be used to access
the web service and instantiate the web service implementation class.

Class n◦ 3: HelloWorldWSPublisher.java

1 package com . soap . ws ;
2

3 import javax . xml . ws . Endpoint ;
4

5 pub l i c c l a s s HelloWorldWSPublisher {
6 pub l i c s t a t i c void main (String [] args) {
7 Endpoint . publish (" http :// l o c a l h o s t :1239/ hel loWorld " , new ←↩

HelloWorldWS ()) ;
8 }
9 }

To test if the above web service works as expected, we need to run HelloWorld
WSPublisher class and check the WSDL file by pasting the URL
“http://localhost:1239/helloWorld?wsdl” in the browser. Note that
you must replace localhost and the port number by the IP address of the server
machine and the port running the web service, if you make them different.

TEST YOUR CODE
Once theweb service is deployed and running in the server, we need to invoke theweb
service using a client. In what follows, we present a small client program showing
how to invoke a SOAP web service.

Class n◦ 4: HelloWorldWSClient.java

1 package com . soap . client ;
2

3 import java . net . URL ;
4 import javax . xml . namespace . QName ;
5 import javax . xml . ws . Service ;
6 import com . soap . ws . HelloWorldInterface ;
7

8 pub l i c c l a s s HelloWorldWSClient {
9 pub l i c s t a t i c void main (String [] args) throws Exception{

10 URL url = new URL (" http :// l o c a l h o s t :1239/ hel loWorld ?←↩

wsdl ") ;
11 QName qname = new QName (" http ://ws . soap . com/" , "←↩

HelloWorldWSService") ;
12 Service service = Service . create (url , qname) ;
13 HelloWorldInterface hello = service . getPort (←↩

HelloWorldInterface . c l a s s) ;
14 System . out . println (hello . sayHello ()) ;
15 }
16 }

The code above is a web service client that accesses the HelloWorld published
web service.

First, we create a qualified name structure of the web service using the package
name and theweb service class implementation as parameters (line 11). Then,we cre-
ate a generic web service client object using the Service class using the URL of the

ROS Web Services: A Tutorial 469

Web Service where it is deployed, and the qualified web service name (line 12).
Finally, we create a proxy service that will be used to invoke the web method
sayHello(...). The execution of the client program above should return the
String hello as specified in the implementation of the Web method.

2.2 RESTful Web Services

RESTful web service is an architectural style applied to web services. The design of
REST-based web services is based on the concept of resources that will be exposed
through the Internet for remote access using the HTTP concepts.

REST was designed by Roy Fielding, who is also one of the authors of HTTP
specification, thus, he was inspired a lot by the concepts of HTTPwhen designing the
RESTWebServices. In this subsection,wewill present themainRESTprinciples and
concepts and explain some guidelines for appropriate design of REST web services.
The basic principle ofHTTP is that each resource (such as aweb page) is identified by
a distinct Uniform Resource Locator (URL), and manipulated using HTTP methods
including GET, POST, PUT and DELETE. In the same way in REST, a web service
is defined by a resource that can be invoked through one of the four HTTP methods
GET, POST, PUT and DELETE.

We distinguish four HTTP concepts: (1) Resource Location, (2) HTTP Methods,
(3) Metadata, and (4) Content Types.

• Resource Location: a resource in a website can be accessed through it URL,
which is composed of three major parts: (1) the schema, which is the protocol
used to access the resource namely http://, (2) host which is the server location
and (3) URI, which is the path/address to a resource inside the server. So, each
resource has a unique identifier (URI) that defines the path/address to access this
resource. Just like web pages, RESTful resources are also accessed through their
UniformResource URIs. Themain difference is that RESTful APIs have resource-
based addresses; however, websites have action-based addresses. For instance, /
messages/ is a resource-based URI, however /get Messages/ is an action-based
URI.

• HTTP Methods: HTTP defines four methods or verbs to deal with resources
namely GET, POST, PUT and DELETE. RESTful web service APIs take benefit
of these methods to interact with RESTful resources. Unlike SOAP web service
requests that are only based on the POST HTTP method, RESTful web service
makes use of all HTTP methods.
Table1 shows the most commonly used HTTP methods and their descriptions.

• Metadata: HTTP response messages are composed of three main parts: (1) mes-
sage body, (2) response header and (3) status code. Response headers and status
code are metadata that contain useful information such as the Content-Type and
message status. RESTful Web Services use status code and send it in code format
to the client to specify message status.

470 F. Ellouze et al.

Table 1 HTTP methods

HTTP methods Description

GET Get information from a resource

POST Create a resource

PUT Update a resource

DELETE Remove a resource

• Content Types: “Content-Types” is a part of message header that indicates the
format of messages exchanged between server side and client side. RESTful web
services take benefit of this HTTP concept to indicate the format of messages
exchanged. For each method, it is possible to specify a particular format for
returning the result to the calling client, namely as a plain text, or JSON for-
mat (application/json) or XML format (text/xml), which provides multiple
ways to exploit the data at the client side.

In the rest of this subsection, we will show how to design, implement and expose
a RESTful web service using JAX-RS standard specification in Java. We will present
the steps to create a simple Hello World example and expose it as RESTful web
service using JAX-RS API. Table2 shows the design of the RESTful web service
example. It consists of “Robot” resource accessible through the “/{robotname/}”
URI. This resource contains a web method called “sayHello(name)” which can
be invoked using HTTP GET method. For that, we will implement three classes:
(1) the RobotResource.java class which defines the resource’s methods, (2)
the RobotWsPublisher.java class that exposes the resource’s methods as web
services in the web and finally (3) the RobotWSClient.java class which is a
simple Java client that consumes the published web service.

Class 1 presents the Java implementation of the RESTful resource presented
in Table2. It consists of a Java class named RobotResource that is accessible
through “/robotname” URI by using @Path annotation. It contains one method
called sayHello(), which is invoked by clients using the HTTP GET method.
This method contains a parameter, which is linked to the resource’s path by using
@PathParam annotation.

Table 2 Design of RESTful Web Service

Resource: Robot

URI: /robotname

HTTP methods supported: GET: sayHello(name)

ROS Web Services: A Tutorial 471

Class n◦ 1: RobotResource.java

1 package com . rest . resource ;
2

3

4 import javax . ws . rs . GET ;
5 import javax . ws . rs . Path ;
6 import javax . ws . rs . PathParam ;
7 import javax . ws . rs . core . Response ;
8

9 @Path ("/{ robotname}")
10 pub l i c c l a s s RobotResource {
11 @GET
12 pub l i c Response sayHello (@PathParam ("robotname") String name)←↩

{
13 String output = "Hel lo : " + name ;
14 re turn Response . status (200) . entity (output) . build () ;
15 }
16 }

In Class 2, we create a HTTP server that deploys and publishes the RESTful
web service created in Class 1 (line 14) by using the static method create of the
class HttpServerFactory. Note that it is important to specify the URL that will
be used to access the web service (http://localhost:7001/). You should
replace localhost and the port number by the IP address of the server machine and
the port running the web service, if they are different.

Class n◦ 2: RobotWsPublisher.java

1 package com . rest . endpoint ;
2

3 import java . io . IOException ;
4 import java . util . logging . Level ;
5 import java . util . logging . Logger ;
6 import com . rest . resource . RobotResource ;
7 import com . sun . jersey . api . container . httpserver . HttpServerFactory ;
8 import com . sun . jersey . api . core . ClassNamesResourceConfig ;
9 import com . sun . net . httpserver . HttpServer ;

10

11 pub l i c c l a s s RobotWsPublisher {
12 pub l i c s t a t i c void main (String [] args) {
13 t ry {
14 HttpServer create = HttpServerFactory . create ("←↩

http :// l o c a l h o s t :7001/ " , new ←↩

ClassNamesResourceConfig (RobotResource . c l a s s)←↩

) ;
15 create . start () ;
16 } catch (IllegalArgumentException e) {
17 e . printStackTrace () ;
18 } catch (IOException ex) {
19 Logger . getLogger (RobotWsPublisher . c l a s s . getName ()←↩

) . log (Level . SEVERE , null , ex) ;
20 }
21 }
22 }

472 F. Ellouze et al.

To test if the REST web service is correctly deployed, we need to run RobotWs
Publisher.java class and invoke our RESTful web service by pasting the
URL http://localhost:7001/turtlebot in a web browser. You must
get Hello: turtlebot as a response displayed in the web browser.

TEST YOUR CODE
Once the REST web service is up and running in the server, we need to invoke the
web service using a client. In what follows, we present a small client showing how
to invoke a RESTful web service.

Class 3 consists of a RESTful web service client that allows access to our
published web service. It creates an instance of a HttpURLConnection class
with the web service server (lines 15–17), then it sends a HTTP GET request
to invoke the web method sayHello() of our resource by using the URL
http://localhost:7001/turtlebot (lines 18–20). The execution of the
client program above should return Hello: turtlebot as a response.

Class n◦ 3: RobotWSClient.java

1 package com . rest . client ;
2

3 import java . io . BufferedReader ;
4 import java . io . InputStreamReader ;
5 import java . net . HttpURLConnection ;
6 import java . net . URL ;
7

8 pub l i c c l a s s RobotWSClient {
9 pr i va t e final String USER_AGENT = "Moz i l l a /5 .0 " ;

10 pub l i c s t a t i c void main (String [] args) throws Exception {
11 RobotWSClient http = new RobotWSClient () ;
12 http . sendGet () ;
13 }
14 pr i va t e void sendGet () throws Exception {
15 String url = "http :// l o c a l h o s t :7001/ t u r t l e b o t " ;
16 URL obj = new URL (url) ;
17 HttpURLConnection con = (HttpURLConnection) obj .←↩

openConnection () ;
18 con . setRequestMethod ("GET") ;
19 con . setRequestProperty ("User−Agent" , USER_AGENT) ;
20 i n t responseCode = con . getResponseCode () ;
21 System . out . println ("\nSending GET reques t to URL : " + url)←↩

;
22 System . out . println ("Response Code : " + responseCode) ;
23 BufferedReader in = new BufferedReader (new ←↩

InputStreamReader (con . getInputStream ())) ;
24 String inputLine ;
25 StringBuffer response = new StringBuffer () ;
26 whi le ((inputLine = in . readLine ()) != null) {
27 response . append (inputLine) ;
28 }
29 in . close () ;
30 System . out . println (response . toString ()) ;
31 }
32 }

ROS Web Services: A Tutorial 473

3 ROSJAVA API

ROSJAVA is a Java API that was designed to extend ROS for Java developers. It
provides a set of tools and libraries that offer ROS-style communication mecha-
nisms including topic publishing/subscribing, service request/response, and para-
meters set/get. Using ROSJAVA API, Java developers can implement robotic appli-
cations with Java using ROS concepts.

In the rest of this subsection, wewill show an illustrative example that implements
and runs a ROS node that publishes a message on a ROS topic using ROSJAVA
API. This example consists of two Java classes: (1) the “Talker.java” class
which implements a ROS node that publishes std_msgs.String messages on
the /chatter topic and (2) the TalkerRunner.java class, which executes the
ROS node implemented in Talker.java class.

Note: In Sect. 4, we will show how to get and import ROSJAVA APIs and how
to prepare all prerequisites to develop a Java application using ROSJAVA to interact
with ROS ecosystem.

The code presented in Class 1 is a Java implementation of a ROS publisher
node using ROSJAVA API. ROSJAVA package contains an abstract class named
AbstractNodeMain that represents the superclass of any ROS node to be
created with ROSJAVA. In other words, any ROSJAVA node should extend the
ROSJAVA superclass AbstractNodeMain and override the method onStart
(ConnectedNode cn) that represents the entry point of the node. Connected
Node class contains methods needed to launch the ROS subscribers and publishers
and to communicate with the rosmaster. It allows creating publishers and subscribers
using newPublisher and newSubscriber methods respectively.

In our example (class 1), we create a new publisher (line 16) that publishes
std_msgs.String messages to the /chatter topic using the method new
Publisher() of the class ConnectedNode. Then, we create the message to
be published by using the method newMessage of Publisher class (line 17).
Finally, we publish the message using publish() method of Publisher class
(line25).

Class n◦ 1: Talker.java

1 package com . rosjava ;
2

3 import org . ros . concurrent . CancellableLoop ;
4 import org . ros . namespace . GraphName ;
5 import org . ros . node . AbstractNodeMain ;
6 import org . ros . node . ConnectedNode ;
7 import org . ros . node . topic . Publisher ;
8

9 pub l i c c l a s s Talker extends AbstractNodeMain {
10

11 pub l i c GraphName getDefaultNodeName () {
12 re turn GraphName . of (" ro s j ava / talkerNode ") ;

474 F. Ellouze et al.

13 }
14

15 pub l i c void onStart (final ConnectedNode connectedNode) {
16 final Publisher<std_msgs . String> publisher = connectedNode .←↩

newPublisher (" cha t t e r " , std_msgs . String . _TYPE) ;
17 std_msgs . String str = publisher . newMessage () ;
18 str . setData ("He l lo world ! ") ;
19

20 t ry {
21 Thread . sleep (300) ;
22 } catch (InterruptedException e) {
23 e . printStackTrace () ;
24 }
25 publisher . publish (str) ;
26 }
27 }

In Class 2, we execute the ROS publisher node implemented in Class 1 by using
the static method execute() of the class NodeMainExecutor provided by
ROSJAVA API.

Class n◦ 2: TalkerRunner.java

1 package com . rosjava ;
2

3 import org . ros . node . DefaultNodeMainExecutor ;
4 import org . ros . node . NodeConfiguration ;
5 import org . ros . node . NodeMainExecutor ;
6 import com . google . common . base . Preconditions ;
7 import java . net . URI ;
8

9 pub l i c c l a s s TalkerRunner{
10 pub l i c s t a t i c void main (String [] args) {
11 Talker talkerNode = new Talker () ;
12 NodeMainExecutor nodeMainExecutor = DefaultNodeMainExecutor←↩

. newDefault () ;
13 URI masteruri = URI . create (" http : / / 192 . 1 6 8 . 1 . 4 : 1 1 311 ") ;
14 String host = " 192 . 1 6 8 . 1 . 4 " ;
15 NodeConfiguration talkerNodeConfiguration = ←↩

NodeConfiguration . newPublic (host , masteruri) ;
16 Preconditions . checkState (talkerNode != null) ;
17 nodeMainExecutor . execute (talkerNode , talkerNodeConfiguration←↩

) ;
18 }
19 }

TEST YOUR CODE
To test your code, run the rosmaster by running in the terminal:

roscore

First, check the list of running topics using the following terminal command:

rostopic list

ROS Web Services: A Tutorial 475

Observe that two topics should appear as follows:

/rosout
/rosout_agg

Now, run “TalkerRunner.java” class from your IDE like any Java program
to execute the publisher ROS node implemented in “Talker.java” class:

Now, observe that there are three running topics including the /chatter topic.

rostopic list
/chatter
/rosout
/rosout_agg

This means that the publisher is currently working. You can use the command
“rostopic echo /chatter” to see the content of the topic published by the
ROJAVA node.

4 ROS Web Services

In this section, we will show how to integrate web services (both SOAP and RESTful
web services) into ROS using ROSJAVA API to allow client applications especially
WEB developers to seamlessly and transparently interact with the ROS-enabled
robots. For that purpose, we will implement SOAP and RESTful web services and
deploy them on the robot. We will work on turtlesim simulator for illustration pur-
poses, but the code below can be easily generalized to any type of ROS-enabled
robot.

Figure2 shows the architecture ofROSWebServices and explains how to integrate
web services into ROS ecosystem. The web services present an intermediate layer
between client applications and ROS ecosystem. They provide an abstraction of ROS
resources, including topics, services and actions by exposing them as web services
to developers who do not have prior background on robots or on ROS. They allow

Fig. 2 ROS web services
architecture

476 F. Ellouze et al.

Fig. 3 UML class diagram for Web Services Layer

(i) subscribing to and publishing any ROS topic, action or service (ii) delivering
the ROS messages to clients subscribing to a particular topic, and (iii) forwarding
messages received from the client acting as publishers of ROS messages to ROS.
This means that for any ROS topic, action or service that must be exposed, the Web
service should instantiate a ROS subscriber and/or a publisher for the topic or the
service of interest. Then, Web methods and interfaces should be defined according
to which functionalities the robot would like to expose and execute.

Our architecture comprises two main parts: (1) Client Application which uses
the web services endpoint to consume web services implemented on the robot and
exposed to the public and (2) Robot Software Layers which consists of: (a) Web
Services Layer that implements SOAP and RESTful web services using ROSJAVA
API to interact with ROS components and expose robots’ capabilities, and (b) ROS
layer which is a meta-operating system for robots which provides tools and libraries
that allow interaction with robots.

Let’s focus on the Web Services Layer as we are interested in integrating web
services with ROS. Figure3 shows the UML class diagram that we proposed forWeb
Services Layer. It can be instantiated for any type of robots. We used the generic
term Robot as a prefix in the name of the classes, but it can be replaced with the
name of a concrete robot when instantiated for a real robot. Web Services Layer

ROS Web Services: A Tutorial 477

comprises three software packages: (i) ROS, (ii) SOAP Web services, and (iii)
REST Web services.

ROS package: TheROSpackage provides an additional level of abstraction on top
of ROS. It exposes the functionalities of ROS system to Java developers by providing
ROS-style communication mechanisms including topic publishing/subscribing and
service request/response. The ROS package contains classes purely written in Java
using ROSJAVA API and does not include any Web service functionality. Classes in
this package consist of publishers and subscribers of all ROS topics andROS services
that will be later exposed as web services and used to control and manipulate robots.

SOAP Web services package: The SOAP Web services package, that we call
ros-ws, provides a unified view of the robot and its environment. It abstracts indi-
vidual robot capabilities, allowing the robot to be controlled through SOAP web
services. This package uses the ROS package to interact with ROS ecosystem and
manipulate ROS nodes to publish/subscribe on ROS topics and request ROS services
allowing the control of the ROS-enabled robot. A robot is represented with a Java
class called with the robot’s name suffixed with “‘WS’” like turtlebotWS.java
for turtlebot robot. This class contains web methods that are exposed as SOAP web
services. These web methods execute ROS nodes implemented in ROS package
to publish/subscribe on corresponding ROS topics and request corresponding ROS
services in order to manipulate and control the robot.

REST Web services package: The REST Web services package, that we call
ros-rs, presents the robot’s capabilities and exposes them as RESTful web ser-
vices. A robot consists of a set of devices including wheels, arms, camera, location
sensor, temperature sensor and others. Each device is represented as resource in the
RESTResourcemodelwepropose (Fig. 4).Resources are organized followingdevice
categories. For instance, location sensor and temperature sensor belong to sensors
category, however wheels and arms belong to actuators category. The REST Web
services package defines a class for each particular resource that must be exposed to
public. This class implements methods that manipulate the corresponding device by
subscribing/publishing on ROS topics and requesting ROS services that control the
device by using ROS nodes implemented in ROS package using ROSJAVA API.

In the rest of this section, we will explain all prerequisites required to imple-
ment such applications including installing ROSJAVA API and RESTful and SOAP
web services APIs. Then, we will validate our architecture through an experimental
deployment of REST and SOAP web services into Turtlesim.

Fig. 4 REST Resource
model

478 F. Ellouze et al.

4.1 Prerequisites

Our examples are implemented on ROS Hydro version on Ubuntu 12.04, but they
should also work for Indigo (although not tested). It is recommended to use Eclipse
as an IDE for development. Installation and configuration steps of Eclipse IDE can
be found in http://www.coins-lab.org/psu/cs460/index.php?title=Eclipse.

Make sure to install JDK 1.6 using the command:

sudo apt-get install Openjdk-6-jre

• Getting ROSJAVA API:
To implement Java programs that manipulate ROS components, we need to import
ROSJAVA libraries to our projects. For this purpose,wewill install ROSJAVAenvi-
ronment to get all libraries we may need to develop ROS using Java.

If you do not haveROSJAVA installed, then open a terminal and install it as follows:

sudo apt-get install ros-hydro-catkin
ros-hydro-ros ros-hydro-rosjava python-wstool

If the installation is successful, you can find the maven repository of all rosjava
artifacts in /opt/ros/hydro/share/maven.
In /opt/ros/hydro/share/maven/org/ros, you can search and find all
ROSJAVA libraries.
To facilitate getting the basic ROSJAVA libraries, we will create a ROSJAVA
project.

Creating ROSJAVA project:

First, we need to create a workspace for ROSJAVA using this command:

mkdir ∼/rosjava_workspace

Then, we create /src folder where to put all ROSJAVA packages. Write this com-
mand in the terminal:

cd ∼/rosjava_workspace
mkdir src

Next, we create a ROSJAVA package by running this command:

catkin_create_rosjava_pkg rosjava_package

http://www.coins-lab.org/psu/cs460/index.php?title=Eclipse

ROS Web Services: A Tutorial 479

Then, we compile workspace to generate /build and /devel folders required
to source the workspace

cd ∼/rosjava_workspace
catkin_make
source devel/setup.bash

Next, we create a ROSJAVA project inside the ROSJAVA package we have created
by running:

cd ∼/rosjava_workspace/src/rosjava_package
catkin_create_rosjava_project rosjava_project

Then, we compile the project we have created by running:

cd ∼/rosjava_workspace
catkin_make

If everything works fine, we find basic ROSJAVA libraries in the following
directory:
∼/rosjava_workspace/src/rosjava_package/rosjava_project/build/install/rosjava_
project/lib.

• Web Service APIs:
To implement Web Services, we need to import SOAP and REST libraries to our
project. For our examples, we are using JDK 1.6 which supports the Java API
for XML web services (JAX-WS). Regarding RESTful web services, we need
to download “javax.ws.rs-api-2.0.1.jar” library for using JAX-RS
API and “http-2.2.1.jar” and “jersey-bundle-1.8.jar” libraries
for creating the HTTP server.

• Adding ROSJAVA and Web Services APIs to Eclipse:
To facilitate access to ROSJAVA and REST libraries, we will create two user
libraries: (1) the “rosjava_libraries” that contains all ROSJAVA libraries and
(2) the “rest_libraries” that contains all REST libraries. So, we can easily add
these libraries to any project when needed by just calling them.

In a first step, you need to start Eclipse, and choose your workspace where to put
Java projects.
In Eclipse’s toolbar, select window-�preferences-�Java-�Build Path-�User
Libraries. Then, press “New” and type the name of the library “rosjava_Libraries”
and click OK. Now, back to “User Libraries”, select the library you have created
and click “Add External Jars”. Then, navigate the location of the basic rosjava
libraries:
∼/rosjava_workspace/src/rosjava_package/rosjava_project/build/install/rosjava_
project/lib.

480 F. Ellouze et al.

Fig. 5 ROSJAVA libraries

Select all JARs and click validate.Nowyouhave definedyour library inEclipse that
contains all ROSJAVA libraries required to implement ROS using Java. Figure5
shows libraries in the user library “‘rosjava_libraries’”.

Note:We do the same thingwith the user library “‘rest_libraries”’ by addingREST
libraries we have already downloaded.

4.2 Implementation and Experimentation

In this subsection, we will take benefit of technologies described in Sects. 2 and 3 to
develop SOAP/REST web services interfaces using the powerful features of Java EE
in combinationwithROSJAVAAPI to interactwithROS environment in order to tele-
operate the turtlesimby publishing amessage of typegeometry_msgs.Twist on
the ROS topic /turtle1/cmd_vel, and to get its position by subscribing on the
ROS topic /turtle1/pose and receivingmessages of type turtlesim.Pose.

ROS package: According to our architecture (Fig. 2), we need first to declare and
implement all ROS nodes (publishers and subscribers) required to control the robot.
For our illustrative example, we implement two Java classes: (1) “motion.java”
which consists of a ROS node that publishes a message of type geometry_msgs.
Twist on the ROS topic /turtle1/cmd_vel in order to control the movement
of the turtlesim, and (2) “Velocity.java” to control the position of turtlesim.
It consists of a ROS node that subscribes on the ROS topic /turtle1/pose and
receives messages of type turtlesim.Pose.

ROS Web Services: A Tutorial 481

Class n◦ 1: Position.java:

1 package com . ros . nodes ;
2 import org . ros . message . MessageListener ;
3 import org . ros . namespace . GraphName ;
4 import org . ros . node . AbstractNodeMain ;
5 import org . ros . node . ConnectedNode ;
6 import org . ros . node . topic . Subscriber ;
7

8 pub l i c c l a s s Position extends AbstractNodeMain{
9 pub l i c s t a t i c turtlesim . Pose turtlesimPose ;

10

11 pub l i c GraphName getDefaultNodeName () {
12 re turn GraphName . of (" ro s j ava / t u r t l e s im_ l i s t e n e r s ") ;
13 }
14

15 pub l i c void onStart (ConnectedNode connectedNode) {
16 //Create a new sub s c r i b e r on / t u r t l e 1 /pose top i c
17 Subscriber<turtlesim . Pose> poseSubscriber = connectedNode .←↩

newSubscriber ("/ t u r t l e 1 /pose " , turtlesim . Pose . _TYPE) ;
18 //When a new message i s r e c e i v ed by / t u r t l e 1 /pose topic , a ←↩

MessageListener w i l l be c a l l e d with the incoming message as←↩

an argument to MessageListener . onNewMessage .
19 poseSubscriber . addMessageListener (new MessageListener<turtlesim←↩

. Pose>() {
20 pub l i c void onNewMessage (turtlesim . Pose poseMessage) {
21 turtlesimPose = poseMessage ;
22 System . out . printf ("Pose : (\%.2 f , \%.2 f , \%s) \n" , ←↩

poseMessage . getX () , poseMessage . getY () , poseMessage←↩

. getTheta ()) ;
23 }
24 }) ;
25 }
26 }

Class n◦ 2: Motion.java:

1 package com . ros . nodes ;
2

3 import org . ros . concurrent . CancellableLoop ;
4 import org . ros . namespace . GraphName ;
5 import org . ros . node . AbstractNodeMain ;
6 import org . ros . node . ConnectedNode ;
7 import org . ros . node . NodeMain ;
8 import org . ros . node . topic . Publisher ;
9

10 pub l i c c l a s s Motion extends AbstractNodeMain{
11

12 pr i va t e String direction ;
13 pr i va t e double speed ;
14

15 pub l i c Motion (String direction , double speed) {
16 t h i s . direction = direction ;
17 t h i s . speed =speed ;
18 }
19

20 pub l i c GraphName getDefaultNodeName () {
21 re turn GraphName . of (" ro s j ava / turt les imMot ion ") ;
22 }
23 pub l i c void onStart (final ConnectedNode connectedNode) {
24 // c r ea t e new pub l i sh e r on / t u r t l e 1 /cmd_vel t op i c

482 F. Ellouze et al.

25 final Publisher<geometry_msgs . Twist> publisher = ←↩

connectedNode . newPublisher ("/ t u r t l e 1 /cmd_vel" , ←↩

geometry_msgs . Twist . _TYPE) ;
26 // c r ea t e new message
27 geometry_msgs . Twist twist = publisher . newMessage () ;
28 // s e t the message by i nd i c a t i n g the speed and the ←↩

d i r e c t i o n
29 i f (t h i s . direction=="back") {
30 twist . getLinear () . setX (t h i s . speed ∗(−1)) ;
31 twist . getLinear () . setY (0) ;
32 twist . getLinear () . setZ (0) ;
33

34 twist . getAngular () . setX (0) ;
35 twist . getAngular () . setY (0) ;
36 twist . getAngular () . setZ (0) ;
37 }
38 i f (t h i s . direction==" forward ") {
39 twist . getLinear () . setX (t h i s . speed) ;
40 twist . getLinear () . setY (0) ;
41 twist . getLinear () . setZ (0) ;
42

43 twist . getAngular () . setX (0) ;
44 twist . getAngular () . setY (0) ;
45 twist . getAngular () . setZ (0) ;
46 }
47 i f (t h i s . direction==" l e f t ") {
48 twist . getLinear () . setX (0) ;
49 twist . getLinear () . setY (0) ;
50 twist . getLinear () . setZ (0) ;
51

52 twist . getAngular () . setX (0) ;
53 twist . getAngular () . setY (0) ;
54 twist . getAngular () . setZ (t h i s . speed) ;
55 }
56

57 i f (t h i s . direction==" r i gh t ") {
58 twist . getLinear () . setX (0) ;
59 twist . getLinear () . setY (0) ;
60 twist . getLinear () . setZ (0) ;
61

62 twist . getAngular () . setX (0) ;
63 twist . getAngular () . setY (0) ;
64 twist . getAngular () . setZ (t h i s . speed ∗(−1)) ;
65 }
66 t ry {
67 Thread . sleep (300) ;
68 } catch (InterruptedException e) {
69 e . printStackTrace () ;
70 }
71 // pub l i sh the message
72 publisher . publish (twist) ;
73 }
74 }

As explained in Sect. 3, we have implemented two ROS nodes in Java using ROS-
JAVAAPI.The “Position.java” class subscribes on theROS topic/turtle1/
pose. Once executed, it should return the position of the robot as a response. In the
other hand, the execution of “Motion.java” class should move the turtlesim with
the speed and direction already specified by the executor.

Now, the question is how to send these requests through a Web service client.
So, the objective is to expose the publisher of the topic /turtle1/cmd_vel and

ROS Web Services: A Tutorial 483

the subscriber on the topic /turtle1/pose as a Web services so that they can
be invoked by a Web service client to send a request to the robot for controlling its
movement and position respectively.

SOAP Web Services package:
Referring to our architecture (Fig. 2), the SOAP Web Services package implements
web methods that expose robot capabilities using ROS package to publish/subscribe
on a ROS topic and request ROS service. For our illustrative example, we implement
a Java class defined as a web service and called “TurtlesimWS.java” to control
the turtlesim. This class contains web methods that execute “Position.java”
and “Motion.java” classes implemented in ROS package to publish on the topic
/turtle1/cmd_vel and subscribe on the topic /turtle1/pose.

In a first step, we declare “TurtlesimWSInterface.java” which is a Java
interface for the “TurtlesimWS.java” web service. This represents a good prac-
tice in Web Services design so as to separate the implementation of the Web service
from its interface.

Class n◦ 1: TurtlesimWSInterface.java:

1 package com . soap . ws ;
2

3 import javax . jws . WebMethod ;
4 import javax . jws . WebService ;
5 import javax . jws . soap . SOAPBinding ;
6 import javax . jws . soap . SOAPBinding . Style ;
7

8 @WebService
9 @SOAPBinding (style = Style . RPC)

10 pub l i c interface TurtlesimWSInterface {
11

12 @WebMethod
13 pub l i c void getPosition () ;
14

15 @WebMethod
16 pub l i c void move (String direction , double speed) ;
17

18 }

The interface contains two Web methods exposed to the Web service clients:
(1) The getPosition(...) method is responsible for executing the request for getting
the position of turtlesim, and (2) The move(...) method which takes the speed and the
direction values as parameters, is responsible for executing the request for moving
the turtlesim. It is clear that this interface provides a clear description of the service
provided by the service robot, and hides implementation details from the end-users.
All what clients applications need to know is the service description, also known as
the contract, that defines the methods that can be invoked. They just need to invoke
these web methods to control the robot

Now, in the back-end of the Web service layer, we define the implementation of
the Web service interface in “TurtlesimWS.java” class.

484 F. Ellouze et al.

Class n◦ 2: TurtlesimWS.java:

1 package com . soap . ws ;
2

3 import java . net . URI ;
4 import javax . jws . WebService ;
5 import org . ros . node . DefaultNodeMainExecutor ;
6 import org . ros . node . NodeConfiguration ;
7 import org . ros . node . NodeMain ;
8 import org . ros . node . NodeMainExecutor ;
9 import com . google . common . base . Preconditions ;

10 import com . ros . nodes . Position ;
11 import com . ros . nodes . Motion ;
12

13

14 @WebService (endpointInterface = "com . soap . ws . Turt les imWSInterface ")
15 pub l i c c l a s s TurtlesimWS implements TurtlesimInterface{
16

17 pr i va t e void executeNode (NodeMain node) {
18

19 URI masteruri = URI . create (" http : / / 192 . 1 6 8 . 1 . 4 : 1 1 311 ") ;
20 String host = " 192 . 1 6 8 . 1 . 4 " ;
21 NodeMainExecutor nodeMainExecutor = DefaultNodeMainExecutor←↩

. newDefault () ;
22 NodeConfiguration nodeConfiguration = NodeConfiguration .←↩

newPublic (host , masteruri) ;
23 Preconditions . checkState (node != null) ;
24 nodeMainExecutor . execute (node , nodeConfiguration) ;
25 }
26

27 @Override
28 pub l i c void getPosition () {
29 Position position = new Position () ;
30 executeNode (position) ;
31 }
32

33 @Override
34 pub l i c void move (String direction , double speed) {
35 Motion motion = new Motion (direction , speed) ;
36 executeNode (motion) ;
37 }
38 }

Observe that we define three methods: (1) the executeNode(...) method
which is responsible for executing ROS nodes. It takes as a parameter the
“NodeMain” object which is a super class of ROS nodes. This method instantiates
“NodeMainExecutor” class provided by ROSJAVA API to allow the execution
of ROS nodes, (2)move(...) and (3)getPosition(...)webmethodswhich
instantiate “executeNode()” method to execute ROS nodes in order to publish
on the topic /turtle1/cmd_vel and subscribe on the topic /turtle1/pose
respectively.

Now,weneed to publish theweb service implementation in order to expose defined
web methods to the public. We present “TurtlesimWSPublisher.java”
which is a publisher of the web service implementation “TurtlesimWS.java;;.

ROS Web Services: A Tutorial 485

Class n◦ 1: TurtlesimWSPublisher.java:

1 package com . soap . endpoint ;
2

3 import javax . xml . ws . Endpoint ;
4

5 import com . soap . ws . TurtlesimWS ;
6

7 pub l i c c l a s s TurtlesimWSPublisher {
8

9 pub l i c s t a t i c void main (String [] args) {
10

11 Endpoint . publish (" http :// l o c a l h o s t :1239/ tu r t l e s im " , new ←↩

TurtlesimWS ()) ;
12 }
13 }

Note that youmay refer toSect. 2 formore clarification andexplanationof the code.

Now, we define a client web service to consume the SOAP web methods that we
have implemented and exposed for Turtlesim. We will just make a simple test by
moving the turtlesim forward.

Class n◦ 1: TurtlesimWSClient.java:

1 package com . soap . client ;
2

3 import java . net . URL ;
4 import javax . xml . namespace . QName ;
5 import javax . xml . ws . Service ;
6 import com . soap . ws . TurtlesimInterface ;
7

8 pub l i c c l a s s TurtlesimWSClient {
9

10 pub l i c s t a t i c void main (String [] args) throws Exception{
11

12 URL url = new URL (" http :// l o c a l h o s t :1239/ tu r t l e s im ?wsdl ") ;
13 QName qname = new QName (" http ://ws . soap . com/" , "←↩

TurtlesimWSService ") ;
14 Service service = Service . create (url , qname) ;
15

16 TurtlesimWSInterface turtlesim = service . getPort (←↩

TurtlesimWSInterface . c l a s s) ;
17 turtlesim . move (" forward " ,2) ;
18 }
19 }

We notice that SOAP web services hide all ROS details and provide a new way
to interact with robots. The web service client do not need any background on
ROS ecosystem or on robotics. He just need to execute a web service in order to
interact with the robot. In our example, the web service client sends a request to the
move(...) web method in order to move the turtlesim forward with speed of 2m
per second.

486 F. Ellouze et al.

TEST YOUR CODE
To test the code, please run the rosmaster by running in the terminal:

roscore

Then, run turtlesim node by taping in the terminal:

rosrun turtlesim turtlesim_node

Now, run “TurtlesimWSPublisher.java” class and then “Turtlesim
WSClient.java” class. You should see the turtlesim moving forward.

RESTful Web Services:
As explained in our architecture, RESTful web services expose the robot’s capa-
bilities by executing corresponding ROS nodes implemented in the ROS pack-
age. For our example, we consider turtlesim as a single resource. Thus, we define
“TurtlesimResource.java” class that implements three methods: (1) the
“getPosition(...)” web method which executes “Position.java” class
to subscribe on /turtle1/pose topic and get the position of turtlesim, (2) the
“move(...)” web method that executes “Motion.java” class to
publish on /turtle1/cmd_vel topic and move the turtlesim and (3) the
“executeNode(...)” method which executes ROS nodes using ROSJAVAAPI.
Class 1 presents an implementation of the “TurtlesimResource.java” class
for controlling turtlesim.

Class n◦ 1: TurtlesimResource.java:

1 package com . rest . resource ;
2

3 import java . net . URI ;
4 import javax . ws . rs . GET ;
5 import javax . ws . rs . POST ;
6 import javax . ws . rs . Path ;
7 import javax . ws . rs . PathParam ;
8 import javax . ws . rs . core . Response ;
9 import org . ros . node . DefaultNodeMainExecutor ;

10 import org . ros . node . NodeConfiguration ;
11 import org . ros . node . NodeMain ;
12 import org . ros . node . NodeMainExecutor ;
13 import com . google . common . base . Preconditions ;
14 import com . ros . nodes . Position ;
15 import com . ros . nodes . Motion ;
16

17 @Path ("/ tu r t l e s im ")
18 pub l i c c l a s s TurtlesimResource {
19

20 pr i va t e void executeNode (NodeMain node) {
21

22 URI masteruri = URI . create (" http : / /192 . 1 68 . 0 . 1 23 : 1 1311 ") ;
23 String host = " 192 . 168 . 0 . 123 " ;
24 NodeMainExecutor nodeMainExecutor = DefaultNodeMainExecutor←↩

. newDefault () ;

ROS Web Services: A Tutorial 487

25 NodeConfiguration nodeConfiguration = NodeConfiguration .←↩

newPublic (host , masteruri) ;
26 Preconditions . checkState (node != null) ;
27 nodeMainExecutor . execute (node , nodeConfiguration) ;
28 }
29

30 @POST
31 @Path ("/ po s i t i o n ")
32 pub l i c void getPosition () {
33 Position position = new Position () ;
34 executeNode (position) ;
35 }
36

37 @GET
38 @Path ("/{ d i r e c t i o n }/{ speed}")
39 pub l i c void move (@PathParam (" d i r e c t i o n ") String direction , ←↩

@PathParam (" speed") double speed) {
40 Motion moveForwardTurtlesimNode = new Motion (direction ,←↩

speed) ;
41 executeNode (moveForwardTurtlesimNode) ;
42 }
43 }

In “TurtlesimResource.java” class, the getPosition(...) Web
method is executed when the Web service receives an HTTP request using the
POST operation on the following URI /turtlesim/position. However, the
move(...) web method is executed when an HTTP GET request is received on
the URI /turtlesim/, added to this the list of parameters passed to the Web
method like /turtlesim/forward/2 to request to move the turtlesim forward
with speed of 2m per second.

After preparing the implementation of RESTful web service for turtlesim, we
implement the “TurtlesimResourcePublisher.java” class to publish and
expose the web service to the public.

Class n◦ 1: TurtlesimResourcePublisher.java:

1 package com . rest . endpoint ;
2

3

4 import java . io . IOException ;
5 import java . util . logging . Level ;
6 import java . util . logging . Logger ;
7 import com . rest . resource . TurtlesimResource ;
8 import com . sun . jersey . api . container . httpserver . HttpServerFactory ;
9 import com . sun . jersey . api . core . ClassNamesResourceConfig ;

10 import com . sun . net . httpserver . HttpServer ;
11

12 pub l i c c l a s s TurtlesimResourcePublisher {
13 pub l i c s t a t i c void main (String [] args) {
14 t ry {
15 HttpServer create = HttpServerFactory . create (
16 "http :// l o c a l h o s t :7001/ " ,new ClassNamesResourceConfig (←↩

TurtlesimResource . c l a s s)) ;
17 create . start () ;
18 } catch (IllegalArgumentException e) {
19 e . printStackTrace () ;
20 } catch (IOException ex) {

488 F. Ellouze et al.

21 Logger . getLogger (TurtlesimResourcePublisher .←↩

c l a s s . getName ()) . log (Level . SEVERE , null , ex←↩

) ;
22 }
23 }
24 }

Observe that we deploy the RESTful resource “TurtlesimResource” on
an HTTP server which is accessible through the URL http://localhost:
7001/ .
We can test our web service by sending an HTTPGET request on the URI /turtle
sim/forward/2 to move the turtlesim forward with speed of 2m per second.
Now, we implement a client web service to consume the RESTful web service that
we have implemented and exposed for Turtlesim.

Class n◦ 1: TurtlesimResourceClient.java:

1 package com . rest . client ;
2

3 import java . io . BufferedReader ;
4 import java . io . InputStreamReader ;
5 import java . net . HttpURLConnection ;
6 import java . net . URL ;
7

8 pub l i c c l a s s TurtlesimResourceClient {
9

10 pr i va t e final String USER_AGENT = "Moz i l l a /5 .0 " ;
11

12 pub l i c s t a t i c void main (String [] args) throws Exception {
13

14 TurtlesimResourceClient http = new TurtlesimResourceClient←↩

() ;
15

16 System . out . println ("Test ing 1 − Send Http POST reques t ") ;
17 http . moveForwardTurtlesim () ;
18

19 }
20

21 // HTTP GET reques t
22 pr i va t e void moveForwardTurtlesim () throws Exception {
23

24 String url = "http :// l o c a l h o s t :7001/ tu r t l e s im / po s i t i o n " ;
25

26 URL obj = new URL (url) ;
27 HttpURLConnection con = (HttpURLConnection) obj .←↩

openConnection () ;
28

29 con . setRequestMethod ("POST") ;
30

31 //add reques t header
32 con . setRequestProperty ("User−Agent" , USER_AGENT) ;
33

34 i n t responseCode = con . getResponseCode () ;
35 System . out . println ("\nSending ’POST ’ reques t to URL : " + ←↩

url) ;
36 System . out . println ("Response Code : " + responseCode) ;
37

38 BufferedReader in = new BufferedReader (
39 new InputStreamReader (con . getInputStream ())) ;
40 String inputLine ;
41 StringBuffer response = new StringBuffer () ;
42

43 whi le ((inputLine = in . readLine ()) != null) {

ROS Web Services: A Tutorial 489

44 response . append (inputLine) ;
45 }
46 in . close () ;
47

48 // pr in t r e s u l t
49 System . out . println (response . toString ()) ;
50

51 }
52

53 }

Observe that the client application is completely unaware of the ROS ecosys-
tem and the details of the implementation. It mainly consists in invoking the
Web method getPosition(...) by sending HTTP POST request on the URI
/turtlesim/position in order to get the position of the turtlesim. The devel-
oper makes a complete abstraction of ROS and is able to command the robot through
available service interfaces.

TEST YOUR CODE
To test the code, please run the rosmaster by running in the terminal:

roscore

Then, run turtlesim node by taping in the terminal:

rosrun turtlesim turtlesim_node

Now, run “TurtlesimResourcePublisher.java” class and then
“TurtlesimResourceClient.java” class. You should see the position of
the turtlesim

5 Conclusion

In this chapter, we presented a tutorial on how to integrate SOAP and REST Web
services into ROS. The objective of this integration is to provide new abstraction
layers on top of ROS to make easier the development of robotics applications by
non roboticians. We proposed a software architecture for SOAP and REST Web
services integration with ROS and we validated it through a real implementation.
This integration is one step towards the new paradigm of cloud computing.

Acknowledgments This work is supported by the myBot project entitled “MyBot: A Personal
Assistant Robot Case Study for Elderly People Care” [1] under the grant number 34–75 from King
AbdulAziz City for Science and Technology (KACST). This work is partially supported by Prince
Sultan University.

490 F. Ellouze et al.

References

1. Mybot Project, KACST Project Number, (2015), pp. 34–75
2. Video Demonstration of Mybot Service Robot for Courier Delivery Application, (2015). https://

www.youtube.com/watch?v=otltmx2-uca
3. A. Koubaa (2015) ROS as a service: web services for robot operating system. J. Software Eng.

Robot. 6(1), ISSN:2035-3928
4. C. Pautasso, O. Zimmermann, F. Leymann, Restful Web Services Versus “Big” Web Services:

Making the Right Architectural Decision, in Proceedings of the 17th International Conference
on World Wide Web, ser. WWW ’08. (New York, NY, USA: ACM, 2008), pp. 805–814. http://
doi.acm.org/10.1145/1367497.1367606

5. A. Koubâa, M. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Alajlan, N. Al-Elaiwi, M.
Tounsi, E.M. Shakshuki, COROS: A Multi-agent Software Architecture for Cooperative and
Autonomous Service Robots, in Cooperative Robots and Sensor Networks 2015, (2015), pp.
3–30. http://dx.doi.org/10.1007/978-3-319-18299-5_1

6. A. Koubaa, A Service-Oriented Architecture for Virtualizing Robots in Robot-as-a-Service
Clouds, in Architecture of Computing Systems—ARCS 2014, (2014)

7. Introducing Rostful: Ros Over Restful Web Services, (2015). http://www.ros.org/news/2014/
02/introducing-rostful-ros-over-restful-web-services.html

8. S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, O.C. Jenkins, Robots as Web Ser-
vices: Reproducible Experimentation and Application Development using Rosjs, in 2011 IEEE
International Conference on Robotics and Automation (ICRA), (2011)

https://www.youtube.com/watch?v=otltmx2-uca
https://www.youtube.com/watch?v=otltmx2-uca
http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://dx.doi.org/10.1007/978-3-319-18299-5_1
http://www.ros.org/news/2014/02/introducing-rostful-ros-over-restful-web-services.html
http://www.ros.org/news/2014/02/introducing-rostful-ros-over-restful-web-services.html

rapros: A ROS Package for Rapid
Prototyping

Luca Cavanini, Gionata Cimini, Alessandro Freddi,
Gianluca Ippoliti and Andrea Monteriù

Abstract ROS framework lacks of an internal tool to design or test control algo-
rithms and therefore developers have to test their algorithms on-line, directly on the
robotic platform they are working with. This is not always safe and possible, and
a rapid prototyping tool can help during the design phase. Users can develop their
algorithms directly on the controller board and safely test them in a simulated sce-
nario. Although some rapid prototyping tools exist in the ROS community, none of
them take Simulink® into consideration. In this work the authors provide an open
source Rapid Prototyping tool which integrates ROS and Simulink. The proposed
package is useful for control designers, who are frequently used to exploit Simulink
features for control deployment. The tool can be downloaded from https://github.
com/gionatacimini/rapros.

1 Introduction

In the last years Rapid Prototyping (RP) has become very popular in several engi-
neering fields. Generally, it refers to strategies, tools or platforms which help the
developers, by reducing the design time phase and increasing the overall efficiency
of development process. It is clear that RP is a general concept and can assume

L. Cavanini · G. Cimini (B) · G. Ippoliti · A. Monteriù
Dipartimento di Ingegneria Dell’Informazione, Università Politecnica delle Marche,
via Brecce Bianche 12, 60131 Ancona, Italy
e-mail: g.cimini@univpm.it

L. Cavanini
e-mail: l.cavanini@univpm.it

G. Ippoliti
e-mail: g.ippoliti@univpm.it

A. Monteriù
e-mail: a.monteriu@univpm.it

A. Freddi
Università degli Studi eCampus, via Isimbardi 10, 22060 Novedrate, CO, Italy
e-mail: alessandro.freddi@uniecampus.it

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_19

491

https://github.com/gionatacimini/rapros
https://github.com/gionatacimini/rapros

492 L. Cavanini et al.

different meanings depending on the field it is referring to [14, 15]. In robotics
these differences are emphasized due to the several fields involved for the complete
developing of a robot, i.e. mechanics, electronics, informatics and automation. Thus
frameworks for RP design of robots are very common, [22] as well as tool-chains
for the rapid, and possible easier, low-level code embedding, together with commu-
nication infrastructure testing, [16, 19, 20, 27]. In this paper we focus on RP for
robots’ behaviour design, whose potentialities have been widely used and applica-
tions detailed in the robotics literature [12, 17, 25]. Whereas the control algorithm
design could be include in the ROS framework, this framework lacks of tool for
RP. At the moment, the developer has to test on-line the algorithms, directly on the
robotic platform. But this is not always safe or possible. The proposed solution is
a package which enables controller RP directly in the ROS-based applications. It
facilitates the system- and component-level design and the simulation, together with
continuous test and validation of the control system. In both academy and industry,
one of the most appreciated tool for system modelling and control design is MAT-
LAB [13]. In particular, Simulink is very widespread in the control community as it
provides a graphical interface and libraries to build dynamical models using block
diagrams. This allows quickly and clearly to model a system or design a control,
while limiting at the same time the code to write inline. ROS framework lacks of
a modelling language or tool for dynamical models, thus Simulink is the perfect
candidate to accomplish this task.

Several solutions have been recently proposed to provide an effective ROS and
Matlab interaction. From 2015, aMathworks® official library is available to interface
Matlab and Simulink environment and ROS systems; unfortunately it is available
only in a payment version. Furthermore independent research groups and universities
proposed several solution [1–3]. The main disadvantage of all available tools is that
they are tailored for Matlab command-line and consequently they are hard or even
impossible to use in Simulink due to the limited functions support in the simulation
environment. In addition, most of them are based on external libraries, and their
support and integration highly depend on external sources. It is worth noticing that
a well known platform for ROS users for robot simulation is Gazebo, but, despite
its very good features in terms of simulation, it is not suited for control design
and RP [21].

The previous background and motivations inspired the research presented in this
work. The novelty and the main contribution is a tool for RP of control algorithms
which allows the integration of ROS framework and Simulink. On one side, the
control community will benefit from this tool since testing controllers on real hard-
ware will turn to be an easier task thanks to the hardware abstraction of the ROS
framework. On the other side, ROS users will benefit from the tool for its RP capa-
bility, which is the main contribution of the work. There is a huge spread of Matlab
users in the ROS community, therefore the majority of the software’s audience is not
required to learn a new tool or language. The proposed tool is easy to install and use;
it guarantees also an optimal supportability and maintainability as it is completely

rapros: A ROS Package for Rapid Prototyping 493

based on Matlab and ROS native functions, mostly Python-based. The tool is named
rapros (rapid prototyping ROS), and can be downloaded from https://github.com/
gionatacimini/rapros.

The main feature provided by the software is the possibility to directly develop
algorithms on the controller board and safely test them in a simulated scenario. The
proposed packagewill be useful in the design, test and tuning of control algorithms for
robot applications in ROS. The ros_control package is available in ROS framework
to accomplish control design tasks [4]. It is based on a generic control loop feedback
mechanism, typically a PID controller, for driving the output sent to the actuators.
It contains a set of plug-in and standard hardware interfaces, and allows to connect
to sensors and actuators. However, it is oriented to the development of low-level
controller, without allowing the test and prototyping of the designed algorithm. Thus
the proposed tool can be used also in combination with the ros_control package to
extend its feature, allowing a direct communication with MATLAB.

To better understand its potentialities, the authors provide two examples of the
possible uses of the tool. The first example regards the Unmanned Aerial Vehicle
(UAV) stabilization, while the second is the control of a fan. In both the examples,
linear controllers have been used, and the setup scenario for RP, consists of a PCwith
Matlab/Simulink and a board with ROS framework embedded; both the BeagleBone
and the BeagleBoard-xM have been used and tested as target boards.

The paper is organized as follows. Section2 provides a background detailing the
main features of RP. Section3 describes the steps needed to get the tool working
in both ROS and Matlab. Section4 presents the above mentioned examples where
the tool is used for rapid prototype controller design. Finally Sect. 5 describes the
package structure and operation.

2 Background

The adopted terminology in the field of RP is confusing, since it is strictly related to
the engineering field of application. In the following, we provide some definitions
which hold true for the rest of the chapter. They are specifically tailored for the
application of interest (i.e. robotics and control) [23, 24]:

• Rapid Prototyping (RP): it is the set of procedures which helps to design and to
develop controllers Fig. 1 for robotics applications, it is a general concept which
includes both Processor in the Loop and Hardware in the Loop;

• Processor In the Loop (PIL): it is theRP techniquewhere the real control hardware
is involved and tested, and all the other hardware components are modelled on a
PC [26];

• Hardware In the Loop (HIL): it is the RP technique where the hardware compo-
nents (or part of them) are real, while the control algorithm runs on a PC, thus it
is simulated [11].

https://github.com/gionatacimini/rapros
https://github.com/gionatacimini/rapros

494 L. Cavanini et al.

Controller Plant
u

Measurements

r e y

−

ym

Fig. 1 Closed loop control scheme

Fig. 2 Rapid prototyping: PIL (left) an HIL (right) concepts. In red the steps on ROS embedded,
in yellow the steps in MATLAB framework

PIL and HIL are both useful and complementary in the design of robot behaviours,
allowing continuous testing and deployment of features. Figure2 shows the steps
in which PIL and HIL can be divided. When speaking about prototyping, PC and
real robotic hardware are considered. In the figure the main steps involving PC,
namely Simulink, are highlighted in red, while the steps involving real hardware are
highlighted in orange.

In PIL techniques, the robot model, or one of its subsystems, is implemented in
Simulink, whichmakes the task east thanks to the block-like programming language.
Once the dynamic system of the process is modelled, a control algorithm is designed
and tested in simulation (see Fig. 3a). The satisfactory control is then deployed on the
real platform. This steps are very easy to accomplish as Simulink provides several
toolboxes for the control design, e.g. fuzzy, PID, neural networks etc. Furthermore,
the deployment is assisted by the automatic code generation feature which, at least,
represents a good starting point for the board deployment. The feasibility testing is
the key point of the PIL procedure. Indeed the processor’s performances are evalu-
ated, mainly, in terms of computational burden and memory allocation. Embedded
platforms provide Micro Controller Units (MCUs) which have poor features respect
to the PCwhere the algorithm is initially tested. Complex algorithms could not fit into
the available memory or could take more than a sampling interval to be evaluated.

rapros: A ROS Package for Rapid Prototyping 495

ROS Controller rapros Simulink Plant Model
u u

rapros

r e y

−

ym

Simulink Controller rapros ROS Plant
u u

rapros

r e y

−

ym

(a)

(b)

Fig. 3 Block schemes for the possible uses of rapros. a PIL objective: test the real control hardware
on a plant modelled in Simulink. b HIL objective: test the real plant hardware (or part of it) on a
controller synthesized on a PC

For this reason, the MCU is profiled, and the user decides if it is worth optimiz-
ing the code or switching to a more powerful device. Once the feasibility testing is
passed, the control performance are evaluated. This is important for some critical
aspects which are difficult to predict during the control design test. For example the
arithmetic precision of the embedded platform is usually lower (i.e. single precision)
with respect to a PC, and this can lead to different behaviours, especially in complex
algorithms.

In control design, HIL follows the general steps depicted Fig. 2. HIL is devoted
to test the hardware resources of the system, excluding from the processor, thus the
control algorithm is designed and runs on a PC (see Fig. 3b). The hardware to be
tested consists of sensors and actuators. Both of themhave to be characterized, and the
availability of a PC based application, facilitates this task. Acquisitions, open-loop
tests, changes in the software are easily performed.Moreover, it is common in robotic
platform to have multiple peripherals. The key factor for a successful integration of
all the peripherals, could be the exploitation of an incremental integration of hardware
trough RP. Thus this approach permits to start the design phase with a completely
simulated model, and to add, one by one, real hardware components allowing the
interfaces and behaviours tests [25].

3 ROS Environment Configuration

The importance of RP in embedded applications has been highlighted in the previous
section. For this reason the proposed rapros package has been installed ad tested on
embedded boards, namely BeagleBone Black and BeagleBoard-xM, running Linux

496 L. Cavanini et al.

kernels and the ROS framework; these will used as control boars for testing the
examples detailed in Sect. 4. The setup procedure on this low-cost boards is divided
into three steps: (i) Linux kernel installation, (ii) ROS environment configuration,
(iii) rapros package setup. It is worth noticing that rapros package could be tested
also on a single PC, running ROS and Simulink.

The setup and configuration procedure are explained in the following. The guide-
lines highlight Unix OS commands; obviously the procedure can be performed on
Microsoft Windows c© systems. On Windows PC, Putty software is required [5]; in
this case the correct configuration includes board IP (port 22) and ssh connection
type.

3.1 BeagleBone Black Setup

BeagleBone Black is a low-cost development platform, which provides a AM335x
1GHz ARM® Cortex-A8 with 512MB DDR3 RAM and 3D acceleration.

It runs Ångström, a Linux distribution developed in order to workARMunits. The
Ångström kernel image can be download from [6]. The installation of the operating
system is easy following the guidelines in [7]. In the following we provide the main
steps to build up the complete system. The board communicates with a PC through
a USB port and a ssh connection, established with:

> sshroot@beaglebone.local

Usually username and password are both root at the first log-in.
Even if it is notmandatory, it is preferable to have an updated version ofÅngström:

>opkg update

>opkg updrage

The ROS version, suitable for the board, can be downloaded from a git project.
To directly clone the repository into the system, the last software version must be
installed through opkg:

>opkg install git

>git clone git://github.com/vmayoral/beagle-ros.git

To install the ROS tool, an easy to use shell script is provided.

rapros: A ROS Package for Rapid Prototyping 497

>cd beagle-ros/scripts

>bash ./minimal-ros-install-angstrom.sh

Once the installation is finished, it is advisable to configure the ROS environment
variables in the .bashrc file. This is possible by using a software editor, like nano,
typing in home directory:

>nano .bashrc

and adding to the end of the opened file, the following raws:

export ROS_HOSTNAME=localhost

export ROS_MASTER_URI=http://localhost:11311

The workspace is created during the installation task, but if this does not hap-
pen, it is possible to create it following the ROS tutorial available on the reference
website [8].

3.2 BeagleBoard-xM Setup

BeagleBoard-xM offers a AM37x 1GHz ARM Cortex-A8 processor, with 512 MB
LPDDR RAM and 3D acceleration. The procedure to install ROS on these boards
is provided. In this case, the OS selected for the installation is the ARM version
of Linux Ubuntu 10.04 LTS. This Linux distribution is more stable than the others
Linux OS embedded alternatives. Indeed, Ångström release for this board is not still
fully working.

The OS is downloaded and copied on the MicroSD card, and some local parame-
ters must be set:

>wget https://rcn-ee.net/rootfs/2015-01-06/microsd/bbxm-ubuntu-14.04.1-

console-armhf-2015-01-06-2gb.img.xz

>unxz bbxm-ubuntu-14.04.1-console-armhf-2015-01-06-2gb.img.xz

>sudo dd if=./bbxm-ubuntu-14.04.1-console-armhf-2015-01-06-2gb.img

of=/dev/sdX

>sudo update-locale LANG=C LANGUAGE=C LC_ALL=C LC_MESSAGES=POSIX

In this case the ROS framework can be installed following the standard tutorial
for desktop installation [9]. Occasionally, the authors have experienced unwanted

498 L. Cavanini et al.

changes in Ethernet MAC address after a reboot. The following lines are sufficient
to avoid the problem:

>sudo gedit /etc/network/interfaces

>auto eth0

>iface eth0 inet dhcp

>hwaddress ether 01:02:03:04:05:06 >sudo /etc/init.d/networking restart

where the fourth command requires the correct Ethernet MAC address

3.3 rapros Package Installation

The proposed package can be downloaded from [8]. The rapros package comes with
two working examples:

• a customized rapros node and the related Simulink block to perform a loop-back
test in Simulink and the ROS environment;

• the node and the Simulink block developed during the PIL test.

To install the package, rapros must be placed in the /src folder inside the ROS
workspace. FromMATLAB side, the Matlab_Simulink directory inside the selected
example package must be added to the Matlab path. The rapros with the Simulink
block will appear in the Matlab palette. Finally, each launch file and each rapros
python file, in the launch directory needs the administrator privileges to be launched.
This is possible typing:

>sudo chmod +x name_file.launch

>sudo chmod +x name_file.py

3.4 rapros Parameters Setup

rapros package requires the correct setup of the connection parameters. These para-
meters are set on the launch file, for the ROS side, and on the rapros block mask, for
the Simulink side. The launch file allows to change the following paramenters:

• ip_board: in the IP parameter group, this indicates the IP address of the board
connected to the personal computer through direct Ethernet connection;

• ip_pc: in the IP parameter group, this indicates the IP address of the personal
computer connected to the board through direct Ethernet connection;

• Ts: indicates the sample time of the control system.

rapros: A ROS Package for Rapid Prototyping 499

The user is encouraged to run the loop-back test, to verify the correct behaviour of
the system. The example is located in rapros_test. It can be completely run on a PC
without the use of a board, setting the ip_board and ip_pc to the local host address,
namely 127.0.0.1.

In “rapros Simulink block”, the parameters can be set through the block mask.
The following fields can be customized:

• Input dimension: it indicates the dimension of the input from the Simulink to the
rapros block;

• Output dimension: it indicates the dimension of the output from the rapros block
to the Simulink model;

• Sample time: it indicates the sample time of the control system, and it must be
the same of Ts value set in the launch file;

• Host address receive: this parameter indicates the address of the personal com-
puter connected to the board through direct Ethernet connection;

• Host address send: it indicates the address of the board connected to the PC
through direct Ethernet connection.

Once the configuration parameters are correctly set, the launch file of the needed
example package starts theROS-side package. If everything isworking, the following
message will be displayed:

wait upd packet

When the simulation starts in Simulink, the rapros node is directly synchronized
with the model. If the rapros node stops, Simulink model stops the simulation with
an error. When Simulink interrupts the simulation, the node returns in wait state. It is
worth noticing that after each simulation, the rapros node must be restarted, in order
to reset the paramter server of ROSMaster, and the variables’ values inside the node.

4 Starting with a Test

In this chapter we show the rapros functionalities into standard control development
tasks, exploiting twowell known examples in the literature. The first example is about
an application of the package to a PIL task. In this example the package is used to
verify the correct behaviour of a controller developed in ROS, and implemented on
a board, with a model of the real system deployed in Simulink.

The second example is a typical Hardware In the Loop (HIL) task. The real system
is controlled by a board connected to hardware sensors and actuators. The control
algorithm is directly developed in the Simulink simulation environment and, thanks
to the rapros package, it controls directly the real system.

500 L. Cavanini et al.

The software employed in these tests are:

• Ubuntu 14.04 LTS (PC);
• Matlab/Simulink 2013b;
• Ubuntu Arm 14.04 LTS (Beagleboard-xM);
• Ångström 12.12 (Beagleboard Black);
• ROS Hydro Medusa (Beagleboard Black);
• ROS Indigo Igloo (Beagleboard-xM);
• rapros 1.0.

To run the test, the first step is to copy the rapros package into the src folder of
the catkin workspace into the board:

>mv -r path/to/local/directory path/to/board/directory

The second step is to modify the example launch file, to insert the PC and board
IP addresses in the appropriate section. It is possible do that by nano editor software:

>cd /catkin_ws/src/rapros/example/launch

>nano rapros_name_example.launch

Afterwards , at the computer side, the next step is to set the same IP addresses on
the Simulink mask of the rapros block present in the Simulink example file.

Finally, in order to start the selected example, first the user has to run the modified
launch file on the board:

>roslaunch rapros_name_example.launch

Then, to obtain the ROS node, the user has to wait that the simulation stars on
Simulink environment; this is notified by the following message:

>wait udp packet

At this point it is possible to start the simulation on Simulink. The proper operation
of the example will be notified by the iterative generation of the following messages
on the board interface terminal:

rapros: A ROS Package for Rapid Prototyping 501

Fig. 4 The quadrotor
scheme

>wait udp packet

>received

>pc_ip

>Transmitted to Simulink

4.1 A PIL Example: The Quadrotor Stabilization

This example concerns the stabilization of a linearized quadrotor model, as the one
depicted in Fig. 4, for which the dynamical model is built in Simulink. For the ease
of reading, the notation is clarified in the following.

The parameters characterizing the non-linear and the linearized model [18] of the
quadrotor are summarized in Table1. The control purpose is to stabilize the z position
component around the origin. The non-linear simulation model, implemented in
Simulink, is:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Γ̇NED = RT V̇B

Φ̇ = p + q sinΦ tanΘ + r cosΦ tanΘ

Θ̇ = q cosΦ − r sinΦ

Ψ̇ = q
sinΦ

cosΘ
+ r

cosΦ

cos θ
u̇ = rv − qw − g sinΘ

v̇ = pw − ru − g cosΘ sinΦ

ẇ = qu − pv + g cosΘ cosΦ − T

m

ṗ = lb

Ix
(Ω2

2 − Ω4
2) − qr

Iz − Iy

Iy

q̇ = lb

Ix
(Ω1

2 − Ω3
2) − qr

Ix − Iz

Iy

ṙ = d

Iz
(Ω1

2 − Ω2
2 + Ω3

2 − Ω4
2)

(1)

502 L. Cavanini et al.

Table 1 Variables and parameters of the considered quadtorot

Variables

x , y, z x , y, z Position components (m)

Φ, Θ , Ψ Roll, pitch, yaw angle
orientation

(rad)

u, v, w x , y, z Speed components (m/s)

p, q, r Roll, pitch, yaw rotation speed (rad/s)

Parameters

g Gravity acceleration 9.8 (m/s2)

Ω0i i th Motor rotation initial value 323 (rad/s)

ly ,lx Moment of inertia (roll, pitch) 0.0081 (kg/m2)

lz Moment of inertia (Yaw) 0,0162 (kg/m2)

m Vehicle mass 0.85 (kg)

l Arm length from the center of
mass

0.2 (m)

b Spin coefficient 1.46 × 10−5

where

RT =
⎡

⎣

cΘcΨ sΦsΘcΨ − cΦsΨ cΦsΘcΨ + sΦsΨ
cΘsΨ sΦsΘsΨ − cΦcΨ cΨ sΘsΨ

sΘ sΦcΘ cΦcΘ

⎤

⎦ (2)

and sα, cα are equal to sin α, cosα respectively.
In order to stabilize the quadrotor model is linearized around the initial condition

Ω0i , (see Table1), and this model has been adopted for control purpose.
To stabilize the plant, a standard Proportional, Integral,Derivative (PID) controller

is designed and tuned with the help of Simulink toolbox. In rapros_quadrotor node,
the Python code for a discrete time PID controller is implemented.

The system control inputs Ωi are referred to the rotation speed of the single
motor. These inputs are mixed to obtain simple control signal. This is made in order
to control the movement directions of the quadrotor controlling a single input signal
ui . This mix of signal is realized by a control matrix, presented below.

u1 = Ω1 + Ω2 + Ω3 + Ω4 (3)

u2 = Ω2 − Ω4 (4)

u3 = Ω1 − Ω3 (5)

u4 = Ω1 − Ω2 + Ω3 − Ω4 (6)

The Simulink model contains both models of the quadrotor system stabilized by the
ROS controller and the PID block. In this way it is possible to compare the simulation
result and appreciate the error introduced by implementing the control algorithm on
a board rather than using that implemented in Simulink.

rapros: A ROS Package for Rapid Prototyping 503

0 1,000 2,000 3,000
0

10

20

30

samples

z
[m

]

PID Simulink
PID ROS

0 1,000 2,000 3,000

−6

−4

−2

0

2

·10−12

samples

er
ro
r
[m

]

error
(a) (b)

Fig. 5 Control results for quadrotor stabilization. a z component stabilization. b Error between
PC-based and PIL test

The simulation starts running the rapros_quadrotor node and then the Simulink
model containing the rapros block. Figure5a, b show the control result and the error
between PC-based and PIL test, respectively. The results presented are relative to
both Beagleboard-xM and Beagleboard Black. The two boards provided exactly the
same results and for this reason only one dataset is reported.

The first is the plot of the output signal of the controlled systems: there is not a
visible mismatch between them.

The second plot is about the numerical mismatch between the two systems’ output
signals. This mismatch is computed as the difference between the two signals. This
difference is really low, in the order of 10−12, and near to the numerical precision of
the computer.

This last result shows as the tool allows to obtain the same results of a native
Simulink simulation, working with a different environment, or also with an external
computation board.

4.2 An HIL Example: The FAN Control

The HIL example is based on the interaction of the board with a real system (Fig. 6).
The selected system to control is a coil, connected to a rotating plane which rotates
depending by the fan coil rotation speed. The control system is developed in order
to maintain the plane to a constant tilt, as shown in Fig. 7. This HIL example has
the objective to show that the proposed ROS tool can be effectively applied to a real
control system problem, i.e. to control the tilt angle of the fan system. For this reason
the ROS code for the deployment of the control system is here not reported.

The controller for this system is developed in a range of the tilt angle between 20◦
and 40◦, because in this range the plane is characterized by a semi-linear behaviour.
For bigger tilt angles, the system assumes a very strong non-linear behaviour due
to the decrease of the plane surface hit by the wind. For controller development,

504 L. Cavanini et al.

rapros

rapros

r(t) u(t)

ym(t)

Fig. 6 The fan test control scheme

Fig. 7 The controlled system

the mathematical system model has been not employed, and a simple and realistic
model was created by means of process identification techniques. These techniques
allow to obtain a mathematical representation of the model behaviour through the
following transfer function

W (s) = 0.296

1 + 0.7s
(7)

The rapros allows to establish a direct connection from PC-running Simulink to
the ROS embedded board (see Fig. 6). The board is directly connected with the low
level fan control system, and to the fan tilt measurement sensor. It allows to generate
directly a PWM control signal, read measurements from the sensor and routing
data. In this case, the plant is actually made of the fan system, tilt sensor and the
Beagleboard, on which ROS is installed.

The results presented are related to the fan controlled output signal. In Fig. 8 the
fan tilt is controlled to follow a step signal of 39◦. The system is controlled by a

rapros: A ROS Package for Rapid Prototyping 505

Fig. 8 Controlled system
response to step signal

0 200 400 600 800 1,000
0

10

20

30

40

time [s]

til
t
[d
eg
re
e]

tilt controlled value
step reference

PID controller, developed in Simulink, which directly controls the real system. This
result validates the controller development on the system model, with the tilt signal
stabilized to the step reference signal value.

5 Package Description

The rapros package is composed by:

• rapros.slx Simulink block;
• rapros.py Python node.

These two components are detailed in the following sections. Depending on how the
tool is used, it allows both PIL and HIL applications. Figures9 and 10 represent the
block diagram of PIL and HIL operation, respectively.

5.1 rapros Simulink Block

The Simulink block is configurable through a user-friendly mask (see Fig. 11) and
allows to set the connection parameters to the ROS. The communication is imple-

Control
Algorithm

Send
Function

Receive
Function

Mathematical
Model

Receive
Block

Send
Block

u

y

Embedded ROS Matlab/Simulink R© environment

rapros rapros

Fig. 9 PIL block scheme

506 L. Cavanini et al.

Hardware
Interface

Send
Function

Receive
Function

Control
Algorithm

Receive
Block

Send
Block

y

u

Embedded ROS Matlab/Simulink R© environment

rapros rapros

Fig. 10 HIL block scheme

Fig. 11 The rapros
Simulink block mask

mentedwithUDP protocol, which does notmanage the packets re-sending. Protocols
with re-sending features can destroy the correct order of data sequence which is of
utmost concern in this application. The blocks check also the communication sta-
tus. When data are not received within a fixed timeout, the simulation stops and a
communication error is generated.

The block contains two sub-blocks:

• UDP send/receive blocks, that realize the UDP connection. The simulation is
correctly blocked and the synchronization for RP is maintained by this block,
through the built-in priority feature. Indeed, Simulink simulation runs until the
execution of the “send” function, which causes a wait state. After receiving the
data back from ROS, the simulation restarts;

• The Zero Older Hold (ZOH) block samples the signal from and to ROS environ-
ment, with a sample time Ts which is configurable in the mask of the block.

rapros: A ROS Package for Rapid Prototyping 507

5.2 rapros.py Node

In Python, rapros.py node contains the code to interface with the Simulink block,
in particular send and receive functions are implemented. The synchronization, as
previously explained, is completely managed from Simulink side; thus, Python node
remains always in a wait state. The node unpacks the UDP data and saves it in a
“Float32MultiArray” of the ROS standard messages library. “Float32MultiArray”
is a particular message which permits to define variables and topics messages of
dynamic dimensions. This message is used to create automatically a data array of
appropriate dimensions respect to the application, avoiding to hard-coding the node
code. Dimensions are automatically calculated by the node for each UDP packet:
this permits to handle a variable number of inputs and outputs. The node is defined
by default publisher (to the “U” topic) and subscriber (to the “Y” topic) that allow to
route data, of any dimension, from and to ROS environment. The proposed package
is working with any release of ROS, from Groovy to the newest ones. To run the
rapros also on previous ROS versions, the user only has to convert manifest and
CMakeList files to Fuerte (and previous) format [10].

References

1. https://github.com/nmichael/ipc_bridge
2. https://code.google.com/p/mplab-ros-pkg/wiki/java_matlab_bridge
3. https://github.com/mozcelikors/Matlab-Ros-Interface
4. http://wiki.ros.org/ros_control
5. http://www.putty.org
6. http://www.angstrom-distribution.org/building-angstrom
7. http://downloads.angstrom-distribution.org/demo/beaglebone/
8. https://github.com/gionatacimini/rapros
9. http://wiki.ros.org/indigo/Installation/UbuntuARM
10. http://wiki.ros.org/catkin_or_rosbuild
11. Hardware-in-the-loop simulation
12. B. Bona, M. Indri, N. Smaldone, Rapid prototyping of a model-based control with friction

compensation for a direct-drive robot. IEEE/ASME Trans. Mechatron. 11(5), 576–584 (2006)
13. R. Bucher, S. Balemi, Rapid controller prototyping with Matlab/Simulink and Linux. Control

Eng. Pract. 14(2), 185–192 (2006)
14. G. Calisse, G. Cimini, L. Colombo, A. Freddi, G. Ippoliti, A. Monteriu, M. Pirro, Development

of a smart led lighting system: rapid prototyping scenario, in 2014 11th International Multi-
Conference on Systems, Signals Devices (SSD), pp. 1–6, Feb 2014

15. G. Cimini, M.L. Corradini, G. Ippoliti, G. Orlando, M. Pirro, A rapid prototyping scenario
for power factor control in permanent magnet synchronous motor drives: control solutions for
interleaved boost converters. Electr. Power Compon. Syst. 42(6), 639–649 (2014)

16. G. Cimini, G. Ippoliti, G. Orlando,M. Pirro, PMSM control with power factor correction: rapid
prototyping scenario. In 2013 Fourth International Conference on Power Engineering, Energy
and Electrical Drives (POWERENG), pp. 688–693, May 2013

17. J. deCarufel, E.Martin, J.-C. Piedboeuf, Control strategies for hardware-in-the-loop simulation
of flexible space robots. IEE Proc. Control Theory Appl. 147(6), 569–579 (2000)

https://github.com/nmichael/ipc_bridge
https://code.google.com/p/mplab-ros-pkg/wiki/java_matlab_bridge
https://github.com/mozcelikors/Matlab-Ros-Interface
http://wiki.ros.org/ros_control
http://www.putty.org
http://www.angstrom-distribution.org/building-angstrom
http://downloads.angstrom-distribution.org/demo/beaglebone/
https://github.com/gionatacimini/rapros
http://wiki.ros.org/indigo/Installation/UbuntuARM
http://wiki.ros.org/catkin_or_rosbuild

508 L. Cavanini et al.

18. A. Freddi, S. Longhi, A. Monteriù, Actuator fault detection system for a mini-quadrotor, in
IEEE International Symposium on Industrial Electronics, pp. 2055–2060, Bari, Italy, 4–7 July
2010

19. J.O. Hamblen, G.M.E. van Bekkum, An embedded systems laboratory to support rapid proto-
typing of robotics and the internet of things. IEEE Trans. Educ. 56(1), 121–128 (2013)

20. K.-S. Hwang, W.-H. Hsiao, G.-T. Shing, K.-J. Chen, Rapid prototyping platform for robotics
applications. IEEE Trans. Educ. 54(2), 236–246 (2011)

21. N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot sim-
ulator, in IEEE/RSJ International Conference on Proceedings Intelligent Robots and Systems,
2004. (IROS 2004), vol. 3, pp. 2149–2154, Sep 2004

22. T. Laliberte, C.M. Gosselin, G. Cote, Practical prototyping. IEEE Robot. Autom. Mag. 8(3),
43–52 (2001)

23. H. Li, M. Steurer, K.L. Shi, S. Woodruff, D. Zhang, Development of a unified design, test, and
research platform forwind energy systems based on hardware-in-the-loop real-time simulation.
IEEE Trans. Ind. Electron. 53(4), 1144–1151 (2006)

24. B. Lu, X. Wu, H. Figueroa, A. Monti, A low-cost real-time hardware-in-the-loop testing
approach of power electronics controls. IEEE Trans. Ind. Electron. 54(2), 919–931 (2007)

25. A. Martin, M.R. Emami, Dynamic load emulation in hardware-in-the-loop simulation of robot
manipulators. IEEE Trans. Ind. Electron. 58(7), 2980–2987 (2011)

26. B. Murphy, A. Wakefield, J. Friedman, Best practices for verification, validation, and test in
model-based design (Technical report, SAE Technical Paper, 2008)

27. L. Rai, S.-J. Kang, Knowledge-based integration between virtual and physical prototyping
for identifying behavioral constraints of embedded real-time systems. IEEE Trans. Syst. Man
Cybern. Part A: Syst. Humans 39(4), 754–769 (2009)

HyperFlex: A Model Driven Toolchain
for Designing and Configuring Software
Control Systems for Autonomous Robots

Davide Brugali and Luca Gherardi

Abstract A huge corpus of open source robotic software libraries is available on
ROS repositories that can be reused to develop a large variety of robot control sys-
tems. The difficult challenge consists in selecting and integrating a coherent set of
components that provide the required functionality taking into account their mutual
dependencies and architectural mismatches. The HyperFlex approach presented in
this chapter enables the explicit representation of robot system architectures, func-
tional variability, and application requirements as softwaremodels that can bemanip-
ulated by a system configuration engine.

Keywords Model driven engineering · Software variability · Robotics

1 Introduction

The Robot Operating System (ROS) favors a software development approach that
consists in designingfine-grain components,which implement common robotic func-
tionalities. This approach is embodied by a repeated mantra among ROS developers
[12]: “We don’t wrap your main”. The strength of this approach is the possibility
to develop a large variety of different control systems by composing in multiple
ways reusable software building blocks. Its weakness is the lack of support to the
reuse of effective solutions to recurrent architectural design problems. Consequently,
application developers and system integrators have to solve the difficult architectural
design problems always from scratch.

The difficult challenge consists in selecting, integrating, and configuring a coher-
ent set of components that provide the required functionality taking into account
their mutual dependencies and architectural mismatches.

D. Brugali (B)
School of Engineering, DIGIP, University of Bergamo, Bergamo, Italy
e-mail: brugali@unibg.it

L. Gherardi
Institute for Dynamic Systems and Control, ETH Zurich, Zurich, Switzerland
e-mail: lucagh@ethz.ch

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_20

509

510 D. Brugali and L. Gherardi

This challenge is exacerbated by the peculiarity of the robotics domain: robots can
have many purposes, many forms, and many functions. Consequently, each robotic
systems has to be configured with a specific mix of functionalities and that strongly
depends on the robot mechanical structure (a rover with zero or multiple arms), the
task to be performed (cleaning a floor, rescuing people after a disaster), and the
environmental conditions (indoor, outdoor, underground).

In various application domains, software product line (SPL) development has
proven to be the most effective approach to face this kind of challenges. A SPL
is a family of applications (products) that share many (structural, behavioral, etc.)
commonalities and together address a particular domain [11].

The core of an SPL is a stable software architecture that clearly separates common
features from the variations reflected in the products and prescribes how software
components can be assembled to derive individual products. Each new application
is built by configuring the SPL, i.e. by selecting the variants (e.g. functionalities,
software resources) that meet specific application requirements.

This chapter aims at presenting the HyperFlex approach and toolchain for the
development of SPLs for autonomous robots based on robotic component frame-
works, such as ROS and Orocos.

HyperFlex is aModel-driven engineering (MDE) environment [23], whose devel-
opment started in the context of the EU FP7 BRICS project [7].

The chapter is organized as follows. Section2 provides an overview of the pro-
posed approach. It introduces the concept of software variability modelling using a
simple example and illustrates the HyperFlex toolchain. Section3 presents the ROS
models and metamodels at the basis of the HyperFlex tools. Section4 illustrates a
realistic case study. Section 5 discusses the related works. The relevant conclusions
are presented in Sect. 6.

2 Software Product Lines Development with HyperFlex

2.1 Modeling Stable Architectures

The architecture of a SPL plays the role of reference architecture [21] for a family
of products. While reference architectures have been defined in other embedded
systems domains (e.g. the AUTOSAR standard [3]), in Robotics, the goal of defining
a reference architecture for every robotic application is elusive, because robots can
have many purposes, many forms, and many functions.

Nevertheless, we argue that stable architectures can be defined for functional
systems that provide common robotic capabilities: navigation, dexterous manipula-
tion, perception, planning, and control are enduring business themes that represent
the essence of the robotics domain. In this context, stable means that a significant
variety of robot control systems can be developed by configuring (i.e. resolving the
robotic variability) and integrating functional systems.

HyperFlex: A Model Driven Toolchain for Designing … 511

A functional system is a composition of elemental components and/or subsystems
that together provide a specific robot capability (e.g. motion planning). Elemental
components are basic modeling entities that are implemented as ROS Nodes or
Orocos components.

It should be noted that, at runtime, a functional system is not distinguishable from
the rest of the system as a self-contained composition unit. Indeed, ROSNodes inter-
act with each other by exchanging messages through a common bus according to the
peer-to-peer architectural style. Nodes are equally privileged, equipotent participants
in the application.

At design time,HyperFlex allows to explicitlymodel the architecture of functional
systems in terms of components, interfaces, connectors, and components wiring.
Models of functional systems can be reused as a building blocks and hierarchically
composed to build more complex systems and applications.

As an example, Fig. 1a represents the architecture of a 3D Object Detector system,
which is made of two elemental components. The Blob Detector component receives
as input a RGB image and computes the 3D position of objects of a specific color. A
property called BlobColor is used for configuring the detector. The Filter component
processes the input image for noise reduction (e.g. deblurring). This component is
optional and is needed only when the images are acquired by a moving camera.
Figure1b represents a variant of the same architecture, where the Filter component
is not present. In both variants of the architecture, the Blob Detector component is
mandatory.

Components define provided and required interfaces (depicted as yellow and cyan
squares, respectively), which can be connected by means of registers (green rectan-
gles) according to the topic-based publisher/subscriber paradigm. Similarly, the 3D
Object Detector system exposes provided and required interfaces, which allows the
composition with other systems. Figure1c shows the composite architecture of a

Fig. 1 The architectural models of the Ball Tracking SPL

512 D. Brugali and L. Gherardi

functional system for ball tracking. It is composed of the 3D Object Detector system
and twoROS elemental components formotion coordination and obstacle avoidance.
Figure1d shows the same architecture but with an alternative implementation of the
obstacle avoidance functionality.

2.2 Modeling Robotic Requirements

Each functional system is designed as a software product line, which specifies vari-
ation points and variants (e.g. alternative components, optional components).

HyperFlex uses the Feature Models formalism [19] to symbolically represent the
variability of a functional system and the constraints between variation points and
variants that limit the set of valid configurations.

Figure2a represents the Feature Model of the Object Detector functional system.
The linkwith thewhite circle specifies that thefiltering functionality is optional,while
the linkwith the black circle indicates that the blob color is amandatory property. Two
variants of blob color are supported, i.e. Red and Green. The cardinality indicates
that exactly one color should be selected.

An instance of Feature Model is the collection of selected features, which are
marked in green. As such, the instance represented in Fig. 2a corresponds to the
configuration of the Object Detector functional system depicted in Fig. 1b, where
the Filter component is not present.

Feature Models can be hierarchically composed to reflect the composition of
functional systems. At each level the feature names abstract the relevant concepts of
the corresponding system composition level. Low-level names represent functional
and technical termswhile high level names are closer to the application requirements.
This approach ensures that the terminology is well known by the system integrators
that operates on a specific level.

For example, the Feature Model depicted in Fig. 2b represent the variability of
the Ball Tracking system depicted in Fig. 1d. Here, the feature Object Detector is a
link to the root feature of the Feature Model depicted in Fig. 2a. The Feature Ceiling
indicates that the camera is mounted in a fixed position, thus the Object Detector
subsystem does not need to include the Filter component.

Fig. 2 The feature models of the object detector and ball tracking systems

HyperFlex: A Model Driven Toolchain for Designing … 513

During the variability resolution the System Integrator operates on the highest
level Feature Model and the selected features trigger the automatic selection of the
mapped features in the subsystem Feature Models. If necessary, the System Inte-
grator can select features of lower-level Feature Models for specific configuration
properties. The idea is similar to the concept of configuration links proposed in [22].
The approach is not limited to two levels but can be hierarchically extended accord-
ing to the specific needs. Systems made of subsystems can be further composed in
order to design more complex systems.

2.3 System Configuration

System configuration is a crucial phase in the robot application development process.
It requires to select, integrate, and fine tune the functionalities of the autonomous
robots according to the environment conditions (often completely beyond the con-
trol of the system integrator), the task to be performed (often continuativelly for
long periods without human intervention), and the available resources (subject to
failures and malfunctioning). When maintenance is needed, re-configuration has to
be performed quickly to limit service disruption. Typically, system integrators are
experts in a specific application domain (e.g. autonomous robots for inventory man-
agement), but are not specifically trained in software engineering. System integrators
could be students who participate to a robocup competition, or professionals who
bring together robotic subsystems in a manufacturing scenario and ensure that they
function properly.

According to the SPL approach, a system configuration corresponds to a specific
instance of the SPL architecture, where the software variability has been completely
resolved by selecting appropriate variants for each variation point. HyperFlex allows
to specify criteria for system configuration as model-to-model transformations asso-
ciated to the features of the SPL feature model.

Figure 3 represents the Resolution Model for the 3D Object Tracking system.
In this example, a transformation is associated to the feature Filter and is executed
when the feature is not selected. This transformation connects theBlob Detector input
image with the Object Detector input port and specifies that the Filter component is
not required.

TheROS framework provides a command-line application (i.e. the roslaunch tool)
that parses an xml-based launch file (i.e. ROS launch file) and activates the required
components.

Once the architectural model has been configured according to the feature selec-
tion, a model to text transformation allows to generate the corresponding ROS launch
file. The transformation recursively inspects the nested subsystems in the configured
model in order to identify all the atomic ROS components. For each component a
node tag is added to the ROS launch file. Subsequently, for each Node the trans-
formation remaps the topic names (by adding remap tags to the ROS launch file)

514 D. Brugali and L. Gherardi

Fig. 3 The resolution model
of the object tracking
subsystem

according to the connections specified in the architectural model of each functional
system. Finally the transformation creates a param tag for each node’s parameter.

Listing 1.1 illustrates an example of ROS launch file, which corresponds to the
subsystem depicted in Fig. 1c. The file contains a node tag for each component and
a few param tags for their parameters. In addition the remap tag changes the name
of the topic on which the publisher of the node Blob Detector publishes the results
of its computation.

� �

<launch>
<node name="Filter" pkg="object_detection" >

<param name="threshold" value="0.5" />
</node>
<node name="BlobDetector" pkg="object_detection" >

<param name="blob_color" value="5" />
<remap from="3D_Pose" to="Target_Pose"/>

</node>
<node name="MotionCoordination" pkg="ball_tracking" />
<node name="VectorFieldHistogram" pkg="ball_tracking" />

</launch>
� �

Listing 1.1. An example of ROS launch file

2.4 The HyperFlex Toolchain

The HyperFlex toolchain is a collection of Eclipse plugins implemented by means
of the Eclipse Modeling Project [1]. It is available open source on GitHub [2]. The
toolchain includes four graphical editors and two model transformation engines as
depicted in Fig. 4 for modeling, composing, and configuring robotic SPLs.

The Architecture Editor is used to design the Component&Connector Architec-
tural Model of functional systems and applications.

The Feature Editor is used to model the application requirements and the vari-
ability of functional systems as Feature Models.

HyperFlex: A Model Driven Toolchain for Designing … 515

Fig. 4 Tools and models of
the HyperFlex toolchain

The Resolution Editor is used to define the Resolution Model as set of transfor-
mation rules that specify how the functional variability in the software architecture
should be resolved when the features of the Feature Model are selected.

TheFeature Selector is used to create instances of FeatureModels that correspond
to specific system configurations.

The System Resolution Engine receives as input a collection of Feature Model
instances (one for each functional system), executes the transformation rules defined
in the corresponding Resolution Models, and generates the variability-free instances
of the Architectural Models.

The Deployment Configuration Engine transforms the variability-free Architec-
tural Models into configuration files for the deployment of the functional systems
(e.g. the ROS launch files). In [17] we describe how configuration files include all the
machine tags required to deploy the different components on different computational
nodes taking into account their available resources.

516 D. Brugali and L. Gherardi

3 Variability Modeling, Composition, and Resolution

The core aspect of our approach is the possibility to design robotic control systems as
hierarchical composition of functional subsystems, whose internal variability can be
modeled and resolved using Feature Models and model-to-model transformations.

As depicted in Fig. 5, models of functional systems are structured in two levels of
abstraction (Meta-Models (M2) and concrete Models (M1)) and organized in three
categories (Architecture variability, Symbolic variability, andVariability resolution).

Each robotic component framework has its own specific M2 meta-model for
modeling the architecture of a functional system. We have defined component meta-
models for Orocos [16] and ROS (Sects. 3.1 and 3.2). The M2 meta-models for
variability resolution are organized in two levels: abstract (M2A), i.e. framework-
independent, and framework-specific (M2S). We have also defined a meta-model for
Feature Models [15].

M1 models are organized in two sub-levels. The M1-TPL level refers to the tem-
plate of a functional system, i.e. the software architecture of a functional system that

Oro
co

s

Com
ponen

t

Met
a-

Model

ROS

Res
olu

tio
n

In
st

an
ce

ROS

Com
ponen

t

Met
a-

Model

ROS

Res
olu

tio
n

Model

ROS C
onfigure

d

Sys
te

m
 M

odel

Oro
co

s C
onfigure

d

Sys
te

m
 M

odel

ROS T
em

plat
e

Sys
te

m
 M

odel

Oro
co

s T
em

plat
e

Sys
te

m
 M

odel

ROS

Res
olu

tio
n

Met
a-

Model

Feature Model Instance

Feature Meta-Model

Var
iab

ilit
y r

es
olu

tio
n

Arc
hit

ec
tu

re
 va

ria
bil

ity

Symbolic variability

M
2

A
M

2
S

M
1

T
P

L
M

1
C

F
G

M
2

M
1

T
P

L
M

1
C

F
G

Feature model

M1
CFG

M1
TPL

M2

Oro
co

s

Res
olu

tio
n

In
st

an
ce

Oro
co

s

Res
olu

tio
n

Model

Oro
co

s

Res
olu

tio
n

Met
a-

Model

Res
olu

tio
n M

et
a-

Model

Fig. 5 Meta-models and models for the HyperFlex toolchain

HyperFlex: A Model Driven Toolchain for Designing … 517

needs to be configured by resolving its internal variability. The M1-CFG level refers
to a configured functional system, i.e. a the software architecture of a functional
system that can be deployed on a specific robotic system.

Template System Models are framework-specific, i.e. defined according to the cor-
responding component model (e.g. ROS or OROCOS), and support four variability
mechanisms:

• separation of a component interface from its implementation and the consequent
possibility to replace the implementation of a given component;

• definition of component properties, i.e. attributes that are used in the component
implementation;

• explicit representation of connections between components and the possibility to
add or remove them;

• explicit representation of optional components and the possibility to include or
exclude them in the configured system.

For example, a ROS Template System Model defines the architectural model of a
ROS-based functional system SPL, while a ROS Configured System Model defines
the architectural model of a specific system derived from it. A ROS Resolution Model
defines the model-to-model transformations.

The functional variability of a Template System Model is symbolically represented
in a corresponding Feature Model (M1-TPL). A Feature Model Instance (M1-CFG)
represents the relevant features selected by a system integrator to configure a func-
tional system.

HyperFlex supports the interconnection of heterogeneous functional systems (e.g.
based on ROS and Orocos) to form heterogeneous composite systems, which in turn
can be components of higher-level systems. For this purpose, we have defined (see
Sects. 3.3 and 3.4) the Abstract Heterogeneous Composition meta-model, which is
specialized for Orocos-ROS heterogeneous systems, and the Heterogeneous Com-
position Resolution meta-model.

3.1 ROS Component Meta-Model

ROS is a communication infrastructure supporting the integration of independently
developed software components, called ROS nodes. Nodes are blocks of functional
code and are implemented as classes that wrap robotic software libraries and provide
access to the communication mechanisms of the underlying infrastructure (the ROS
core). Nodes are compiled as stand-alone executables.

The pair node package/node type has to be unique in the file system and identifies
the implementation of a node. Multiple instances of the same node are possible at
runtime and are distinguished by the node name.

A ROS system is a computation graph consisting of a set of nodes communi-
cating with one another by exchanging typed messages asynchronously according

518 D. Brugali and L. Gherardi

to the publish/subscribe communication paradigm and/or services according to the
client/server paradigm.

Messages are organized by topics, which correspond to information subjects that
allow subscribers to recognize the events they are interested in.When a node receives
a message belonging to a subscribed topic, a message handler performs some com-
putation on the message payload data and possibly generates a new message of a
given topic to publish the computation results. A Node may also define services that
are invoked by other nodes according to the client-server paradigm.

Figure6 depicts the ROS Component meta-model, which has been split in three
parts (a, b, c) for sake of readability.

Figure6a depicts the entities used to model the mechanisms for message-based
publish-subscribe communication. Nodes may have several provided and required
interfaces (NodeMsgProducer and NodeMsgConsumer, respectively), which
are connected to Topic entities. Topics represent message queues implemented
in the ROS infrastructure and are distinguished by a name that represents a cate-
gory of messages. A ROS System contains an instance of Composite, which
hierarchically aggregates Node components according to the Composite Design
Pattern [14]. Composite is only a modeling entity that does not correspond to
any implementation entity. A composite may expose the topics of the messages

type : EString
packageName : EString
loopRate : EDouble

Node

CompositeMsgConsumer

name : EString
msg : Message

Topic

Composite

CompositeMsgProducer NodeMsgProducerNodeMsgConsumer

0…*0…* 0…*

0...1 connection1 exposed

name : EString
System 1

0…*

name : EString
AbstractComponent

CompositeMsgInterface
topicName : EString
msg : Message

NodeMsgInterface
name : EString
msg : Message

MsgInterface

type : EString
packageName : EString
loopRate : EDouble

NodeComposite

type : DataType
value : EString

NodeProperty

0…*

name : EString
System 1

0…*

name : EString
AbstractComponent

name : EString
PropertyCompositeProperty

0…* 1 exposedProperty

type : EString
packageName : EString
loopRate : EDouble

NodeComposite

CompositeSrvConsumer

srvName : EString
Wire

CompositeSrvProducer
name : EString

SrvProducer
srvName : EString
srv : Service

NodeSrvProducer

name : EString
SrvConsumer

srvName: EString
srv : Service

NodeSrvConsumer

0...1

0...1target

source

1 exposedSrvProd

exposedSrvCons
1

0…* 0…*0…* 0…*0…*

name : EString
System 1

0…*

name : EString
AbstractComponent

(a)

(b)

(c)

Fig. 6 The ROS component meta-model

HyperFlex: A Model Driven Toolchain for Designing … 519

produced or consumed by the internal nodes. For this purpose, a component may
have a CompositeMsgProducer and/or a CompositeMsgConsumer inter-
face for each exposed topic. An OCL constraint ensures that all the producers and
consumers associated with the same topic conform to the same message type.

In order tomake the communication between a producer and a consumer possible,
they both have to refer to a topic defined by the same name, which is actually hard-
coded in the nodes implementation. When this condition is not true, for example
because the components have been implemented by different developers, a mapping
is required between the names of the topic defined in each node implementation
and a common logical name for the same topic. The logical name can be defined at
design time, when the nodes are composed into composites, while the mapping is
performed at deployment time by the ROS infrastructure.

Figure6b depicts the entities used to model the mechanisms for service-based
client-server communication.Anodedefines provided and required service interfaces
(NodeSrvProducer and NodeSrvConsumer, respectively). They are typed by
a Service, which defines the interface in terms of request and response mes-
sages and can be promoted at the level of composite interfaces (CompositeSrv
Producer and CompositeSrvConsumer, respectively). Provided and required
interfaces can be connected by means of Wire entities. OCL constraints ensure that
wire connections are created between a pair of children of the same composite the
interfaces of which conform to the same service.

Figure6c depicts themechanisms for the definition of properties. The Property
entity provides an interface for setting the value of a parameter defined in the compo-
nent implementation of a ROS node (e.g. the task execution period or an algorithm
parameter). Properties can be promoted at the composite level.

3.2 ROS Resolution Meta-Model

The upper part of Fig. 7 depicts the Abstract Resolution meta-model, which is inde-
pendent from any robotic software framework.

Class ResolutionModel encapsulates a set of RMResolutionElements,
which associate instances of class Feature defined in the Feature Model with a set
of model-to-model transformations (the RMTransformations) and/or to a set of
architectural elements (RMRequiredElements).

Each RMResolutionElement has the boolean attribute activeIf
Selected, which specify when the resolution element is active: if true the res-
olution is active when the associated feature is selected, if false the resolution is
active when the associated feature is not selected.
RMRequiredElements reflects a collection of architectural elements that are

defined in the Template System Model and that have to be present in the Configured
SystemModel when the resolution element is active. RMTransformations are instead
actions to be performed on the architectural elements defined in the Template System
Model and are organized in three types.

520 D. Brugali and L. Gherardi

activeIfSelected : EBoolean
RMResolutionElement

name : EString
description : EString

RMTransformation

value : EString
RMTransfProperty

classNamespace : EString
className : EString

RMTransfImplementation RMTransfConnectionRMRequiredElements

0 … *

ROSTransfImplementation ROSTransfProperty ROSTransfConnection

(from ROS MM)
Node

(from ROS MM)
Property

type : Message
ROSTopicConnection

1 targetComponent targetProperty1 0 … *

ROSRequiredElements

0…*

1
(from ROS MM)
MsgInterface

1
serviceName : Estring
ROSServiceConnection

(from ROS MM)
SrvProducer

1
(from ROS MM)
SrvConsumer

0 … *

0 … 1

1

0 … *

(from Feature MM)
Feature

(from ROS MM)
Wire

(from ROS MM)
Topic

1

ROSAbstractConnection

newConn0…*
requiredNodes

requiredTopicConnectionsde
ri

uq
er

s n
oit

ce
nn

o
Ce

ci
vr

e
S

0…*

ResolutionModel
(from Feature MM)

FeatureModel 1 TemplateSystemModel1

ROSTemplateSystemModel

(from ROS MM)
System

1

Fig. 7 The ROS resolution meta-model (framework-independent classes in the upper part,
framework-specific classes in the bottom part.)

• Implementation Transformation: it specifies a link to a given component in the
Template System Model and the implementation that has to be associated with it
(in ROS it is identified by a package name and a node type, which are modeled by
the attributes classNamespace and className).

• Property Transformation: it specifies a link to a property of a given component
and the value that has to be assigned to it.

• Connection Transformation: it specifies a set of new connections that have to be
created between pairs of components.

The lower part of Fig. 7 depicts the ROS Resolution Meta-Model, which is specific
for the ROS Template System Model. Class TemplateSystemModel has to be
extended with classes that hold a reference to the Template System Model of each
specific software framework. Similarly, the abstract classes representing the different
model-to-model transformations and the required architectural elements have to be
extended in order to encapsulate references to framework-specific classes.

This design allows the definition of uniform resolutions models for every possible
architectural model that support the four variability mechanisms described in Sect. 3,
i.e. implementation, property, connection, and component variability. Following this
approach, we have defined the resolutionmeta-model also for Orocos and the Service
Component Architecture (SCA).

In particular, class ROSRequiredElement has references to ROS nodes, and
wires and specifies which topic should be associated with message interfaces (see
the ROS component meta-model in Fig. 6).

The ROSTransfConnection encapsulates a collection of ROSAbstract
Connections, which specify the topic and service connections that have to be
created between ROS nodes. If an existing connection needs to be removed, it will
not be included among the ROSRequiredElements.

HyperFlex: A Model Driven Toolchain for Designing … 521

3.3 Architecture Composition Meta-Models

Figure8 depicts the Abstract Heterogeneous Composition meta-model, which pro-
vides the mechanisms for modeling the architecture of complex systems by hier-
archically composing heterogeneous subsystems designed with different software
frameworks.

ACompositionModel is defined by a name and a System, which is a compo-
sition of Composite entities. The abstract classComposite is awrapper to a func-
tional system and needs to be specializedwith a concrete class (i.e.ROSComposite
in Fig. 9), which holds a reference to an instance of class Composite defined
in the meta-model of each specific component model. Composite entities define
CompositeProvidedInterfaces, CompositeRequiredInterfaces
and CompositeProperties, which expose at composition level the interfaces
and the properties of the concrete functional subsystem.

The class System also aggregates instances of class Connection, which con-
nects provided and required interfaces of the encapsulated functional systems. The
abstract class Connection needs to be specialized in order to define concrete con-
nections between pairs of functional systems according to their component models.
For example the ROSOrocosConnection in Fig. 9 allows the interconnection of
a ROS system with an Orocos system.

Class System represents a heterogeneous system that may be composed of a set
of homogeneous subsystems developed according to several component models (i.e.
ROS and Orocos functional systems). It should be noted that class System might
also encapsulate references to instances of other heterogeneous systems modeled by
separatedCompositionModels. For this purpose the classSystemComposite
(Fig. 8) specializes the class Composite while the class System defines specific

name : EString
Composite

name : EString
System

0 … *

1

name : EString
Connection

1

0 … *

target

source

0 … *

RequiredInterface

name : EString
CompositionModel 1

1

ProvidedInterface

SystemRequiredInterf

SystemProvidedInterf

0 … *

0 … *

0 … *

name : EString
Interface

1

1

exposed

exposed

name : EString
Property

name : EString
SystemProperty CompProperty

CompRequiredInterf

CompProvidedInterf

exposed1

SystemComposite
impl

SystemCompositeProvidedInterf

SystemCompositeRequiredInterf1

impl

impl

1

SystemCompositProperty1impl

Fig. 8 The Abstract Heterogeneous Composition meta-model

522 D. Brugali and L. Gherardi

CompRequiredInterfCompProvidedInterf

ROSMsgProducer

OrocosDataProducer

ROSMsgConsumer

OrocosDataConsumer

ROSConnection

1

11

1

type : ConnectionPolicyType
lockPolicy : LockPolicy
bufferSize : EShort

OrocosConnection

1

ROSOrocosConnection1

OrocosComposite

ROSComposite

1

1

(from ROS CM)
CompositeMsgProducer

impl

impl impl

impl

(from Orocos CM)
CompositeDataProducer

(from Orocos CM)
CompositeDataConsumer

(from ROS CM)
Topic

(from ROS CM)
CompositeMsgConsumer

(from ROS CM)
Composite

impl

impl

(from Orocos CM)
Composite

CompProperty

OrocosProperty

1

(from Orocos CM)
CompositeProperty

impl

ROSProperty

1

(from ROS CM)
CompositeProperty

impl impl1

name : EString
Composite

name : EString
Connection

Fig. 9 TheHeterogeneous Compositionmeta-model for ROS andOrocos (framework-independent
classes are depicted above the dashed line)

provided and required interfaces and properties which expose the interfaces and
properties of the encapsulated subsystems.

Due to limited space, Fig. 9 does not report classes for service interfaces and
connection, which are however defined in the meta-model.

3.4 Resolution Composition Meta-Models

The Heterogeneous System Resolution Model represents the bridge between the fea-
tures defined in the Heterogeneous System Feature Model and the configuration on
the system architectures (i.e. Heterogeneous Template System Models). Figure10 is
structured in three parts. The central part depicts the entities of the Abstract Resolu-
tion Meta-Model already described in Sect. 3.2. The other entities define the concrete
classes of the Heterogeneous Composition Resolution Meta-Model.

The class CompResolutionModel specializes the ResolutionModel. It
is the root of the meta-model, which holds references to the ResolutionModels
of the composed subsystems, to the FeatureModel of the heterogeneous system,
and to the CompTemplateSystemModel (it should be noted that the references
to the ResolutionModels of the composed subsystems, implicitly provide references
to their Feature Models and Template Subsystem Models).
CompRequiredElementsdefines a set of Composites andConnections,

which reflect required subsystems and required connections between them. In addi-
tion, CompRequiredElements allow the specification of a set of required
Features belonging to the Feature Models of the functional subsystems. This
association defines the mapping between a feature of the Feature Model that
abstracts the functional variability of the composite system and a set of fea-
tures in the Feature Models of the functional subsystems. The transformation
CompTransfImplementation allows the replacement of a composite, with
another composite, which can even conform to a different meta-model, but must
conform to the same set of interfaces. This is guaranteed during the definition of the

HyperFlex: A Model Driven Toolchain for Designing … 523

activeIfSelected : EBoolean
RMResolutionElement

name : EString
description : EString

RMTransformation

value : EString
RMTransfProperty

classNamespace : EString
className : EString

RMTransfImplementation RMTransfConnectionRMRequiredElements

0 … *

CompTransfProperty CompTransfConnection

(from Composition MM)
Property

targetProperty1 0 … *

CompRequiredElements

0 … 1

1

0 … *

(from Feature MM)
Feature

(from Composition MM)
Composite

(from Composition MM)
Connection

newConn

0…* requiredConnections

requiredComposite

0…*

ResolutionModel
(from Feature MM)

FeatureModel

1

TemplateSystemModel1

CompTemplateSystemModel

(from Composition MM)
System

1

CompResolutionModel 1…*
serutae

Fderiuqer

0…*
CompTransfImplementation

(from Composition MM)
Interface

InterfaceSubstitution

1

1targetComposite

newComposite

interfLockUpTable0…*

targetInterf newInterf1 1

Fig. 10 The Heterogeneous Composition Resolution meta-model (framework-independent classes
in the central part, framework-specific classes in the bottom and upper parts)

transformationthankstoasetofconstraints.Thetransformationspecifiesthecomposite
to be replaced (targetComposite), the replacing composite (newComposite),
and a lookup table that defines a set of InterfaceSubstitutions (interface
to be replaced and replacing interface). When this transformation is applied, all the
connections that regard the replaced interfaces are updated.

In the simplest case, when the replaced and replacing composites conform to the
same meta-model, only the fields target or source in the class Connection
need to be changed. In a more complex case, it might be necessary to change the con-
nection type. For example if the original connection was a ROSConnection and
the new interface is an Orocos interface, the transformation will replace the old con-
nection with a ROSOrocosConnection. Finally, CompTransfProperty and
CompTransfConnection are used for setting the value of composite properties
and for creating new connections between the subsystems.

4 Case Study: Autonomous Logistics

This section illustrates the HyperFlex approach to the development of a SPL for
logistic applications. The case study is split in two parts: (a) the development of a
ROS-based functional system for robot navigation, and (b) the composition of ROS
and OROCOS functional subsystems for building a family of autonomous logistic
applications.

For sake of simplicity, we illustrate the modeling process from requirements
analysis to architectural design only for the navigation system.

524 D. Brugali and L. Gherardi

4.1 The Robot Navigation Functional System

Modern warehouse logistics employ autonomous robotic systems with advanced
robotic capabilities to move parts and objects in the warehouse. A major concern
is the robot ability to precisly follow a given trajectory, which requires the ability
to self-localize in the operational environment. While a large variety of algorithms
exists for these capabilities (e.g. visual marker localization, laser-based mapping and
localization), their mix and integration strongly depend on the requirements of the
specific application scenario. For example, installing visualmarkers on a large surface
area with hundreds of pick and place positions is cost efficient when a large number
of robots (e.g. hundreds in the Amazon warehouse) operate in the same environment.
In this case, the robots are equipped with simple sensors (e.g. low-cost camera) and
functionality that rely on the regularity of the environment. On the contrary, for single
robot scenarios, it is more convenient to equip the autonomous robot with a more
complex sensory system (e.g. stereo vision, laser scanners, and inertial measurement
unit) and more sophisticated algorithms for map-based localization and navigation.

Typically, an engineering company wants to achieve customer value through large
commercial diversity of its products (e.g. different control systems for the above
scenarios) with a minimum of technical diversity at minimal cost.

This requires to analyze the functional variability in the proposed application
scenario in order to identify those aspects that are stable within the domain, and
those aspects that are more likely to be affected by the evolution of the application
domain (e.g. new sensors, newalgorithms, newusage scenarios).Here stability can be
defined as a system’s resilience to changes in the original requirements specification.

Robot navigation involves several functionalities, such asLocalization,Path Plan-
ning, Trajectory Generation, Trajectory Adaption, Trajectory Following.

A large variety of algorithms for these functionalities are available as open source
libraries and components. While ROS favors the definition of standard messages for
data exchange among components (i.e. the Twist and Odometry messages for rover
drivers), the interoperability of different components providing the same functional-
ity is often limited by context dependencies that are hidden in their implementations
(e.g. the specific rover kinematic model, the specific type of sensor, etc.). It is there-
fore necessary to explicitly model the dependencies and constraints among reusable
software components that limit the variability of a functional system.

Table1 summarizes some examples of the variability that characterizes robot
navigation. Column Variation point exemplifies three typical variability concerns
Column Variants enumerates the possible variants for each variation point. Column
Type of Variant specifies three type of variants:

• Algorithm indicates that the variants are provided by different algorithms forwhich
may exists even multiple implementations.

• Architecture indicates that the variants correspond to different sets and arrange-
ments of functionalities for which different algorithms may be used.

• Attribute indicates that the variants correspond to different values of some algo-
rithms parameters.

HyperFlex: A Model Driven Toolchain for Designing … 525

Table 1 Variation points in robot navigation

Variation point Variants Variant type Functionality

Rover kinematics Omnidirectional
differential

Algorithm Trj-Generation,
Trj-Adapter,
Trj-Following

Sensor 3D Camera, laser Algorithm Localization,
Trj-Adapter

Environment Static, dynamic Algorithm Trj-Adapter

Environment Structured,
unstructured

Architecture Path planning,
localization

Behaviour Performance, safety Attributes Trj-Generator,
Trj-Adapter

Fig. 11 The Robot Navigation composite

The architectural model of the Robot Navigation SPL is depicted in the screenshot
of Fig. 11. It is a composition of three homogeneous functional subsystems, i.e.
developed using the same robotic framework (ROS in this example).

The Local Navigation composite is a stable part of a Robust Navigation architec-
ture. Its internal architecture defines the relationships between the basic function-
alities to drive a robot between two waypoints of a path and to avoid unexpected
obstacles detected by the sensors. Each functionality is provided by a specific com-
ponent, whose interface is stable, while its implementation can be replaced. The
path between a start position and a goal position can be generated according to two
strategies based on the nature of the environment: marker-based and map-based.

526 D. Brugali and L. Gherardi

The Map-based Navigation composite provides the functionality to plan a geo-
metric path in the free space given a map of the environment. This functionality
requires the robot to estimate its current position with respect to the map reference
frame accurately.

The Marker-based Navigation composite provides the functionality to follow a
path defined by a specific sequence of visual markers placed on the floor or on the
walls. In this case, the robot needs only to estimate its relative position with respect
to the next visual marker.

The Map-based Navigation composite and the Marker-based Navigation are
optional components of the Robot Navigation SPL. At least one should be included
in the configured system by adding a connection to the Local Navigation composite
by means of the Path topic and publishing messages on the Status topic.

The Feature Model depicted in Fig. 12 captures the functional variability of the
Robot Navigation functional system. For sake of simplicity, the figure does not rep-
resent the variability regarding all the different implementations of the components.

The selected features correspond to a sytem configuration for an Omnidirectional
rover, which should exhibit a Reactive motion behaviour (i.e. high values for the
acceleration limits). Obstacle avoidance is performed with the Dynamic Window
Approach. The rover is equipped with a camera for detecting markers placed in Fixed
positions in the environment (i.e. only horizontally on the floor or only vertically on
the walls). ARTK + is the algorithm for marker localization.

Fig. 12 A screenshot that shows the feature model of the Robot Navigation system (green features
correspond to selected features)

HyperFlex: A Model Driven Toolchain for Designing … 527

Fig. 13 The resolution model of the Robot Navigation system

The Resolution Model for the Robot Navigation functional system defines a set
of resolution elements associated with the features presented above.

Figure13 depicts an extract of the Robot Navigation Resolution Model (the name
of the resolution elements reflect the associated features). The lower part shows the
properties of the Omni resolution element, which refers to the feature Omni. For the
feature selection depicted in Fig. 12 the following resolution elements are executed
by the resolution engine:

• Local Navigation: specifies that all the components and the connections reported
in the Local Navigation composite are required elements.

• Marker: specifies that the components of theMarker BasedNavigation system and
the connections between them are Required Elements. It also creates the connec-
tions between the Local Navigation composite and the Marker-based composite.

• Omni: specifies a set of implementation transformations, which set the implemen-
tations of algorithms for Trajectory Generator, Trajectory Adapter and Trajectory
Follower that generate velocities and accelerations compatible with an omnidirec-
tional kinematic model.

528 D. Brugali and L. Gherardi

• Reactive: specifies a set of property transformations, which set the values of the
Trajectory Generator, Trajectory Adapter and Trajectory Follower properties (i.e.
acceleration limits).

4.2 The Autonomous Logistics SPL

Figure14 depicts the architecture of the application layer. It has been designed with
HyperFlex as a Heterogeneous System Model (see Sect. 3.3). Driver and Task Man-
ager are mandatory functional systems, while Robust-nav and Manipulation are
optional functional systems. This flexibility allows the configuration of control sys-
tems for simple manipulation tasks, simple navigation tasks, or composite mobile
manipulation tasks.

The Driver functional system groups the components that provide access to the
physical devices, such as the rover driver, which subscribes to twist messages and
provides pose estimates, the laser scanner driver, which provides point clouds con-
taining information on the surrounding obstacles, and the RGB camera, which cap-
tures images. Due to typical real-time requirements, this functional subsystem is
implemented in OROCOS.

The Task Manager functional system groups the ROS components that, given a
high level description of the robot task, plan the sequence of elemental actions that
activate the system functionality (e.g. plan and execute a path, detect and grasp an
object, etc.)

Fig. 14 Heterogenous template system model of the application layer for the Autonomous Logistic
SPL

HyperFlex: A Model Driven Toolchain for Designing … 529

The Robot Navigation functional system (described in the previous section) is
modeled here as a building block of the Autonomous Logistic SPL. It defines a set
of interfaces, which can be used for interfacing the robot navigation system with the
other functional systems.

The Manipulation functional system is structured as a composition of functional
subsystems based on the OROCOS framework. As an example, Fig. 15 (copied from
[16]) shows the model of the Arm Trajectory Follower. It should be noted that this
subsystem is modeled according to the OROCOS component model, which does not
use topics for inter-component communication.

The interaction of heterogeneous subsystems requires the use of software libraries
that address the architectural mismatches between different software frameworks.
These libraries are available for most of the robotic frameworks (e.g. ROS-Orocos
[24], SCA-Orocos [9], SCA-ROS [8]). The HyperFlex Architecture Editor automat-
ically identifies the connection type according to the type of the connected systems
and associates with the connection the information required to configure the inter-
connection library.

The feature model of the Robot Navigation functional system represents concepts
that are relevant for an expert in robot navigation, who knows which algorithm is
most appropriate for specific operational conditions. For example, the path planning
algorithm has to be chosen taking into account the structure of the environment,
which could be open space or cluttered by thin obstacles. The selection of the obstacle
avoidance algorithm depends on the dynamic of the environment, where only static
or also moving obstacles are present. Robot localization can be performed using an
RGB camera to detect visual markers, if the environment can be structured, or using
a depth sensor, if a geometric map of the environment is available.

Fig. 15 Template System Model of an OROCOS-based functional system

530 D. Brugali and L. Gherardi

Fig. 16 The feature model of the Autonomous Logistic SPL

This knowledge can be captured by a higher level feature model, such as the
Logistic SPL Feature Model depicted in Fig. 16. At this level of abstraction, the
features represent concepts that are relevant to the system integrator. Three variation
points have been defined (for sake of simplicity, only a limited number of variants
are represented).

• Embodiment specifies the type of rover (youBot or Pioneer) and the type of arm
(youBot or Mantis).

• The Environment can be either unstructured or structured, dynamic or static. More
features may describe other properties, such as empty space or cluttered space,
etc.

• The types of objects (Load) that can bemanipulated and/or transported might have
properties (e.g. Liquid and Fragile) that require particular attention (e.g. limited
velocity).

When a feature of the Logistic SPL Feature Model is manually selected, one
or several features are automatically selected in the Feature Model of the Robot
Navigation SPL and of the other functional systems. For example, the selection of
the feature Rover in the Logistic SPL Feature Model activate the Robot Navigation
feature and consequently the use of the corresponding subsystem. The selection of
the feature youBot from the Rover variation point selects the feature Omni from the
Robot Kinematic Model variation point. The selection of the feature Liquid activates
a resolution element, which selects the feature Smooth in the Feature Model of the
Robot Navigation SPL.

HyperFlex: A Model Driven Toolchain for Designing … 531

5 Related Works

The following subsections illustrates relatedworks onMDE approaches in two areas:
(a) MDE approaches for software variability management, (b) Robotics-specific
MDE approaches.

5.1 MDE for Software Variability Management

In GenArch [10] the variability model and the configuration model are represented
using the same meta-model, while in OMG CVL [4] the variability model and the
resolution model are not explicitly separated. In our approach, the first three models
are completely orthogonal, i.e. they can vary independently, while the configuration
model is an instance of the variability model and can be hierarchically composed as
described in the previous sections.

The Compositional Variability [5] approach supports the hierarchical composi-
tion of architectural models and feature models. The associations between a high-
level feature model and a low level feature models are defined by means of the so
called Configuration Links, which are similar to the feature dependencies defined in
HyperFlex. Differently from HyperFlex, this approach defines an abstract compo-
nent model and does not provide the capabilities for modeling domain-specific and
heterogeneous component-based systems.

In order to maximize the reuse between product families in consumer electron-
ics, Philips’ researchers defined the product population approach. The architectural
variability among the products is modeled by means of the Koala component model,
which provides variability mechanisms such as parameterization (for configuring
components) and switches (for changing connections) [25]. Differently from Hyper-
Flex, this approach does not model functional variability explicitly.

Amodel driven approach for the design of embedded component based systems is
presented in [18]. The approach is based on the Flex-eWare component model, which
defines an architectural model in terms of components, composites, interfaces, and
connections as in HyperFlex, and additional concepts for modeling computational
nodes (e.g. micro-controllers) and quality of service properties. The Flex-eWare
component model allows the generation of source code for three different target
platforms (eC3M, Fractal and OASIS). Differently from HyperFlex, Flex-eWare
models software variability only at architectural level.

5.2 Robotics-Specific MDE approaches

The real-time software framework OpenRTM [6] consists of a component meta-
model, a component-manager (deployment infrastructure) and a set of tools. The

532 D. Brugali and L. Gherardi

component meta-model is divided in Component profile and System profile. Simi-
lar to the component model presented in this chapter, RT-Middleware provides the
primitives for modeling software component and hierarchically composing them.
However, in OpenRTM the composite is used for coordinating the execution of its
components, while in HyperFlex the composite is a modeling entity and the coor-
dination is managed by one of its internal components. Therefore, the HyperFlex
approach is more general and can model component systems based on software
frameworks that do not support hierarchical composition at implementation level.

The Proteus project [13] has developed an approach to modeling robotics control
systems based on heterogeneous component models (e.g. ROS and Orocos). Proteus
defines a framework-independent componentmeta-model to design the system archi-
tecture. It provides tools for code generation of component skeletons for different
component frameworks but not for explicitly modeling robotic software variability.

TheSmartsoft project [20] has developed a toolchain that supports variabilitymod-
eling in task sequencing. Software models define sequences of actions with variation
points that are bound at runtime according to the execution context and policies for
task fulfillment. For example, the order of the actions that the robot executes for
cleaning a table changes according to the objects that are on the table. In contrast,
HyperFlex models the functional variability of a control system independently from
the specific task that the robot has to execute.

6 Conclusions and Future Works

MDE is often considered to be synonymous with code generation and, frequently,
research and development efforts inMDE for Robotics aremotivated by the objective
of simplifying application development by robotic experts with limited software
engineering skills.

Interestingly, a study on the state of practice in MDE in industry reports that
productivity gains due to automatic code generation are not considered significant
enough to drive an MDE adoption effort, due to increased training costs and sub-
stantial organizational changes [26]. It turns out that the main advantages are in the
support that MDE provides in defining the architecture of a software system.

For this reason, the HyperFlex approach builds upon the concepts of stable soft-
ware architecture and variability modeling. The HyperFlex approach is supported by
a set of MDE tools that allow software developers of robotic control systems to:

• Model the software architecture and the functional variability of a family of similar
control systems (SPL) developed for a given application domain (e.g. autonomous
logistics).

• Model the requirements of a specific application (product) with a modeling lan-
guage that uses the vocabulary of robotic experts and system integrators.

HyperFlex: A Model Driven Toolchain for Designing … 533

• Automatically derive a configured system (product) according to the user require-
ments without the need for the system integrator to be an expert in robot function-
ality and software architectures.

This chapter has presented the HyperFlex approach in the context of the develop-
ment of ROS-based robotic systems. For this reason, it has focused on ROS models
and meta-models and on ROS-specific tools, such as the automatic generation of
launch files from the models of configured systems.

Ongoing works aim at extending the ROS meta-models with the entities for mod-
eling additional configuration mechanisms, such as the pluginlib package for writing
and dynamically loading plugins using the ROS infrastructure. This extension will
enable the possibility to use HyperFlex for the development of dynamically adaptive
robotic systems. Robotic engineers will define several variation points (resources,
algorithms, control strategies, coordination policies, etc.). Depending on the context,
the control system dynamically chooses suitable variants to realize those variation
points. These variants may provide better quality of service (QoS), offer new services
that did not make sense in the previous context, or discard some services that are no
longer useful.

Acknowledgments The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (2007–2013) under grant agreement no. FP7-ICT-
231940-BRICS (Best Practice in Robotics). The authors would like to thank all the partners of the
BRICS project for their valuable comments.

References

1. The Eclipse Modeling Project (2013), http://www.eclipse.org/modeling
2. The HyperFlex Toolchain (2014), http://robotics.unibg.it/hyperflex/
3. AUTomotive Open System ARchitecture (2015), http://www.autosar.org/
4. Common Variability Language (2015), http://www.omgwiki.org/variability
5. A. Abele, H. Lönn, M.-O. Reiser, M. Weber, H. Glathe, EPM: a prototype tool for variability

management in component hierarchies, in Proceedings of the 16th International Software
Product Line Conference vol. 2 (ACM, 2012), pp. 246–249

6. N. Ando, S. Kurihara, G. Biggs, T. Sakamoto, H. Nakamoto, T. Kotoku, Software deployment
infrastructure for component based RT-systems. J. Robot. Mechatron. 23(3), 350–359 (2011)

7. R. Bischoff, et al., Brics-best practice in robotics, in Robotics (ISR), 2010 41st International
Symposium on and 2010 6th German Conference on Robotics (ROBOTIK) (VDE, 2010), pp.
1–8

8. D. Brugali, A. Fernandes da Fonseca, A. Luzzana, Y. Maccarana, Developing service oriented
robot control system, in 8th International Symposium on Service-Oriented System Engineering,
Oxford, UK, 7–10 Apr 2014. IEEE

9. D. Brugali, L. Gherardi, M. Klotzbuecher, H. Bruyninckx, Service component architecture in
robotics: the SCA-Orocos integration, in International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (Springer, 2011), pp. 46–60

10. E. Cirilo, U. Kulesza, C. Lucena, A product derivation tool based on model-driven techniques
and annotations. J. Univ. Comput. Sci. 14(8), 1344–1367 (2008)

11. P.C. Clements, L. Northrop. Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering (Addison-Wesley, Boston, 2001)

http://www.eclipse.org/modeling
http://robotics.unibg.it/hyperflex/
http://www.autosar.org/
http://www.omgwiki.org/variability

534 D. Brugali and L. Gherardi

12. S. Cousins, B. Gerkey, K. Conley, W. Garage, Sharing software with ROS [ROS topics]. IEEE
Robot. Autom. Mag. 17(2), 12–14 (2010)

13. S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, M. Ziane. RobotML, a domain-specific language
to design, simulate and deploy robotic applications, in Simulation, Modeling, and Programming
for Autonomous Robots (Springer, 2012), pp. 149–160

14. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and Reuse of
Object-Oriented Design (Springer, New York, 1995)

15. L. Gherardi, D. Brugali, An eclipse-based feature models toolchain, in 6th Italian Workshop
on Eclipse Technologies (EclipseIT 2011), 2011

16. L. Gherardi, D. Brugali, Modeling and reusing robotic software architectures: the HyperFlex
toolchain, in IEEE International Conference on Robotics and Automation (ICRA 2014), Hong
Kong, China, 31 May–5 June 2014. IEEE

17. N. Hochgeschwender, L. Gherardi, A. Shakhirmardanov, G. Kraetzschmar, D. Brugali,
H. Bruyninckx, Amodel-based approach to software deployment in robotics, in 26th IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2013), Tokyo, Japan, 3–7
Nov 2013. IEEE/RJS

18. M. Jan, et al., Flex-eware: a flexible model driven solution for designing and implementing
embedded distributed systems. Softw. Pract. Exper. 42(12) (2012)

19. K. Kang, Feature-oriented domain analysis (FODA) feasibility study (Technical report, DTIC
Document, 1990)

20. A. Lotz, et al., Managing run-time variability in robotics software by modeling functional and
non-functional behavior, in Enterprise, Business-Process and Information Systems Modeling
(Springer, New York, 2013), pp. 441–455

21. E.Y.Nakagawa,P.O.Antonino,M.Becker,Reference architecture andproduct line architecture:
a subtle but critical difference, in Proceedings of the 5th European Conference on Software
Architecture, ECSA’11 (Springer, Berlin, Heidelberg, 2011), pp. 207–211

22. M.-O. Reiser, R.T. Kolagari, M. Weber, Compositional variability-concepts and patterns, in
42nd Hawaii International Conference on System Sciences, 2009. HICSS’09 (IEEE, 2009), pp.
1–10

23. D. Schmidt, Guest editor’s introduction: model-driven engineering. Computer 39(2), 25–31
(2006)

24. R. Smits, H. Bruyninckx, Composition of complex robot applications via data flow integration,
in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp.
5576–5580

25. R. van Ommering, Mechanisms for handling diversity in a product population, in Fourth Inter-
national Software Architecture Workshop, Citeseer, 2000

26. J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-driven engineering.
IEEE Softw. 31(3), 79–85 (2014). May

Integration and Usage of a ROS-Based
Whole Body Control Software Framework

Chien-Liang Fok and Luis Sentis

Abstract ControlIt! is a ROS-based high performance feedback control framework
that enablesWholeBodyControl (WBC) algorithms to be implemented, instantiated,
and integrated into ROS applications. It operates above individual joint controllers
but below planners and takes a holistic view of the robot to achieve multiple simul-
taneous objectives. Such capabilities are particularly useful for highly redundant
and multi-branched robots like humanoids where the large number of degrees of
freedom (DOFs) and intrinsic multi-tasking like reaching for an object while main-
taining balance requires advanced feedback control strategies. ControlIt! provides
two software abstractions, a compound task and a constraint set, that enables users
to configure, use, and integrate whole body controllers. The compound task con-
sists of prioritized tasks with controllers that operate in a relatively low dimensional
space compared to the number of joints. The constraint set specifies physical limits
of the robot like points of contact with the environment and mechanical couplings
between joints. ControlIt! comes with an implementation of the Whole Body Oper-
ational Space control (WBOSC) algorithm, one of the original WBC algorithms.
Through prioritized null-space projection, WBOSC achieves each tasks’ objectives
subjected to limitations from higher priority tasks and the constraint set. Using tasks
and constraints, users can make high-DOF multi-branched robots execute sophisti-
cated multi-objective and adaptive behaviors. This chapter presents ControlIt! and
provides examples of advanced whole body behaviors it enables.

Keywords ControlIt! ROS framework WBC WBOSC

C.-L. Fok (B) · L. Sentis
Department of Mechanical Engineering, University of Texas at Austin, Austin, USA
e-mail: liangfok@utexas.edu
URL: http://www.me.utexas.edu/~hcrl/

L. Sentis
e-mail: lsentis@austin.utexas.edu

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_21

535

536 C.-L. Fok and L. Sentis

1 Introduction

Whole Body Control (WBC) strategies are particularly useful for multi-branched
highly redundant robots like humanoids due to their ability to achieve multiple con-
trol objectives and incorporate equality and inequality constraints into the control
problem. This allows control strategies to deal with expected changes in interactions
with the environment such as contact transitions [1]. Unlike traditional controllers
thatwork at the single joint level orwhole-body planners that operate off-line or infre-
quently relative to the WBC servo frequency, which is currently around 0.5–2kHz,
whole body controllers take a holistic view of the entire robot and use every joint to
achieve the user-specified objectives via a real-time feedback control process. This
real-time feedback control enables WBC-enabled robots to be more adaptive and
responsive to unexpected contextual changes relative to systems that rely entirely on
open-loop planners for coordinating whole body behaviors. There are many forms of
whole body controllers including inverse dynamics controllers [2] and optimal con-
trollers [3–5]. While these types of Multi-Input-Multi-Output (MIMO) controllers
may be supported by ControlIt! in the future, for now ControlIt! comes with one
type of whole body controller based on the Whole Body Operational Space Control
(WBOSC) algorithm [6–9].

WBOSC is one of the first WBC algorithms developed. It enables unified
motion/force control of multiple prioritized operational space objectives. Example
objectives include end effector position and orientation, center of pressure locations,
and internal force distributions within the robot. The whole body controller attempts
to achieve these operational space objectives while deterministically handling joint
redundancies through a lower priority posture specification and adhering to physi-
cal constraints. ControlIt! is a ROS-based framework that provides a state-of-the-art
open source implementation ofWBOSC and is designed to be extensible via plugins.

ControlIt!was originally developed and testedonValkyrie,NASA’sfirst humanoid
robot, as shown in Fig. 1a. In the run-up to the DARPA Robotics Challenge (DRC)
Trials in December 2013, it was successfully used to accomplish several tasks man-
dated by the DRC including industrial valve turning, door opening, and power tool
manipulation [10]. After the DRC Trials, ControlIt! was integrated and tested on
Dreamer, a humanoid upper body built by Meka Robotics (now owned by Google)
and shown in Fig. 1b. Using ControlIt!, Dreamer was able to execute a product disas-
sembly task [11] and various human-robot interactions like waving, shaking hands,
and making University of Texas’ “Hook-em Horns” gesture [12]. While ControlIt!
is currently only tested with two robots, its architecture is designed to be robot-
independent. The process for integrating ControlIt! with a new robot consists of
developing two plugins that enable ControlIt! to access to the robot hardware and
real-time clock capabilities, and specifying a whole body controller configuration
similar to that shown in Fig. 2. More details will be described later in this chapter.

ControlIt! currently works with ROS Hydro and ROS Indigo. Dependencies
include Eigen 3.0.5 [13] and the Rigid Body Dynamics Library (RBDL) 2.3.2 [14].
To enable testing in simulation, ControlIt! includes a plugin for Gazebo [15], an open

Integration and Usage of a ROS-Based Whole Body Control Software Framework 537

Fig. 1 ControlIt! was originally integrated and evaluated with NASA’s Valkyrie and Meka’s
Dreamer humanoid robots. Both robots have a large number of DOFs, are multi-branched, and
contain torque controlled series elastic actuators. a Valkyrie. b Dreamer

source robot dynamics simulator, that enables whole body controllers to control a
simulated robot via a shared memory communication link [16].

As the provider of a whole body controller, ControlIt! is just one of many soft-
ware components within a ROS-based system. Its placement in the overall software
stack is shown in Fig. 3. Components that logically reside below ControlIt! include
robot hardware (e.g., sensor and actuator) drivers, joint controllers, and joint con-
troller managers like ros_control [17]. Components that logically reside above
ControlIt! include planners and trajectory generators like MoveIt! [18], behavior
sequencers like SMACH [19], cognitive processes, application logic, and user inter-
faces. ROS provides an infrastructure that spans the component hierarchy. Compo-
nents further down the stack operate at higher update frequencies enabling more
responsive feedback control.

There is a strong synergistic relationship between ControlIt! and ROS. ControlIt!
makes use of ROS’ infrastructure for supporting software development, process exe-
cution, code organization, parameter management, data logging, data visualization,
and component based software architecture. In return, ControlIt! enables other ROS
nodes tomake use of awhole body controller to achieve sophisticatedmulti-objective
and multi-constrained behaviors in robots with joint redundancies. ControlIt! runs
as a node within a ROS network that communicates with other nodes via ROS top-
ics [20] and ROS services [21]. Despite being a single node, extensive use of ROS’
pluginlib infrastructure [22] enables a high degree of extensibility. The config-
uration of ControlIt! is initially done through the ROS parameter server [23], but
can be dynamically changed at run time via ROS topics and services. Details will be
described later in this chapter.

538 C.-L. Fok and L. Sentis

1 tasks:
2 - name: RightHandPosition
3 type: controlit/CartesianPositionTask
4 - name: LeftHandPosition
5 type: controlit/CartesianPositionTask
6 - name: RightHandOrientation
7 type: controlit/3DOrientionTask
8 - name: LeftHandOrientation
9 type: controlit/3DOrientionTask

10 - name: Posture
11 type: controlit/JointPositionTask
12 compound_task:
13 name: DreamerCompoundTask
14 task_list:
15 - {name: RightHandPosition, priority: 0}
16 - {name: LeftHandPosition, priority: 0}
17 - {name: RightHandOrientation, priority: 1}
18 - {name: LeftHandOrientation, priority: 1}
19 - {name: Posture, priority: 2}
20 constraints:
21 - name: ContactConstraint
22 type: controlit/FlatContactConstraint
23 - name: TorsoTransmission
24 type: controlit/TransmissionConstraint
25 constraint_set:
26 name: My Constraint Set
27 active_constraints:
28 - {name: ContactConstraint}
29 - {name: TorsoTransmission}

Fig. 2 An example configuration file that specifies a whole body controller for Dreamer. Control
points include the Cartesian position and orientation of Dreamer’s wrists and the overall posture.
Task parameter details are omitted

Fig. 3 ControlIt!’s relationship with ROS and other ROS nodes

Integration and Usage of a ROS-Based Whole Body Control Software Framework 539

The remainder of this chapter is organized as follows. Section2 provides an
overview of WBOSC’s mathematical foundations. Section3 presents ControlIt!’s
software architecture. Section4 describes the plugin libraries included with
ControlIt!, which include the tasks and constraints that constitute the primitives
for configuring whole body controllers. Section5 provides examples of how Con-
trolIt! was used on actual robots for a variety of applications. Section6 describes the
installation process. Section7 details how to run various demos in simulation. The
chapter ends with conclusions in Sect. 8.

2 Overview of Whole Body Operational Space Control

The mathematical foundations of WBOSC are detailed in previous publications [6–
9] and those interested in the full details should refer to them. This section only
provides an overview of the mathematics that underpins WBOSC.

WBOSC provides a servo loop that operates as a kinematics and dynamics cal-
culation module. It cycles at a user-specified servo frequency, which is limited by
the speed of the processor and is typically in the range of 0.5–2kHz. During each
cycle of the servo loop, WBOSC takes as input the robot’s current state, tasks, and
constraints, and outputs the desired joint torques that joint-level controllers must
achieve. Over time, assuming the robot is able to performWBOSC’s commands, the
desired multi-objective whole body behavior emerges.

To enable support for mobile robots, the total state consists of both the robot’s
joint states and world state, as shown in Fig. 4. The world state is the robot’s position
and orientation in the world, i.e. the robot’s global pose, in addition to the reaction
forces with respect to the environment. Let n joints be the number of actual DOFs in
the robot. The robot’s joint positions are represented by the vector qactual as shown
by the following equation.

qactual =< q1 . . . qn joints > (1)

The robot’s global Cartesian position and orientation are represented by a
6-dimensional floating virtual joint that connects the robot’s base link to the world,
i.e., three rotational and three prismatic virtual joints. It is denoted by vector
qbase ∈ R

6. The two partial state vectors, qactual and qbase, are concatenated into
a single state vector q f ull = qactual ∪ qbase. This combination of real and virtual
joints into a single vector is called the generalized joint position vector. Let ndof s

be the number real and virtual DOFs in the model that is used by WBOSC. Thus,
q f ull ∈ R

6+n joints = R
ndof s .

The underactuation matrix U ∈ R
n joints×ndof s defines the relationship between the

actuated joint vector and the full joint state vector as shown by the following equation.

qactual = Uq f ull (2)

The total state that is provided to the whole body controller consists of the full
joint position vector q f ull and the full joint velocity vector q̇ f ull .

540 C.-L. Fok and L. Sentis

Fig. 4 Floating base dynamic model

Let A be the robot’s generalized joint space inertia matrix, B be the generalized
joint space Coriolis and centrifugal force vector, G be the generalized joint space
gravity force vector, Jc be the contact Jacobian matrix that maps from generalized
joint velocity to the velocity of the constraint space dimensions, λc be the co-state
of the constraint space reaction forces, and τcommand be the desired force/torque joint
command vector that is sent to the robot’s joint-level controllers. The robot dynamics
can be described by a single linear second order differential equation shown by the
following equation.

A

(
q̈base

q̈actual

)

+ B + G + JTc λc =
(

06×1

τcommand

)

(3)

Constraints are formulated as follows. Let ṗc be the velocity of the constrained
dimensions, which we approximate as being completely rigid and therefore yielding
zero velocity at the contact points, as shown by the following equation.

ṗc = Jc

(
q̇base

q̇actual

)

= 0 (4)

Tasks are formulated as follows. Let ṗt be the desired velocity of the task, Jt be
the Jacobian matrix of task t that maps from generalized joint velocity to the velocity

Integration and Usage of a ROS-Based Whole Body Control Software Framework 541

of the task space dimensions, and Nc be the generalized null-space of the constraint
set. Furthermore, let J ∗

t be the contact consistent reduced Jacobian matrix of task t ,
i.e., it is consistent with U and Nc. The definition of ṗt is given by the following
equation where operator arg is the dynamically consistent generalized inverse of
arg [7].

ṗt = Jt

(
q̇base

q̇actual

)

= JtU Ncq̇actual

= J ∗
t q̇actual (5)

Let Λ∗
t be the contact-consistent task-space inertia matrix for task t , p̈t,re f be the

reference, i.e., desired, task-space acceleration for task t , β∗
t be the contact-consistent

task-space Coriolis and centrifugal force vector for task t , and γ ∗
t be the contact-

consistent task space gravity force vector for task t . The force/torque command of
task t , denoted Ft , is given by the following equation.

Ft = Λ∗
t p̈t,re f + β∗

t + γ ∗
t (6)

To achieve multi-priority control, let J ∗
t |prev be the Jacobian matrix of task t that is

consistent with U , Nc, and all higher priority tasks. The equation for τcommand is the
sum of all of the individual task commands multiplied by the corresponding J ∗

t |prev
matrix as shown by the following equation.

τcommand =
∑

t

J ∗T
t |prev Ft (7)

Finally, when a robot has more than one point of contact with the environment,
there are internal tensions within the robot as shown in Fig. 5. By definition, these
“internal forces” are orthogonal to joint accelerations, i.e., they result in no net
movement of the robot. The control structures like the multicontact/grasp matrix that
are used to control these internal forces are documented in previous publications [8].
Let L∗ be the nullspace of (U Nc) and τinternal be the reference (i.e., desired) internal
forces vector. The contribution of the internal forces can thus be added to Eq.7 as
shown by the following equation.

τcommand =
∑

t

(

J ∗T
t |prev Ft

) + L∗Tτinternal (8)

This concludes the overview of WBOSC’s mathematical foundation. WBOSC is
a WBC algorithm that supports constraints, prioritized tasks, and internal tensions.
Successive null-space projections are used to enforce priority semantics. When mul-
tiple contact points with the environment exists, a separate structure is used to control
internal tensions. This is possible since internal tensions do not result in joint accel-
erations and thus are orthogonal to the tasks and constraints.

542 C.-L. Fok and L. Sentis

Fig. 5 Internal tension model

3 Software Architecture

ControlIt!’s software architecture is shown in Fig. 6. It is divided into three lev-
els: configuration, WBC, and a Hardware Abstraction Layer (HAL). Configuration
classes parameterize the whole body controller and include the compound task, con-
straint set, and robotmodel. TheWBC layer consists of a coordinator that implements
the servo loop and the whole body controller that implements the whole body control
logic. The HAL consists of a robot interface and a clock. The robot interface enables
ControlIt! to work with a wide variety of robots while the clock implements the servo
loop’s thread and enables support for different real-time frameworks like RTAI [24]
and RT-Preempt [25].

ControlIt! is designed to be highly extensible via ROS plugins [22]. The elements
that are extensible include tasks, constraints, the whole body controller, the clock,
and the robot interface. They are shown in gray in Fig. 6. In the future, the robot
model may also be a plugin.

The remainder of this section is structured as follows. Section3.1 discusses
the architecture’s core classes. Section3.2 discusses how parameters are handled
and bound to ROS topics. Finally, Sect. 3.3 presents ControlIt!’s multi-threaded
architecture.

Integration and Usage of a ROS-Based Whole Body Control Software Framework 543

Fig. 6 ControlIt!’s software architecture

3.1 Core Classes

Robot Model. WBOSC is a model-based controller meaning it relies on a soft-
ware model that specifies the kinematic and dynamic properties of the robot being
controlled. Figure7 includes a UML diagram of ControlIt!’s RobotModel class.
Internally, RobotModel uses the Model class that is provided by RBDL [14].
This library includes algorithms for computing forward and inverse kinematics, for-
ward and inverse dynamics, frame transformations, the inertia matrix, Coriolis and
centrifugal forces, and the gravity vector. In other words, the RBDL model is used
to derive the variables A, B, and G, and Jc in Eq.3. Method init() initializes a
RobotModel by instantiating a ROS node handle and getting the relevant parame-
ters off the ROS parameter server [23]. This includes a Universal Robot Description
Format (URDF) description of the robot that is used to instantiate a RBDL model,
and a YAML-specification of the constraint set that is used to instantiate the con-
straint set. The robot model uses the constraint set to determine which of the real joint
are actuated. This is necessary because some robots like Dreamer have co-actuated
joints where one actuator controls multiple joints. In Dreamer’s case, the two torso
pitch joints are co-actuated and thus always have the same state. ControlIt! models
this via a transmission constraint that makes one joint a slave of the other joint, as
will be discussed.

During each cycle of the servo loop, the real-time servo thread within the coor-
dinator obtains the latest joint state from the robot interface and passes this state
to RobotModel::setJointState(), which saves the information in mem-
ber variable RobotModel::jointState. Another thread that’s dedicated to
updating the model periodically calls RobotModel::update(), which updates
RobotModel::model and RobotModel::inertiaMatrix, i.e., variable A
in Eq.3. By using a separate thread to update the model, we offload a significant

544 C.-L. Fok and L. Sentis

Fig. 7 UML diagrams of ControlIt!’s configuration classes

amount of computation from the real-time servo thread enabling it to achieve higher
servo frequencies, which is often needed for increasing closed loop stability.1

Note that the robot model is usually incorrect necessitating the use of a whole
body feedback controller. Future work includes the integration of system identifi-
cation algorithms that adjust the model at run-time to reduce model inaccuracies.
This should enable increasingly higher feedback controller gains and thus higher
performance behaviors to be achieved over time.

Constraint Set. The constraint set contains constraints that specify the nat-
ural physical limits of the robot. During initialization, the constraint set’s con-
figuration is determined by a YAML specification stored on the ROS parameter
server under /[controller name]/config/constraint_set. Figure7
contains a UML diagram of class ConstraintSet. The constraint set computes a
Jacobian matrix that is the vertical concatenation of the Jc matrices belonging to the
constraints as defined in Eq.4. It also computesU in Eq.2,U Nc in Eq.5, andwhether
each joint is constrained. The coordinator passes this information to the whole body
controller, which uses it to ensure the commands reside within the constraint set’s
nullspace.

Figure8 contains a UML diagram of class Constraint. All constraints are
named, specify the number of constrained DOFs, and provide a Jacobian matrix Jc.
There are two types of constraints: contact and transmission. Contact constraints
specify how a robot contacts its environment. It is parameterized by the link and the

1Increasing feedback controller gains toomuch is not desirable since doing somay lead to saturation
of the robot’s actuators and instability. By using a multi-threaded architecture, ControlIt! simply
provides the user with the option to increase the servo frequency higher than otherwise possible.

Integration and Usage of a ROS-Based Whole Body Control Software Framework 545

Fig. 8 UML diagrams of ControlIt!’s Task and Constraint classes

point on the linkwhere the contact ismodeled to occur, e.g., it can be a contact region’s
mid-point, center of pressure, or zeromoment point. Transmission constraints specify
dependences between joints due to co-actuation. It is parameterized by a specification
of which joint is the master and which is the slave. The slave joint’s behavior is
dependent on the master joint’s behavior.

Compound Task. The compound task contains a set of prioritized tasks, each
of which specifies an operational or postural objective for the whole body con-
troller to achieve. During initialization, the configuration of the compound task is
determined by a YAML specification stored on the ROS parameter server under
/[controller name]/config/compound_task. The compound task is
the key software abstraction through which users can configure a whole body con-
troller. Figure7 contains a UML diagram of class CompoundTask. For each pri-
ority level, the compound task vertically concatenates the Jacobians and commands
belonging to the tasks at the priority level. The coordinator takes this information and
passes it to the whole body controller. WBOSC uses these concatenated Jacobian
matrices and command vectors to enforce task prioritization and multiple tasks at
the same priority level, while adhering to the constraint set, as defined by Eq.7.

Figure8 contains a UML diagram of class Task. All tasks are named, have a
priority level, can be enabled and disabled, provide a task-space command vector
and a Jacobian matrix that converts the command to joint space, and maintains two
sets of states, active and inactive. The active state is used by the real-time servo thread
while the inactive state is updated by a separate thread. Like the process of updating
the robot model, the purpose of using a separate thread to update the task states is
to offload the amount of computations that need to be performed by the real-time
servo thread and thereby increase the maximum achievable servo frequency. The
real-time servo thread periodically calls Task::swapActiveState that checks
if an update is available and, if so, swaps the active and inactive states.

The Task and Constraint classes are abstract; concrete implementations are
included through plugins. Both have names and types for easy identification and
can be enabled or disabled based on context. In the future, support for dynamically
adding and removing tasks and constraints (not just enabling/disabling)will be added.
Currently-provided tasks and constraints are described in Sect. 4.

546 C.-L. Fok and L. Sentis

Fig. 9 UML diagrams of ControlIt!’s WBC classes

Whole Body Controller. The whole body controller implements the actualWBC
algorithm. Figure9 shows its UML diagram. Since ControlIt! is designed to be
extensible, the whole body controller is actually an interface definition. Concrete
implementations are provided via dynamically loadable plugins and will be dis-
cussed in Sect. 4. The interface WholeBodyController defines a single method
named computeCommand(). Inputs to this method are a RobotModel and a
CompoundTask. Using these input parameters, the method performs the WBC
computations that generate a command for each joint under its control and returns
the commands within an object of type Command. Figure9 contains a UML diagram
of Command. As shown in the figure, the command contains the desired position,
velocity, and effort (i.e., force or torque) values for each joint in the robot, along
with a couple parameters for the joint-level controllers. Note that depending on the
type of whole body controller and joint-level controllers employed, not all of the
variables within a Command object are used. For example, Dreamer only uses the
effort command because its joints are torque controlled whereas Valkyrie used all of
the parameters because its joints are impedance controlled.

Coordinator. As shown in Fig. 6, the coordinator is a central component in Con-
trolIt!’s architecture. It contains a whole body controller and uses the configuration
objects and the robot interface. It implements the servo loop that is shown in Fig. 12,
which is periodically executed by the servo clock. The coordinator is implemented
by class Coordinator whose UML class diagram is given in Fig. 9. As shown
in the figure, Coordinator contains a robot interface, clock, compound task,
robot model, and whole body controller as member variables. These variables are
instantiated when the init() method is called. The coordinator also implements
methods servoInit() and servoUpdate(). Method servoInit() initial-
izes the robotmodel by reading the latest robot joint state from the robot interface and
passing this information to the robot model. This is necessary because some robot
interfaces contain data structures that are only accessible to the real-time thread
that’s provided by the clock. Once initialized, the clock periodically calls method
servoUpdate(), which implements the servo loop.

RobotInterface. The robot interface decouples the rest of ControlIt! from robot-
specific software. This enables ControlIt! to support different robots without major
software changes. Figure10 contains a UML class diagram of the robot

Integration and Usage of a ROS-Based Whole Body Control Software Framework 547

Fig. 10 UML diagrams of ControlIt!’s HAL classes

interface. Recall that RobotInterface is an abstract class. Concrete imple-
mentations are introduced via plugins that will be described in Sect. 4. The robot
interface provides two methods: read(), which obtains the latest robot joint state,
and write(), which sends a command to the robot. For diagnostic purposes, it
has two real-time ROS topic publishers for revealing the states and commands.
RealtimeROSTopicPublisher uses a thread-pool to offload the publishing
process from the servo thread.

Clock. The clock instantiates the real-time servo thread and contains a reference
to Coordinator. It calls Coordinator::servoInit() once upon startup
and then Coordinator::servoUpdate() periodically. It is also an abstract
class with concrete implementations made available via plugins.

3.2 Parameter Binding

ROS provides a component-based architecture consisting of multiple communi-
cating software processes called nodes one of which is ControlIt!. A parameter
binding mechanism is provided to integrate ControlIt! with other nodes. Figure11
contains UML diagrams of the relevant classes. Parameter stores information
about a parameter like its name, value, and bindings. It also provides method set(),
which updates the value and the bindings. ParameterReflection is the parent-
class of all classes that contain parameters. It allows child classes to declare and
access parameters and emit events. Event contains a logical expression over the
parameters within a ParameterReflection object. When this logical expres-
sion turns true, a message containing the event’s name is published onto ROS
topic /[controller name]/events. This enables event-triggered behaviors.
Events are continuously evaluated by the servo loop as indicated in Fig. 12.Binding
contains a BindingConfig and a Parameter.BindingConfig stores details

548 C.-L. Fok and L. Sentis

Fig. 11 UML class diagrams related to parameters and parameter bindings

about a binding like which transport protocol to use, in which direction, and transport
protocol-specific parameters. BindingManager creates and stores the bindings.
To support extensibility in terms of transport protocols, Binding is an abstract
class. Concrete transport layer-specific instances are provided via plugins.

3.3 Multi-threaded Architecture

To increase the servo frequency, ControlIt! uses a multi-threaded architecture where
computationally-intensive updates that do not need to occur every cycle of the servo
loop are done by child threads. This is possible since some state like the robot model
and task Jacobian matrices typically do not significantly change from one cycle of
the servo loop to the next. Figure12 shows the finite state machines of the threads
used in ControlIt!. As shown in the figure, there are three threads: (1) a real-time
servo thread, (2) a task updater thread, and (3) a model update thread. To prevent
race conditions between the threads, two robot models are maintained: an active one
that is used by the real-time servo thread, and an inactive one that is updated by the
model update thread. Likewise, tasks maintain active and inactive states where the
active ones are used by the servo thread and inactive one is used by the task update
thread. Since the servo thread is real-time, it should never be blocked by either the

Integration and Usage of a ROS-Based Whole Body Control Software Framework 549

Fig. 12 Finite state machines of the real-time servo thread, the model updater thread, and the task
updater thread

task updater thread or model updater thread. This is done by having the servo thread
swap the inactive and active states at certain points in the servo loop. Using this
multi-threaded architecture, the controller’s execution frequency is stable as shown
by Fig. 13.

4 Plugin Libraries

As a framework, ControlIt! is designed to work with a wide variety of robots and
applications. This is achieved by enabling key aspects of ControlIt! to be extended
via dynamically loadable plugins based on ROS pluginlib [22]. To provide a
robust base set of functionalities, ControlIt! comes with numerous plugins that are
organized into libraries. Specifically, ControlIt! comes with a task library, constraint
library, whole body controller library, clock library, and robot interface library. Each
of these libraries contain plugins that can be added to ControlIt!. New plugins can be
developed for general use or specific applications, and for hardware platforms that
are not covered by existing plugins. We now describe each of these libraries.

550 C.-L. Fok and L. Sentis

Fig. 13 A histogram of
ControlIt!’s servo frequency
when running on Dreamer
hardware for 70 s. The
desired frequency was 1kHz

Table 1 The task library

Name Key parameters

JointPositionTask Desired joint position

CartesianPositionTask Control frame, control point

Desired Cartesian position,

2DOrientationTask Control frame, control vector,

Desired frame, desired vector

3DOrientationTask Control frame, desired Quaternion

COMTask Control frame, control point,

Desired COM location

COPTask Control frame, desired COP location

InternalForcesTask Desired internal forces

Task Library. The plugins in the task library are shown in Table1. There are
currently seven tasks in the library. JointPositionTask controls the position
and velocity of every joint in the robot. It is typically the lowest priority task in a com-
pound task, specifies the robot’s overall posture, and is needed to handle redundant
joints in high DOF robots. CartesianPositionTask controls the world posi-
tion of a point on the robot. 2DOrientationTask and 3DOrientationTask
control a robot link’s two or three orientation dimensions. 2D orientation is useful
when one dimension is constrained like in a mobile wheeled platform. COMTask
controls the robot’s Center Of Mass (COM). COPTask controls the location of
a robot link’s Center Of Pressure (COP) when it is in contact with the environ-
ment. Finally, InternalForcesTask specifies the desired internal forces within
the robot. The current task implementations use PID controllers. In the future, the
controllers within tasks may be plugins enabling other Single-Input-Single-Output
(SISO) and Multi-Input-Multi-Output (MIMO) controllers to be used.

Integration and Usage of a ROS-Based Whole Body Control Software Framework 551

Table 2 The constraint library

Name Key parameters

FlatContactConstraint Constrained link, contact normal, contact point

PointContactConstraint Constrained link, contact point

OmniWheelConstraint Constrained link, wheel axis, contact point, normal axis

CoactuationConstraint Master joint, slave joint, transmission ratio

The task library represents “WBC primitives.” Combinations of these primitives
can be configured for a wide range of applications and robots. Their capabilities
directly impact the whole body behaviors that can be achieved. The integration of
ControlIt! into ROS applications is done by binding the task parameters to ROS
Topics and other transport protocols.
Constraint Library. The plugins in the constraint library are shown

in Table2. There are currently four constraints in the library. FlatContact-
Constraint is used when a link is unable to translate or rotate due to con-
tact with the environment. PointContactConstraint is used when a link
can rotate but not translate. OmniWheelConstraint restricts one rotational
DOF and one translational DOF based on the current orientation of the wheel.
CoactuationConstraint enables ControlIt! to handle robots with co-actuated
joints, like Dreamer’s torso pitch joints. The transmission ratio specifies how much
the slave joint moves relative to the master joint.

Multiple instances of the same constraint may exist in the constraint set if they
are for different parts of the robot. For example, a biped robot like Valkyrie would
have a FlatContactConstraint for each foot. Additional contact constraints
can be added if, for example, the robot’s arms contact the environment.
WBC Library. The WBC library currently includes two implementations of

WBOSC as shown in Table3. The first implementation, available via the WBOSC
plugin, implements the WBC algorithm described in Sect. 2. It takes the constraint
set, compound task, and robot model, and outputs an effort (i.e., force/torque) com-
mand vector that minimizes the tasks errors subjected to constraint and task priority
specifications. The output of WBOSC is then sent to an effort-controlled robot like
Dreamer.

TheWBOSC_Impedancepluginworkswith Impedance-controlled robots,which
require commands containing the desired positions, velocities, and optionally grav-
ity compensation torques. The main benefit is higher impedance due to the ability
to place the damping portion of the joint feedback controller closer to the control

Table 3 The WBC library Name Application

WBOSC Effort-controlled robots

WBOSC_Impedance Impedance-controlled robots

552 C.-L. Fok and L. Sentis

Table 4 The robot interface
library

Name Transport protocol

RobotInterfaceROSTopic ROS topics

RobotInterfaceSharedMemory Shared memory

RobotInterfaceUDP UDP

RobotInterfaceTCP TCP

plant, which results in lower communication latencies [26]. The implementation
of WBOSC_Impedance actually extends WBOSC with an internal model that uses
the effort command generated by WBOSC to derive the expected joint positions and
velocities.

Robot Interface Library. The plugins in the robot interface library are shown in
Table4. The robot interfaces differ in the type of transport protocol supported, which
vary in their latency, bandwidth, reliability, level of abstraction, and whether they
enable a distributed architecture where ControlIt! runs on a different machine than
the robot hardware drivers. Shared memory [16] has the lowest latency and highest
bandwidth but does not support distributed operation, which all others support. The
difference between RobotInterfaceROSTopic and RobotInterfaceTCP
is the level of software abstraction since ROS Topics by default use TCP. Whereas
TCP packets are defined using raw bytes, ROS topic messages are defined by ROS’
message description language, which includes higher level data types [27]. We pro-
vide RobotInterface plugins that are not based on ROS topics for robots that
cannot run ROS. In addition to the above, specialized robot interfaces for Dreamer
and Valkyrie exist but are not part of the library since they are robot specific.

To support simulation testing, ControlIt! includes a corresponding Gazebo [15]
plugin for each of the robot interfaces in the library. This enables developers to
quickly switch between evaluating an application based on ControlIt! in simulation
and on real hardware.

Clock Library. The plugins in the clock library are shown in Table5. They sup-
port clocks based on RT- Preempt [25], ROS time [28], and C++’s std::chrono
library [29]. In addition, a separate ClockRTAI is included in a separate package
that enables use of the Real-Time Application Interface (RTAI) for real-time opera-
tion [24]. In the future, this RTAI-based clock may be included with the Controlit!
Clock Library by using conditional compilation and RTAI’s LXRTmode, which will
enable the library to be compilable even on non-RTAI platforms.

Table 5 The clock library Name Clock type

ClockRTPreempt RT-Preempt

ClockROS ROS Time

ClockChrono C++’s std::chrono library

Integration and Usage of a ROS-Based Whole Body Control Software Framework 553

Table 6 The parameter
binding library

Name Transport protocol

InputBindingROS ROS topic

OutputBindingROS ROS topic

InputBindingSM Shared memory

OutputBindingSM Shared memory

Parameter Binding Library. The plugins in the parameter binding library are shown
in Table6. As shown in the table, ControlIt! currently provides bindings for ROS
topics and shared memory transport layers. Two types of bindings are provided for
each transport layer, one input and one output. Input bindings enable other nodes
to change the values of parameters within ControlIt!. Output bindings enable other
nodes to monitor the values of ControlIt! parameters.

5 Example Whole Body Control Configurations

The software architecture presented in Sect. 3 and the plugin libraries described in
Sect. 4 provide sufficient flexibility and expressiveness to control numerous multi-
branchedmobile robotswith a large number of joints, like humanoids, andmake them
do general tasks. This section describes several whole body controller configurations
used on actual robot hardware, specifically Valkyrie and Dreamer.

Towards the end of September 2013, Valkyrie hardware and embedded system
development reached a pointwhere awhole body controller could be tested on the full
robot. Till now, ControlIt! was only tested with Valkyrie in simulation. For this test,
a total of 29 joints were controlled by the whole body controller. They include two
six-DOF legs, a 3-DOF waist, and two 7-DOF arms. The neck and finger joints were
controlled by separate ROS nodes. To reduce complexity and increase the probability
of success, a relatively simple whole body controller was used. Specifically, the
constraint set consisted of two FlatContactConstraint constraints, one for
each foot, and the compound task consisted of an InternalForcesTask and
a JointPositionTask. Using this configuration, ControlIt! was able to make
the robot stand, as shown in Fig. 14a. It was even able to withstand some light
disturbances like gently pushing it from behind or the side. At this time, the joint-
level controllers implemented torque controllers, so WBOSC was used as the whole
body controller.

At the time, Valkyrie’s immediate objective was to compete in the DARPARobot-
ics Challenge Trials in December 2013, which required that Valkyrie perform various
locomotion and manipulation tasks. Given the tight deadline and to enable problems
with the lower body to be resolved in parallel with upper body development (e.g.,
the ankle and knee joints tended to overheat), ControlIt! was configured to work
with Valkyrie’s 14-DOF upper body to practice some of the manipulation tasks.
Figure14b shows ControlIt! controlling Valkyrie’s upper body to turn an indus-

554 C.-L. Fok and L. Sentis

Fig. 14 Two whole body controller configurations used on NASA’s Valkyrie robot. a ControlIt! is
applied toValkyrie’s full body and is configuredwith aFlatContactConstraint for each foot,
an InternalForcesTask, and a JointPositionTask tomake the robot stand. bControlIt!
is applied to Valkyrie’s upperbody and is configured with a FlatContactConstraint at the
hip, high priority CartesianPositionTask and 3DOrientationTask for each wrist, and
a low priority JointPositionTask to make the robot turn an industrial valve, grab a fire hose,
and lift debris

trial valve, manipulate a fire hose, and pick up debris. Since the upper body was
mounted on a fixed platform for these tests, the constraint set consisted of a single
flat contact constraint assigned to the robot’s hip. To facilitate manipulation capa-
bilities, a more sophisticated compound task was used. It consisted of two priority
levels. The high priority level contained four tasks: a CartesianPositionTask
and a 3DOrientationTask for each of the two wrists. The lower priority
level contained a JointPositionTask that defined the robot’s overall pos-
ture and prevented nondeterministic behavior due to joint redundancy. For these
tests, the joint-level controllers were modified to be Impedance controllers, meaning
WBOSC_Impedance was used as the whole body controller.

ControlIt! has also been integrated with Dreamer, a 16-DOF humanoid upper
body with series elastic joints (two 7 DOF arms and a 2-DOF torso). The torso
yaw joint was broken at the time of testing and thus disabled. The joints in the right
fingers, left gripper, and headwere controlled by separate controllers in different ROS
nodes that use ROS topics to access the robot hardware via ControlIt!’s Dreamer-
specific RobotInterface. As shown in Fig. 15, ControlIt! was able to make
Dreamer perform a variety of operations including a complex product disassembly
task that requires coordination of both end effectors, a University of Texas hook’em

Integration and Usage of a ROS-Based Whole Body Control Software Framework 555

Fig. 15 ControlIt! is used on Dreamer. The constraint set consisted of a FlatContact
Constraint on the torso’s base and a CoactuationConstraint on the two torso pitch
joints, which are physically linked together in a 1:1 ratio. The compound task consisted of a high
priority CartesianPositionTask and 3DOrientationTask for each wrist, and a low
priority JointPositionTask to make the robot disassemble a product, perform a University
of Texas Hook’em Horns gesture, shake hands, wave, and store an object in a container

horns gesture, shake hands, wave, and place a product in a container. All of these
behaviors were accomplished using the ControlIt! configuration shown in Fig. 2.
Specifically, the constraint set consists of a FlatContactConstraint on the
torso’s base and a TransmissionConstraint on the two torso pitch joints,
which are physically linked together in a 1:1 ratio. The compound task consists of a
high priority CartesianPositionTask and 3DOrientationTask for each
wrist, and a low priority JointPositionTask.

The system architecture used to achieve the manipulation behaviors on Valkyrie
and Dreamer is shown in Fig. 16. From highest to lowest levels, the components
consist of a user interface, application logic, planners and trajectory generators,
ControlIt!, and finally the robot itself. The user interface is the component that the
user directly interacts with. ForValkyrie, the user interface consisted of RViz [30] and
Robot Task Commander [31]. For Dreamer, the user interface consisted of RViz and
a command line terminal. The application logic determines which behavior to per-
form. It does this by providing coarse-granularity task-space (e.g., Cartesian space)
waypoints. Planners and trajectory generators take these coarse waypoints and gen-
erate fine-grained task-space waypoints. For Valkyrie, the Reflexxes [32, 33] motion
library was used. For Dreamer, cubic-spline was used. The fine-grained trajectories
are then passed to ControlIt!, which issues the appropriate joint-level commands to
the robot to achieve the desired behavior. State feedback from the robot is used by the
other components to detect and adjust for anomalies. ControlIt! can handle small dis-
turbances by adjusting the joint effort commands. Larger disturbances can be handled

556 C.-L. Fok and L. Sentis

Fig. 16 The overall architecture used to implement the manipulation behaviors on Valkyrie and
Dreamer using ControlIt!

through replanning. Extreme disturbances can be handled by the application logic
or user intervention through the user interface.

6 Installation

ControlIt! is open sourced under a LPGLv2.1 license. Currently it must be down-
loaded as source code and manually compiled. By providing the source code and
compilation instructions, users have the flexibility to modify ControlIt! to work in
other Linux distributions and versions of library dependencies. For those who do
not need to modify ControlIt! and can work with Ubuntu and ROS, work is under-
way to enable automated installation via Debian packages. For the latest installation
instructions, consult ControlIt!’s website, http://robotcontrolit.com [34]. The follow-
ing instructions are for the source-based installation.

The package management and build system used by ControlIt! is catkin [35].
Installing and compiling ControlIt! consists of setting up a ROS workspace, adding
the relevant git repositories, updating the workspace (this automatically downloads
the source code), installing RBDL, and then compiling the source code.

Before proceeding, ensure the following dependencies are met. First, the target
computer needs to run Ubuntu 12.04 or 14.04 and have ROS Hydro or Indigo. If
simulation testing is desired, Gazebo [15] should be installed. Finally, Ubuntu 14.04
systems need to install yaml-cpp 0.3.0 [36] since its API is incompatible with
the default yaml-cpp 0.5.0.

Once the above-mentioned dependencies are met, ControlIt! can be installed
and compiled. Follow the installation instructions on ControlIt’s website at http://
robotcontrolit.com/installation. After installing ControlIt!, compile it by executing
the following commands:

$ roscd; cd ..

$ rm -rf build devel

$ cakin_make

Many of ControlIt!’s demos use shared memory to communicate with the simu-
lation. To prevent needing to allocate this shared memory each time you restart your
computer (and having to type your sudo password), permanently allocate sufficient
shared memory by executing the command below.

http://robotcontrolit.com
http://robotcontrolit.com/installation
http://robotcontrolit.com/installation

Integration and Usage of a ROS-Based Whole Body Control Software Framework 557

$ rosrun shared_memory_interface \

set_shared_memory_size_persistent 536870912

This concludes the installation of ControlIt!. Instruction on how to use ControlIt!
is covered in the next section.

7 Usage

To demonstrate how to use ControlIt! and integrate it into ROS applications, several
robot models and sets of configuration files are available. This section describes how
to run some examples using these files.

When testing a newWBC algorithm, configuration, or behavior, it is often neces-
sary to start simple and then gradually increase complexity. For example, ControlIt!
was made to work with Dreamer by adding one joint at a time. Each time a new joint
was added, ControlIt! was thoroughly re-tested and the feedback control gains were
hand-tuned to ensure continuation of desired controller behavior. Note that, in the
future, automatic gain tuning tools can be developed and used. For instance, gain
tuning rules were recently developed for series elastic actuators [37], which could be
generalized for multi-input multi-output systems. When integrating ControlIt! with
Valkyrie, each limb was physically detached from the rest of the robot and tested
separately before combining them into a full humanoid.

To support incremental testing,controlit_robot_models comeswith a set
of primitive shape-basedmodels that span a wide range of complexity from the lower
half of one leg to a full bipedal humanoid as shown in Fig. 17. Primitive shapes are
simpler than mesh-based models and thus help maintain reasonably fast simulation
times, which is helpful when debugging a new whole body control algorithm or
configuration.

The simplest model is shown in Fig. 17a and is called stickbot_lowerleg_3dof. To
use ControlIt! with this robot model in simulation, execute the following commands:

Fig. 17 Primitive shape-based robot models used to test ControlIt! that span a wide range of
complexity. a A 3-DOF lower leg, b a 6-DOF leg, c a 12-DOF biped, d a 10-DOF upper body, and
e a 32-DOF full humanoid. Incrementally increasing complexity is useful when testing new WBC
algorithms, configurations, and behaviors

558 C.-L. Fok and L. Sentis

$ roscd stickbot_lowerleg_3dof_controlit/models
$./generate_stickbot_lowerleg_3dof_controlit_urdfs.sh
$ roslaunch stickbot_lowerleg_3dof_controlit simulate_jpos.launch

The first command changes the current working directory. The second command
generates the Universal Robot Description Format (URDF) [38] file, i.e., the robot
model, used by Gazebo. The models used by ControlIt! and RViz [30] are gener-
ated automatically when executing the third command. After executing the third
command, Gazebo’s GUI appears with the robot loaded but in a paused state, and
another visualization of the robot in RViz also appears. Click on the start button
within Gazebo to start the simulation, and observe the robot go into the configuration
shown in Fig. 17a. The whole body controller has a FlatContactConstraint
assigned to the robot’s foot and a JointPositionTask with target joint angles
that enable the robot to remain upright. This constitutes the simplest example of how
to use ControlIt!. Similar commands exist for the more sophisticated robot models
shown in Fig. 17. Full details are available on ControlIt!’s website [34].

ControlIt!’s website also contains examples of how to use ControlIt! to achieve
advanced whole body behaviors. One particularly useful example is the integra-
tion of MoveIt! [18] with ControlIt!. MoveIt! provides many useful functions
including planners based on the Open Motion Planning Library (OMPL) [39, 40]

Fig. 18 MoveIt!’s GUI can be used to plan and issue motion trajectories for ControlIt! to fol-
low. a Joint position control of stickbot_lowerleg_3dof. b Cartesian position control of
stickbot_humanoid_32dof. c The architecture for integrating ControlIt! and MoveIt!

Integration and Usage of a ROS-Based Whole Body Control Software Framework 559

Fig. 19 An example of using a phase-space locomotion planner in conjunction with ControlIt! to
make a bipedal robot walk up a flight of stairs in simulation. Due to space constraints, only the feet
of the bipedal robot are shown

and a GUI for enabling users to specify goals using 6-DOF interactive mark-
ers [41]. Figure18 shows how MoveIt! can be used to control the joint positions of
stickbot_lowerleg_3dof and the Cartesian wrist positions of the 32-DOF
humanoid shown in Fig. 17e, which is called stickbot_humanoid_32dof. As
shown in Fig. 18c, the integration is done by introducing an adapter node called
TrajectoryFollower that provides a ROS action server of type control_
msgs::FollowJointTrajectoryAction and communicateswithControlIt!
via ROS topics. It accepts action requests from MoveIt!, generates a trajectory from
the robot’s current state to the requested state using a spline algorithm, and trans-
mits the points along this trajectory to ControlIt!. It monitors ControlIt!’s progress
via ROS topics and updates MoveIt! using the ROS actionlib communication
interface [42].

Another example of using ControlIt! is shown in Fig. 19. This figure shows how
the integration of a phase-space locomotion planner [43] with ControlIt! enables an
early model of Valkyrie to walk up a flight of stairs in simulation. The phase-space
locomotion planner uses an inverted pendulum model to generate a rough estimate
of the robot’s dynamics when it swings its Center Of Mass (COM) sideways as it

560 C.-L. Fok and L. Sentis

takes a step. As shown in the figure, the planner implements a finite state machine
consisting of eleven states. The first five states swings the COM and moves one
foot forward. The second six states swing the COM in the opposite direction and
moves the other foot to be alongside the first foot. ControlIt! is configured with a flat
contact constraint on each foot that can be enabled and disabled based on whether
that foot is in contact with the ground. The compound task consists of a high priority
COMTask and a lower priority JointPositionTask. The locomotion planner
communicates with ControlIt! via ROS topics.

ControlIt!’s website contains many additional examples of how ControlIt! can
be used to enable ROS applications to achieve advanced whole body behaviors on
high-DOF multi-branched robots. Figure20 shows some of these examples. Due to
space constraints, full details are omitted but are available on-line. As shown in the
figure, ControlIt! works with numerous robot models including various versions of
Dreamer, Valkyrie, and Atlas. Atlas is a hydraulically-actuated humanoid made by
Boston Dynamics (now owned by Google) and was provided by the US government
for the DARPARobotics Challenge. In preparation for this challenge, ControlIt! was
used to make these robot models perform useful tasks like stand, locomote, vehicle
ingress, pick up debris, open a door, manipulate tabletop items, climb a ladder, hook
up a hose, and use a hand drill. These are only a subset of the behaviors enabled by
ControlIt!.

8 Conclusions

ControlIt! is a high performance and highly flexible ROS-based framework that
enables whole body controllers, specifically those based on the Whole Body Opera-
tional Space Control (WBSOC) formulation, to be integrated into a ROS application.
It defines a software architecture and set of software abstractions for instantiating
and configuring whole body controllers, and integrating them into a wide range of
robots and applications. High performance with controller servo frequencies in the
range of 0.5–2kHz is achieved by using multiple threads to offload the amount of
computations within the servo loop. This high frequency feedback control enables
real-time adaptation to unmodeled disturbances that cannot be achieved by whole
body planners. Software flexibility is achieved by extensive use of dynamically load-
able plugins. These plugins enable new whole body control programming primitives
like tasks and constraints to be introduced into the system. Combinations of these
primitives are structured into compound tasks and constraint sets, resulting in levels
of expressiveness that are sufficient to achieve a wide range of whole body robot
behaviors. The whole body controller itself is a plugin, and to date, two forms of
WBOSC are provided, one for torque-controlled robots like Dreamer and another
for impedance-controlled robots like Valkyrie. Platform independence is achieved
through robot interface and clock plugins, which enables ControlIt! to work with a
variety of robot hardware platforms and real-time frameworks like RTAI and RT-
Preempt, respectively. To date, ControlIt! was tested on two hardware platforms,

Integration and Usage of a ROS-Based Whole Body Control Software Framework 561

Fig. 20 Additional examples of advanced WBC behaviors enabled by ControlIt! on a variety of
robot models including various versions of Dreamer, Valkyrie, and Atlas. Most were obtained in
preparation for the DARPA Robotics Challenge Trials. All images were taken from the Gazebo
dynamics simulator

Valkyrie and Dreamer. It was successfully used in combination with various plan-
ners and user interfaces to perform numerous manipulation tasks. In simulation,
ControlIt! was demonstrated to perform even more advanced behaviors like loco-
motion on numerous additional robot models. In the future, we will work on further
improving ControlIt! and integrating it with exterioceptive sensing capabilities that
will enable, for example, visual servoing [44]. We will also integrate ControlIt!
with software processes that enable both greater autonomy (i.e., via human behavior
modeling and decision-making processes [45]), and ease of programming (e.g., via
demonstration and reinforcement-based learning [46, 47]).

Acknowledgments We thank Gwendolyn Johnson and John D. Yamokoski for helping with Con-
trolIt!’s initial implementation and the creation the example robot models. We thank Polam Liu and
Joshua James for integrating MoveIt! with ControlIt! and developing the shared memory transport
layer.
We thank the entire NASA JSC DARPA Robotics Challenge team for their help on integrating and
using ControlIt! with Valkyrie. Finally, we thank Advanced Automation Accumulator Limited, the
US National Robotics Initiative, and the Texas ETF for sponsoring our research.

562 C.-L. Fok and L. Sentis

References

1. IEEE Robotics and Automation Society, Whole body control technical committee (2015),
http://www.ieee-ras.org/whole-body-control. Accessed 13 Feb 2015

2. M.Mistry, J. Buchli, S. Schaal, Inverse dynamics control of floating base systems using orthog-
onal decomposition,” in 2010 IEEE International Conference on Robotics and Automation
(ICRA), May 2010, pp. 3406–3412

3. W. Hyun, I.-H. Suh, J. Lim, Resolved motion control of redundant robot manipulators by
neural optimization networks, in Intelligent Robots and Systems’90. ‘Towards a New Frontier
of Applications’, Proceedings. IROS’90. IEEE International Workshop on, July 1990, pp. 627–
634 vol.2

4. A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Momentum-based balance control
for torque-controlled humanoids (2013), arXiv:1305.2042

5. A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic programming: fast online
humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

6. L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behav-
ioral primitives. Int. J. Humanoid Robot. 2(4), 505–518 (2005)

7. L. Sentis, Synthesis and control of whole-body behaviors in humanoid systems, Ph.D. disser-
tation, Stanford University (2007), supervised by Oussama Khatib

8. L. Sentis, J. Park, O. Khatib, Compliant control of multicontact and center-of-mass behaviors
in humanoid robots. IEEE Trans. Robot. 26(4), 483–501 (2010)

9. L. Sentis, J. Peterson, R. Philippsen, Implementation and stability analysis of prioritizedwhole-
body compliant controllers on a wheeled humanoid robot in uneven terrains. Auton. Robots
35(4), 301–319 (2013)

10. N.A. Radford, P. Strawser, K. Hambuchen, J.S. Mehling,W.K. Verdeyen, S. Donnan, J. Holley,
J. Sanchez, V. Nguyen, L. Bridgwater, R. Berka, R. Ambrose, C. McQuin, J.D. Yamokoski,
S. Hart, R. Guo, A. Parsons, B. Wightman, P. Dinh, B. Ames, C. Blakely, C. Edmonson, B.
Sommers, R. Rea, C. Tobler, H. Bibby, B. Howard, L. Nui, A. Lee, M. Conover, L. Truong,
D. Chesney, R. P. Jr., G. Johnson, C.-L. Fok, N. Paine, L. Sentis, E. Cousineau, R. Sinnet, J.
Lack, M. Powell, B. Morris, A. Ames, Valkyrie: NASA’s first bipedal humanoid robot. J. Field
Robot. 10 (2014)

11. C.-L. Fok, Dreamer product disassembly using ControlIt! (2015), https://youtu.be/
I3OCZW7lpGU. Accessed 27 Mar 2015

12. C.-L. Fok, Human robot interactions using ControlIt! (2015), https://youtu.be/uagk5brDXWw.
Accessed 27 Mar 2015

13. B. Jacob, G. Guennebaud, The eigen project (2015), http://eigen.tuxfamily.org/. Accessed 13
Feb 2015

14. Martin Felis, Rigid body dynamics library (2015), http://rbdl.bitbucket.org/. Accessed 13 Feb
2015

15. Open Source Robotics Foundation, Gazebo simulator website (2015), http://gazebosim.org/.
Accessed 13 Feb 2015

16. Robot Operating System. ROS shared memory interface (2015), https://bitbucket.org/jraipxg/
ros_shared_memory_interface. Accessed 13 Feb 2015

17. Robot Operating System, ROS control (2015), http://wiki.ros.org/ros_control. Accessed 13
Feb 2015

18. I.A. Sucan, S. Chitta, MoveIt! (2015), http://moveit.ros.org/. Accessed 13 Feb 2015
19. Robot Operating System, ROS SMACH task-level architecture (2015), http://wiki.ros.org/

smach. Accessed 26 Mar 2015
20. Robot Operating System, ROS topic (2015), http://wiki.ros.org/Topics. Accessed 27Mar 2015
21. Robot Operating System, ROS service (2015), http://wiki.ros.org/Services. Accessed 27 Mar

2015
22. Robot Operating System, ROS pluginlib (2015), http://wiki.ros.org/pluginlib. Accessed 13 Feb

2015

http://www.ieee-ras.org/whole-body-control
http://arxiv.org/abs/1305.2042
https://youtu.be/I3OCZW7lpGU
https://youtu.be/I3OCZW7lpGU
https://youtu.be/uagk5brDXWw
http://eigen.tuxfamily.org/
http://rbdl.bitbucket.org/
http://gazebosim.org/
https://bitbucket.org/jraipxg/ros_shared_memory_interface
https://bitbucket.org/jraipxg/ros_shared_memory_interface
http://wiki.ros.org/ros_control
http://moveit.ros.org/
http://wiki.ros.org/smach
http://wiki.ros.org/smach
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/pluginlib

Integration and Usage of a ROS-Based Whole Body Control Software Framework 563

23. Robot Operating System, ROSParam (2015), http://wiki.ros.org/rosparam. Accessed 13 Feb
2015

24. Dipartimento Di Scienze e Tecnologie Aerospaziali del Politecnico diMilano, Real-time appli-
cation interface (2015), https://www.rtai.org/. Accessed 13 Feb 2015

25. L. Fu, R. Schwebel, Rt-preempt (2015), https://rt.wiki.kernel.org/index.php/RT_PREEMPT_
HOWTO. Accessed 29 Mar 2015

26. Y. Zhao, N. Paine, K. Kim, L. Sentis, Stability and performance limits of latency-prone dis-
tributed feedback controllers. IEEE Trans. Ind. Electron. PP(99), 1–1 (2015)

27. Robot Operating System. ROS msg (2014), http://wiki.ros.org/msg. Accessed 29 Jun 2015
28. Robot Operating System, ROS Time (2015), http://wiki.ros.org/roscpp/Overview/Time.

Accessed 02 Apr 2015
29. CPP Reference, Date and time utilities (2015), http://en.cppreference.com/w/cpp/chrono.

Accessed 2 Apr 2015
30. Robot Operating System, ROS RViz (2015), http://wiki.ros.org/rviz. Accessed 3 Apr 2015
31. S. Hart, P. Dinh, J. Yamokoski, B.Wightman, N. Radford, Robot task commander: a framework

and IDE for robot application development, in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014), Sept 2014, pp. 1547–1554

32. T. Kröger, On-Line Trajectory Generation in Robotic Systems, Springer Tracts in Advanced
Robotics, vol. 58. Springer, Berlin (2010)

33. T. Kroeger, Rigid body dynamics library (2015), http://www.reflexxes.com/. Accessed 03 Apr
2015

34. C.-L. Fok, Controlit! website (2015), https://robotcontrolit.com/. Accessed 13 Feb 2015
35. Robot Operating System, Catkin (2015), http://wiki.ros.org/rosbuild. Accessed 2 Apr 2015
36. J. Beder, yaml-cpp (2015), https://github.com/jbeder/yaml-cpp. Accessed 2 Apr 2015
37. Y. Zhao, N. Paine, L. Sentis, Feedback parameter selection for impedance control of series

elastic actuators, in 2014 14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), Nov 2014, pp. 999–1006

38. Robot Operating System, URDF (2014), http://wiki.ros.org/urdf. Accessed 14 Feb 2015
39. Kavraki Laboratory, Open motion planning library (2015), http://ompl.kavrakilab.org/.

Accessed 4 Apr 2015
40. I.A. Şucan, M. Moll, L.E. Kavraki, The open motion planning library. IEEE Robot. Autom.

Mag. 19(4), 72–82 (2012), http://ompl.kavrakilab.org
41. Robot Operating System, ROS interactive markers (2015), http://wiki.ros.org/rviz/Tutorials/

Interactive%20Markers%3A%20Getting%20Started. Accessed 3 Apr 2015
42. Robot Operating System, ROS actionlib (2015), http://wiki.ros.org/actionlib. Accessed 4 Apr

2015
43. D. Kim, Y. Zhao, G. Thomas, L. Sentis, Accessing whole-body operational space control

in a point-foot series elastic biped: balance on split terrain and undirected walking (2015),
arXiv:1501.02855

44. S. Hutchinson, G. Hager, P. Corke, A tutorial on visual servo control. IEEE Trans. Robot.
Autom. 12(5), 651–670 (1996)

45. J.G. Trafton, L.M. Hiatt, A.M. Harrison, F. Tamborello, S.S. Khemlani, A.C. Schultz, ACT-
R/E: an embodied cognitive architecture for human robot interaction. J. Human-Robot Interact.
2, 30–55 (2013)

46. M. Cakmak, A.L. Thomaz, Eliciting good teaching from humans for machine learners. Artif.
Intell. 217, 198–215 (2014)

47. B. Akgun, M. Cakmak, K. Jiang, A. Thomaz, Keyframe-based learning from demonstration.
Int. J. Soc. Robot. 4(4), 343–355 (2012)

http://wiki.ros.org/rosparam
https://www.rtai.org/
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://wiki.ros.org/msg
http://wiki.ros.org/roscpp/Overview/Time
http://en.cppreference.com/w/cpp/chrono
http://wiki.ros.org/rviz
http://www.reflexxes.com/
https://robotcontrolit.com/
http://wiki.ros.org/rosbuild
https://github.com/jbeder/yaml-cpp
http://wiki.ros.org/urdf
http://ompl.kavrakilab.org/
http://ompl.kavrakilab.org
http://wiki.ros.org/rviz/Tutorials/Interactive%20Markers%3A%20Getting%20Started
http://wiki.ros.org/rviz/Tutorials/Interactive%20Markers%3A%20Getting%20Started
http://wiki.ros.org/actionlib
http://arxiv.org/abs/1501.02855

Part VII
ROS Simulation Frameworks

Simulation of Closed Kinematic Chains
in Realistic Environments Using Gazebo

Michael Bailey, Krystian Gebis and Miloš Žefran

Abstract Simulation is an integral part of the robo design process; it allows the
designer to verify that the mechanical structure, sensors and software work together
as intended. It can also serve as a collaboration platform for a team. Gazebo is a
particularly attractive simulation platform as the physical behavior of the robot can
be simulated in parallel with the ROS software that controls it. A lesser known feature
ofGazebo is its ability to simulate closed kinematic chains. This is partly due to a lack
of a well-established procedure for creating such simulations. This chapter describes
in detail how robots with closed kinematic chains can be simulated in Gazebo. It
explains how a robot model created with a computer-aided design (CAD) program
such as SolidWorks can be exported to Gazebo so that closed kinematic chains are
properly modeled, and how a realistic simulation environment can be generated. We
provide detailed step-by-step examples that can be used by the reader to easily create
new simulations using Gazebo and SolidWorks. SolidWorks was chosen as the CAD
tool because it can partially export kinematic structures. Closed kinematic chains
can then be relatively easily added to these exported structures so they can be used
in Gazebo.

Both M. Bailey and K. Gebis contributed equally to this work.

M. Bailey (B)
Department of Mechanical and Industrial Engineering, University of Illinois
at Chicago, Champaign, USA
e-mail: mbaile20@uic.edu
URL:http://www.uic.edu

K. Gebis · M. Žefran
Department of Electrical and Computer Engineering, University of Illinois
at Chicago, Champaign, USA
e-mail: kgebis2@uic.edu

M. Žefran
e-mail: mzefran@uic.edu

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_22

567

568 M. Bailey et al.

1 Introduction

Simulation is a key tool for the design of robotic systems and robot simulators
are an active area of development. While the behavior of simple systems in simple
environments can be easily predicted, as systems and environments become more
complex, so do their interactions. The ability to readily simulate such interactions can
help the designers make informed design decisions, gain qualitative understanding
of the system’s challenges, compare design alternatives, and develop algorithms for
robot control.

Themain advantage ofGazebo is that it easily interfaces with ROS, the infrastruc-
ture for robot control. ROS allows the robot to be controlled using a hierarchy of
networked processes (nodes). The lowest level in the hierarchy abstracts the robot
hardware; the rest of the system operates on this abstraction. A robot controlled
through ROS can be easily simulated in a dynamic environment using Gazebo. Dur-
ing the simulation, Gazebo is treated as a node describing the hardware layer. ROS
then communicates with these simulated hardware nodes. This approach allows for a
physical system to be simulated in conjunction with the robot control algorithms [1].

Gazebo can simulatemulti-body dynamics, including interactions between bodies
such as impact, using several existing physics engines [1]. In Gazebo, both the robot
model and environment model must be defined. However, since Gazebo can easily
import models from other design tools, this approach can be made quite modular.
For example, a robot model created in SolidWorks, a popular computer-aided design
(CAD) package used for mechanical design, can be exported for use in Gazebo
using an appropriate plugin. And the robot model as well as the environment can
be realistically rendered by using 3D packages such as Autodesk 3DStudioMax for
texturing. This allows for robots to be simulated directly using the models employed
for their design, and for environments to be created and adjusted in amodular fashion
so that a robot’s ability to perform tasks can be tested in a wide range of scenarios.

Simulating open kinematic chains has been fairly well established in Gazebo.
However, simulating closed chain mechanisms presents some technical challenges.
Closed kinematic chains consist of a series of rigid bodies connected by joints, where
a child link connects back to the parent link. They are typically used to generate a
desired output motion or force at one link from the input at another link, and are the
basis of many mechanisms [2, 3].

Unified Robot Description Format (URDF) is an XML representation used in
ROS to describe the robot model. A sw_urdf_exporter plugin can be used in
SolidWorks to export a model as an URDF file. However, URDF relies on a tree-
like structure to describe robot kinematics, making it incapable of representing the
more general graph topology associated with closed kinematic chains. On the other
hand,Gazebo uses SimulationDescriptionFormat (SDF), anotherXMLspecification
for describing robot models, which can deal with the graph representation of the
kinematics. Fortunately, it is not too difficult to convert a URDF file to an SDF file
and add the missing connections so that models from SolidWorks can be accurately
reproduced.

Through the use of examples this chapter aims to create a tutorial exposition for
the creation of robot simulations in complex environments, as well as a procedural

Simulation of Closed Kinematic Chains in Realistic … 569

approach for simulating robots featuring closed kinematic chains (kinematic loops).
All the files and code used in these examples are publicly accessible [4]. We will
start with simple robot systems and test environments and then increase complexity
with each additional example. A brief discussions of the kinematics will be provided
to provide the necessary background.

2 Preliminaries

Robots consist of multiple interconnected subsystems. A useful analogy to visualize
how these systems work together is thinking of the robot as a system containing a
skeleton, muscles, eyes and brain. The mechanical design of a system constitutes its
skeleton. Actuators, sensors, and algorithms, can be considered themuscles, eyes and
brain of the robot, respectively [5]. To simulate the robot in Gazebo, each subsystem
needs to be described in an appropriate format. In particular, themechanical structure
is described by specifying links and joints. The actuators and the sensors can then be
added by using appropriate ROS plugins. Finally, the algorithms are defined through
the network of interconnected ROS nodes that use themechanical structure, actuators
and sensors. To give context to this discussion, we present a brief introduction to
kinematics as well as a discussion on the two different description formats, SDF and
URDF.

2.1 Kinematic Linkages

The robot’smechanical structure is defined through links and joints.A link is typically
assumed to be a rigid body (incapable of deformation), and it can move relative to
other links. A joint connects two links and determines how they can move relative
to each other; joints are also called kinematic pairs [6]. The most commonly used
joints are so-called lower pairs, shown in Table1. More complicated joints can be
typically obtained by combining the six lower pairs.

The following definitions are given to provide a contextual basis for the examples
discussed in this chapter (Fig. 1).

Fig. 1 Tree structured open chain and graph structured closed chain

570 M. Bailey et al.

Table 1 Lower pair joints

Parent Link: A link to which another link is connected via a joint and whose
motion moves the links attached to it.
Child Link: A link which connects to a parent link.
Kinematic Chain: An assembly of links and joints which are connected in a way
such that an output motion is created in response to a supplied input motion [6].
Open Kinematic Chain: A series of rigid bodies (links) connected by joints where
child links are not connected to any of their ancestors [6].
Closed Kinematic Chain (Kinematic Loop): A series of rigid bodies (links)
connected by joints where a child link connects back to one of its ancestors [6].

2.1.1 Closed Kinematic Chains

This section provides a brief discussion of closed kinematic chains and motivates
the need for a procedural approach for simulating such linkages. In closed kinematic
chains (loops), the motion between the links is restricted through additional con-
straints due to the kinematic closure. They are typically designed to either generate
a desired trajectory of one link in the loop (output link) as a result of the motion of
another link (input link), or for force transmission [2]. Figure2 shows an example
of a four-bar linkage, one of the most frequently used closed loop mechanisms. As
the input link (2) rotates, the output link (4) oscillates. In the figure, the black circle
represents the range of positions of the joint connecting links (2) and (3), while the
blue curve represents the range of positions for the joint connecting links (3) and (4).

The behavior of a closed chain is determined by joint types, joint location and
link ratios. The natural choice for designing closed chain mechanisms is CAD pro-
grams. In addition to their usual capability of creating the geometries of the links
and calculating their physical properties, CAD packages such as SolidWorks also
allow the designer to design and test the input/output relation of the mechanism.

Simulation of Closed Kinematic Chains in Realistic … 571

Fig. 2 A crank rocker four bar linkage mechanism evaluated at 30◦ intervals

Unfortunately, CADmodels can not be used directly in Gazebo so a procedure needs
to be established for converting a CADmodel to an appropriate simulation model. In
particular, the CAD model needs to provide the necessary link and joint parameters
for simulation.

There are several prominent examples of closed kinematic chainmechanismswith
applications in robotics. Robot grippers often use kinematic loops in their designs.
A human knee is a complex joint which is often modeled as a four-bar mechanism
to achieve an analogous output motion [7]. Closed chains are also used in wheeled
mobile robots to create passive suspension systems and increase climbing capacity
[8, 9]. A four-bar linkage is an integral part of Ackerman steering. Tracks and roller
chains are examples of closed kinematic chains used for power transmission. All
these examples are challenging to simulate.

2.1.2 Virtual Links

In order to represent complex rigid links that are composed of several parts it is useful
to create virtual links and connect them through fixed joints. With a fixed joint, all
the degrees of freedom are restrained so the two bodies effectively behave as one
link. Such assemblies do not change the kinematics of the robot, but they can be used
for texturing or to create a reference for various plugins.

2.2 Description Formats

There are two primary description formats used with Gazebo and ROS, URDF and
SDF. Both file formats can describe the kinematics and dynamics of a robot and

572 M. Bailey et al.

additional plugins are added to this structure as sources of feedback or to utility
to the robot [10, 11]. In this way these two formats fill similar roles. However, the
nuances of these two formats have distinct differences that the creator of a simulation
must consider.

URDF file type is older and has been historically used in ROS. One notable
advantage of this description format is that there has more development that utilizes
URDF. For example, it is possible to export SimMechanics models (a popular 3d
simulation environment which is part of Matlab), and to export SolidWorks CAD
models to URDF [12, 13] . One potential disadvantage is that URDF has a tree
structure where elements branch outwards from a base. This has a few implications;
one of the more notable ones is robots created in URDF can only use open kinematic
chains (see Fig. 1). However, this tree structure combined with URDFs historical
use can be advantageous as well. The popular package robot_state_publisher uses
the URDF tree structure to compute the position of orientation of links offering an
efficient method of computing transforms for feedback units back to an reference
frame [14], which cannot be used by SDF as it has a “graph structure”.

SDF was developed to fix some of the shortcomings of URDF, such as URDF’s
improper use of XML syntax [11]. SDF improves upon URDF by offering more
features such as additional joint descriptions, offering better control of the physical
descriptions and features of a robot and environment items [10, 11]. Importantly,
with its graph structure is capable of describing closed kinematic chain structures
(Fig. 1). However, because it is newer and features a different structure there is less
SDF specific development.

It is fairly direct to convert from URDF and SDF as part of the libsdformat
library. However, converting SDF back to URDF is less developed [15]. This is
useful because it allows for some of the tools, such as exporting to URDF, to be
used indirectly to create an SDF. Before deciding on a description format one should
look at the specifics of the robot and perform a trade off analysis to determine which
format would be optimal for the application. Understanding how the restrictions and
benefits provided by these two different formats affect the simulation is important.
Simulations are by their nature simplifications of a real world scenario. By using SDF
the robot’s physical response can be simulated more holistically in parallel with the
software architecture. For certain applications this can be necessary or advantageous.
However, if it is possible to create an acceptable simplification of the system that
works within the restrictions of URDF, one might facilitate more rapid development
by allowing for a wider use of ROS packages. In these two formats current climate it
is advantageous to utilize URDF if the simulated robot does not require the additional
descriptions offered by SDF. Early examples in this chapter are examples where the
additional features of SDF are not necessary and a URDF can be used. The final
example discussed features a closed kinematic chain which cannot be simplified
requiring the use of SDF.

Simulation of Closed Kinematic Chains in Realistic … 573

3 Creating a Basic Robot Model with Gazebo

To begin the discussion on simulation, it will be useful to describe the process of
creating a basic robot and environment within Gazebo. In this example, we will
create a simple skid steer robot. We will then create a sample environment using the
Gazebo’s library of objects. Before beginning creation of a simulation model, one
must know the parameters of the model’s individual components. For this example,
the parameters that must be known are the location and geometry of the robot’s
individual links, joints, joint types, and how the robot moves.

3.1 Basic Skid Steer Robot

The model belowwill be used to explain how the various aspects of creating a simple
simulation model. A basic four wheeled model can be described with five different
parts in a tree-like structure. Figure3 shows a block diagram of the robot’s links.

The central chassis of the robot will become the base frame. As shown in Fig. 4,
the yellow rectangular box will be the base link. Since we want our wheels to be
able to rotate, this requires us to create separate links for each individual wheel on
the robot; these can be described as child links.

With the geometry of links created, now the link location, joint type, and joint
axis must be defined. A link location can be classified by position and orientation,
while a joint type can be classified as a revolute, continuous, fixed, or prismatic. A
joint axis must be specified to define joint position and orientation. From Fig. 4, we
see the location of joints, and from our knowledge of the system we know that the
joints connecting the wheel to the chassis are revolute (continuous in URDF) joints.

Fig. 3 Basic skid steer robot link block diagram

574 M. Bailey et al.

Fig. 4 Basic skid steer robot

3.1.1 Synthesizing Model with ROS

With the kinematics and physical parameters of the robot defined and created theROS
plugins can be added to the model [16]. For this basic example only the skid steer
plugin will be used. This will allow for the robot to be driven as a skid steer system.
Skid steering is one of the more simple methods of maneuvering, where the robot
turns by rotating the wheels on either side of the robot at varying speeds, dragging
(skidding) the wheels to turn. To drive this model, add the skid steer plugin at the end
of the SDF or URDF file. For this plugin to work, the robot must have four wheel
joints to define as wheel locations. Additionally, the wheel base and wheel diameter
must be defined [16]. The final SDF or URDF file should now include descriptions of
link geometries, physical properties, joint locations, joint descriptions, and the skid
steer plugin.

4 Creating a Simulation of a Robot in a Complex Test
Environment

In this section, we will simulate a robot, Scipio, created by Chicago Engineering
Design Team at the University of Illinois at Chicago in its intended environment:
the course for the Intelligent Ground Vehicle Competition. In this fashion, we will
demonstrate how a robot’s ability to achieve tasks in a complex environment can
be tested. This robot is designed for autonomous navigation utilizing four wheel
skid steer for mobility. The feedback units, which inform Scipio’s path planning
algorithms are a GPS unit, inertial measurement unit, wheel encoders, a sweeping
laser range finder, and a stereo camera (Fig. 5).

Simulation of Closed Kinematic Chains in Realistic … 575

Fig. 5 Scipio autonomous skid steer robot

4.1 Creation of Scipio Model: Skid Steer Robot

The process for creating the model for this robot is fairly straightforward. Its link
formulation is similar to the Simple Skid Steer Bot introduced in Sect. 3. We want to
maintain the physical parameters of the robot so the Gazebo model will be created
directly from the CADmodel, which was used to design the robot. Before exporting,
it is useful to simplify the model; CADmodels used for the mechanical design of the
systemwill often have extraneous parts not needed for simulation model. Details like
bolts, nuts, and other internal components do not need to be included; unnecessary
components will make the simulation more computationally expensive. However,
before removing these components, it is important to calculate parameters such as
the moment of inertia and mass in order to generate an accurate model of the robot.
Before we start the exporting process, we first must think about the overall structure
of our robot; what parts of our robot move, what parts are grouped together, and what
are the most important aspects of the robot that need to be simulated. The revelant
files to this discussion by be found in our repository linked in Sect. 1 [4] (Fig. 6).

Now that we have established the grounds on which we want to export the robot,
we can begin exporting the model to URDF. When you open the CAD model in
SolidWorks, start the sw_urdf_exporter by going to File > Export URDF. Then,
the URDF Exporter window will appear. The export process begins by defining an
initial link called base_link; this link will signify the highest parent link. We will
want anything relating to the base chassis of our robot to be a part of the base_link.
To tell the exporter which components to included in the base_link, first expand the
entire assembly by clicking on the plus sign to the right of the question mark in the

576 M. Bailey et al.

Fig. 6 Export procedure: base link

Fig. 7 Export procedure: wheel link

top panel of the exporter. This way all subassemblies and parts of the CAD model
can be selected. Then choose which sub assemblies to include in the link; in our case,
Scipio has two main chassis sub-assemblies, as well as the laser scanner and GPS
sub-assemblies.

Next, we will want to add the wheels to our export tree. This can be done in two
ways; either increase the number of childs links in the respective textbox, or right
click on a link (base_link) in the exporter tree and choose add child. Create a separate
child for each individual wheel: front_left_wheel (Fig. 7).

For each of these child links created, specify a similar corresponding joint
name. For example, for the front_left_wheel_link, name the joint similarly to say
front_left_wheel_joint. This will be the name of the joint that joins the base_link, and
the front_ left_wheel_link. Once the joint name and joined links have been specified,
it is good practice to define the type of joint connecting the two links this will deter-
mine the type interaction between the base_link and front_left_wheel_link. Special
consideration should be made as to how the assembly was built. Going back to Fig. 6,

Simulation of Closed Kinematic Chains in Realistic … 577

Fig. 8 Created STL files from export

we can notice that the shafts for the wheels are included in the base_link. For the
URDF exporter to recognize a revolute pair the two links must have a concentric
relationship.

After the export is complete a folderwill be created containing the familiar launch,
meshes, robots, and textures folders, and the manifests XML file. The STLs created
by the URDF exporter, which at this moment constitute the visual and collision
mesh for the robot, will not have any texturing. Figure8 displays the robot mesh files
directly after export.

In order to create a realistic model, a visual model for the robot must be textured.
It is important to note that the position of the mesh in its local coordinate system
should be maintained when texturing models, or the new mesh will not correspond
to the intended location. In order to texture the elements of the robot, we need to
create a new visual mesh. In addition to being able to preserve physical parameters
of the robot, one of the benefits of the robot model from a CAD model is that the
textures from the CAD model can be used to create a visual mesh. A Collada file
will be used to create the final visual mesh. To reach this point, first the links of
the robot must be exported to a file type that can be opened by a 3d packages such
Autodesk 3ds Max or Blender. The most straightforward way of doing this is to
import the created STLs from the export process. Another option is to export the
grouping of assemblies and parts which constitute a defined link as IGES. Now the
mesh can either be textured manually, or if exported in IGES format, the textures
should be fairly well-maintained and no additional texturing should be needed. With
the models imported into a 3d package and the level of desired detail satisfied these
new files can now be exported as Collada files (.DAE) (Fig. 9).

Often adding visuals to the robot itself does not improve the performance of
the simulation. However, it could become impactful in multi-robot simulations and
creates a strong presentation tool and increases the aesthetic value of the simulation.

578 M. Bailey et al.

Fig. 9 Created collada files
for visual mesh

Fig. 10 Created scipio
model in Gazebo

In a qualitative way this provides an improved experience by visual feedback for
users of a simulation (Fig. 10).

4.1.1 Synthesizing Model with ROS

In order to simulate the robot with of Gazebo, we will need to add various Gazebo
plugins which will allow us to control the robot using ROS topics. When you install
the full ROS desktop package, Gazebo will be installed as well as a few of the ROS-
Gazebo plugins to allow for interfacing. Although most of the plugins we will be
using already come with the full ROS desktop download, we have decided to use
some of the Gazebo-ROS plugins from the hector_gazebo_plugins ROS package
[17]. Here is a list of the plugins we will be including in the model of Scipio:

Simulation of Closed Kinematic Chains in Realistic … 579

• Skid Steer Motor Driver Plugin (libgazebo_ros_skid_steer_drive.so)
• Inertial Measurement Unit (IMU) Plugin (libhector_gazebo_ros_imu.so)
• GPS Plugin (libhector_gazebo_ros_gps.so)
• 2D Laser Scanner Plugin (libgazebo_ros_laser.so)
• Bumblebee (libgazebo_ros_multicamera.so)

The bumblebee camera plugin is also a package that does not comewith the native
ROS desktop install; this package is known as lcsr_camera_models [18]. Although
this package will be included in our Github repository for this book chapter, you
can find the standalone package by using this link: https://github.com/jhu-lcsr/lcsr_
camera_models .

The hector_gazebo_plugins package can easily be installed by entering the fol-
lowing command into your terminal:

sudo apt-get install ros-indigo-hector-gazebo-plugins

Now that we have the plugin packages, we add them into the robot. We can now start
to fill in the parameters of each individual plugin. We will look into the skid steer and
2D Laser Scanner Plugin as examples. All these plugins can be found in our robot
description by visiting our repository under Scipio simulation [4].

Plugins have parameters that the user must define. For example, the skid steer
plugin (Fig. 11) references the wheel joints created in the export to inform system
behavior (red); this is an example of how the skeleton informs the muscles. Another
parameterwewill need to input iswheel separation andwheel diameter (orange). This
is another advantage to utilizing a CAD package as a tool for creating the simulation
because these values can be measured directly from this model than inputted. The
torque parameter (yellow) is going to be taken from the specifications of the drive
motor used in the system. Again, the final lines (blue) describe ROS topic names that
the skid steer plugin (as a ROS node) publishes or subscribes to.

The laser range finder plugin (Fig. 12) is an example of a plugin that represents a
feedback unit, or the eyes of the systemwith our analogy. In this plugin, the user must

Fig. 11 Skid steer motor driver plugin

https://github.com/jhu-lcsr/lcsr_camera_models
https://github.com/jhu-lcsr/lcsr_camera_models

580 M. Bailey et al.

Fig. 12 2D laser scanner plugin

specify the pose, position, and orientation (red). The update rate (orange) determines
the maximum number of times per second the model will attempt to record new
data. Parameters that are associated with the laser’s field of operation are denoted
yellow. Min and max angle describe the angular scan range. The min and max range
describes the minimum and maximum distance to which the laser operates. This
information is dependent on the type of laser used and can be taken from a specific
laser’s data sheet. Users may add noise (green) to the feedback unit to increase the
realism in their simulation. This information may be provided by the manufacturer;
other times, one must calibrate the laser through testing.

4.2 Creation of Environment

The test environment for this robot will be a simulated course of the Intelligent
Ground Vehicle Competition [19]. Within this environment, Scipio can test its abil-
ity to navigate a course autonomously and simulate the competition as closely as
possible. All simulations must be simplifications of real systems. In order to create
an effective simulation environment, denote the important features that the simulation
environment should encapsulate.

In this simulation, the course size must be to scale, lines must indicate the bound-
aries, and the surface texture must provide an uneven surface and be visually similar
to grass. Course objects such as construction barrels and different types of fencing
will be present. Gazebo provides a library of objects that can be added into an envi-

Simulation of Closed Kinematic Chains in Realistic … 581

Fig. 13 Ground plane mesh pre-texture and textured Collada file

ronment. If the library is not sufficient, new objects can be created by creating a
URDF model for that object. In this scenario the two primary parameters which can
describemost of these features are object color and geometry. First, we need to create
a ground plane. An object mesh is required in order to create a ground plane for a
robot to drive upon. In this example, this was achieved first by creating a plane in
Autodesk 3ds Max; however, this plane could be created in any general 3d package.
We then dimensioned the plane to appropriately fit the elements of the course. From
this point a grass visual texture can be done by applying a bitmap texture to this
object. It is a good practice to select an isotropic (identical in all directions) image
so that the tiling of the image does not appear unnatural (Fig. 13).

With the ground plane appropriately sized and with a visual texture, terrain ele-
vations can be added to add realism to the simulation. In this scenario the robot is
intended to operate on grass, the unstructured terrain elevations created by an uneven
surface impacts sensor measurements and the robots performance. Therefore the cre-
ated environment should reflect the waviness and roughness present in this terrain.
To achieve this the mesh which describes the grass ground plane should reflect these
parameters in its geometry. There are several ways to achieve this depending on
which tool is being used to create this object. However, the height deviations should
correspond to something logical, such as a a road roughness index, in this example.
In this scenario, we used the displacement modifier to create height variations based
on the grass bitmap. Export the file as a collada file (.DAE). This DAE file will
represent the collision and visual mesh of the ground plane.

To create the lines for the environment, create an appropriately scaled bitmap
image to texture another object, which will represent the lines in the simulation
(Fig. 14). This image file can be created in an image editing software, such as
Photoshop. In this example a sample course image was used to generate the bitmap
image which maps the visual texture of the lines_link. In a similar fashion to before
map this image to a plane and create a Collada file of this mesh.

582 M. Bailey et al.

Ground Plane and Lines Model

The SDF file contains both the grass link (green) and the lines (blue) in shown in
the code segment above. This model represents the ground and the line markers. It is
denoted static so that it cannotmove (orange). Visualmeshes are outlined in redwhile
collision meshes are outlined in gray. The collision model for the grass is present but
the collisionmodel lines was removed so that the contour of the ground is determined
purely by the created grass.DAE mesh. The lines visuals are simply maped onto a
standard SDF geometry and the texture is defined in the materials section (outlined
in red). This model is a component of the complete test environment, the final world
contains this created grass .SDF as well as representations of barrels, fencing and

Simulation of Closed Kinematic Chains in Realistic … 583

Fig. 14 Course layout

Fig. 15 Robot in simulatation environment

other object, which were added using objects from the Gazebo library, as shown in
Fig. 15.

4.2.1 Example Use of Simulation

To use examples of Scipio, clone the Github repository into your catkin workspace
(inside of the catkin_ws/src folder) [4]. Compile yourworkspace, so that all the neces-
sary components get installed into the proper directories, and alsomake sure you have
sourced your workspace (source < path_to_your_workspace > /devel/setup.bash).
Once you have compiled and sourced your workspace, you can simply run the fol-
lowing command to bring up the entire Scipio simulation setup.

roslaunch scipio_simulation gazebo.launch

This should bring up two windows; the Gazebo and RViz GUI’s (Fig. 16).

584 M. Bailey et al.

Fig. 16 Simulation GUI upon launch

Fig. 17 ROS node structure for Scipio

If you would like to use the RViz display configuration provided in the github
repo, in RViz just click File > Open Config, and navigate to where you clone your
repo and select the scipio_nav.rviz file. You can now begin to implement your various
algorithms, and switch your work in between your real life robot, and your Gazebo
simulation.

Simulation of Closed Kinematic Chains in Realistic … 585

Figure17 shows the primary interest topics that would be published out from the
Gazebo node. Do not get confused by this arrangement, however, as many people
may wonder where the nodes for IMU, GPS, laser, and bumblebee are on the ROS
node graph. The actual node is theGazeboROS api plugin, which allows for commu-
nication between ROS and Gazebo. The Gazebo node then loads up various plugins,
which do tasks that normal ROS nodes would do; publish data and subscribe to data.
In the node graph, a instance of navsat_transform_node and ekf_localization is also
being executed; these are nodes that are part of the Extended Kalman Filter package
called robot_localization. A launch file for Scipio’s configuration is provided on the
Github Repo.

5 Simulating a Robot Featuring Kinematic Loops
in a Complex Test Environment

Asmentioned previously a passive suspension system for mobile robot configuration
is one application of kinematic loops. In this sectionwewill create a simulationmodel
and environment for a robot Surus created by Chicago Engineering Design Team at
the University of Illinois at Chicago. This robot was designed as a robotic excavator
to compete in the NASA Robotic Mining Competition. This robot features a passive
suspension system which is a derivative of the system presented in RCL-E exomars
breadboard chassis [8, 20, 21]. It features two parallel longitudinal bogies, each
of which feature a five bar closed kinematic chain and one rear transverse bogie.
This example will act as a tutorial exposition for creating closed kinematic chains
in robotic simulations using Gazebo and simulating this type of robot in a complex
environment. The importanceof including thekinematic loop in the simulationwill be
demonstrated by presenting experimental results, where two chassis configurations
are compared: One which is articulated, featuring the kinematic loop, and one where
the wheels links are connected directly to a rigid chassis. The files used in this
discussion can be found on our repository [4] and an accompanying video discussion
by be viewed at: https://youtu.be/Vpfxjh4mPXk (Fig. 18).

5.1 Creation of Robot Model Featuring Kinematic Loops

As in previous examples certain parameters of the robot such as geometry of links,
joint locations,mass and inertial properties are defined through theSolidWorksmodel.
From here again using the plugin sw_urdf_exporter [13], the CAD design of the
robot made in SolidWorks can be exported into Universal Robot Description Format
(URDF) [22]. URDF defines joints and links along with their respective collision and
geometric models. The technical challenge arises because URDF is only capable of

https://youtu.be/Vpfxjh4mPXk

586 M. Bailey et al.

Fig. 18 Simulation environment for robot featuring articulated suspension system

Fig. 19 Longitudinal bogie a closed kinematic chain

handing “tree-like” kinematic structures so it can not be used if the robot includes
closed kinematic chains (Fig. 19).

In order to close the chain, first the model must be exported into URDF as a
series of open chains. The series is then converted to SDF (Simulation Description
Format) [10], where the additional joints will be added in order to close the chain.
The locations of these joints can either be deduced from the location of the other
joints, or by examining the original assembly file. Again, the first chosen link will be
the base link for the entire export. This means that any link created after the first one
will have to be a child to that parent link or a child of an existing child of the parent
link, resulting in a tree-like structure. It is important that a reference configuration
for the assembly is chosen so that joint locations can be obtained easily, as these
distances will be needed later (Fig. 20).

At this point the top link of the mechanism does not have any children; they
will have to be added manually as additional joints to links (4) and (5) to create a
closed kinematic chain and obtain a “graph-like” structure. Note that since the system
consists of two parallel front longitudinal bogies, this procedure can be repeated for
the other side of the robot. The last chain which makes up the rover is the rear

Simulation of Closed Kinematic Chains in Realistic … 587

Fig. 20 Transverse bogie an open kinematic chain

Fig. 21 Base link and the longitudinal bogie assembly

transverse bogie. This chain is open so it can be exported directly. Each longitudinal
bogie consists of five links, excluding the wheels, as shown in Fig. 21. The base link
will have five direct children links in total, four from the front bogies and one from
the rear transverse bogie. Figure22 shows the complete tree structure with all the
links, including the wheels, named (the numbers refer to Fig. 21 and have been added
for clarity, they are not part of the description).

Once all of the links and the joints have been created and named, the URDFmodel
is ready for export. As the export process happens the plugin will create origins and
axis for the joints. During the export, the plugin will create several folders, among
them one called robots. Inside of the robots folder there is a URDF file that can be
converted to a SDF file.

Convert the file from URDF to SDF with the Gazebo using the gzsdf command-
line tool. For example, to convert a URDF file exported-robot.urdf to a SDF file
exported-robot.sdf under Linux, one uses the command:

gzsdf print exported-robot.urdf>exported-robot.sdf

588 M. Bailey et al.

Fig. 22 Initial exported tree structure

Fig. 23 Code fragments that define joints connecting the front and back links of the longitudinal
bogie to the top link

Once the SDF file is generated, we will have to manually connect (both left_
and right_) bot_front_link and bot_back_link back to the top link through rotational
joints to create the closed kinematic chains. In the newly created exported-robot.sdf
file, two new joints can be created using the code fragments shown in Fig. 23. For
each manually added joint, the child and the parent link needs to be specified (blue
and green), as well as joint type (orange), the position and of the joint relative to the
child, the joint limits, and the direction of the joint axis (outlined in red) [10].

Simulation of Closed Kinematic Chains in Realistic … 589

5.1.1 Synthesizing Model with ROS

Inorder to simulate the complete robot system in Gazebo, we have used the
gazebo_ros_pkgs wrapper, which allows ROS messages, services, and dynamic
reconfiguration parameters to interface with the Gazebo simulator. This allows us
to take advantage of various existing ROS plugins such as six wheel differential
drive (DiffDrive6W) and IMU (GazeboRosImu) from [17], and monocular camera
(Camera) [16]. For example, by specifying the wheel joints to the DiffDrive6W plu-
gin, we are able to send a velocity ROS message command, which can be used to
navigate the robot through the environment. All of these hardware plug-ins can be
configured to closely match the manufacturer specifications and additional realism
can be achieved by adjusting parameters like Gaussian error, motor torque, as well
as camera focal length, distortion and field of view. This allows for physical system,
control algorithms and sensors to all be simulated and tested at same time.

5.2 Creation of Environment

Environments can be designed in a similar procedure to the robots discussed in this
chapter. Designing these components is generally more straightforward depending
on the environment. This step is important because it provides the surroundings that
the robot system will interact with. The first thing to consider is what parameters are
important to the creation of the environment and what can be neglected. Remember
to be cognizant of the assumptions used to create the environment and how these
assumptions can affect the outcome of a simulation when compared to the real life
case. In this application themost important features that were included in the creation
of the environment for this example were geometry of the terrain, and a visual
feedback. In order to study the mobility of this articulated system the geometry of
the terrain is important and visual feedback is important for camera sensor data.

The simulated environment created in this environment was made to mimic the
conditions of the NASARoboticMining Competition which aims to simulate a plan-
etary excavationmission. The test arena for this competition features a chaotic terrain
environment in which the ground varies from minimum and maximum elevations
(±0.3m) [23]. Oneway tomimic these conditions is to create a description format for
an environment itemwhichwill contain the geometry that the robot will drive on. The
mesh for the rigid body can be designed using a computer automated design package,
which will define the geometry of this body. In this case we created the environment
using SolidWorks using the freeform tool to vary the elevations to the aforementioned
predefined elevations and exported it using the sw_urdf_exporter plugin. However,
because the terrain was modeled as a single body there is not a major disadvantage to
creating the mesh in any general CAD or 3d package. Because environment objects
are generally simple URDF format is sufficient. The URDF file could be converted
to SDF format for consistency, but that is not necessary.

Similar to the discussion presented in Sect. 4.2, the terrain can be textured, by
taking the STL mesh, adjusting it in a 3d package, such as Autodesk 3ds Max or

590 M. Bailey et al.

Fig. 24 LunArena environment before and after texturing

Blender, and exporting this augmentedmesh as a collada format.With this the camera
can have feedback. In this way the ground can have a texture and objects, such as
ArUrco markers, can be colored, so that the robot can “see” these items similar to
how it would in real life. The collada file type allows for textures created by images
to be applied to the model. When exporting a file in collada (.DAE) format, be sure
to check that the images used for texturing are included.

As mentioned earlier, it is important to take note of assumptions made in creation
of the environment. In this case the ground was modeled as a singular rigid body.
However, in reality the robot would be driving on soil. Both URDF and SDF for-
mats allow for the physical parameters of the environment to be defined and tuned
to varying degrees. For example using SDF format world physics parameters as
static friction, dynamic friction, and surface contact layer to add additional realism
(Fig. 24).

5.2.1 Example Use of Simulation

With the previous steps completed, the robot model and environment can be used
for various robot simulations. By including the kinematic loops in the simulation the
robot’s the simulated suspension mechanism’s response is integrated with the robot’s
hardware and software architecture. This allows for the algorithms used to govern
the robot to be tested in parallel with the robot’s response to the simulated chaotic
terrain, yielding a more holistic simulation where the robot’s ability to perform tasks
can be evaluated.

By simulating a robot in this manner, the simulated results can give engineers
insights into how a system operates. One useful application of this type of simulation
is observing how different robot systems respond to an environment. In this example
two chassis are compared one which features the closed chain system documented
above and one where the articulated system is not included.

Simulation of Closed Kinematic Chains in Realistic … 591

Y Position (m)

0 1 2 3 4 5

O
rie

nt
at

io
n

(r
ad

)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Yaw
Pitch
Roll

Y Position (m)

0 1 2 3 4 5

O
rie

nt
at

io
n

(r
ad

)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Yaw
Pitch
Roll

Fig. 25 Simulation of the non-articulated (left) and articulated (right) rover driving forward

During simulation, the complete state of the robot (Gazebo_model_state) was
recorded so that position and orientations of the two rovers could be compared. In
addition, data was collected from a simulated inertia measurement unit (IMU) as
well as from the simulated camera.

Bycollecting this data, for example,we can investigate to howeach configuration’s
response to the terrain would affect a robot’s trajectory and the sensor measurements
that are used for higher-level algorithms. These measurements can be recorded and
saved as a delimited .txt file. This data can be then imported to software used for
analysis such as Excel or Matlab. In Fig. 25 the Gazebo_model_state was imported
and graphed in Matlab to make comparisons. The same procedure was repeated for
driving in reverse.

In the simulations, the Y axis of the robot points forward while Z points up. From
the data collected from the simulation we can see that the rigid (non-articulated)
chassis (left panel of Figs. 25 and 26) shows oscillations that are not present in the
trajectories of the articulated chassis (right panel of Figs. 25 and 26). This shows how
ROS and Gazebo offer a convenient and powerful platform for robotic simulations.
Mechanisms developed in CAD package such as SolidWorks, can be integrated into
robotic simulations, where the system can be simulated as a whole in various envi-
ronments. Not only can algorithms and the ROS architecture be tested using this type
of simulation, but engineers and roboticists can also use this formulation to collect
simulated data to make quantitative assessments of how a system behaves.

6 Lessons Learned

Closed kinematic chains are the basis for many mechanisms; mechanisms provide
a robot with the ability to perform tasks so including these kinematic structures
in simulation is important. URDF is a common historical description format with
considerable technology development; however, it has a tree structure making it

592 M. Bailey et al.

Y Position (m)

0 1 2 3 4 5

O
rie

nt
at

io
n

(r
ad

)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Yaw
Pitch
Roll

Y Position (m)

0 1 2 3 4 5

O
rie

nt
at

io
n

(r
ad

)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Yaw
Pitch
Roll

Fig. 26 Simulation of the non-articulated (left)) and articulated (left) rover driving in reverse

unable to simulated closed chains. SDF is a newer more complete format which
utilizes a graph structure allowing it to encompass these closed chains. Creating
a description format for a robot can become arduous. By utilizing tools such as
sw_urdf_exporter plugin an accurate simulation model for a robot can be created
easily. However, it must be exported as an open chain. To close the chain this model
must be then converted to SDF.

When simulating a robot perform a trade-off analysis based on the advantages
and disadvantages of each of these formats to determine which description format
should be used. Environment objects can be created in a similar fashion to a robot
utilizing a description format. Simulations can be used to test the ROS architecture
of a system as well as an evaluation tool for how a mechanical element synthesizes
with the system. One should be conscious of how simplifications in a simulation
may impact results. This work aims to formalize a procedure for creating closed
chains in Gazebo simulations, providing two benefits. First, a greater range of robot
configurations can be simulated in Gazebo. Second, it allows for a robot and its ROS
architecture to be simulated in parallel with its physical or kinematic response more
holistically in Gazebo.

References

1. N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot
simulator, in 2004 IEEE/RSJ International Conference on Proceedings Intelligent Robots and
Systems (IROS 2004), vol. 3 (IEEE, 2004), pp. 2149–2154. http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=1389727

2. A. Erdman, G. Sandor, S. Kota, Mechanism Design: Analysis and Synthesis, vol. 1 (Prentice
Hall, Upper Saddle River, 2001)

3. F. Freudenstein,Design of four-linkmechanisms, Ph.D. thesis, ColumbiaUniversity,NewYork,
United States, 1954. http://search.proquest.com/dissertations/docview/301956609/citation?
accountid=14552

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1389727
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1389727
http://search.proquest.com/dissertations/docview/301956609/citation?accountid=14552
http://search.proquest.com/dissertations/docview/301956609/citation?accountid=14552

Simulation of Closed Kinematic Chains in Realistic … 593

4. l0g1x/SpringerROS_gazebo2015 GitHub, https://github.com/l0g1x/SpringerROS_
Gazebo2015

5. S. Cetinkunt, Mechatronics with Experiments (Wiley, New York, 2015)
6. R. Norton, Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms

and Machines, McGraw-Hill series in Mechanical Engineering (McGraw-Hill, New York,
2012)

7. C. Radcliffe, Four-bar linkage prosthetic knee mechanisms: kinematics, alignment and pre-
scription criteria. Prosthet. Orthot. Int. 18(3), 159–173 (1994)

8. A. Seeni, B. Schafer, B. Rebele, N. Tolyarenko, Robot mobility concepts for extraterrestrial
surface exploration, in Aerospace Conference (IEEE, 2008), pp. 1–14. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=4526237

9. T. Thueer, P. Lamon,A.Krebs, R.Y. Siegwart, CRAB-Exploration roverwith advanced obstacle
negotiation capabilities, in 9th ESA Workshop on Advanced Space Technologies for Robot-
ics and Automation (ASTRA) (Noordwijk, Netherlands, 2006), http://robotics.estec.esa.int/
ASTRA/Astra2006/Papers/ASTRA2006-2.2.1.03.pdf

10. osrf/sdformat—Bitbucket. https://bitbucket.org/osrf/sdformat
11. Gazebo : Tutorial : URDF in Gazebo, http://gazebosim.org/tutorials/?tut=ros_urdf
12. simmechanics_to_urdf—ROS Wiki, http://wiki.ros.org/simmechanics_to_urdf
13. Modeling for Gazebo A Design Guide for Proper Exporting from Solidworks for Gazebo

Simulation, http://blogs.solidworks.com/teacher/wp-content/uploads/sites/3/WPI-Robotics-
SolidWorks-to-Gazebo.pdf

14. robot_state_publisher—ROS Wiki, http://wiki.ros.org/robot_state_publisher
15. osrf / sdformat / Pull request #165: urdf format support in sdf âĂŤ Bitbucket, https://bitbucket.

org/osrf/sdformat/pull-request/165/urdf-format-support-in-sdf/diff
16. Gazebo : Tutorial : Gazebo plugins in ROS, http://gazebosim.org/tutorials?tut=ros_gzplugins
17. hector_gazebo_plugins—ROS Wiki, http://wiki.ros.org/hector_gazebo_plugins?distro=

indigo
18. jhu-lcsr/rtt_gazebo Âů GitHub, https://github.com/jhu-lcsr/rtt_gazebo
19. IGVC—Intelligent Ground Vehicle Competition, http://www.igvc.org/
20. V. Kucherenko, A. Bogatchev, M. Van Winnendael, Chassis concepts for the ExoMars

rover, in 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation
(ASTRA) (Noordwijk, Netherlands, 2004), http://robotics.estec.esa.int/ASTRA/Astra2004/
Papers/astra2004_D-05.pdf

21. C.G.Y.Lee, J.Dalcolmo, S.Klinkner, L.Richter,G. Terrien,A.Krebs,R.Y. Siegwart, L.Waugh,
C. Draper, Design and manufacture of a full size breadboard exomars rover chassis, in 6th ESA
Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA) (Noordwijk,
Netherlands, 2006), http://robotics.estec.esa.int/ASTRA/Astra2006/Papers/ASTRA2006-2.1.
1.03.pdf

22. urdf—ROS Wiki, http://wiki.ros.org/urdf
23. RoboticMiningCompetition|NASA, http://www.nasa.gov/offices/education/centers/kennedy/

technology/nasarmc.html#.VPd-3S5RJQn

https://github.com/l0g1x/SpringerROS_Gazebo2015
https://github.com/l0g1x/SpringerROS_Gazebo2015
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4526237
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4526237
http://robotics.estec.esa.int/ASTRA/Astra2006/Papers/ASTRA2006-2.2.1.03.pdf
http://robotics.estec.esa.int/ASTRA/Astra2006/Papers/ASTRA2006-2.2.1.03.pdf
https://bitbucket.org/osrf/sdformat
http://gazebosim.org/tutorials/?tut=ros_urdf
http://wiki.ros.org/simmechanics_to_urdf
http://blogs.solidworks.com/teacher/wp-content/uploads/sites/3/WPI-Robotics-SolidWorks-to-Gazebo.pdf
http://blogs.solidworks.com/teacher/wp-content/uploads/sites/3/WPI-Robotics-SolidWorks-to-Gazebo.pdf
http://wiki.ros.org/robot_state_publisher
https://bitbucket.org/osrf/sdformat/pull-request/165/urdf-format-support-in-sdf/diff
https://bitbucket.org/osrf/sdformat/pull-request/165/urdf-format-support-in-sdf/diff
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://wiki.ros.org/hector_gazebo_plugins?distro=indigo
http://wiki.ros.org/hector_gazebo_plugins?distro=indigo
https://github.com/jhu-lcsr/rtt_gazebo
http://www.igvc.org/
http://robotics.estec.esa.int/ASTRA/Astra2004/Papers/astra2004_D-05.pdf
http://robotics.estec.esa.int/ASTRA/Astra2004/Papers/astra2004_D-05.pdf
http://robotics.estec.esa.int/ASTRA/Astra2006/Papers/ASTRA2006-2.1.1.03.pdf
http://robotics.estec.esa.int/ASTRA/Astra2006/Papers/ASTRA2006-2.1.1.03.pdf
http://wiki.ros.org/urdf
http://www.nasa.gov/offices/education/centers/kennedy/technology/nasarmc.html#.VPd-3S5RJQn
http://www.nasa.gov/offices/education/centers/kennedy/technology/nasarmc.html#.VPd-3S5RJQn

RotorS—A Modular Gazebo MAV
Simulator Framework

Fadri Furrer, Michael Burri, Markus Achtelik and Roland Siegwart

Abstract In this chapter we present a modular Micro Aerial Vehicle (MAV)
simulation framework, which enables a quick start to perform research on MAVs.
After reading this chapter, the reader will have a ready to useMAV simulator, includ-
ing control and state estimation. The simulator was designed in a modular way, such
that different controllers and state estimators can be used interchangeably, while
incorporating new MAVs is reduced to a few steps. The provided controllers can be
adapted to a custom vehicle by only changing a parameter file. Different controllers
and state estimators can be compared with the provided evaluation framework. The
simulation framework is a good starting point to tackle higher level tasks, such as
collision avoidance, path planning, and vision based problems, like Simultaneous
Localization and Mapping (SLAM), on MAVs. All components were designed to
be analogous to its real world counterparts. This allows the usage of the same con-
trollers and state estimators, including their parameters, in the simulation as on the
real MAV.

Keywords ROS · Gazebo · Micro Aerial Vehicles · Benchmarking

F. Furrer (B) · M. Burri · M. Achtelik · R. Siegwart
ETH Zurich, Autonomous Systems Lab, Leonhardstrasse 21,
8092 Zurich, Switzerland
e-mail: fadri.furrer@mavt.ethz.ch
URL:http://www.asl.ethz.ch

M. Burri
e-mail: michael.burri@mavt.ethz.ch

M. Achtelik
e-mail: markus.achtelik@mavt.ethz.ch

R. Siegwart
e-mail: rsiegwart@mavt.ethz.ch

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_23

595

596 F. Furrer et al.

1 Introduction

To test algorithms on MAVs, one needs access to expensive hardware and field tests
usually consume a considerable amount of time and require a trained safety-pilot.
Most of the errors, occurring on real platforms, are hard to reproduce, and often result
in damaging the MAV. The RotorS simulation framework was developed to reduce
field testing times and to separate problems for testing, making debugging easier, and
finally reducing crashes of real MAVs. This is also convenient for student projects,
where access to an expensive and complex real platform cannot always be granted.
To solve higher-level tasks such as path-planning, the provided simulated MAVs can
be used without any additional modification to the models. Besides a simulation of
MAVs, the framework also includes a position controller and a state estimator, that
work with the provided models.

The focus of this chapter will be to describe in detail the steps required to set
up the RotorS simulator, depicted in Fig. 1, including the Robot Operating System
(ROS) and Gazebo, and to present an evaluation framework. Once this chapter has
been read, the reader will be able to set up the simulator, attach basic sensors to a
MAV, and get it to fly autonomously in the simulation. The reader will also be able to
compare different (custom) algorithms using the evaluation scripts. All the aspects
learned and methods developed in this chapter can then be applied to a real MAV.

An overview of the main components of the RotorS simulator are shown in Fig. 2.
In this chapter, the focus is put on the simulation part, shown on the left side in Fig. 2,
but a lot of effort was put into keeping the structure of the simulator analogous to

Fig. 1 A screenshot of the RotorS simulator. The scene is built up from Gazebo default models
and a Firefly hex-rotor helicopter

RotorS—A Modular Gazebo MAV Simulator Framework 597

Fig. 2 Necessary building blocks to get an MAV airborne. This book chapter has a focus on the
simulation part on the left side. All parts in black are covered in this book chapter and are available
open source. The structure of the simulator is designed to match the real MAVs as close as possible
and can be seen by comparing to the right

the real system. Ideally, all components used in the simulated environment can be
run on the real platform without any changes.

All components, found on real MAVs, are simulated by Gazebo plugins and by
the Gazebo physics engine. In the simulator we created a modular way of assembling
MAVs. A MAV consists of a body, a fixed number of rotors, which can be placed
at user specified locations, and some sensors attached to the body. Each rotor has
motor dynamics, and accounts for the most dominant aerodynamic effects according
to [7]. The parameters were identified on a real MAV, a “Firefly” from Ascending
Technology1 using recorded flight data. Several sensors, such as an Inertial Measure-
ment Unit (IMU), a generic odometry sensor and a visual inertial sensor, consisting
of a stereo camera and an IMU, and sensors developed by the user can be attached
to the body. To simulate realistic conditions, we implemented noise models for the
applied sensors. All the simulation data can be logged using rosbags [2], by having
direct access to simulation data. Hence, ground truth data is available for each sensor,
which eases debugging and evaluation of new algorithms.

1Ascending Technologies http://www.asctec.de/.

http://www.asctec.de/

598 F. Furrer et al.

To facilitate the development of different control strategies, a simple interface is
provided. We present an implementation of a geometric controller [5], which gives
access on various levels of commands, such as angular rates, attitude, or position
control. Additionally, this acts as an ideal starting point to implement more advanced
control strategies.

The last building block is the state estimation, used to obtain information about
the state of the MAV at a high rate. While state estimation is crucial on real MAVs,
in the simulation this part can be replaced by a generic (ideal) odometry sensor.
This means position, orientation, linear and angular velocity of the MAV are directly
provided by a Gazebo plugin. In the first tutorial section, Sect. 3.3, we are showing
how to get the MAV airborne, using this ideal sensor. In the following section, we
show how the Multi Sensor Fusion (MSF) framework, an open source framework
based on an Extended Kalman Filter (EKF) for 6 Degrees of Freedom (DoF) pose
estimation [6], can be used to handle noisy, low-rate, and high-latency sensor data.

Once the MAV is flying, higher level tasks can be tackled and tested in the sim-
ulation environment, such as obstacle avoidance and path planning. The reader will
be provided with representative simulation environments including the widely used
octomap representation of the 3D occupancy grid [4].

This book chapter starts with a short summary of the underlying theory and ref-
erences for further reading in Sect. 2. In particular it covers modeling, control and
state estimation of an MAV. In the following section, Sect. 3, the basics of the simu-
lator are explained, which are needed to get the MAV hovering. Also, the available
sensors are explained in detail and how to add them to the Gazebo simulator. In
Sect. 4 advanced topics are covered. This includes a deeper insight in the XML
Macros (Xacro) scripting language, with an example of developing a custom asym-
metric quad-rotor helicopter and a controller to enable hovering. Additionally, we
show examples for solving higher level tasks using the simulator, such as collision
avoidance or path planning. Finally, thoughts into the transition to real MAVs are
given.

2 Background

In this section, we are presenting the theoretical background, needed to understand
the following tutorials and how the simulator works. Throughout this chapter we
refer to MAVs as multi-rotor helicopters, while many of the concepts are not limited
to multi-rotor helicopters only.

The most important part is how to model the dynamics of an MAV. This allows to
develop control strategies on different command levels such as attitude or position,
which is explained in the second part of this section. Furthermore, we give a short
introduction to state estimation, which is used to provide state information to the
controller. For higher level tasks, such as path planning or local collision avoidance,
we give an overview of the octree representation of a 3D occupancy grid.

RotorS—A Modular Gazebo MAV Simulator Framework 599

Fig. 3 Forces and moments
acting on the center of a
single rotor

2.1 MAV Modeling

The forces and moments that are acting on an MAV can be split up into the forces
and moments acting on each rotor, and the gravitational force acting on the Center
of Gravity (CoG) of an MAV. All these forces combined together describe the full
dynamics of an MAV.

2.1.1 Single Rotor Forces and Moments

As depicted in Fig. 3, we will analyze the thrust force FT , the drag force FD, the
rolling moment MR, and the moment originating from the drag of a rotor blade, MD,
from [7].

FT = ω2CT · ezB (1)

FD = −ωCD · v⊥
A (2)

MR = ωCR · v⊥
A (3)

MD = −εCM · FT (4)

where ω is the positive angular velocity of the rotor blade, CT is the rotor thrust
constant, CD is the rotor drag constant, CR is the rolling moment constant, and
CM is the rotor moment constant. All of these constants are positive. ε denotes the
turning direction of the rotor, namely+1 (counter clockwise) or−1 (clockwise). ezB

is the unit vector pointing in the z-direction in the rotor’s body frame. (u⊥ denotes
the projection of a vector u onto the rotor plane as can be seen in Fig. 3. It can be
calculated as:

u⊥ = ezB × (u × ezB) = u − (u · ezB) · ezB (5)

2.1.2 MAV Dynamics

Figure4 shows a quad-rotor helicopter with numbered rotors and the forces acting
on it. Looking at the whole MAV, we can write down the equations of motion from
Newton’s law, and Euler’s equation as:

600 F. Furrer et al.

Fig. 4 Sketch of a quadrotor with the body centered body frame B and the global world frame W .
The main forces from the individual rotors Fi and gravity FG are acting on the main body

F = m · a (6)

τ = J · ω̇ + ω × J · ω (7)

withm, the mass of theMAV, a its acceleration, J its inertia matrix, andω its angular
velocities. The linear part in (6) is expressed in the world coordinate system, while
the rotational part in (7) is expressed in the rotating body frame.

For a multi-rotor helicopter with n motors, (6) and (7) can be written as:

n−1
∑

i=0

(RW B (FT,i + FD,i)
︸ ︷︷ ︸

Fi

) + FG = m · a (8)

n−1
∑

i=0

(MR,i + MD,i + Fi × ri) = J · ω̇ + ω × J · ω (9)

where RW B is the rotation matrix rotating vectors from the body frame B to the
world frame W , and ri denotes the vector from the CoG of the MAV to the center of
the i th rotor.

2.2 Control

In this section, we only cover the control of multi-rotor helicopters. Most of the cur-
rent multi-rotor helicopters have rotor configurations, where the rotor axes normals
point in the z-axis of the body frame zB , therefore we will look at these configuration
in particular.

RotorS—A Modular Gazebo MAV Simulator Framework 601

In order to control an MAV, we first need to find a mapping between the system’s
output, which is the resulting thrust T , the accumulated thrust of all rotors, and torque
τ acting on the CoG of the helicopter, and the system’s input, which are the angular
velocities of each rotor ωi . We are only considering the thrust forces of each rotor,
its resulting moments, and the drag moments for now. Hence we can formulate the
following equation:

(

T
τ

)

= A ·

⎛

⎜
⎜
⎜
⎝

ω2
0

ω2
1
...

ω2
n

⎞

⎟
⎟
⎟
⎠

(10)

We refer to thismappingmatrix A as the allocationmatrix,which is of size A ∈ R
4×n .

For a quad-rotor helicopter, as in Fig. 4, such an allocation matrix is given by:

A =

⎛

⎜
⎜
⎝

CT CT CT CT

0 lCT 0 −lCT

−lCT 0 lCT 0
−CT CM CT CM −CT CM CT CM

⎞

⎟
⎟
⎠

(11)

By looking at a multi-rotor helicopter with all rotor axes pointing in the same
direction, we can only generate a thrust T pointing in the direction of the rotor
blade’s normal vector, we assume here, that this coincides with zB . Hence, only the
thrust T , and themoments around all three body axes xB , yB , and zB can be controlled
directly. To be able to navigate in 3D space, the vehicle has to be tilted towards a
setpoint. Therefore we want to control the overall thrust of the vehicle, the direction
of zB (by controlling the roll- and pitch angle), and the yaw rate ωz . This is usually
referred to as the attitude controller. Because the dynamics of the attitude are usually
much faster than the translational dynamics, often a cascaded control approach is
chosen. The attitude control loop usually runs onboard a micro controller at high
rate, while the position loop, which calculates the desired attitude and thrust, runs at
a lower rate. This yields a control structure as depicted in Fig. 5. In this simulator,
we are using the geometric controller proposed in [5], which has the same structure,
but directly calculates the resulting thrust and moments at the same rate.

2.3 State Estimation

One of the key elements for enabling stable and robust MAV flights is accurate
knowledge of the state of the MAV. In this section, we give a brief overview of
how to fuse IMU measurements with a generic 6DoF pose measurement in order to
obtain estimates of the states that are commonly needed for a position controller for
anMAV. Such a 6DoF posemeasurement could be obtained for instance from visual-

602 F. Furrer et al.

Fig. 5 Controller sketch, with the desired position pd and the desired yaw angle ψd . Usually,
position control is split into two parts: An outer trajectory tracking controller calculates attitude and
thrust references, that are tracked by an inner attitude tracking controller

odometry or visual SLAM systems, laser rangefinder-based techniques or marker-
based localization. Another very common technique to get 6DoF posemeasurements
is to use an external tracking system, which provides highly accurate measurements
at high rate. This method however has the disadvantage of being tied to external
infrastructure. There are many other sensor types available, like pressure, optical
flow, or ultrasonic sensors, but an in-depth explanation would be beyond the scope
of this chapter. A good reference and overview of the properties of these sensors can
be found in [11].

While IMU measurements are available on all of today’s MAVs, the pose can be
acquired by different methods as outlined above. IMUmeasurements and pose mea-
surements have very complementary properties:Measurements from IMUs, typically
used onboard MAVs, are available at high rate and with low delay, but are corrupted
by noise and a time-varying bias. As a result, solely time-discrete integration (dead-
reckoning) of these sensors makes a steadily accurate estimation of the absolute pose
of the vehicle nearly impossible. In contrast, the methods for estimation of the 6DoF
pose usually exhibit no drift or only very low drift, but their measurements usually
arrive at a much lower rate, and with high delay, due to their computational com-
plexity. Combining both types of measurements yields a (almost) drift-free estimate
of the state, at high rate and with low delay. We describe the essentials of how to
do this using an EKF formulation, as shown below, and refer to [1] for a detailed
description.

2.3.1 IMU Sensor Model

A common IMU model is given by

ωm = ω + bω + nω (12)

am = a + ba + na (13)

where the measured quantities are denoted with subscript m. bω and ba are biases
on the measured angular velocities, and accelerations respectively. These biases are
modeled as randomwalk, having zero mean white Gaussian noise as time-derivative:

RotorS—A Modular Gazebo MAV Simulator Framework 603

ḃω = nbω
(14)

ḃa = nba (15)

where nbω
and nba are noise levels.

2.3.2 State Representation

Most controllers are separated into a position loop and an attitude loop. This works
well under the assumption, that the rotational dynamics are faster than the transla-
tional motion. For the outer loop, the position p and the velocity v are needed in
world coordinates. The inner attitude loop needs the orientation q̄ and the angular
velocity ω, which is provided by the IMU. Together with the bias states from the
IMU model, this leads to the following state vector:

x = [

pT vT q̄T bT
a bT

ω

]T
(16)

Thanks to the low complexity of time-discrete integration of IMUmeasurements,
IMU measurements are commonly used as input for the time-update phase (‘predic-
tion’) of the EKF. This has also the advantage of being independent from specific
vehicle dynamics and their model parameters, and furthermore avoids having the
angular rate in the state. This leads to the following dynamic model:

ṗ = v

v̇ = C · (am − ba − na) + g

˙̄q = 1

2
q̄ ⊗

[

0
ωm − bω − nω

]

ḃa = nba

ḃω = nbω

For the derivation of the time-discrete integration, the error-state dynamics, the sys-
tem propagation matrix, and the noise covariance matrix for this particular problem,
we refer to [1]. A very good tutorial on the background is given in [10].2

2.3.3 Measurement Model

The measurement equations can be separated into position pm and attitude measure-
ments q̄m , which express the measured pose of the IMU with respect to the world
frame.

2Be aware that in [10], the JPL quaternion notation is used, while [1] and many libraries, including
ROS and Eigen, use the Hamilton notation.

604 F. Furrer et al.

Fig. 6 Left Recursive subdivision of a cube into octants. Right The corresponding octree

pm = p + np (17)

q̄m = q̄ ⊗ δq̄n (18)

where δq̄n represents a small error rotation and np is zero mean, white Gaussian
noise. This simple model assumes that the origin of the pose-sensor coincides with
the IMU, which is usually not the case. Also, the frame of reference of the pose-
sensor may not align with the world frame. However, one can compensate for these
misalignments, since they are often observable, and thus do not need to be calibrated
beforehand. For the derivations and an observability analysis, we refer to [1, 11].

2.4 Octree Representation

For 3D collision avoidance and path planning, it is important to have an efficient
representation of obstacles (necessary for collision checking). In recent work, octree
representations are widely used for that purpose. An octree is a tree where every
node has exactly eight children, which makes it well suited for efficient storage in
memory. It is often used as a representation of whether a 3D space is occupied or not.
Every node represents a certain part of a 3D space, this part can get subdivided into
eight parts (of equal size), denoted as octants, of this subspace. This can recursively
be applied until a leave has the desired resolution of the represented space, see Fig. 6.
If every octant of a node has the same value, the node value can be set to this value,
and the octant nodes can be omitted in the tree.3

3Octree2 by WhiteTimberwolf, PNG version: Nü—Own work. Licensed under CC BY-
SA 3.0 via Wikimedia Commons—http://commons.wikimedia.org/wiki/File:Octree2.svg#/media/
File:Octree2.svg.

http://commons.wikimedia.org/wiki/File:Octree2.svg#/media/File:Octree2.svg
http://commons.wikimedia.org/wiki/File:Octree2.svg#/media/File:Octree2.svg

RotorS—A Modular Gazebo MAV Simulator Framework 605

3 Tutorials

This section explains how to use the RotorS simulator with its main components. It
demonstrates how to get the MAV into hovering mode, and how to attach sensors
to it. The setup of the simulator, for OS X and Ubuntu, is shown in Sect. 3.1. An
overview of the different components of the simulator is given in Sect. 3.2. Then, we
explain how to use our controllers to get the MAV into hovering mode, by assuming
that we have a sensor available, which delivers a fullOdometry message4 in Sect. 3.3.
Followed by Sect. 3.4, which covers the same scenario, but with a setup closer to real
world applications, where only a pose sensor and an IMU are available. The state
of the MAV is estimated from these measurements. We explain how sensors can
be added in Sect. 3.5, and how to use our evaluation scripts in Sect. 3.6. For more
advanced tutorials on how to build a custom model, controller, or sensor plugin, see
Sect. 4. Directions on how to solve high level tasks with the simulator are given in
Sect. 5.

3.1 Simulator Setup

Before installing theMAV simulator RotorS, the following steps are necessary: First,
installROSaccording to the officialwiki-pagehttp://wiki.ros.org/indigo/Installation.
Second, the following external packages are needed.

3.1.1 Ubuntu

Is the recommended OS to run ROS and the package manager should be used to
install the necessary dependencies.

1 $ sudo apt−get ins ta l l ros−indigo−joy ros−indigo−octomap−ros python−wstool python−
catkin−tools

Now, to install the RotorS simulator packages use the following command.

1 $ sudo apt−get ins ta l l ros−indigo−rotors−simulator

The RotorS packages can also be compiled from source, as described in Sect. 3.1.3.

3.1.2 OS X

Can run ROS native, using homebrew, and we recommend using pip to install the
necessary dependencies. Here, the RotorS simulator packages need to be installed
from source, as described in Sect. 3.1.3.

4As described on: http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html.

http://wiki.ros.org/indigo/Installation
http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html

606 F. Furrer et al.

1 $ pip ins ta l l wstool
2 $ pip ins ta l l catkin−tools

3.1.3 Installing RotorS from Source

Is independent of the operating system and can be done using wstool, assuming
the catkin workspace is located at ˜/catkin_ws/src . Make sure that wstool is
initialized before running the following commands.

1 $ cd ~/catkin_ws/ src
2 $ wstool in i t
3 $ wstool set rotors_simulator https : / / github .com/ethz−asl / rotors_simulator . git −−

git −y
4 $ wstool set mav_comm https : / / github .com/ethz−asl /mav_comm. git −−git −y
5 $ wstool update
6 $ cd ~/catkin_ws/
7 $ catkin build
8 $ source ~/catkin_ws/devel / setup .bash

If youwant use the demoswith an external state estimator, the following additional
packages are needed:

1 $ cd ~/catkin_ws/ src
2 $ wstool set ethzasl_msf https : / / github .com/ethz−asl / ethzasl_msf . git −−git −y
3 $ wstool set rotors_simulator_demos https : / / github .com/ethz−asl /

rotors_simulator_demos . git −−git −y
4 $ wstool set glog_catkin https : / / github .com/ethz−asl / glog_catkin . git −−git −y
5 $ wstool set catkin_simple https : / / github .com/ catkin / catkin_simple . git −−git −y
6 $ wstool update
7 $ cd ~/catkin_ws/
8 $ catkin build
9 $ source ~/catkin_ws/devel / setup .bash

3.2 Simulator Overview

The RotorS simulator is split up in various packages as shown in Fig. 7. The general
way to incorporate an already existing robot into the simulation is by describing
its geometry, and kinematic properties. This procedure is outlined in Sect. 4.3. As
a second part, an arbitrary number of sensors can be added, which is described in
Sect. 3.5. Once at this stage, the robot can be moved, in our case the MAV will be
put into hovering mode, as described in Sect. 3.3 without state estimation, and in
Sect. 3.4 with a state estimator. The whole procedure is sketched below:

1. Select your model

(a) Pick one of the models provided by RotorS, or
(b) Build your own model as described below in Sect. 4.3

RotorS—A Modular Gazebo MAV Simulator Framework 607

Fig. 7 Structure of the packages contained in the RotorS simulator

2. Attach sensors to the MAV

(a) Use one of the Xacro for the sensors shipped with RotorS, or
(b) Create your ownsensor (look at our plugins inrotors_gazebo_plugins

for reference5), and attach them directly, or create a Xacro, analogously to
the Xacros in component_snippets.xacro

3. Add a controller to your MAV

(a) Start one of the controllers shipped with RotorS, or
(b) Write your own controller, and launch it

4. Use a state estimator

(a) Do not run a state estimator, and use the output of the ideal odometry sensor
directly as an input to your controller, or

(b) Use MSF, see Sect. 3.4 on how to use it in the simulator, or
(c) Use your own state estimator

3.3 Hovering Example

To check if the setup isworking,wewant to start with a short example.Wewill run the
simulator with an AscTec Firefly hex-rotor helicopter, running an implementation
of a position controller by Lee et al. [5]. Here, we assume that we have a sensor

5The official Gazebo sensor tutorials can be accessed on: http://gazebosim.org/tutorials?cat=
sensors.

http://gazebosim.org/tutorials?cat=sensors
http://gazebosim.org/tutorials?cat=sensors

608 F. Furrer et al.

Fig. 8 Graph ofROSnodes and topics of theminimal hovering examplewith a Firefly. This example
consists of a node that sends the initial waypoint, a controller node and the Gazebo simulator
(including plugins)

available, which publishes odometry data that can directly be used by a controller.
To start the simulation run:

1 $ roslaunch rotors_gazebo mav_hovering_example. launch

You will see the hex-rotor helicopter taking off after 5 s, and flying to the point
p = (

0 0 1
)T
.

In Fig. 8 you can see a re-drawn output of rqt_graph. This tool gives an
overview of all ROS nodes that are running, and the topics on which the nodes
are communicating, which is very helpful for debugging.

Gazebo is only shown as one ROS node, but internally all the Gazebo plugins are
running, such as IMU and individual motors that are mounted on the frame. In this
example, a generic odometry sensor is mounted on the Firefly, which publishes the
following messages in the /firefly/odometry_sensor1 namespace:

• nav_msgs/Odometry message on the odometry topic.
• geometry_msgs/PoseStamped message on the pose topic.
• geometry_msgs/PoseWithCovarianceStamped message on the
pose_with_covariance topic.

• geometry_msgs/PointStamped message on the position topic.
• geometry_msgs/TransformStamped message on the transform topic.

The sensor was added to the Firefly model in the firefly_generic_
odometry_sensor.xacro-file, which describes the model and gets assigned
to the robot_description parameter in the launch file.

All the states needed by the position controller, depicted in Fig. 5, are contained in
theOdometrymessage. Namely, these (states) are the position, orientation, and linear
and angular velocity of theMAV.Hence, the position controller running alongside the
simulation can directly subscribe to the Odometry message. The controller publishes
Actuatorsmessages, which are read by theGazebo controller interface and forwarded
to the individual motor model plugins.

Commands for the controller are read from MultiDOFJointTrajectory messages,
which get published by the hovering_example node. These messages contain
references of poses, and its derivatives. In this example only the position and yaw
values of the messages are set. The hovering_example node publishes such

RotorS—A Modular Gazebo MAV Simulator Framework 609

a message to initiate the take-off maneuver. In addition this node un-pauses the
Gazebo physics. MultiDOFJointTrajectory messages are used to be compatible with
planners, such as MoveIt! [9]. But waypoints can also be published as PoseStamped
messages.

You can change the position reference of the MAV by sending a MultiDOFJoint-
Trajectory message. Usually this is done by a planner or waypoint publisher. For this
tutorial, we implemented a simple ROS node, that reads the position and yaw from
the command line, translates it into a MultiDOFJointTrajectory message and sends
it to the controller.

1 $ rosrun rotors_gazebo waypoint_publisher 1 0 1 0 _ _ns:= firef ly

The first three parameters are the position, followed by the yaw angle in degrees.
Because all our nodes are running in the firefly namespace, we also need to run
the waypoint publisher in that namespace, which is done by the last argument.6

All the topics that are published in this configuration can be listed with:

1 $ rostopic l i s t

and to look at the published data:

1 $ rostopic echo <the_desired_topic>

You can exchange the vehicle by setting the mav_name-argument, for example, you
could launch the simulation with a Pelican quad-rotor helicopter.

1 $ roslaunch rotors_gazebo mav_hovering_example. launch mav_name:=pelican

Currently, these MAVs are available: asymmetric_quadrotor, firefly,
hummingbird, and pelican. All the control parameters are set in the lee_
controller_<mav_name>.yaml, and the vehicle parameters used by the con-
troller in <mav_name>.yaml.

Note 1 These values do not have to be identical with the values in the model’s
description. On real systems, the vehicle parameters are usually unknown, and only
approximate values can be identified.

Both files are located in the rotors_gazebo/resources folder.

3.4 Hovering with State Estimation

On realMAVs there is usually no direct odometry sensor, that gives information about
all the states. Instead there is a broad variety of sensors, like GPS and magnetometer,
cameras or lasers to do SLAM, or external tracking systems that provide a full 6
DOF pose. In this section, we want to show how to use the MSF package [6] to get
the full state from a pose sensor and the IMU.

6More on namespaces can be found on: http://wiki.ros.org/Names.

http://wiki.ros.org/Names

610 F. Furrer et al.

Fig. 9 Graph with ROS nodes and topics of the hovering example with state estimation. This
example consists of a node that sends the initial waypoint, a state estimator node, a controller node
and the Gazebo simulator (including plugins)

To run this example you need the rotors_simulator_demos package and
its dependencies, see Sect. 3.1. The following command will start all the needed ROS
nodes.

1 $ roslaunch rotors_simulator_demos mav_hovering_example_msf. launch

This time, the MAV is not as stable as in the previous example, and has a small
offset at the beginning. The wobbling comes from the simulated noise on the pose
sensor and the offset from the IMU biases. After a while the offset will disappear,
because the EKF estimates the biases correctly.

Having a look at the re-drawn rqt_graph in Fig. 9, the following changes
from the previous example can be observed: First, the Gazebo odometry plugin only
publishes the pose of the MAV and not the full odometry message as before. On real
systems, this could be an external tracking system. Second, an additional node is
started, the MSF pose_sensor, but more on this node later. The controller node
now subscribes to the odometry topic from the MSF instead of the odometry from
Gazebo. This is done in the launch file, by a topic remapping with the following line:

1 <remap from="odometry" to="msf_core/odometry" />

As explained in the previous section, the following node can be used to move the
MAV.

1 $ rosrun rotors_gazebo waypoint_publisher <x> <y> <z> <yaw> _ _ns:= firef ly

The MSF package consists of a core that performs the state propagation based
on IMU measurements. For the state update many predefined sensor combina-
tions are available, from which we use the pose_sensor in this example.
The parameters are loaded from the msf_simulator.yaml located in the
rotors_simulator_demos/resources folder.

RotorS—A Modular Gazebo MAV Simulator Framework 611

3.5 Mount Sensors

This section explains the different sensors, and how these are mounted on theMAVs.
Any sensor can be attached to the vehicle in the corresponding Xacro files. This is
done by calling one of themacros, located in therotors_description/urdf/
component_snippets.xacrofile.Themav_hoverin_example.launch
file, for instance loads the robot description from the firefly_generic_
odometry_sensor.gazebo file, which adds an odometry sensor to the Fire-
fly, by calling:

1 <xacro:odometry_plugin_macro (here go the macro properties)>
2 <inertia (with i t s properties) />
3 <origin (with i t s properties) />
4 </xacro:odometry_plugin_macro>

The macro properties are explained in the component_snippets.xacro-file.
Properties in macros that are preceded by a * have to be set as tag-blocks within the
opening and closing tags of the macro. The inertia and origin properties of
the odometry macro are such blocks. An inertia block is written as:

1 <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0" />

Properties present in all of RotorS’ sensor macros are:

namespace assigns a ROS namespace to this sensor
parent_link the sensor gets attached to this link (with an offset, relative to this

link, specified in the origin-block)
some_topic topic name on which the sensor publishes messages

Macro properties can be set, as illustrated for the parent_link property below:

1 <xacro:odometry_plugin_macro
2 . . .
3 parent_link="base_link"
4 . . .
5 >
6 . . .
7 </xacro:odometry_plugin_macro>

Note 2 All values of properties are passed as strings, hence, they must be enclosed
by quotation marks.

Note 3 In Gazebo links must have a certain weight (at least 10−5 kg), otherwise they
get omitted by the physics engine. This will result in not finding the links by the
plugins.

An overview of the sensors currently used in RotorS, for which Xacros are pro-
vided, is given inTable 1.7 In Fig. 10, aVI-Sensorwas added to the Firefly hexacopter.

7Additional Gazebo plugins are listed on: http://gazebosim.org/tutorials?tut=ros_gzplugins.

http://gazebosim.org/tutorials?tut=ros_gzplugins

612 F. Furrer et al.

Ta
bl

e
1

T
hi
s
ta
bl
e
gi
ve
s
an

ov
er
vi
ew

of
th
e
di
ff
er
en
ts
en
so
r
X
ac
ro
s
pr
ov
id
ed

in
th
e
R
ot
or
S
si
m
ul
at
or

Se
ns
or

D
es
cr
ip
tio

n
X
ac
ro
-n
am

e
G
az
eb
o
pl
ug
in
(s
)

C
am

er
a

A
co
nfi

gu
ra
bl
e
st
an
da
rd

R
O
S
ca
m
er
a

c
a
m
e
r
a
_
m
a
c
r
o

l
i
b
g
a
z
e
b
o
_
r
o
s
_
c
a
m
e
r
a
.
s
o

IM
U

T
hi
s
is
an

IM
U
im

pl
em

en
ta
tio

n,
w
ith

ze
ro

m
ea
n
w
hi
te
G
au
ss
ia
n
no

is
e

an
d
a
ra
nd

om
w
al
k
on

al
lm

ea
su
re
m
en
ts
as

de
sc
ri
be
d
in

(1
2)

an
d
(1
3)

i
m
u
_
p
l
u
g
i
n
_
m
a
c
r
o

l
i
b
r
o
t
o
r
s
_
g
a
z
e
b
o
_
i
m
u
_
p
l
u
g
i
n
.
s
o

O
do
m
et
ry

Si
m
ul
at
e
po
si
tio

n,
po
se
,a
nd

od
om

et
ry

se
ns
or
s.
A
bi
na
ry

im
ag
e
ca
n
be

at
ta
ch
ed

to
sp
ec
if
y
w
he
re

th
e
se
ns
or

w
or
ks

in
th
e
w
or
ld
,i
n
or
de
r
to

si
m
ul
at
e
se
ns
or

ou
ta
ge
s.
W
hi
te
pi
xe
l:
se
ns
or

w
or
ks
,b

la
ck
:s
en
so
r
do

es
no
tw

or
k.

It
m
im

ic
s
an
y
ge
ne
ri
c
on
-
or

of
f-
bo
ar
d
tr
ac
ki
ng

sy
st
em

su
ch

as
G
lo
ba
l

Po
si
tio

ni
ng

Sy
st
em

(G
PS

),
V
ic
on
,e
tc
.

o
d
o
m
e
t
r
y
_
p
l
u
g
i
n
_
m
a
c
r
o

l
i
b
r
o
t
o
r
s
_
g
a
z
e
b
o
_
o
d
o
m
e
t
r
y
_
p
l
u
g
i
n
.
s
o

V
I-
Se
ns
or

T
hi
s
is
a
st
er
eo

ca
m
er
a
w
ith

an
IM

U
,f
ea
tu
ri
ng

em
be
dd

ed
sy
nc
hr
on
is
at
io
n
an
d
tim

e-
st
am

pi
ng

de
ve
lo
pe
d
at
A
ut
on
om

ou
s
Sy

st
em

s
L
ab

(A
SL

).
In

si
m
ul
at
io
n,
on
e
ca
n
ch
oo
se

to
en
ab
le
im

ag
es
,d
ep
th

im
ag
es

an
d
po
in
tc
lo
ud
s,
an
d
gr
ou
nd

tr
ut
h
od
om

et
ry

v
i
_
s
e
n
s
o
r
_
m
a
c
r
o

l
i
b
g
a
z
e
b
o
_
r
o
s
_
c
a
m
e
r
a
.
s
o

l
i
b
r
o
t
o
r
s
_
g
a
z
e
b
o
_
o
d
o
m
e
t
r
y
_
p
l
u
g
i
n
.
s
o

l
i
b
r
o
t
o
r
s
_
g
a
z
e
b
o
_
i
m
u
_
p
l
u
g
i
n
.
s
o

l
i
b
g
a
z
e
b
o
_
r
o
s
_
o
p
e
n
n
i
_
k
i
n
e
c
t
.
s
o

∗ F
or

m
or
e
in
fo
rm

at
io
n
ab
ou
tt
he

V
I-
se
ns
or
:h

ttp
://
w
w
w
.s
ky
bo
tix

.c
om

/

http://www.skybotix.com/

RotorS—A Modular Gazebo MAV Simulator Framework 613

Fig. 10 The Firefly hexacopter with a VI-Sensor mounted on it pointing to the front, and slightly
downwards

3.6 Evaluation

We are particularly interested in tracking the MAV’s location to compare it with a
user specified position, and how it reacts to disturbances, such as a wind gust. Great
interest lies also in checking how quickly an MAV can fly to a certain location, and
again how accurately it stays around the specified setpoint. As a first test, we can
generate a bag file of a flight with a Firefly, by running the hovering example with
logging:

1 $ roslaunch rotors_gazebo mav_hovering_example. launch enable_logging:=true

The bag fileswill be stored in the.ros-folder in the user’s home directory by default.
To run the evaluation of the controller:

1 $ rosrun rotors_evaluation hovering_eval .py −b ~/. ros/<your_firefly_bag_file >.bag
−−save_plots True −−mav_name firef ly

Note 4 If there is an error about an unindexed bag file, reindex it with:

1 rosbag reindex <bagfile>

We get the following output by the script (the evaluation measures the differences
to a hovering setpoint of p = (

0 0 1
)T
, from 10 to 20s):

1 Position RMS error : 0.040 m
2 Angular velocity RMS error : 0.000 rad / s

Additionally, the script will produce three plots showing the position, the position
error, and the angular velocities. We evaluate angular velocities to expose overly

614 F. Furrer et al.

Fig. 11 Position error plot
of a hovering sequence with
noise on the odometry
sensor. Because the
controller does not contain
an integrator or disturbance
estimator, there is a constant
offset

Fig. 12 Angular velocities
plot of a hovering sequence
with noise on the odometry
sensor

aggressive-tuned controllers. The plots show that we have a static offset in the z-axis.
This is the case since there is no integral part in the controller, and the mass value
in the controller is not exactly set to the correct value. As there is no noise on the
sensors, the angular velocity RMS error is zero. More realistic conditions would
be achieved by adding some noise on the odometry sensor, and then runningh the
simulation and evaluation again. The noise parameters of the odometry sensor can
be set in the firefly_generic_odometry_sensor.gazebo-file. You will
get plots like the ones shown in Fig. 11 for the position error, and for the angular
velocities in Fig. 12 (these plots might differ, depending on the magnitude of the
noise that was set). There are evaluation scripts available for multiple waypoints:
waypoint_eval.py, and for evaluating the reaction to external disturbances:
disturbance_eval.py.

RotorS—A Modular Gazebo MAV Simulator Framework 615

4 Advanced Tutorials

Up to this point we learned how to use the the components provided by RotorS. If the
reader is not only interested in using this set ofMAVswith some standard sensors and
controllers, this section will give more insight on how to develop a custom controller
in Sect. 4.1. In Sect. 4.3, it is described how to integrate a new MAV, how to write
new sensors, and how to work on a state estimator.

4.1 Developing a Custom Controller

Here, we show how you build a controller for an arbitraryMAV. Themessage passing
is handled by the gazebo_controller_interface, and the motor dynamics
are incorporated in gazebo_motor_model. Hence, the task of developing a con-
troller can be reduced to subscribing to sensor or state estimator messages, reference
commands, and publishing Actuators messages on the command/motor_speed
topic. Another option is to run the RollPitchYawrate-ThrustController and build a
position controller that publishes MultiDOFJointTrajectory messages.

Note 5 Our position controller listens toMultiDOFJointTrajectorymessages as con-
trol input, whereas the roll-pitch-yawrate-thrust controller listens to RollPitchYaw-
rateThrust messages. Both listen to odometry messages either from a sensor directly,
or from a state estimator.

There are two parts in our design of the controller, the first part handles the para-
meters and the message passing, this is an executable, a ROS-node. The second
part of the controller is a library, which gets loaded by the executable, and does
all the computations. We encourage to use one of our controller ROS-nodes as a
template, located in the rotors_control/src/nodes-folder. It reads the con-
troller parameters from the ROS-parameter server. The parameters are usually set
in yaml-files, and split up into controller specific parameters and vehicle specific
parameters. Through a launch-file, the parameters from a yaml-file are passed to the
ROS-parameter server, by adding the following line between your <node>-tags.

1 <rosparam command="load" f i le="$(find rotors_gazebo) / resource / your_parameters_file .
yaml" />

The vehicle parameter file includes the mass of the MAV, its inertia and rotor con-
figuration. Controller gains are specified in the controller parameters file.

With all the parameters in your controller and the callbackmethods for theOdome-
try and MultiDOFJointTrajectory messages, we can now start writing the actual con-
troller, the controller library. These libraries work without ROS, and hence would be
able to run on an MAV directly.

Our controller libraries are located in the rotors_control/src/library-
folder. Again, we encourage to use one of the libraries as a template to develop your
controller.

616 F. Furrer et al.

We have a method, CalculateRotorVelocities, which gets called every
control iteration, that calculates the required rotor velocities ω from the controller’s
input, and information about the current MAV state. As mentioned before, the ref-
erence consists of the desired position pd and its derivatives, and the yaw angle ψ

and its derivatives. The input is the content of a MultiDOFJointTrajectory message.
In our implementation of [5], this method calls other methods, which do the calcula-
tions of the desired accelerations ẍ, and the angular accelerations ω̇. To wrap it up,
if you want to implement your own controller, all that needs to be done is to com-
pute the rotor velocities in the CalculateRotorVelocities method, based
on the state information of the MAV. Or use cascaded controllers, that is, run our
roll-pitch-yawrate-thrust controller and publish RollPitchYawrateThrust messages
in your controller.

4.2 Tutorial on Xacros

This section should give a short overview on what Xacro [3] is, it can be skipped
if the reader is already familiar with the concepts of Xacro. Xacro is an Extensible
Markup Language (XML) macro language, which is used to generate more readable
and often shorter XML code. In our rotors_description-package we use it
extensively. First, a very quick introduction to XML, which is built out of tags. A tag
is dividing parts ofXMLcode in blocks. These block have opening tags<tagName>
and closing tags </tagName>. Each tag can have any number of properties, which
are set as:

1 <someTag property1="value1" property2="al l values are passed as strings" property3
="4.0" />

As seen in the line above, if there is no further content between the opening and
closing tag, a tag can be closed directly as <tag/>.

Since XML is solely text based, there are a number of reasons, as can be
seen below, for using Xacro. The xmlns:xacro="http://ros.org/wiki/
xacro" (tag) property needs to be set to the first XML tag, such that the converter
recognizes that the current file is of Xacro type. Here we will start with a minimal
example on how to set and use Xacro properties. These are particularly useful for
repeating values, such as constants or parameters.

1 <foo xmlns:xacro="http: / / ros . org /wiki /xacro">
2 <xacro:property name="pi" value="3.14159265359" />
3 <xacro:property name="moment_constant" value="0.016" />
4 <bar property1="${moment_constant}">${pi}</bar>
5 </ foo>

The code above can be stored to a text file, test.xacro, for instance. Then it can
be converted to a regular XML file by:

1 $ rosrun xacro xacro .py test . xacro

RotorS—A Modular Gazebo MAV Simulator Framework 617

Properties surrounded by $-brackets (${}) get replaced in this step, as you can see
in the output of the line above. This is usually written to a file, by appending -o
test.xml to the example above, or piped to the ROS parameter server in a launch
file:

1 <param name="robot_description" command="
2 $(find xacro) /xacro .py ‘ test . xacro’"
3 />

Below the remaining basic Xacro functionalities are explained:

Property Blocks If there is content between the opening and the closing tag of
Xacro properties, we call it property blocks. It can be inserted as shown below in
the macros part.

1 <xacro:property name="an_origin">
2 <origin xyz="0.0 0.0 0.05" rpy="0 0 0" />
3 </ xacro:property>

Math Expressions can be used to do basic arithmetic operations, such as: ${(30
+ 1) * pi/180}.

Conditional Blocks can be used to conditionally include code in the output:

1 <xacro:if value="${add_camera}">< . . . some extra code . . .></ xacro:if>
2 <xacro:unless value="${moment_constant}">< . . . some extra code . . .></ xacro:unless>

Rospack commands such as find, can be used within $-parentheses
$(find rotors_gazebo).

Macros specify your own snippets such as the one shown below to calculate the
inertia of a box:

1 <xacro:macro name="box_inertial" params="x y z mass ∗origin">
2 <iner t ia l>
3 <mass value="${mass_box}" />
4 <xacro:insert_block name="origin" />
5 <inertia ixx="${0.0833333 ∗ mass ∗ (y∗y + z∗z)}" ixy="0.0" ixz="0.0"
6 iyy="${0.0833333 ∗ mass ∗ (x∗x + z∗z)}" iyz="0.0"
7 izz="${0.0833333 ∗ mass ∗ (x∗x + y∗y)}" />
8 </ iner t ia l>
9 </xacro:macro>

To define a macro, the <xacro:macro> tag is used, where you specify its name
and an arbitrary number of parameters. Parameters starting with an asterisk (∗),
denote property blocks, which are read as the content between the opening and
closing tag of themacro. The above just defines amacro, the code gets only placed
in your output file if you call the macro with its parameters as:

1 <xacro:box_inertial x="0.2" y="0.4" z="0.1">
2 <origin xyz="0.1 0.2 0.05" rpy="0 0 0" />
3 </ xacro:box_inertial>

Include other Xacro files with:

1 <xacro:include filename=" . . / other . xacro" />

618 F. Furrer et al.

4.3 Assembling a Model

As you are able to fly with the MAVs that are shipped with RotorS, we want to
encourage you to bring your own MAV into RotorS. In this section, we describe the
procedure of how to get the geometry of your robot, and the locations of the actuators
into RotorS. In the next section, we describe how custom sensors can be written as
a Gazebo plugin. For the description of the robot we are using the Unified Robot
Description Format (URDF), with Xacro, which is briefly explained in the previous
section.

Note 6 Gazebo has its own format to describe robots, objects, and the environment,
called Simulation Description Format (SDF). We are sticking with URDF here, as
this format can be displayed in the ROS 3D Robot Visualizer (rviz), and all the SDF-
specific properties can be added by putting them in a <gazebo>-block. Internally
Gazebo converts the URDF-files to SDF-files.

If you have a specific robot that you want to use in your simulation, this pro-
cedure is quite straight forward. You have to check which parts of your robot are
fixed, or rigid bodies, in URDF these parts are called links, and connect these links;
connections are called joints. In Fig. 13, the different links and joints of an example
quad-rotor helicopter are shown. There are a number of different joints as can be
seen on http://wiki.ros.org/urdf/XML/joint. Each joint has a parent and a child link.
For our application we only use three types:

Fig. 13 A draft of a multirotor helicopter with four non-symmetrical aligned rotors. All the joints
and links are named to get an overview of the necessary components in the Xacro files

http://wiki.ros.org/urdf/XML/joint

RotorS—A Modular Gazebo MAV Simulator Framework 619

continuous joints are hinge joints without any mechanical limits, such as our
rotors.

fixed joints are connecting two links rigidly, such that there is no movement pos-
sible. These joints get removed by Gazebo’s physics engine, that means, no infor-
mation can be gathered about these joints and its child links in Gazebo (plugins).

revolute joints are the same as continuous joints, but have a lower and upper limit,
which limits their turning angle. We are using these joints with both limits set to
zero, as fixed joints, if the child link needs to be accessible from a plugin.

As we go on with this section, we want to develop a model of a conceptual quad-
rotor helicopter, as depicted in Fig. 13. This quad-rotor helicopter model has four
rotors, of which three are distributed equally on the edge of a circle with radius l,
while the remaining rotor is placed in the back of the vehicle with an arm of length
l/3. All the rotors are of the same dimension.

We can now start to build our model in a URDF file. Every robot that is built
with URDF needs a <robot>-tag in the beginning of the file, with a unique name.
Within the opening- and the closing tag, the robot will be assembled. We start by
adding the base of the robot, there is a macro for doing this.

1 <robot name="asymmetric_quadrotor" xmlns:xacro="http: / / ros . org /wiki /xacro">
2 <xacro:multirotor_base_macro
3 robot_namespace="${namespace}"
4 mass="${mass}"
5 body_width="${body_width}"
6 body_height="${body_height}"
7 use_mesh_file="${use_mesh_file}"
8 mesh_file="">
9 <xacro:insert_block name="body_inertia" />

10 </xacro:multirotor_base_macro>
11 </ robot>

The listing above needs some Xacro-properties, such as namespace and mass
to be set, this is explained in Sect. 4.2.

One would continue adding the arms and the rotors to the base link by connecting
them with joints—we will show this for one arm and rotor. If you have a mesh
file of your multi-rotor helicopter with arms, and know its inertia (from the body
including the arms), you can omit this step, and attach the rotors directly to the
base link. For the other MAVs that are provided with RotorS, the rotors are directly
attached to the base. The reader is encouraged to use the macros provided in the
component_snippets.xacro and multirotor_base.xacro files.

1 <link name="arm1_link">
2 <xacro:box_inertial x="${arm_length}" y="0.03" z="0.01" mass_box="${mass_arm}" />
3 <visual>
4 <origin xyz="${arm_length/2} 0 0" rpy="0 0 0" />
5 <geometry>
6 <box size="${arm_length} 0.03 0.01" />
7 </geometry>
8 </ visual>
9 <collision>

620 F. Furrer et al.

10 <origin xyz="${arm_length/2} 0 0" rpy="0 0 0" />
11 <geometry>
12 <box size="${arm_length} 0.03 0.01" />
13 </geometry>
14 </ collision>
15 </ link>
16 <joint name="arm1_joint" type="fixed">
17 <origin xyz="0 0 0" rpy="0 0 ${2∗pi/3}" />
18 <parent link="base_link" />
19 <child link="arm1_link" />
20 </ joint>
21 <xacro:vertical_rotor
22 robot_namespace="${namespace}"
23 suffix="1"
24 direction="cw"
25 motor_constant="${motor_constant}"
26 moment_constant="${moment_constant}"
27 parent="arm1_link"
28 mass_rotor="${mass_rotor}"
29 radius_rotor="${radius_rotor}"
30 time_constant_up="${time_constant_up}"
31 time_constant_down="${time_constant_down}"
32 max_rot_velocity="${max_rot_velocity}"
33 motor_number="1"
34 rotor_drag_coefficient="${rotor_drag_coefficient}"
35 rolling_moment_coefficient="${rolling_moment_coefficient}"
36 color="Blue"
37 use_own_mesh="false"
38 mesh="">
39 <origin xyz="${arm_length} 0 ${rotor_offset_top}" rpy="0 0 0" />
40 <xacro:insert_block name="rotor_inertia" />
41 </ xacro:vertical_rotor>

Note 7 Since you are using a very similar snippet for all four arms, it is a good idea
to create a macro, which could be called arm_with_rotor. It would take the arm
length, an angle, the motor number, and the mass as parameters.

You can test your current configuration by either just looking at the output of:

1 $ rosrun xacro xacro .py <xacro_file> > <urdf_file>
2 $ check_urdf <urdf_file> # You need liburdfdom−tools installed for this .

or by running our mav_empty_world.launch file, which spawns your robot in
an empty Gazebo world:

1 $ roslaunch rotors_gazebo mav_empty_world. launch mav_name:=asymmetric_quadrotor

Note 8 Touse this commandyourfile shouldbe calledasymmetric_quadrotor
.xacro and be placed in the rotors_description/urdf-folder. Addition-
ally you need to have a file called asymmetric_quadrotor_base.xacro,
which includes the above file. We seperated the geometrical properties from the
sensors and controllers. Sensors and controllers should be placed in the second file.

RotorS—A Modular Gazebo MAV Simulator Framework 621

4.4 Creating Custom Sensors

To make your robot perceive the environment and its own motion with respect to the
inertial frame, you need to add sensors to your model. We already discussed how to
add available sensors in Sect. 3.5. In this section, we focus on how to write a Gazebo
plugin for a new sensor.

Note 9 Before you create your own plugin, you should make sure that there is no
sensor available, which satisfies your requirements. For instance, a laser sensor can
be used to mimic an ultrasonic sensor, by just using one ray. This of course is not
very accurate, as ultrasonic sensors usually measure the shortest distance to an object
in a cone-like shape. But, depending on your application, a measurement along one
single ray might also be enough.

In the remainder of this section, we show how one would conceptionally proceed
with building a wind sensor. A wind sensor usually measures the airspeed vair on an
MAV. This airspeed is the difference between the wind speed vwind and the current
velocity v of the MAV.

vair = vwind − v (19)

To bring this sensor into the simulation, you would start by creating a Model-Plugin,
as described on:
http://gazebosim.org/tutorials?tut=plugins_model&cat=write_plugin.
You would create a subscriber to the wind-topic, and store the pointer to the link, to
which the plugin got attached to. Additionally, you would create a publisher on your
desired topic, air_speed, for instance. All of this can be done in the Loadmethod
of the plugin. In the OnUpdate method, which gets called every single simulation
iteration, you are then getting the link’s velocity in the world frame by

1 link_−>GetWorldLinearVel()

and perform the calculation described in (19). You can either publish the calculated
value directly, or add some additional noise. Take a look at the GazeboImuPlugin
and the GazeboOdometryPlugin to get an idea how to add noise to your calculated
value. Of course, you can also reduce the publishing frequency.

Note 10 Since on a lot of aircraft, this sensor is measuring the difference between
the static pressure and the stagnation pressure due to inflowing air in a pitot tube
[12], it is arguable if the above sensor design makes sense. To make this airspeed
sensor more realistic, the example above could be modified by, for example, only
taking the wind and MAV velocities in a single direction in the MAV’s body frame,
and then transforming them back into the world frame.

http://gazebosim.org/tutorials?tut=plugins_model&cat=write_plugin

622 F. Furrer et al.

5 Using RotorS for Higher Level Tasks

One of the biggest advantages of the RotorS simulator is, that it comes with a fully
functional trajectory tracking controller. This allows implementing higher level tasks
like collision avoidance or path planning without having to implement state estima-
tion or control first. Also in simulation, you have access to perfect ground truth,
which is usually hard to get on real systems. Once the algorithms are working in
simulation, the changes necessary when transitioning to real world systems are typ-
ically small. In this section we want to give some ideas, how two example problems
can be solved using the simulator.

5.1 Collision Avoidance

A commonly used strategy to solve collision avoidance on MAVs is to down-project
the environment onto a 2D ground plane and use the ros navigation stack. To tackle
this problem, an appropriate sensor needs to be mounted on the MAV, to get an
estimate of the surrounding. Gazebo provides plugins for 2D laser scanners like the
Hokuyo, that could potentially be mounted on a real MAV. This approach has the
big disadvantage of reducing the operating space of the MAV to a plane at a constant
height.

For full 3D collision avoidance, front looking depth cameras are a good starting
point, like the Kinect-sensor which is already implemented in Gazebo. These sensors
are light-weight and give rich information about the surrounding. Another possibility
would be to mount cameras and use structure from motion in the monocular case, or
a stereo camera to calculate a disparity image. One possible approach to perform 3D
collision avoidance is to do it directly on the disparity images as proposed in [8].

5.2 Path Planning

In theRotorS simulator, we prepared an example environmentwith a power-plant and
a waypoint publisher to test different planning algorithms. The waypoints are chosen
such that the straight line solution is in collision, and theMAVis going to crash into the
wall without a planner. A file with the octree representation, as described in Sect. 2.4,
of the power-plant can be found in the rotors_gazebo/resources folder and
can be used with the octomap_server package. The octree representation allows
for efficient collision checking in the planner and is well suited for 3D environments.
To run the example, use the following command.

RotorS—A Modular Gazebo MAV Simulator Framework 623

1 $ roslaunch rotors_gazebo mav_powerplant_with_waypoint_publisher . launch

ROS provides a big collection of planning algorithms in the MoveIt! package [9],
that can be adapted to 3D path planning in static environments.

6 Transfer to a Real MAV

Having a simulation of an MAV is of course nice, but it raises the question, how well
it represents the real world and how easy the transition from simulation to real MAVs
is. During the development of this simulator, a lot of effort was put into keeping the
structure of the simulator as close as possible to the real system. In the best case, this
means just switching the simulation environmentwith aROSnode that communicates
with the hardware. The simulator should be a tool that enables the development of
algorithms, to be deployed on a real MAV later on. To make the transition of the
code from the simulator to the code running on the actual hardware as simple as
possible, the interface is designed in a way which mimics most of the interfaces on
the real systems. Not all messages are replicated in the simulator, but one can easily
extend the simulator with models of a battery or other parts which are currently not
implemented. One of the biggest challenges on real platforms are the changing delays
and the resulting non deterministic order of measurements. This leads to complex
message queues, tedious time delay estimation and delay compensation.

To give an impression on how well the simulator replicates the real MAV, we are
using the same controller gains in the simulation as on the real Hummingbird and
Firefly MAVs.8 Here we have to mention that in general we send attitude commands
to the low level controller of the real helicopters, and use the manufacturer’s low
level attitude controller to compute motor commands.

7 Conclusion

In this chapter, we presented an overview of the necessary background to understand
the basics for autonomous flights of MAVs. We then explained step-by-step how to
run the simulation with existing models, with ideal conditions first, and then how to
use it with more realistic sensors, and a state estimator. As advanced tutorials, we
presented instructions on how to implement a customquad-rotor helicopter, including
guidance to create own controllers and sensors. We believe that this framework will
be very helpful for both research and teaching, as it gives an easy start into the topic.
Interfaces are compatible, and the simulated dynamics are close to the real platforms,
such that an easy transfer from the simulation to the real world is possible.

8A video of a Firefly following a path in real world and in the RotorS simulator can be seen on
http://youtu.be/3cGFmssjNy8.

http://youtu.be/3cGFmssjNy8

624 F. Furrer et al.

References

1. M.W. Achtelik, Advanced closed loop visual navigation for micro aerial vehicles. Ph.D. thesis,
ETH Zurich, 2014

2. T. Field, J. Leibs, J. Bowman, Rosbag (2015), http://wiki.ros.org/rosbag. Accessed 27 Mar
2015

3. S. Glaser, W. Woodall, Xacro (2015), http://wiki.ros.org/xacro. Accessed 27 Mar 2015
4. A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard, OctoMap: An efficient

probabilistic 3D mapping framework based on octrees. Auton. Robots (2013). http://octomap.
github.com

5. T. Lee,M. Leoky,N.H.McClamroch,Geometric tracking control of a quadrotorUAVonSE (3),
in 2010 49th IEEE Conference on Decision and Control (CDC) (IEEE, 2010), pp. 5420–5425

6. S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, R. Siegwart, A robust and modular multi-sensor
fusion approach applied to mav navigation, in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2013), pp. 3923–3929

7. P. Martin, E. Salaun, The true role of accelerometer feedback in quadrotor control, in 2010
IEEE International Conference on Robotics and Automation (ICRA), pp. 1623–1629, May
2010

8. L. Matthies, R. Brockers, Y. Kuwata, S. Weiss, Stereo vision-based obstacle avoidance for
micro air vehicles using disparity space, in 2014 IEEE International Conference on Robotics
and Automation (ICRA) (IEEE, 2014), pp. 3242–3249

9. S.A. Sucan, S. Chitta, Moveit! (2015), http://moveit.ros.org. Accessed 10 Aug 2015
10. N. Trawny, S.I. Roumeliotis, Indirect Kalman filter for 3D attitude estimation. Technical Report

2005-002, University of Minnesota, Department of Computer Science and Engineering, 2005
11. S. Weiss, Vision based navigation for micro helicopters. Ph.D. thesis, ETH Zurich, 2012
12. Wikipedia, Airspeed indicator (2015), http://en.wikipedia.org/wiki/Airspeed_indicator.

Accessed 27 Mar 2015

Authors’ Biography

Fadri Furrer is a Ph.D. student at the ASL at ETH Zurich since 2015. He received his MSc
degree in electrical engineering from the Swiss Federal Institute of Technology, Zurich, in 2011.
His research interests are in simulation, object reconstruction and recognition from images and
point clouds.

Michael Burri is a Ph.D. student at the ASL at ETH Zurich since 2013. He received his MSc
degree in robotics and control from the Swiss Federal Institute of Technology, Zurich, in 2011.
His research interests are in control, state estimation, and planning for micro aerial vehicles.

Markus Achtelik received his Diploma degree in Electrical Engineering and Information Tech-
nology from TU München in 2009. He finished his Ph.D. in 2014 at the ASL at ETH Zurich,
and currently works as Postdoc at ASL on control, state estimation and planning, with the goal of
enabling autonomous maneuvers for MAVs, using an IMU and onboard camera(s) as main sen-
sors. Since 2014, he is challenge leader of the “plant servicing and inspection challenge” within
the European Robotics Challenges.

Roland Siegwart (born in 1959) is a professor for autonomous mobile robots at ETH Zurich. He
studied mechanical engineering at ETH, brought up a spin-off company, spent 10years as profes-
sor at EPFL, was vice president of ETH Zurich and held visiting positions at Stanford University
and NASA Ames. He is and was the coordinator of multiple European projects and co-founder of
half a dozen spin-off companies. He is recipient of the IEEE RAS Inaba Technical Award, IEEE

http://wiki.ros.org/rosbag
http://wiki.ros.org/xacro
http://octomap.github.com
http://octomap.github.com
http://moveit.ros.org
http://en.wikipedia.org/wiki/Airspeed_indicator

RotorS—A Modular Gazebo MAV Simulator Framework 625

Fellow and officer of the International Federation of Robotics Research (IFRR). He is in the edito-
rial board of multiple journals in robotics and was a general chair of several conferences in robot-
ics including IROS 2002, AIM 2007, FSR 2007 and ISRR 2009. His interests are in the design
and navigation of wheeled, walking and flying robots operating in complex and highly dynamical
environments.

Part VIII
Advanced Tools for ROS

The ROS Multimaster Extension
for Simplified Deployment
of Multi-Robot Systems

Alexander Tiderko, Frank Hoeller and Timo Röhling

Abstract This tutorial chapter describes how to set up a multi-robot system in
ROS with the multimaster_ fkie package. The package adds ROS support for mul-
tiple hosts, which can be added and removed from the network at any time without
affecting the remaining nodes. The presented multi-master extension works with the
unmodified ROS master and does not change the way ROS nodes communicate or
establish connections with each other. Thus, the multi-robot system remains fully
compatible with a single-master ROS system. It is easy to set up and execute the
ROS masters independently on each robot. The multi-master extension takes care
of synchronization and merges the masters into a unified network view. For better
usability, the package includes a graphical user interface for monitoring, configu-
ration and control of the ROS components. The latest version can be downloaded
fromhttps://github.com/fkie/multimaster_fkie. You can also install the package from
http://packages.ros.org. The multimaster_ fkie package works with all ROS versions
since groovy.

Keywords Multi-master ·Nodemanager ·Dynamic network ·Multi-robot system ·
Synchronization · Configuration management

1 Introduction

In a traditionalROSnetwork, a singlemaster node acts as networkhub.AllROSnodes
which wish to participate in the network have to register their publishers and sub-

A. Tiderko (B) · F. Hoeller · T. Röhling
Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE,
Fraunhoferstr. 20, 53343 Wachtberg, Germany
e-mail: alexander.tiderko@fkie.fraunhofer.de
URL:http://www.fkie.fraunhofer.de

F. Hoeller
e-mail: frank.hoeller@fkie.fraunhofer.de

T. Röhling
e-mail: timo.roehling@fkie.fraunhofer.de

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_24

629

https://github.com/fkie/multimaster_fkie
http://packages.ros.org

630 A. Tiderko et al.

scribers with the master. Even though communication in ROS is strictly peer-to-peer,
the ROSmaster acts as the central directory for nodes to look up their communication
counterparts, and provides a global registry for configuration values. The location of
the ROS master is exposed by the environment variable ROS_MASTER_URI.

This centralized network configuration is prone to failures, in particular if the
ROS network spans over multiple hosts with unreliable communication links. As
the ROS master is assumed to be reachable by all nodes at all times, it becomes
challenging or even impossible to choose a suitable host for the ROS master. This
is especially true for a multi-robot system, where each robot basically runs a self-
contained ROS network, but still needs to communicate with other robots from time
to time.

The multi-master extension has been designed with these challenges in mind
and provides an noninvasive way to merge multiple ROS masters into a unified
“super-network”. Additionally, the multimaster_ fkie packages provide a graphical
user interface (GUI) to monitor and manage ROS nodes, topics, services, parameters
and launch files in aROSnetwork. The key features of themulti-master extension are:

• All ROS components run unmodified and need not specifically be setup for the
multi-master extension.

• The behavior of ROS nodes will not be changed, no special API calls are required
and no extra libraries need to be linked.

• Robots and control stations can be designed as independent single-master ROS
networks and be connected as required. In fact, the multi-master extension can be
enabled and disabled without the need to restart any nodes.

• Each ROS master retains a locally consistent network view even if parts of the
network are removed or lost due to communication outages.

• Existing launch files and configurations can be used without modifications.
• The extension has a fully functional default configuration, there is no need to tweak
any parameters.

The multi-master extension is developed in Python and is hosted on Github,1

where bug reports and feature requests should be posted. The pre-compiled packages
are also available from the ROS APT repository.2 The API documentation and a
description of supported ROS parameters can be found in the ROSWiki.3 A detailed
feature description is also available as Github Page.4 The remainder of this chapter
is organized as follows:

• In Sect. 2, we introduce the methods used for automated ROS master discovery
and synchronization.

• In Sect. 3, we explain how to download, install and use the multi-master extension
to synchronize two hosts and setup a multi-robot system.

1https://github.com/fkie/multimaster_fkie.
2http://packages.ros.org/ros/ubuntu.
3http://wiki.ros.org/multimaster_fkie.
4http://fkie.github.io/multimaster_fkie.

https://github.com/fkie/multimaster_fkie
http://packages.ros.org/ros/ubuntu
http://wiki.ros.org/multimaster_fkie
http://fkie.github.io/multimaster_fkie

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 631

• In Sect. 4, we present the Node Manager and its features, and we describe how to
use it to simplify the setup of a multi-robot system.

• Lastly, we present further features of the multi-master extension, namely the
Capability View and the Default Configuration tool. With these, you can load ROS
launch files and execute them remotely on demand or automatically on network
startup.

2 Background

In this section, we explain the underlying concepts of the multi-master extension
and describe the techniques we use for discovery, synchronization, and the detection
of state changes in the ROS master nodes. We also discuss the limitations of our
approach and give rationales for our design choices.

As motivated in Sect. 1, the multi-master extension merges the state of multiple
ROS master nodes into a unified network view. This goal is achieved by running
two additional nodes (master_discovery and master_sync) alongside each
ROSmaster. These nodes interact with ROSmasters using the ROS Master API5 and
with other ROS nodes using the ROS Slave API.6 The discovery and synchronization
is shown in Fig. 1 and is performed as follows:

Fig. 1 Conceptual overview for discovering and synchronization

5http://wiki.ros.org/ROS/Master_API.
6http://wiki.ros.org/ROS/Slave_API.

http://wiki.ros.org/ROS/Master_API
http://wiki.ros.org/ROS/Slave_API

632 A. Tiderko et al.

• Each master_discovery node connects to its local ROS master and continu-
ally monitors for changes (1.). The current state of the ROS master can be queried
via an XML-RPC interface.

• The master_discovery node broadcasts the time stamp of the last change
to the network while simultaneously aggregating a list of the other available
master_discovery nodes and their time stamps (2.). This list is exposed
via a local ROS topic to the master_sync node (3.).

• The master_sync node connects to all known master_discovery nodes
and queries the current state of their ROS master whenever the time stamp has
changed (4.). Then, it registers or unregisters the remotely available topics and
services with the local ROS master (5.).

We will give a more in-depth explanation for each of these three subtasks in
the following subsections. However, we want to emphasize first that both the
master_discovery and master_sync nodes access their local ROS master
only. This ensures that the multi-master extension will continue to function properly
if the network topology changes. Also, in principle, the master_sync node only
needs to run on hosts where topics from remote ROS masters are to be subscribed.
In most cases, this would be a control station monitoring one or more robots. How-
ever, some nodes communicate with each other both as publishers and subscribers.
In these cases, the master_sync node must be run on all participating hosts. It is
generally safe to do so anyway.

Furthermore, as the multi-master extension is designed to be as little intrusive as
possible, all requirements and restrictions for running a ROS network with a single
master also apply to multiple masters. In particular, all ROS nodes still communicate
in a peer-to-peer fashion, meaning all participating host names must be resolvable
and all IP addresses be reachable.

2.1 ROS Master Change Detection

In order to keep the multi-master network in a consistent state, new topics and
services running on a host (or old ones being terminated) have to be detected
in a timely manner. Since the ROS master does not support push notifications,
the master_discovery node has to poll the ROS master for changes period-
ically. The update rate can be configured with the ∼rosmaster_hz parameter
and defaults to once per second. The rate is automatically reduced if the CPU load
exceeds 20%. As all polling queries are made via the loopback interface on the same
host, they are free in terms of network bandwidth utilization.

The ROS Master API returns most required information via the RPC call
getSystemState(). To satisfy the requirements of the multi-master extension,
this state is extended with the XML-RPC URI of each node, the type information for
the registered topics and services, and the process ID of all locally running nodes.
The node URI is required to detect nodes which have been stopped and restarted in

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 633

between RPC queries.7 The type information and the process IDs are utilized by the
Node Manager GUI for advanced system introspection and modification.

2.2 Discovery

Aside from collecting status data from the ROS master, the master_discovery
node sends and receives broadcasts to compile a list of all reachable instances (and
by extension, their ROS masters). Currently, three approaches have been imple-
mented: theAppleZeroconf protocol,multicastUDP, and unicastUDP.Themulticast
UDPprotocol is the recommended choice,where all runningmaster_discovery
nodes join a fixed multicast group to exchange heartbeat messages.

A heartbeat message has a payload size of 21octets (see Table1). Additional data,
e.g. the ROS master URI or node names, are requested via the XML-RPC interface
of the master_discovery node.

The heartbeatmessage is sent to themulticast groupwhenever any field is updated,
but at least once every 50s. As an additional feature, the heartbeat messages can be
used to determine the link quality of the communication channel. This feature is
enabled by setting the parameter ∼heartbeat_hz to a value between 0.1 and
25.5Hz. The master_discovery node will then estimate the link quality using
the package loss, i.e.

quality = number of received heartbeats

number of expected heartbeats
· 100

and publish the values to the topic ∼linkstats.

Table 1 Heartbeat message format

Field type Octets Description

char 1 Identification character ‘R’

unsigned char 1 Version of the heartbeat message (currently: 3)

unsigned char 1 Connection health message rate in units of 1
10 Hz

int 4 Unix time stamp of the last state update (integral part in seconds)

int 4 Unix time stamp of the last state update (fractional part in
nanoseconds)

unsigned short 2 XML-RPC port number of the sending master_discovery node

int 4 Unix time stamp of the last change not caused by the multi-master
extension (integral part in seconds)

int 4 Unix time stamp of the last change not caused by the multi-master
extension (fractional part in nanoseconds)

7The URI is allocated with a random port number, so it will likely change on restarts.

634 A. Tiderko et al.

You may notice that the heartbeat message actually contains two distinct time
stamps. The first time stamp is updated whenever the ROS master state changes
in any way. The second time stamp, also called lc time stamp, will be updated
only if the state change was not initiated by the multi-master extension itself, i.e.
an externally triggered change published by the local ROS master. This distinction
prevents spurious RPC queries from the master_sync node (see Sect. 2.3). The
regular time stamp is utilized by the Node Manager to update its user interface.

For increased robustness, the master_discovery node will explicitly request
a heartbeat message if none has been received for some time (60s by default). After
five unsuccessful tries, the state of the remote master is set to Offline. After an
additional timeout (300s by default), the non-responsive instance is removed from
the list of known masters. All changes to the list of known masters will be published
to the topic ∼changes.

We found in our experiments that multicast communication can be somewhat
fragile at times. There are a few long-standing bugs in the Linux multicast imple-
mentation, and certain commercial, IP-based radio link devices lackmulticast support
altogether. For this reason, the multi-master extension allows for static configura-
tion of hosts with the parameter ∼robot_hosts, which accepts IP addresses and
resolvable host names. These hosts will be discovered using unicast heartbeats, with
the negative side-effect of increased bandwidth usage and the need to configure the
network topology in advance. The Apple Zeroconf protocol, while being a wide-
spread official standard, has certain quirks in its Avahi open source implementation,
and does not support link quality estimation nor some other teaming features.

Many aspects of the system can be customized to suit specific needs. The complete
list of available parameters for the master_discovery node and their descrip-
tions can be found in the default launch file of the master_discovery package.
If you use the Node Manager to launch the master_discovery node, some fre-
quently used parameters can be set there without the need tomodify the configuration
files (see Sect. 4).

2.3 ROS Master Synchronization

Synchronization is the termwe use for propagating information about running nodes,
topics, and services through the multi-master network. When all ROS masters are
in agreement, the network is in a consistent state. Each time a ROS master changes
its state, the change is detected by the local master_discovery node, annotated
with a time stamp, and published to the network. The change is then picked up by the
other master_discovery nodes and published to their local topic ∼changes,
which triggers the master_sync node to query the current state from the orig-
inal master_discovery node8 and update its local ROS master. Note that the
parameter server is not synchronized for the following reasons:

8Unless the change is a ROS master being marked Offline.

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 635

• Most parameters are in the private name space of their respective nodes and never
accessed by anyone else.

• Most parameters are set by roslaunch immediately prior to node startup, accessed
by their node once for initialization and then never again. Thus, most parameters
have already outlived their usefulness by the time the multi-master extension has
had any chance to propagate them.

• The dynamic_reconfigure package already provides a way to change parameters
on-the-fly using services, which will be synchronized.

• Some parameters such as robot_description tend to be huge in size
(>1MB), further reducing the cost to benefit ratio.

The update itself straight-forward as the master_sync merely registers and
unregisters topics and services on behalf of the respective node. However, a few
detail have to be taken into account to ensure efficient synchronization.

Mitigation of the Thundering Herd Problem: When a change propagates
through the network, each master_sync node has to query the originating host
for the changes. We cannot piggyback the change on the heartbeat message because
the state is usually larger than a single UDP frame would permit. However, if all
nodes sent their query at once, it would create a huge spike in network load (akin to
a grazing herd suddenly startling, hence the name). Therefore, each node waits for a
random period before querying. Also, the lc time stamp enables the master_sync
node to detect changes which merely propagate from other ROS masters, preventing
spurious queries.

Minimization of latencies: Since each master_discovery node preemp-
tively collects all data required by the master_sync nodes, a single query per
node is sufficient for the state update. Additionally, each update is forked into its
own thread to prevent communication delays from affecting other updates.

Name space collisions: Each master_sync node only modifies data on its
local ROS master. If a node name collision occurs, the previously running node
is automatically terminated. ROS internal nodes such as /rosout and the multi-
master extension nodes are exempt from synchronization. The same goes for topics
which are only meaningful on the local host, such as the bond/Status type which
is used for nodelet management.

Network topology changes: The discovery process will pick up all remote mas-
ters which become reachable on its own. Remote masters which are no longer reach-
able will be detected as such by the local master_discovery node.

3 Installation and Usage

3.1 Installation

master_discovery and master_sync have no additional dependencies
beyond ROS, unless you wish to use Zeroconf for discovery, which depends on

636 A. Tiderko et al.

python-avahi and avahi-daemon. This tutorial will set up the multi-master extension
without Zeroconf.

For full node_manager functionality, you need to install the following packages
(replace indigo with your ROS version, backslashes mark line wraps):

sudo apt-get install ros-indigo-rqt-gui \

ros-indigo-rqt-reconfigure \

ros-indigo-python-qt-binding \

python-paramiko python-docutils screen

Alternatively,multimaster_ fkie can be cloned from theGithub repository. Change
to the folder src in your ROS workspace and call

git clone https://github.com/fkie/multimaster_fkie.git

In order to generate the requiredmessage and service types, build the workspace with

catkin_make

Now the multi-master extension is ready to use.

3.2 Usage Example with One Host

In our first example, we will start two ROS masters on the same host using different
ROS_MASTER_URIs. Then we enable synchronization to let rostopic pub and
rostopic echo communicate across the two masters. For the sake of simplicity,
we do not use launch files.

First, we need two terminal windows with a command shell. In the first shell, we
run a ROS master and an example publisher, which publishes Hello World to the
topic /test/topic:

export ROS_MASTER_URI=http://localhost:11311

roscore >/dev/null &

rostopic pub /test/topic std_msgs/String ’Hello World’ -r 1

In the second shell, we start a secondROSmaster and a rostopic echo to receive
the Hello World messages:

export ROS_MASTER_URI=http://localhost:11312

roscore --port 11312 >/dev/null &

rostopic echo /test/topic

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 637

Note that the rostopic echo command does not receive any messages yet.
Now, we open two more terminal windows. In these shells, we will execute the
master_discovery and master_sync nodes. Run the following commands
in the third window:

export ROS_MASTER_URI=http://localhost:11311

rosrun master_discovery_fkie master_discovery &

rosrun master_sync_fkie master_sync

In the forth window, we do the same, but we will connect to the second ROS master:

export ROS_MASTER_URI=http://localhost:11312

rosrun master_discovery_fkie master_discovery &

rosrun master_sync_fkie master_sync

The synchronization is now running and rostopic echo starts printing the Hello
World messages. If synchronization does not work for you, this is most likely caused
by a misconfigured network. Please refer to Sect. 3.4 for a list of the most common
configuration problems.

3.3 Remarks to Understand Synchronization

Before we continue with another example, we want to focus on a few peculiarities
of the synchronization mechanism. In our first example, each ROS master had its
own master_sync. Often it is also sufficient to run master_sync on one of
the hosts. Our example is suitable to show when this is the case: It will work if we
start master_sync merely for the second ROS master on port 11312, but it will
not work with the first one.

The reason for this strange behavior lies in the way some ROS nodes handle pub-
lishers and subscribers.rostopic echo does not actually create a subscriber until
a publisher for the topic becomes available. But if the master_sync runs on the
publisher’s side only, the subscriber will never connect, as the master_sync node
will never learn of the subscriber’s intention to subscribe. Only if themaster_sync
runs on the same ROS master as rostopic echo, the synchronization will reg-
ister the publisher’s topic with the second ROS master, and the subscription attempt
proceeds as intended. With this knowledge, you can run the master_sync only
on those hosts which have subscribers waiting for remote topics and it will generally
work just fine. If you are unsure, however, its is best to run the master_sync node
on every host. The resource consumption is low enough so that it won’t matter.

638 A. Tiderko et al.

3.4 Network Setup

As mentioned before, the setup requirements of the multi-master extension largely
mirror the requirements of the ROS ecosystem itself. In this section, we will list a
few common causes of failed communication.

The network interface is not configured for multicast: In this case, the
master_discovery exits without unregistering from the ROS master, so you
can see the corresponding warning in the Node Manager and find the error descrip-
tion in the log file.

A host name cannot be resolved: master_discovery prints a warning to
its logfile if a host is discovered whose name cannot be resolved. You can fix this by
either setting the ROS_IP environment variable or adding an appropriate entry to
the /etc/hosts file on all hosts.

A host does not know its name: The multi-master extension does not provide
any warnings for this case, but it is a prerequisite for ROS and will cause unexplained
communication failures. You can fix it by either setting the ROS_HOSTNAME envi-
ronment variable or adding an appropriate entry to the host’s /etc/hosts file.
Note that you should list the host with its network IP address, not 127.0.0.1.

The reverse lookup of an IP address does not match the host: This is closely
related to the previous problem. Make sure that all hosts are listed with their correct
IP address in all /etc/hosts files.

Multiple Network interfaces: If your host has more than one network address
assigned or multiple active network adapters (such as LAN andWireless), make sure
that ROS uses the correct one. You can force the correct interface by setting the URI
in the ROS_MASTER_URI environment variable to the host name resolving to the
correct IP address (or use the IP address directly).

Clock skew issues: This is particularly frustrating with time-sensitive topics such
as the tf package. Use tools like chrony to synchronize the clocks of all hosts in the
network.

Further information on configuration and debugging network problems is avail-
able on http://wiki.ros.org/ROS/NetworkSetup.

3.5 Synchronization of Multiple Hosts

For our second example, make sure that on both computers, ROS_MASTER_URI
refers to the respective local host and the ROS master is running. Start the nodes
master_discovery and master_sync on each host, either in a terminal:

rosrun master_discovery_fkie master_discovery &

rosrun master_sync_fkie master_sync

or from your launch file:

http://wiki.ros.org/ROS/NetworkSetup

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 639

<node name="master_discovery"

pkg="master_discovery_fkie"type="master_discovery"/>

<node name="master_sync"

pkg="master_sync_fkie"type="master_sync"/>

In this manner, you can add more hosts to the multi-master system. You can also
use the Node Manager to start a multi-master system as described in Sect. 4.1.

3.6 Special Synchronization Parameters

For advanced usage, there are a number of parameters which can be modified. Most
of them are fairly self-explanatory, but we want to highlight two slightly obscure
ones: sync_topics_on_demand and sync_remote_nodes.

sync_remote_nodes: By default, the synchronization assumes that each partic-
ipating host runs its own ROS master, so each node belongs to the ROS master of
the host it is running on. Therefore, only these nodes are actually synchronized from
each multi-master instance. In certain configurations, this assumption might not hold
true. In this case, you can set this parameter to true.

sync_topics_on_demand:With this parameter, you candelay the synchronization
of topics and services until they are actually requested by a local node. As we have
seen before, however, some ROS tools (rviz also among them) will not work properly
because they wait for the topic to become available before they actually subscribe.

3.7 Default Configuration

Sometimes it is useful to start all ROS nodes at startup, or you need to start some
nodes on demand with a fixed pre-configured launch file. As part of the multi-
master configuration management, we provide the default_cfg tool. It loads
a given ROS launch file and provides services to start and stop the defined nodes.
It also provides autostart capabilities, including delayed starts, conditional starts, or
exempt nodes which shall not autostart at all. These functions are also used by the
Node Manager described in Sect. 4. In this subsection, we show how to configure
default_cfg to use its autostart capabilities.

To enable the autostart of a launch file the parameter autostartmust be set to
true.

<node name="default_cfg"pkg="default_cfg_fkie"

type="default_cfg">

<param name="autostart"value="true"/>

<param name="package"value="node_manager_fkie"/>

<param name="launch_file"value="demo_bar.launch"/>

640 A. Tiderko et al.

</node>

Now all nodes listed in the launch file demo_bar.launch will be started if the
default_cfg node comes up. You can modify the autostart behavior of each node
by adding the corresponding autostart parameter to the node. To exclude a node
from autostart you have to add an exclusion like this:

<node name="bar"pkg="foo_package"type="bar_node">

<param name="default_cfg/autostart/exclude"value="true"/>

</node>

You can also use default_cfg/autostart/delay to delay the start of a node
or default_cfg/autostart/required/publisher to start a node once
a specific publisher becomes available.

The multi-master extension does not contain any scripts for starting nodes at
system boot time. If you are using Ubuntu, we recommend you take a look at the
ROS package robot_upstart for this.

4 Node Manager

ROS comes with many monitoring and introspection tools. However, these tools are
designed to operate with a single ROS master system. The multi-master extension
includes a graphical user interface to manage and operate a multi-master system.
After installing the multi-master extension, you can start the Node Manager by
calling node_manager in your console. During the start procedure of the Node
Manager, the ROSmaster will be launched automatically if it is not already running.
The Node Manager provides the following features:

• Listing of discovered hosts in the multi-master system
• Online status overview of each ROS master: lists of registered nodes, topics, ser-
vices and parameter

• Launch file editor with syntax highlighting and context-sensitive opening of
included files

• Navigate through the ROS packages and load launch files
• Run or stop single nodes from a launch file
• Quick access for current screen output or log file of each node started by Node

Manager
• View extended information about each node, topic, or service
• Edit parameters on the parameter server
• Various filter capabilities
• Additional grouping and visualization of nodes for a quick access
• Visual feedback of configuration errors

An example screenshot of the Node Manager is shown in Fig. 2.

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 641

Fig. 2 A screenshot of the Node Manager

4.1 ROS Network

The ROS Network docking widget shows all discovered ROS masters. In order
to detect other ROS masters, the master_discovery node must be running.
Otherwise, only the local ROS master will be shown (see Fig. 3).

The connection icon next to each host name shows whether that host is reachable.
The icon color indicates the connection quality as determined by the master_
discovery node.

Fig. 3 ROS-Network overview with master_discovery running and not

642 A. Tiderko et al.

Fig. 4 Start discovery dialog

The sync icon at the beginning of each row indicates whether master_sync is
running. You can toggle the ROS master synchronization by clicking on this icon.
A synchronization dialog with advanced options is available via the synchronization
button on the Host Description Panel described in Sect. 4.2. Note that the multi-
master capabilities are disabled if the local ROS_MASTER_URI refers to a remote
host.

You can initiate the discovery process with the Start button on the ROS Network
widget. The discovery node can also be started on a remote host. Click on the Start
button and enter the host nameor IP address in the dialog shown inFig. 4. If the remote
ROS master is not running already, it will be started automatically via SSH. Addi-
tionally, you can enter a network number (0..99) to create your multiple separated
networks (technically, this creates distinct multicast group for the discovery process).
This can be useful if two groups of robots shall remain separated although they share
the same physical network segment. Note that if nomulticast communication is avail-
able, you need to set the robot_hosts parameter to the comma-separated list of
participating hosts. Also note that this will increase the network load quadratically
(doubling the number of hosts quadruples the traffic)!

4.2 Host Description Panel

The host description panel (Fig. 5) displays the name and the time of the last
update for the currently selected host. If the Node Manager finds a PNG image
in node_manager_fkie/images (the path is configurable in the Settings tab)
with the same name as the host, it is used as icon. The icon can also be changed by
double-clicking on it or by setting the ROS parameter /robot_icon to an image
file. The host description panel contains additional buttons to update the state of the

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 643

Fig. 5 Host description panel

host or run ROS nodes and tools, which are connected to the selected host, indepen-
dently from the synchronization state. A warning will be displayed if /use_sim_time
is set to true, as this parameter tends to be forgotten when switching from simulation
trials to real world experiments.

4.3 ROS Nodes View and Control

The Nodes tab lists all nodes which are either running or available for launch in
the current configuration. It can be seen in Fig. 6. Running nodes have a green
icon. They are monitored using their process ID, which is updated by the local
master_discovery. You have to run a master_discovery on each host
to ensure that information about all nodes is available in the network. If a node is
registered with the master but has no associated process ID, the node is considered
crashed and marked with warning triangle. Note that only local nodes are pinged.
Nodes which are not running on the same host as the ROS master are marked by a
green icon with a question mark. Crashes of these nodes cannot be detected. As of
now, the only reliable way to detect running nodes is by their registered topics and
services. Thus, if a node has neither, it will never be shown as running.

In order to launch nodes, a configuration must be loaded. You can open roslaunch
files. If a node with the same name is listed in multiple launch files, you will be asked
to choose a configuration when you launch the node. Alternatively, you can use the
default_cfg (described in Sect. 3.7) to serve launch files to the local network.
Nodes which are available through this mechanism are marked by a cloud. If you
select a node additional information for this node are shown in description dock. It
is described later in Sect. 4.8.

ControlNodes started by theNode Manager are each running in a dedicated terminal
(using the screen tool). Thus you have access to the output of each node. Further,
this output is stored in a file that you can access from the control bar on the right
side. Nodes are started on remote host with SSH. The default user can be changed
in the Settings dock or for each host in in the Host Description Panel. Since a
non-interactive SSH connection is established, you have to ensure that the ROS
environment is initialized, e.g. by preparing the .bashrc accordingly. You can
select multiple nodes to be started with one click; already running nodes are not
restarted.

Note: while starting a node only private parameter are retransmitted to remote
ROS parameter server. The global parameters are transmitted only once on launch
file load. You can force the reload of the global parameters using the Description

644 A. Tiderko et al.

Fig. 6 Nodes view and control panel

Dock, see the Sect. 4.8. When using default_cfg all parameter are loaded once at
startup and never retransmitted.

The nodes are stopped using the shutdownmethod of the ROS Slave API.9 There-
fore, unreachable nodes cannot be stopped. In this case, you can use links in the
Description Dock to send a SIGKILL signal to the node process or force the ROS
master to unregister the services and topics of this node. The nodes of the multi-
master extension can only be terminated if they are selected individually.

You can also change the parameters of a selected node. There are three methods:
launch file, ROS parameter server or dynamic reconfiguration GUI (if available).
The Control Bar provides three configuration buttons, which are enabled if the cor-
responding method is available. The Dynamic Reconfiguration is only available if
the node in question supports it and is running. The configuration of the ROS para-
meter server is always available, but the displayed parameters depend on the running
state of the node. Some parameters are (re-)loaded on start of the node. You can also
change the parameter in the loaded launch file. In this case the loaded file will be
open and the cursor jumps to the first occurrence of the node name. After the launch
file was changed (it is detected automatically), you have to reload this file.

9http://www.ros.org/wiki/ROS/Slave_API.

http://www.ros.org/wiki/ROS/Slave_API

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 645

Fig. 7 Topics view and topic echo dialog

4.4 ROS Topics View

The Topics Tab (Fig. 7) shows all topics which are registered at the ROS mas-
ter. The number of publishers and subscribers is shown in the second and third
columns. The type of the ROS-topic is also displayed. If a node is selected in the
nodes-view, the corresponding topics will be selected. Additional information to the
topic is displayed in the Description Dock. The control bar in the Topics tab provides
buttons to display incoming messages. The echo dialog runs in its own process. To
display the content of the topic the message type must be compiled. If the type is not
available, because it is compiled only on the remote host, the dialog tries to establish
a ssh-connection and subscribe the topic on remote host directly.

You can also publish to a selected topic. If no topic is selected, a new one will be
created.

4.5 ROS-Services and Parameter View

Figure8 shows the Services and Parameter tab. It provides functions to call services
or edit parameters. The parameters are not updated automatically; download has to
be triggered manually using the top button on the right.

646 A. Tiderko et al.

Fig. 8 Services and parameter view

4.6 Launch Dock

The Launch Dock (Fig. 9) can be used to find and load or edit the launch files. The
lowest folder level contains the paths listed in the ROS_PACKAGE_PATH environ-
ment variable. In addition, only subfolders which contain *.launch or *.yaml
files are shown. The extention list can be changed in the Settings Dock.

On load, the launch file itself and all included files are loaded. If one of these
files changes, you will be prompted to reload the launch file. If changes for a node
are detected you will be asked if the corresponding nodes should be restarted. At the
lowest folder level, the last five loaded launch files are listed for convenience. When
needed, the selected history files can be removed by pressing the Delete-key on the
keyboard.

You can also search for a package folder with this dialog. If you are in a package
folder or its subfolder, you can copy and paste files.

All changes to files concern only the local host. You can transfer the modified files
(and optionally their includes) to a remote host by clicking the blue arrow button.

4.7 Launch Editor

Launch editor is a simple text editor with roslaunch XML10 syntax highlighting.
Figure10 shows the syntax highlighting. In addition, you can open the included

files in a new tab by Ctrl+(left mouse click). If the file does not exists, it will be
created. You can also include files by Drag and Drop.

10http://www.ros.org/wiki/roslaunch/XML.

http://www.ros.org/wiki/roslaunch/XML

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 647

Fig. 9 Launch dock for navigation through launch files

Fig. 10 Launch editor with syntax highlighting

It is also possible to add a template of a launch tag by using the Add tag button.
Or you can press Alt+Space to get a context menu with possible tags or attributes.

The launch editor also provides a recursive search to find text in included files.

648 A. Tiderko et al.

Fig. 11 Examples of description docks

4.8 Description Dock

The Description Dock shows additional information about selected nodes, topics
or services. It can also contain more control options. Some examples are shown in
Fig. 11.

4.9 Capabilities and Additional Description

Since the Node Manager tries to improve the overview and control of available ROS
nodes on a robot, we added some parameter to allow grouping nodes to capabilities.
Figure6 already showed an example for these groups. To define a group you need to
add a capability_group parameter to a node.

<node name="hector_mapping"pkg="..."type="...">

<param name="capability_group"value="mapping"/>

</node>

If no local capability_group parameter is found for a node, the search is
expanded to the enclosing namespaces. If a capability_group parameter is
found there, it will be assigned to the node. In this manner it is possible to assign a
group to multiple nodes with just one parameter declaration. It is also possible to add
the same node to multiple groups using a prefix for capability_group, e.g.:

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems 649

<node name="node_manager"pkg="..."type="...">

<param name="capability_group"value="System"/>

<param name="1.capability_group"value="Management"/>

</node>

The description of a capability group is stored in a global capabilities para-
meter. This parameter is defined as rosparam and contains a listwith all groupdescrip-
tions. The group description itself is a list which consists of group name, group type,
image and description. image is a relative path to the node_manager_ fkie package,
or $(find PACKAGE) can be used. The description can be coded as reStructered-
Text11 and also contain image references. Since the XML parser will renormalize
white spaces, you must use \n to force a line break.

<rosparam param="capabilities">

[["System",

"core",

"$(find some_package)/images/system_icon.png",

"The ‘‘System‘‘ group provides nodes needed to detect and

synchronize other robots in the ROS network. These are:\n

\n- Node Manager\n- Master Discovery

\n- Master Synchronization"

]]

</rosparam>

The capability group does not change the name space of the included ROS nodes.
The parameter robots describes the robots in the same manner. The list must

contain host name, robot type, displayed name, image and description.

4.10 Capability View

The Capability View (Fig. 12) tabularly shows the discovered hosts and their capa-
bilities. The view is created based on running default_cfg nodes. Each available
capability group provides buttons to start or stop all nodes of this group.

4.11 Auto Update

By default the Node Manager updates the status of changed hosts automatically. The
state of the local host is updated periodically to detect communication problems to the
localmaster_discovery. Also some of the parameters, like/use_sim_time,
of selected hosts are updated periodically. This is helpful in high-throughput

11http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

650 A. Tiderko et al.

Fig. 12 Capability view

networks, but it can also cause problems in networks with low bandwidth. To disable
the auto update feature, the Settings Dock provides an autoupdate parameter. If
you set this parameter to false you have to use the reload buttons to update the state
of each host, but you can avoid high bandwidth usage after the startup phase.

Authors’ Biography

Alexander Tiderko obtained his Dipl.-Inform. degree in computer science from the University of
Bonn, Germany in 2006. At present he is a scientist at the Fraunhofer Institute for Communica-
tion, Information Processing and Ergonomics FKIE in Wachtberg Germany. His primary research
interests include networked multi-robot systems and robot interoperability.

Frank Hoeller obtained his Dipl.-Inform. degree in computer science from the University of
Bonn, Germany in 2006. At present he is a scientist at the Fraunhofer Institute for Communica-
tion, Information Processing and Ergonomics FKIE in Wachtberg Germany. His primary research
interests include mobile robot navigation and robot system structure.

Timo Röhling obtained his Dipl.-Inform. degree in computer science from the University of Bonn,
Germany in 2008. At present he is a scientist at the Fraunhofer Institute for Communication, Infor-
mation Processing and Ergonomics FKIE in Wachtberg Germany. His primary research interests
include sensor data processing, mobile robot navigation, and robot system structure.

Advanced ROS Network Introspection
(ARNI)

Andreas Bihlmaier, Matthias Hadlich and Heinz Wörn

Abstract This tutorial chapter gives an introduction to Advanced ROS Network
Introspection (ARNI), which was released as a solution for monitoring large ROS-
based robotic installations. In the spirit of infrastructure monitoring (like Nagios), we
generate metadata about all hosts, nodes, topics and connections, in order to monitor
and specify the state of distributed robot software based on ROS. ARNI provides a
more in-depth view of what is going on within the ROS computation graph out of the
box. Any existing ROS node and host can be introspected without prior modification
or recompilation. This extends from live network properties to host and node specific
ones by running an additional node on each host of the ROS network. Furthermore,
it is possible to define reference values for the state of all ROS components based
on their metadata attributes. Subsequently, ARNI provides a mechanism to take
countermeasures on detection of a violated specification. All features are modular
and can be used without modifying existing ROS software. ARNI was written for
ROS Indigo and this tutorial has been tested on Ubuntu Trusty (14.04). A link to
the source code repository together with complementary information is available at
http://wiki.ros.org/arni.

Keywords Introspection · Safety · Reliability · Monitoring

1 Introduction

One advantage of ROS, seen as a middleware, is the flexibility of its publish-subscribe
mechanism. The flow of data between nodes is not determined at compile time, rather
name remapping allows to specify it at startup time. In addition, nodes and connec-
tions can be added and removed during the runtime of other nodes. The downside of

A. Bihlmaier (B) · M. Hadlich · H. Wörn
Institute for Anthropomatics and Robotics (IAR), Intelligent Process Control
and Robotics Lab (IPR), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
e-mail: andreas.bihlmaier@kit.edu

H. Wörn
e-mail: woern@kit.edu

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_25

651

http://wiki.ros.org/arni

652 A. Bihlmaier et al.

this high flexibility is the difficult to predict the dynamic behavior of the complete
system. For example, even adding a new host to the ROS network and executing a
node—e.g. providing a human interface to some data stream in the ROS graph—
might degrade the performance charateristics of already running node subgraphs.
Also, due to the fast changing nature of the ROS graph, it is hard to narrow down
the cause of erroneous behavior related to interrupted connections or bottlenecks
occuring in the system during runtime.

The Advanced ROS Network Introspection (ARNI) [1] package tries to overcome
some of these problems. ARNI consists of components (Fig. 5) that acquire metadata
about hosts, nodes, topics and connections in a decentralized manner. As opposed to
the actual data, it is possible to aggregate and evaluate all the metadata at a central
point in the ROS network. The metadata can then be used to introspect and monitor
the entire ROS graph both live and retrospectively. Rather than artificially restricting
the important flexibility of ROS, the ARNI package allows to handle the resulting
complexity, i.e. diversity and dynamics of the computing graph. Furthermore, ARNI
enables to define invariants for certain properties of the ROS network. For example
that the robot joint topic should always carry messages with a frequency between 950
and 1050 Hz or that the network bandwidth of each host interface should be below
90 % of its maximum. Since ARNI is exclusively based on existing ROS mechanisms,
such as messages, topics and services, it enables certain self-X properties of the
robotics software. One example is the automatic running of countermeasures on
violation of an invariant, like the restart of a node or the emergency stop of the robot.

The remainder of the chapter consists of the following topics:

• First, a summary of the ROS publish-subscribe mechanism is provided as essential
background information for the understanding of ARNI.

• Second, starting from a clean install of ROS Indigo all required steps to install
ARNI are detailed. At the end a stand-alone test is provided to verify the correct
setup of the ARNI components.

• Third, the architecture of ARNI, all it’s components and their interactions are
described.

• Fourth to Sixth, step by step instructions are provided to introspect, monitor and
finally automatically counteract deviations in the ROS network. The examples
used throughout are taken from a real system and cover on the one hand a custom
robot control stack and on the other a common community-provided stack for
camera sensors.

2 Background

ROS topics are based on the publish-subscribe mechanism with the ROS Master
serving as a well-known entry point for naming and registration. Each ROS node
advertises the topics it publishes or subscribes to the ROS Master. If a publication
and subscription exist for the same topic, a direct connection is created between the

Advanced ROS Network Introspection (ARNI) 653

roscore

nodeA

publish("tname",
 ttype)

roscore

nodeA nodeB

subscribe("tname",
 ttype)

roscore

nodeA nodeB

IP:Port
for tname

roscore

nodeA nodeB

subscribe

data

roscore

nodeAN nodeBM

data
nodeA1 nodeB1

N:M

(a) (b) (c)

(e)(d)

Fig. 1 Overview of the ROS topic mechanism. When a publisher (a) and subscriber (b) are regis-
tered to the same topic, the subscriber receives the network address and port of all publishers (c).
The subscriber continues by directly contacting each publisher, which in return starts sending data
directly to the subscriber (d). Many nodes can publish and subscribe to the same topic resulting in
a N : M relation (e). On the network layer there are N · M connections, one for each (publisher,
subscriber) tuple. The nodes can be distributed over any number of hosts within the ROS network

publishing and subscribing node(s), as shown in Fig. 1. To summarize and clearly
define the terms used throughout the rest of the chapter, there are four important
entities in the ROS computing graph:

• Host: A computer within the ROS network, identified by its IP address.
• Node: Any process using the ROS client API, identified by its graph resource

name.1

• Topic: A named communication channel as used in the publish-subscribe mech-
anism, identified by its graph resource name.

• Connection: A connection between a (publisher, subscriber) tuple carrying the
data of a specific topic (cf. Fig. 1), identified by the tuple (subscriber-node, topic,
publisher-node).

Services, synchronous remote procedure calls in ROS, as the second basic commu-
nication mechanism of the ROS middleware are also used within ARNI. However,
due to their volatile nature, they are not monitored by ARNI and thus not particularly
relevant to the scope of this chapter.

1Cf. http://wiki.ros.org/Names.

http://wiki.ros.org/Names

654 A. Bihlmaier et al.

3 ROS Environment Configuration

We assume a standard installation2 of ROS Indigo—on Ubuntu Trusty (14.04). First,
up to four further system dependencies need to be installed:

sudo apt−get ins ta l l python−pip
pip insta l l −−user −−upgrade psutil
pip ins ta l l −−user pysensors
pip ins ta l l −−user pyqtgraph

The installation itself is done by compiling the source code using catkin. The path
to the catkin workspace has to be adapted to other environments if necessary.

cd ~/catkin_ws/ src
git clone https : / / github .com/ROS− PSE/ arni . git
cd ~/catkin_ws; catkin_make

Now ARNI should be correctly setup and can be started.

3.1 ARNI: Testing of the Setup

In order to insure the correct installation of the Python modules, first try to run

rosrun arni_nodeinterface arni_nodeinterface

This command should not terminate and should not print any errors about missing
or outdated modules. If it is working correctly, abort the program at this point.

Before testing the complete setup one short reminder: If any of the following steps
fail—saying “file not found” or the Plugins are not shown in the GUI—try to repeat
the installation and make sure to follow all previous steps. Start

roscore

and execute

roslaunch arni_core test_1_steady . launch

which will create two nodes communication with each other on a topic as shown in
Fig. 2.

Check whether this succeeded with the rqt Graph plugin or run

rostopic info / forest

If this is the case, then start

rqt

Go to Plugins, Introspection and open Arni-Detail, the result should look similar to
Fig. 3.

2A desktop-full installation according to http://wiki.ros.org/indigo/Installation/Ubuntu.

http://wiki.ros.org/indigo/Installation/Ubuntu

Advanced ROS Network Introspection (ARNI) 655

Fig. 2 steady_tree publishes with 100 Hz on/forest, ninja_turtle listens to forest

Fig. 3 The location of the Arni-Plugins in rqt

Fig. 4 The GUI showing that the state of the topic/forest is ok

If there is no Arni-Detail under Plugins try to reinstall ARNI. Make sure to uncheck
the field “Errorneous Only”. Use the filter box to search for or look for forest or
manually look for the topic t!/forest. Here the results of monitoring are shown as
“state”. In this example setup the state of the topic should always be “ok” as shown in
Fig. 4. It is continuously monitored by the processing node as specified in the launch
file. If instead the state is given as “unknown”, the processing node is not working
properly. In this case, make sure to check the log for errors and try to fix these.

4 ARNI: Overview

ARNI extends the introspection capabilities of ROS by five elements (cf. Fig. 5):
First, distributed measurement and publication of communication and host meta-
data. Second, a YAML-based and parameter server compliant format to specify
reference states for a ROS subgraph. Third, a processing node, which is responsible

656 A. Bihlmaier et al.

rqt_gui

processing

ROS node

ROS node

ROS node

ROS node
ROS node

ROS node

metadata

data

host, node, topic, connection, network status

node interface

(a)

(b)

Specification

(d) (c)

(g)

countermeasure

(e)

(h)

/statistics/statistics_host
/statistics_node

/statistics_rated

(f)

Countermeasures

Fig. 5 Overview of the Advanced ROS Network Introspection components: a Publishing metadata
for topics and connections (/statistics). b One node per host to publish metadata for hosts (/statis-
tics_host) and nodes (/statistics_node). c The processing node monitors and compares actual values
to a YAML specification (d) and publishes the result of the comparison (/statistics_rated). e The
countermeasure node can automatically act on the rated data, given a YAML specification of the
countermeasures (f). g The ARNI rqt_gui to visualize current state of ROS network. h The rqt_gui
Node Graph plugin can also show/statistics data

for collecting all metadata, comparing it to the reference, if one is available, and
publishing the results of the comparison. Fourth, a countermeasure node that runs
predefined actions in case a deviation is reported by the monitoring infrastructure.
Fifth, an extensive rqt GUI plugin that provides an out-of-the-box overview of hosts,
nodes, topics and connections within the ROS network. In case monitoring is active,
clearly visible feedback about the overall and detail state of the computation graph
is provided.

Advanced ROS Network Introspection (ARNI) 657

No new means of communication are introduced by ARNI, instead all components
rely solely on features already built into ROS. Most notable of these are topics,
parameters and services. Each component will be described in more detail in the
remainder of this section. The following sections utilize all these components in two
concrete examples.

4.1 Metadata Acquisition

In order to provide live information about the whole ROS graph, it is inevitable to
generate this data at its origin. Thus ARNI extends the /statistics informa-
tion, which can be generated by all ROS—Indigo or later—nodes that use the C++
(roscpp) or Python (rospy) client API. The computation and network overhead is neg-
ligible, since no matter how much bandwidth is utilized to transfer data, the amount
of metadata to describe it is constant and consists of a single floating point value.
The most important metadata for connections and topics is the utilized network band-
width, message frequency, jitter, latency and dropped messages. ARNI also provides
a /statistics_host and /statistics_node topic, which requires to run
one additional interface node on each host. Again, the additional CPU and memory
usage for this node is very low. The provided information includes per host and per
node CPU, memory and raw network utilization as well as hardware health attributes,
such as CPU and GPU temperatures. To uniquely identify each component of the
ROS graph (cf. 2), each one can be refered to by its SEUID (Statistics Entity Unique
IDentifier):

• Host: h!IP, e.g. h!127.0.0.1
• Node: n!node-graph-name, e.g. n!/camera_driver
• Topic: t!topic-graph-name, e.g. t!/cam_left/image_raw
• Connection: c!subscriber-graph-name!topic-graph-name!publisher-graph-

name, e.g. c!/rqt_gui!/cam_left/image_raw!/camera_driver

Having all this information available live and in a central place enables a much deeper
understanding of how the robot software works in terms of its inner communication
patterns. This is useful to detect (unwanted) crosstalk, e.g. due to overloaded network
equipment or hosts, and soon becomes an indispensable tool to debug non-local errors
in the distributed system.

4.2 ARNI rqt GUI

Two rqt plugins provide a graphical overview of all the host, node, topic and
connection metrics of the ROS graph. The first plugin, ARNI-Overview (Fig. 9),
aggregates all metadata into a single view, which can be seen as a network health
dashboard. The second plugin, ARNI-Detail (Figs. 6 and 7), allows to view and

658 A. Bihlmaier et al.

select all metadata in a hierarchical manner. Furthermore, plots are available for
the metadata, which provide a live view and enable to introspect a moving window
history of each metadata item (Fig. 8). If reference states are specified for an item, the
conformity to these or deviations from them are graphically indicated. ARNI-Detail
is furthermore a tool to gather more information about which key indicator deviates
from the reference.

4.3 Reference State Specification

Providing the ROS programmer with live information about all components of his
robot is a valuable tool. However, once it is clear what invariants are supposed
to apply for a specific part of the whole system, the next step is to specify these
invariants and have them automatically be checked by a component of the system.
From a system point of view, this corresponds to the property of self-protection.
Since flexibility and runtime reconfigurability are highly valued features of ROS, the
specifications must also be modular and orthogonal. For example, if a specification is
provided for a particular sensor subsystem, it should not affect any other subsystem
at all. In addition, it must be possible to only specify constraints for values which
are part of the invariant without imposing any constraints on those values which
are not. The format will be best understood through the examples provided in the
following sections. The general structure can be summarized as being a list of SEUIDs
under the parameter namespace /arni/specifications, each one containing
boundaries for a subset of the available metadata.

4.4 Countermeasures Specification

Based on the evaluation of the current metadata against the specification, the
/statistics_rated topic is published by the processing node. Rated statistics
exist for each item in the reference specification and the provided ratings are: Value
unknown, value too low, value within bounds or value too high. The countermeasure
node (see Fig. 5e) can use this information together with a list of conditional actions,
given as parameter list under /arni/countermeasure, to automatically coun-
teract a detected deviation. This corresponds to the property of self-healing. Essen-
tially each countermeasure consists of a condition on rated statistics items together
with an action that is executed if the condition is true. Again, the following example
should illustrate how these conditional actions work in detail.

Advanced ROS Network Introspection (ARNI) 659

5 ARNI: Advanced Introspection

The following three sections will introduce ARNI in detail by showing two exemplary
applications in the context of our ROS-based lab setup for cognitive surgical robotics.
We begin by starting the ROS network, namely

roscore

and initializing parameters to generate statistics, which must happen before starting
any other ROS node

roslaunch arni_core init_params . launch

We then start up our ROS network, consisting of various nodes distributed across
several machines, as we would when not using ARNI. Now, we can start rqt and
open the Arni-Detail plugin. Without any additional action, we get an overview of
the communication within the ROS network (see Fig. 6). At this time hosts and nodes
do not provide any kind of information, only topics and connections are updated.
This is because at the moment the host interface node is not yet started which will be
done later. Arni-Detail consists of two Widgets, the Treeview that shows the whole
network as a Qt tree widget and the Detail Widget which shows information about the
currently selected item in the Treeview (see Fig. 6). The Treeview widget can filter
the information in a number of different ways. Any of the four layers host, node, topic
and connections can be shown or hidden with checkboxes. There is also a switch
for subscribers. Since the Treeview does not show these in the default setup, the
subscribers can be recognized by their modified name which contain an additional
“–sub” suffix. This enables to search for errors in the ROS network and to see if
all nodes listen to the topics they should. The recording bar can be ignored for the
moment, it will be used later on Sect. 6.

Fig. 6 The Arni-Detail Treeview showing parts of the example network. Since the nodeinterface
is not running only topics and connections contain actual data. Those connections displaying “no
recent data” have published no information for an extended period of time

660 A. Bihlmaier et al.

Fig. 7 The Detail widget of Arni-Detail showing information about a connection

The second Widget of Arni-Detail shows information about the currently selected
item. As can be seen in Figs. 7 and 8, Arni-Detail shows information for hosts as
well as nodes, topics and connections. It consists of four independent parts namely
Information, Graphs, Log and Actions. Information shows any kind of information
the system has about the item. What this information is for a connection in particular
can be seen in Fig. 7. Graphs show a subset of the properties in information and plot
them over a history of up to 60 s. If the processing node is running and has a valid
specification for the currently selected item, the log will show whenever the items
state changes. The following chapter will deal with specifications and explain how
to use them. The Actions tab is only activated on nodes and can be used to stop or
restart them, this feature is further explained in Sect. 7.

Before opening Arni-Overview one more step has to be executed otherwise it
will not show any information. The host interface has to be started on all hosts from
which further information should be collected. This done by running

rosrun arni_nodeinterface arni_nodeinterface

once per host.
The interface node gathers information about the host it is running on and about

all other nodes running on the same machine. This information is distributed over
the network with the topics /statistics_host and /statistics_node.
Arni-Detail will now also show statistics for these hosts and nodes. At this point we
start Arni-Overview which provides combined information about all hosts. Figure 9
shows what it looks on our example system. Arni-Overview also contains a large
colored button, which is used in analogy to a traffic light. It will be green as long
as no specification is loaded and at least one host is online. When specifications are
defined and any item deviates from its specification, the light will turn red. As soon

Advanced ROS Network Introspection (ARNI) 661

Fig. 8 The Detail widget showing the mean CPU usage plot of a host. The metadata property to
plot can be selected as well as the interval over which it is plotted

Fig. 9 The Arni-Overview summarizes the information of all hosts. It has the three tabs Information,
Graphs and Log which behave very similar to those in Arni-Detail

662 A. Bihlmaier et al.

as all specifications are met again, the light will turn orange for a few seconds before
returning to green as notification that an error had occurred, but that it was resolved
in the meantime.

6 ARNI: Monitoring

The two parts of the network that will be focussed on are a ROS subgraph for
robot control as seen in Fig. 10 and one of a camera depicted in Fig. 11. The ARNI
monitoring node enables to define specifications for certain metadata properties and
to notify whenever such a constraint is violated by showing a warning in the GUI.
The same information can also be used to define automated countermeasures which
will be treated in the next section. Since the API is very flexible at this point any
kind of notification can be executed. The processing node itself can be started with

rosrun arni_processing arni_processing .

Defining and using a config file is very simple since it is a YAML document that can
be loaded onto the parameter server. To simplify the creation of a config file, the GUI
provides a tool for “recording”. First data will be recorded, then, we will look at the

ROS topics:
 lwr/state
 lwr/get_cartesian
 lwr/set_cartesian
 lwr/get_joint
 lwr/set_joint

ROS topics:
 lwr/direct/state
 lwr/direct/get_joint
 lwr/direct/set_joint

ROS action:
 JointTrajectoryGoal

trajectory_action2topic lwr_safe_cartesian ros2fri

FRI binary
 joint

 position

Fig. 10 This figure shows the relevant actuator ROS subgraph used as one example throughout the
chapter. The ros2fri node directly translates between the proprietary KUKA FRI protocol and ROS
topics. In the lwr_safe_cartesian node inverse kinematics and collision detection is implemented.
Therefore, it publishes and subscribes a cartesian and joint topic. The trajectory_action2topic node
provides a ROS action interface to the robot

ROS topics:
 camera/image_rect_color

ROS topics:
 camera/image_raw
 camera/camera_info

image_proc prosilica_node

GigE Vision
 raw images
 camera settings

Fig. 11 The figure represents the camera sensor subgraph used as second example. We use
the prosilica_node (The prosilica_node is provided by the http://wiki.ros.org/prosilica_camera
package.) to map the camera’s GigE Vision interface to ROS image messages. Furthermore, the
image_proc (The image_proc node is provided by the http://wiki.ros.org/image_proc package.)
node does image rectification in case the camera was intrinsically calibrated

http://wiki.ros.org/prosilica_camera
http://wiki.ros.org/image_proc

Advanced ROS Network Introspection (ARNI) 663

Listing 1.1. Example of recording with rqt GUI
[. . .]
−t ! / sometopic

frequency : [50,100]
other properties

further entries like host , node, topic or connection ,
are all on one level in the YAML f i l e

resulting file and its structure. Recording means that all the data of the selected items
is recorded for a certain amount of time and a specification is generated from the
data. For example, recording one topic for a minute, which has a minimum frequency
of 50 Hz and a maximum frequency of 100 Hz, the configuration file will contain an
entry as shown in Lst. 1.1.

Loading this YAML file to the parameter server can be done with the GUI or on
the command line. In the GUI approach one has to click on the “load config” button,
choose the file and open it. It will automatically be uploaded and the processing node
is notified so it can update its configuration. If this appears to change nothing, check
rqt log which should print errors and the processing node log which should print the
amount of loaded entries (one for each host, node, topic and connection).

Trying to change an existing specification by loading a modified file repeatedly
with the GUI will not result in the desired behaviour. This is because the GUI pushes
every specification into another namespace. The issue can be overcome either by
using the command line and the same namespace or by removing the entries from
the parameter server. The following command can be executed as given and it will
remove all specifications or it can be modified to remove only certain specifications:

rosparam delete / arni / specifications

This leads to the second path of adding specifications, the command line. Specifica-
tions can be loaded into a specific namespace, which is important if this is not already
done in the specification file. In this manner the same file can be imported multiple
times and the specification node will always use the latest specifications, assuming
the file is always pushed to the same namespace. First we load the specification to the
server (cf. Lst. 1.2) and then we call a service to inform the processing node about
the changes:

rosparam load actuator .yaml/ arni / specifications
rosservice call /monitoring_node/ reload_specifications

As already mentioned, the specification format is a simple YAML structure which
will now be further explained. Also note that all valid variants of the YAML syntax
are allowed. For example, one may use the “intended” notation for lists or the “[…,
…]” notation. If one does not want to type the namespace on every load, it is possible
to add them to the YAML file:

arni :
specifications :

#actual content

664 A. Bihlmaier et al.

Fig. 12 After loading specifications the system checks if these are fulfilled and displays the result
in the GUI

Fig. 13 Items marked for recording appear in the Treeview with a light orange color. Items can
marked and unmarked via the right-clicking context menu

Remember to use correct indents. The first example pertaining to Fig. 10, acuta-
tor.yaml, was generated by hand. We looked at the nodes and considered all proper-
ties for which fixed boundaries are known and that should be monitored for safety
and reliability. In case of the nodes this means that they should not exceed a certain
computation time. The connections have to send constantly at almost exactly 500 Hz.
Figure 12 shows how this looks on a properly functioning system which returns “ok”
for all items.

If the specification does not work at the first try, have a look at the output of
the processing node. The number of specifications loaded is printed on call of the
reload_specification service. If none or not all are loaded, check namespaces, indents
and whitespaces.

The second—more easy—possibility to start with reference specifications is usage
of the GUI recording tool. Items that should be monitored are marked as shown in
Fig. 13. Before proceeding, one has to make sure the system is in its target state, i.e.
the relevant subsystem is working as intended. This is important because the system
will take the maximum and minimum value over the recording period and set it as the
margins of the constraint. If the recording is done in an error state, where for example
the load is unexpectedly high or low, this will lead to erroneous specification files,

Advanced ROS Network Introspection (ARNI) 665

Listing 1.2. actuator.yaml
− n! / robots / lwr2/ safe_cartesian :

node_cpu_usage_max: [0 , 30]
node_cpu_usage_mean: [10, 30]
node_ramusage_mean: [0 , 5]

− c ! / robots / lwr2/ joint_trajectory_action ! / robots / lwr2/ get_joint ! / robots / lwr2/
↪→ safe_cartesian :

frequency : [495, 505]
− h!10.0.0.2:

cpu_temp_max: [0 , 80]
cpu_temp_mean: [0 , 70]
cpu_usage_mean: [0 , 90]
ram_usage_mean: [0 , 90]

− c ! / robots / lwr2/ safe_cartesian ! / robots / lwr2/ direct / get_joint ! / robots / lwr2/ ros2fri
↪→ :

frequency : [495, 505]
− n! / robots / lwr2/ ros2fri :

node_cpu_usage_max: [0 , 30]
node_cpu_usage_mean: [3 , 30]
node_ramusage_mean: [0 , 5]

whose values have to be corrected manually. After marking all to be monitored items
the “Start Recording” button must be pressed. Recording should be done for at least
a few seconds to get meaningful minimum and maximum values. When it is deemed
that enough data has been collected, “Stop Recording” can be clicked. The resulting
specification file can now be saved and directly loaded as shown above.

The recording feature was used to define specifications for the second subsystem
used as example (see Fig. 11). Three items in the camera subsystem were marked and
recorded with the GUI. Afterwards we modified the file by removing any metadata
item that we either considered to be uncritical or for which no fixed constraint applies.
Although not strictly necessary, we advise always to have a close look at the recorded
values and often to also manually increase the margin by a few percent and round
the values for improved readability.

Applying these specifications on our system we found out that the items sometimes
do not match the specifications. In Fig. 14 we see in the Treeview that the topic and
the node have problems. In Fig. 15 we further investigated the problem by clicking
on the erroneous node item to see which part of the specification is violated. We
actually found a previously unnoticed bottleneck in our system, which is due to

Fig. 14 The orange color of the node shows that a problem had occurred a short while ago, but that
the current state is within the specification. When the topic is marked red this means it is currently
not working as intended, i.e. violating one of the specifications

666 A. Bihlmaier et al.

Listing 1.3. cam.yaml
− c ! /cameras/endoscope/endoscope_image_proc! /cameras/endoscope/image_raw!/cameras/

↪→ endoscope_driver :
dropped_msgs: [0 , 2]
period_max: [0.033, 0.066]
period_mean: [0.033, 0.034]
stamp_age_max: [0.0019, 0.0045]
stamp_age_mean: [0.0017, 0.0019]

− t ! /cameras/endoscope/image_raw:
bandwidth: [48000000, 63000000]
dropped_msgs: [0 , 2]
frequency : [24, 35]
period_max: [0.033, 0.066]
stamp_age_max: [2.0e−12, 4.0e−12]

− n! /cameras/endoscope_driver :
node_bandwidth_max: [5000000, 75000000]
node_bandwidth_mean: [48000000, 65000000]
node_cpu_usage_max: [0.0 , 25.0]
node_cpu_usage_mean: [0.0 , 20.0]
node_cpu_usage_stddev: [0.0 , 3]
node_message_frequency_max: [0.02 , 0.05]
node_message_frequency_mean: [0.02 , 0.05]
node_ramusage_max: [0.40 , 0.7]
node_ramusage_mean: [0.2 , 0.6]
node_read_max: [0.0 , 0.0]
node_read_mean: [0.0 , 0.0]
node_write_max: [0.0 , 0.0]
node_write_mean: [0.0 , 0.0]

heavy network load on a different network segment in combination with a central
Ethernet switch that contains a backplane with limited bandwidth.

7 ARNI: Countermeasures

In this chapter it is assumed that the previous parts are understood and host interface
nodes as well as the processing node are running. Processing needs to have valid
constraints since countermeasures can only react to violations of these constraints.
To understand how this might be helpful, we like to give a short example. If one looks
at the maximum temperature of a server it is clear that it should never exceed a certain
limit. Thus, we define a constraint that permanently monitors the CPU temperature.
Along with the constraint, we define an action taken on violation of the constraint that
guarantees that it does not occur without it being noticed. A good countermeasure
in this case would be to email the server administrator or to shutdown the host.

ARNI provides two ways for countermeasures. The first is an interactive comfort
function that uses the same mechanisms as the second technique described below.
When clicking on a node in Arni-Detail and looking at the detail window, a tab called

Advanced ROS Network Introspection (ARNI) 667

Fig. 15 The node is in an error state since several specifications are violated. For example, the
bandwidth is one below the specified one. In this case a network switch was overloaded and thus
delayed or dropped packets

“Actions” is available. The node can be stopped or restarted from there. In the latter
case the node will be restarted on the same host and with the same command line
parameters. Nonetheless this will not work for all nodes and one should always make
sure that the node works correctly after this countermeasure.

The second countermeasure technique is much more powerful, although its usage
and use cases are highly application dependent. In a similar way to specifications,
countermeasures can be created and pushed to the parameter server. We first start the
countermeasure node:

rosrun arni_countermeasure arni_countermeasure

Next we load a countermeasure file:

rosparam load counter .yaml/ arni /countermeasure

And finally tell the countermeasure node to reload all countermeasures:

rosservice call /countermeasure / reload_constraints

The countermasure node will output the number of loaded countermeasures, which
can again be used to detect user errors more easily. Whenever a countermeasure is
executed it will also show a short notification. Similar to specifications, multiple
countermeasure files can be loaded. The countermeasure files have the format shown
in Lst. 1.4.

668 A. Bihlmaier et al.

Listing 1.4. Description of countermeasure specification format
all countermeasures have to be loaded to
/ arni /countermeasure/ constraints
some_constraint : # the name of an actual constraint

constraint :
−or : # one of : and, or , not

property can be high /low or normal
name_of_the_item: {property : low}

the minimum time the constraint has to be
violated before the countermeasures is executed
min_reaction_interval : 1
timeout until the action can be executed again
this exists so that e .g. a node has suff icient
time to restart
reaction_timeout : 20
reactions : # one can l i s t as many of these as required

some_reaction_name: {
action : restart , # or stop , run , publish
specifies the node where the action is run
node: /cameras/endoscope_driver
publish requires "message" to be defined ,
i t is shown in the GUI logging tools
run requires "command" to be defined , this
shell command will be executed on node’s host

}

The possibility to define an autonomy_level will be ignored in this tutorial. It
enables the advanced user to define a global countermeasure level and an action
will only be executed if its level is below the current global level. This constitutes a
more intelligent approach to countermeasure since the system should, for example,
take automated countermeasures in development mode but never when used for
production—or the other way round. As before, the concrete use of countermeasures
is shown (Lst. 1.5) for our two examples. It is assumed that the two previously defined
specifications cam.yaml (Lst. 1.3) and actuator.yaml (Lst. 1.2) have been loaded.

A brief explanation of the countermeasures for our example system follow. The
first constraint (lwr2_joint_topic) ensures that two connection frequencies within the
robot control system are always on the level defined in the specifications. As shown
in Lst. 1.2 this frequency value is 495–505 Hz. If this is not the case, something
is definitely wrong in this subsystem and the control node is shut down, which in
turn immediately leads to an emergency stop of the robot. The second constraint
makes sure that the main server’s CPU never gets too hot. The server is located in
a rack, which experienced such problems in the past, which led to issues that were
difficult to debug. The third constraint validates whether the camera sends images
with at least 24 Hz. If it falls below this frequency, the node will be automatically
restarted—given that we know from experience that reinitialization of the camera
often solves this problem.

Advanced ROS Network Introspection (ARNI) 669

Listing 1.5. counter.yaml
lwr2_joint_topic :

constraint :
− or :

c ! / robots / lwr2/ safe_cartesian ! / robots / lwr2/ direct / get_joint ! / robots / lwr2/
↪→ ros2fri : {frequency : low}

c! / robots / lwr2/ joint_trajectory_action ! / robots / lwr2/ get_joint ! / robots / lwr2/
↪→ safe_cartesian : {frequency : low}

min_reaction_interval : 1
reaction_timeout : 20
reactions :

stop_node: {action : stop , autonomy_level : 1,
node: / robots / lwr2/ ros2fri}

robotcontrol_host_temp :
constraint :
− and:

h!10.0.0.2: {cpu_temp_max: high}
min_reaction_interval : 10
reaction_timeout : 3600
reactions :

send_email : {action : run ,
command: mail −s "Warning CPU too hot" admin@example.com,
autonomy_level : 1,
node: / robots / lwr2/ ros2fri}

endoscope_camera_topic:
constraint :
− and:

t ! /cameras/endoscope/image_raw: {frequency : low}
min_reaction_interval : 1
reaction_timeout : 20
reactions :

restart_node : {action : restart , autonomy_level : 1, node: /cameras/
↪→ endoscope_driver}

config :
reaction_autonomy_level : 1

8 Conclusion

We hope the examples in this chapter have shown, how easy it is to define specifica-
tions and countermeasures for real world systems. ARNI provides powerful advanced
tools, but also its very basic functionality can be an important aid in governing big
ROS networks. Furthermore, we found that always having the ARNI rqt GUI visible
on dedicated lab monitor provides a good overview about the overall state of the
ROS system at a glance.

670 A. Bihlmaier et al.

Reference

1. A. Bihlmaier, H. Wörn, Increasing ROS reliability and safety through advanced introspection
capabilities. Proc. INFORMATIK 2014, 1319–1326 (2014)

Authors’ Biography

Andreas Bihlmaier Dipl.-Inform., obtained his Diploma in computer science from the Karlsruhe
Institute of Technology (KIT). He is a Ph.D. candidate working in the Transregional Collabora-
tive Research Centre (TCRC) “Cognition-Guided Surgery” and is leader of the Cognitive Medical
Technologies group in the Institute for Anthropomatics and Robotics—Intelligent Process Control
and Robotics Lab (IAR-IPR) at the KIT. His research focuses on cognitive surgical robotics for
minimally-invasive surgery, such as a knowledge-based endoscope guidance robot.

Matthias Hadlich is an undergraduate at the KIT studying computer science. He is a research
assistant at the High Perfomance Humanoid Technologies Lab (H2T). He is also part of the “Soft-
ware Engineering Practice“ team that created ARNI and is its current maintainer.

Heinz Wörn Prof. Dr.-Ing., studied electronic engineering at the University of Stuttgart. He did
his Phd thesis on “Multi Processor Control Systems”. He is an expert on robotics and automation
with 18 years of industrial experience. In 1997 he became professor at the University of Karlsruhe,
now the KIT, for “Complex Systems in Automation and Robotics” and also head of the Institute
for Process Control and Robotics (IPR). Prof. Wörn performs research in the fields of industrial,
swarm, service and medical robotics.

Implementation of Real-Time Joint
Controllers

Walter Fetter Lages

Abstract This tutorial chapter explains the implementation of controllers in the
Robot Operating System. The inner working of the ROS real-time loop is explained
with discussion of the classes used to implement it. Contrariwise to most available
examples of implementation of controllers in ROS, which show the use of single
input, single output controllers using the proportional-integral-derivative control law,
here controllers are approached in a more general sense, so that any control law can
be used. A complete example of implementation of a MIMO nonlinear controller
is presented using the computed torque control law. The real-time aspects of the
problem are also considered and the controller is ready for running in hard-real-time
with the PREEMPT_RT kernel patch. The source code of examples are available at
public repositories to enable readers to experiment with the examples and adapt them
to their robots.

Keywords Controller · Real-time loop · Non-linear controller · Parameter identi-
fication · Computed torque · MIMO controller

1 Introduction

Despite ROS being a widely used framework nowadays, its documentation and exam-
ples covering low-level controllers are poor and almost all existing tutorials are based
on single input, single output (SISO) controllers using the classical Proportional, Inte-
gral, Derivative (PID) control law. Most references and textbooks on ROS [9, 18, 21,
23] do not even cover the implementation of controllers. On the other hand, robots
are, in general, non-linear multi input, multi output (MIMO) systems, for which the
use of independent PID controllers for each degree of freedom (DoF) is not adequate
due to coupling.

W.F. Lages (B)
Federal University of Rio Grande Do Sul, Av. Osvaldo Aranha, 103,
Porto Alegre, RS 90035-190, Brazil
e-mail: fetter@ece.ufrgs.br
URL: http://www.ece.ufrgs.br/~fetter

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_26

671

672 W.F. Lages

Although the use of MIMO and non-linear joint controllers is not new in robotics,
their use under ROS is not common and it is very hard to find an example of such
an implementation. Probably the reason for that is that researchers with background
on control systems and used to code their controllers in Matlab are not comfortable
with the software skills required to implement controllers in ROS. On the other
hand, the concept of a controller in ROS is somewhat different from its concept in
control theory, which confuse things further. The purpose of this tutorial chapter is
to fill this gap, by presenting the details of implementation of a general controller in
ROS. Hence, the main contribution of this chapter is the description of how to use
the ROS infrastructure to implement a generic (nonlinear, MIMO) control laws in a
ROS controller and how to make it run in real-time.

The computed torque control law is used. Although it is a classical controller, it
is non-linear and MIMO. Hence, its implementation in ROS is generic and represen-
tative of almost any other controller and is a good example to serve as reference for
further implementation of any other control law (linear, non-linear, SISO, MIMO,
whatever), while the low-level controllers available from standard ROS packages,
such as ros_controllers, and used as examples on available tutorials are only
representatives of SISO controllers. To explore the generality of the implementa-
tion of the proposed controller, the inner working of the real-time loop of ROS is
explained in detail, motivating the further implementation of advanced controllers in
ROS such as in [17], where a computed torque controller is implemented to control
a biped robot.

More specifically, the remainder of this chapter will cover the following topics:

• a background on control systems
• ROS packages for implementation of controllers
• configuring the system for real-time
• testing the installed packages
• implementing controllers in ROS

2 Background on Control Systems

Control systems can operate either in open-loop or in closed-loop. A control system
operates in open-loop when the control actions do not depend on the plant (the part
of the system being controlled) output or state. A typical example of an open-loop
control system is the position control by using a stepper motor: The position of the
motor axis is commanded by the controller which activates the motor windings in
an appropriate sequence to drive the motor the number of required steps. Note that
this process does not require that the controller receives any information about the
effectiveness of its control actions. It is just assumed that the control actions produce
the desired effect.

Figure 1 shows a block diagram of a typical open-loop control system. Besides
the controller and the plant, there are three signals: y(t) which is the plant output,

Implementation of Real-Time Joint Controllers 673

Fig. 1 Open-loop control system

u(t) which is the plant input, also called the control action and r(t) which is the
reference. The purpose of any control system is to force y(t) to follow r(t).

Open-loop control systems, as shown in Fig. 1, are nice if a very good mathemat-
ical model of the plant is available and it is not subject to disturbances, parameter
variations due to temperature, aging and any other imperfection of the real world.
Just imagine what would happen in the above example of the stepper motor if the
axis is stuck for some moment and the motor can not advance the commanded step.
The controller would not be aware that the motor axis is not at the desired position.

In order to improve system capabilities to reject disturbances and increase its
stability and robustness to parameter variations, a closed-loop control system is used.
In a closed-loop control system, the control action depends on the system output
(which is called output feedback, Fig. 2) or state (which is called state feedback,
Fig. 3). Usually, an error signal (e(t)) is computed from the reference and the plant
output and then is used by the compensator to compute the control action u(t).
Note that the controller is composed by the adder (actually a subtractor) and the
compensator. However, it is common to use the term controller to refer to the function
implemented by the compensator alone, excluding the adder.

An example of a closed-loop output feedback control system is the classi-
cal Proportional+Integral+Derivative (PID) controller, which computes the control
action as:

u(t) = K pe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)

dt
(1)

where K p, Ki and Kd are the gains associated to the proportional, integral and
derivative terms, respectively.

r(t) u(t) y(t)e(t)
+

−
compensator

controller

plant

Fig. 2 Closed-loop control system with output feedback

674 W.F. Lages

r(t) u(t) y(t)

x(t)

e(t)
+

−
compensator

controller

plant

Fig. 3 Closed-loop control system with state feedback

An expression like (1), which prescribes how to compute the control action, is
called a control law.

The plant may be a single motor, an entire robot, or even a team of robots. However,
it is important if it is a single input, single output (SISO) system, like a motor, where
the input is the voltage applied to it and the output is its axis position or a multi input,
multi output (MIMO) system, like a robot, where the inputs are the torques for each
joint and the outputs are the positions of each joint. In a SISO system u(t) and y(t)
are scalar signals, while in a MIMO system u(t) and y(t) are vectors (not necessarily
with the same dimensions). Note that r(t) has the same dimension as y(t).

In a SISO system, it is trivial that the single u(t) should be manipulated by the
controller to force the single y(t) to the desired r(t). However, in a MIMO system,
it is not obvious which element of u(t) drives what element of y(t). Possibly each
element of y(t) depends on all elements of u(t). Furthermore, the dimensions of
y(t) and u(t) may not be the same. In a manipulator robot with n joints, y(t) (the
position of each joint) has n elements and u(t) (the torque applied to the joints) has
n elements as well. Nonetheless, for a differential-drive mobile robot, the dimension
of y(t) (the robot pose) is 3 while the dimension of u(t) is 2 (the torque or velocities
in each wheel).

It is important to note that, in general, a MIMO system can not be regarded as
a set of SISO systems. That is only possible when the system is decoupled which
means that each yi (t) depends on one and just one ui (t). Usually, that is not the case
for robotic systems, as effects such as inertia, centrifugal and Coriolis forces almost
always create couplings among all joints.

Some closed-loop control systems do not compute their control action from the
plant output, but from a set of system internal variables, called state variables (x(t)),
as shown in Fig. 3. Those systems are called a state feedback systems.

Another aspect of the plant is its linearity. A linear plant is one in which the relation
between y(t) and u(t), which is called its model, is a linear function,1 implying that
its model can be written in the form:

1A linear function is one in which f (α1x1 + α2x2) = α1 f (x1) + α2 f (x2) for any constant α1 and
α2 and any x1 and x2.

Implementation of Real-Time Joint Controllers 675

{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2)

where x(t) is the state of the system and A, B, C and D are parameters of the system.
A non-linear plant is one for which the linearity does not hold. In this case, its

model can not be written as (2) but in a more general form given by:

{

ẋ(t) = f (x(t), u(t))

y(t) = h (x(t), u(t))
(3)

There is a huge amount of knowledge and methods on how to design controllers
for linear systems [1, 5, 7, 20]. However, robots are almost always non-linear plants.
Although not as massive as for linear systems, there are also some methods for control
of non-linear systems [11, 12, 19, 25]. In many cases, robot models fall in a special
class of non-linear systems, whose models can be written as:

{

ẋ(t) = f (x(t)) + g (x(t)) u(t)

y(t) = h (x(t))
(4)

which are called affine systems and have some properties making them more easier
to control than general non-linear systems.

It is not in the scope of this chapter to discuss how to design control laws for robots.
The purpose of this chapter is to explain how to implement those control laws in a
ROS controller. Hence, the remain of this chapter will be based on a classical, but
yet general enough, control law for robots known as the Computed Torque Control
Law [8]. That control law is representative of a general non-linear, MIMO, totally
coupled controller and its implementation is a good example for implementing any
control law in ROS, while the usual examples of implementation of controllers in
ROS are based on linear, SISO, totally decoupled PID controllers.

2.1 Computed Torque Controller

The dynamic model of a manipulator robot (and actually of almost any robot) can
be obtained by the Lagrange-Euler formulation [8] and is given by:

τ = M(q)q̈ + V (q, q̇) + G(q) (5)

where q is the vector of joint positions, M(q) is the inertia matrix, V (q, q̇) is the
vector of centrifugal and Coriolis forces, G(q) is the Vector of gravitational forces
and τ is the vector of torques applied to the joints.

676 W.F. Lages

By defining x = [

q q̇
]T

and u = τ it is possible to write (5) as:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ẋ =
[

q̇

−M(q)−1 (V (q, q̇) + G(q))

]

+
[

0

M(q)−1

]

u

y =
[

I 0
]

x

(6)

which has the form of (4), with f (x) =
[

q̇
−M(q)−1 (V (q, q̇) + G(q))

]

, g(x) =
[

0
M(q)−1

]

and h(t) = [

I 0
]

x .

The computed torque control law uses the dynamic model of the robot to imple-
ment a feedback linearization [25]. Then, a PD controller is used to control the
resulting linear system. The resulting control law is then given by:

τ = Mn(q)
[

q̈r + Kd(q̇r − q̇) + K p(qr − q)
] + Vn(q, q̇) + Gn(q) (7)

where qr is the position reference, K p is the proportional gain matrix, Kd is the
differential gain matrix, Mn(q) is the nominal inertia matrix, Vn(q, q̇) is the nominal
vector of centrifugal and Coriolis forces, Gn(q) is the nominal vector of gravitational
forces.

The structure of the computed torque control system is shown in Fig. 4. Note that
there is an abuse with respect to the usual semantics of a block diagram. The variables
are represented in time domain and while the continuous lines denote inputs which
are multiplied by the block “gain”, the dashed lines denote inputs which are just
necessary for the block computation.

By supposing that there is no model mismatch, then M(q) = Mn(q), V (q, q̇) =
Vn(q, q̇), G(q) = Gn(q), and by applying (7) to (5), it is possible to obtain:

ë + Kdė + K pe = 0 (8)

where e = qr − q.
Expression (8) shows that by choosing the matrices K p and Kd in a diagonal form,

it is possible to obtain a decoupled closed-loop system, where the behavior of each
joint error is given by a second order differential equation. The natural frequency ωn

and the damping coefficient ξ of each equation are determined by choosing the gain
matrices: K p = diag

(

ω2
n

)

and Kd = diag(2ξωn). See [20] for a discussion of how
to choose ωn and ξ for a desired performance of the control system. In robotics, it
is usual to set ξ = 1 for a step response without overshoot and then compute the ωn

for a desired settling time (Ts) as ωn ≈ 4
ξTs

for a settling to within a margin of error
of 2 % around the reference.

Implementation of Real-Time Joint Controllers 677

q

q̇

τ

qr

q̇r

q̈r

Kp

Kd

+

+
+

+

+

+

+
+

−

−

Mn(q)

Gn(q)

Vn(q, q̇)

Robot

Fig. 4 Block diagram of the computed torque control

Note that to compute the computed torque control law (7) it is possible to use the
classical form of the Newton-Euler formulation2 by letting:

v = q̈r + Kd(q̇r − q̈) + K p(qr − q) (9)

and computing τ = f (q, q̇, v).
The computations required by the kinematic and dynamic models of a robot can

be done by using the OROCOS Kinematics and Dynamics Library (KDL) [3]. In
particular, the ChainIdSolver_RNE class, implements the well-known Newton-
Euler algorithm [6].

3 ROS Packages for Implementation of Controllers

This section describes the installation of some packages useful to implement
controllers in ROS. Some of them are not present in a standard Desktop installation
of ROS and should be installed. Besides that, a few custom packages, containing

2The Newton-Euler formulation is a well-known recursive procedure to compute the torque in (5)
as τ = f (q, q̇, q̈).

678 W.F. Lages

our example implementation of the computed torque controller, should be installed
as well.

Of course, it is possible to implement controllers without using those packages,
as long as a ROS node is a process in the host operating system and therefore can do
anything that a process can do. Also, many commercial robots implement the joint
controllers in their firmware or use servo-motors with built-in controllers, and hence
they can be used in ROS without joint controllers implemented in ROS. However,
the assumption here is that the goal is to implement a controller compliant with the
ROS definition of a controller. Furthermore, note that the architecture of ROS nodes
is not suitable for real-time processing, while the architecture of ROS controllers
was created with hard real-time processing in mind.

3.1 Setting up a Catkin Workspace

The packages to be installed for implementing ROS controllers assume an existing
catking workspace. If it does not exist, it can be created with the followind commands
(assuming a ROS Indigo version):

source /opt/ros/indigo/setup.bash
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

3.2 ros_control

The ros_control meta-package includes a set of packages to implement generic
controllers. It is a rewrite of the pr2_mechanism packages to be used with all
robots and no just with PR2. This packages implements the base architecture of ROS
controllers and hence is required for creating controllers compliant with the ROS
definition of a controller.

It includes the following packages:

control_toolbox: contains modules that are useful for all controllers.
controller_interface: implements a base class for interfacing with con-

trollers, the Controller class.
controller_manager: implements the controller manager, the Controller
Manager class.
hardware_interface: base class for implementing hardware interface, the
RobotHW and JointHandle classes.

joint_limits_interface: base class for implementing the joint limits.

Implementation of Real-Time Joint Controllers 679

transmission_interface: base class for implementing the transmission
interface.

realtime_tools: contains a set of tool that can be used from a hard real-time
thread.

The ros_control meta-package is not included in the standard ROS desktop
installation, hence it should be installed. On Ubuntu, it can be installed from Debian
packages with the command:

sudo apt-get install ros-indigo-ros-control

3.3 ros_controllers

This meta-package is not strictly necessary for implementing controllers in ROS, but
it is useful for testing the installation as it contains simple controllers based on the
PID control law. Those are the controllers to use if PID controllers are enough. In
this chapter, those controllers are not used. However, it is convenient to install this
package to use the joint_state_controller controller, which by its name
seems an state-space controller in the joint space, but actually is just a publisher for
the values of the position and velocities of the joints. Then, that topic can be inspected
to check for the response of the implemented controllers.

More specifically, ros_controllers include the following:

forward_command_controller: just a bypass from the reference to the con-
trol action as they are the same physical variable.

effort_controllers: implements effort controllers, that is, SISO controllers
in which the control action is the torque (or an equivalent physical variable) applied
to the robot joint.

joint_effort_controller: just a bypass from the reference to the control
action as they are the same physical variable.

joint_position_controller: a joint position controller in which the ref-
erence is joint position and the control action is torque. The PID control law
is used.

joint_velocity_controller: a joint velocity controller in which the ref-
erence is joint velocity and the control action is torque. The PID control law
is used.

position_controllers: implements position controllers, that is, SISO con-
trollers in which the control action is the position (or an equivalent physical
variable) applied to the robot joint.

joint_position_controller: just a bypass from the reference to the
control action as they are the same physical variable.

680 W.F. Lages

velocity_controllers: implements position controllers, that is, SISO con-
trollers in which the control action is the position (or an equivalent physical
variable) applied to the robot joint.

joint_velocity_controller: just a bypass from the reference to the
control action as they are the same physical variable.

joint_state_controller: implements a sensor controller which publishes
the joint state as a sensor_msgs/JointState message, the JointState
Controller class.

The ros_controllers meta-package is not included in the standard ROS
desktop installation, hence it should be installed. On Ubuntu, it can be installed from
Debian packages with the command:

sudo apt-get install ros-indigo-ros-controllers

3.4 robot_model

This meta-package is usually already installed in a standard ROS desktop installa-
tion. Although many other standard packages are used for implementing controllers,
robot_model deserves special attention as it includes packages that are used to
parse robot models described in many formats such as URDF, Collada and KDL.

This package is used here for two reasons: first it is used to parse the URDF
description of the robot into a KDL tree description. This KDL tree description is
used to compute the dynamic model of the robot necessary for the implementa-
tion of the computed torque controller. Second, this package includes a node called
robot_state_publisher, which publishes the Cartesian transforms between
the links of the robot. Although not necessary for implementation of joint controllers,
that functionality is very useful for higher level layers of software.

Among others, this package includes the following:

kdl_parser: parses an URDF description into a KDL tree description of the
robot.

robot_state_publisher: publishes the state of a robot to the transform
library topic.

3.5 orocos_kdl

This package is usually installed in a standard ROS desktop installation which
deserves special attention. It includes the KDL library which has classes for comput-
ing kinematic and dynamic models of robots. It is used here to compute the dynamic
model of the robot in the computed torque controller.

Implementation of Real-Time Joint Controllers 681

3.6 gazebo_ros_pkgs

This is a collection of ROS packages for integrating the ros_control controller
architecture with the Gazebo simulator [13], containing the following:

gazebo_ros_control: Gazebo plugin that instantiates the RobotHW class
in a DefaultRobotHWSim class, which interfaces with a robot simulated in
Gazebo. It also implements the GazeboRosControlPlugin class.

The gazebo_ros_pkgs meta-package is not included in the standard ROS
desktop installation, hence it should be installed. On Ubuntu, it can be installed from
Debian packages with the command:

sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-gazebo-ros-control

3.7 ufrgs_wam

This is a custom meta-package with an example of how to implement a complex
controller in ROS. It contains an URDF description of the Barrett WAM robot [2] and
the implementation of the computed torque controller. More specifically it includes
the following packages:

wam_description: URDF description of the Barrett WAM robot.
wam_controllers: implementation of a computed torque controller for the

Barrett WAM robot.

There are other ROS packages available for the Barrett WAM, but this chapter
is based on the UFRGS custom version because the parameters used in the URDF
description are tuned to the robot existing at UFRGS laboratories and its more simple,
since it contains just what is used here.

The ufrgs_wam meta-package can be downloaded and installed in the ROS
workspace with the commands:

cd ~/catkin_ws/src
git clone \url{https://github.com/ufrgs-ece/ufrgs_wam}
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

4 Configuring the System for Real-Time

Real-time tasks should be scheduled by a preemptive strict priority based scheduler
policy. However, the default Linux scheduler policy is not strict priority based and
only privileged processes can chance their scheduler policy to a real-time one. To

682 W.F. Lages

enable processes from normal users to do this, it is necessary to configure the user
limits.

In Linux distributions using Pluggable Authentication Modules (PAM), such as
Debian, Ubuntu and OpenSuSE, the configuration of user limits can be done by creat-
ing, as the root user, the /etc/security/limits.d/wam_
controllers.conf file with the contents:

username soft cpu unlimited
username - rtprio 99
username - nice -20
username - memlock unlimited

where username should be the login of the user executing the real-time tasks.
It is necessary to logout and login again for the configuration to take effect. Note

that it is not enough to close the terminal and open it again.
For Linux distributions not using PAM, such as Slackware, the user limits are

configured in the /etc/limits file by including a line with:

username T- O99 I39 M-

However, the configuration in the /etc/limits file is valid only for logins
through the login program. That means text console logins only. Unfortunately,
the KDM login manager does not understand the configuration in the/etc/limits
file. This is a bug in KDM and can be overcome by issuing the following command:

ulimit -t unlimited -r 99 -e 39 -l unlimited

before running KDM, for example in the beginning of the/etc/rc.d rc.4 script.
However, this will set the limits for all users and anyone would be able to change
scheduler policy to a real-time one.

The correct configuration of the user limits can be tested with the command:

ulimit -a

The result should show a real-time priority limit of 99 and an unlimited max
locked memory.

Even by changing the scheduler policy to a real-time one, at most soft-real-time
would be possible because the stock Linux kernel is not fully preemptible. To obtain
hard-real-time it is necessary to install the PREEMPT_RT kernel patch. This patch
turns the Linux kernel into a fully preemptible kernel. See [22] for an interesting
table of real-time features added by the PREEMPT_RT patch.

The installation of the PREEMPT_RT patch requires the compilation of the Linux
kernel. Hence, it should only be attempted by experienced users who already have
successfully compiled the kernel before. Here it is assumed that the skills necessary
for compiling and installing a stock kernel are already mastered. The computed
torque controller presented in subsequent sections should execute without problems
even without the PREEMPT_RT patch if executed in a machine with low load.

The general instructions for installing the PREEMP_RT patch are (execute every-
thing as the root user):

Implementation of Real-Time Joint Controllers 683

1. Download the PREEMPT_RT from 〈ftp://ftp.kernel.org/pub/
linux/kernel/projects/rt〉. There is a directory for the patch for each
supported kernel version. For example, for kernel version 4.0.5:

cd /usr/src
wget ftp://ftp.kernel.org/pub/linux/kernel/projects/rt/4.0/patch-4.0.5-rt4.patch.xz

2. Download and untar the source code for the Linux kernel from 〈ftp://ftp.
kernel.org/pub/linux/kernel〉:
wget ftp://ftp.kernel.org/pub/linux/kernel/v4.x/linux-4.0.5.tar.xz
tar -xJvf linux-4.0.5.tar.xz

3. Patch the kernel.

cd linux-4.0.5
xzcat ../patch-4.0.5-rt4.patch.xz | patch -p1
cd ..
mv linux-4.0.5 linux-4.0.5-rt4
cd linux-4.0.5-rt4

4. If necessary, install the ncurses library:

apt-get install ncurses-dev

5. Configure the kernel by executing the configuration script:

make menuconfig

Configuring a kernel requires some experience and it is recommended to start
with a working configuration. To enable the PREEMPT_RT patch it is necessary
to set the Preemption Model in the Processor type and features submenu to
Fully Preemptible Kernel (RT)

6. Save the configuration and leave the configuration script.
7. Compile the kernel with the command (it takes a lot of time):

make -j 4

8. Compile the kernel modules:

make -j 4 modules

9. Install the kernel modules and the kernel itself (this should also create an
initrd file and congigure GRB for the new kernel:

make modules_install
make install

10. Reboot and select the new kernel in the GRUB menu.
11. Check for “PREEMPT RT” in the kernel version string with the command:

uname -a

684 W.F. Lages

Fig. 5 Gazebo with the Barrett WAM robot

For some machines, specially laptops, it may be necessary to set the kernel para-
meter processor.max_cstate=1 for the correct working of PREEMPT_RT
patch. This parameter limits the maximum CSTATE entered by the processor while
in idle. The CSTATE value is associated to power saving. For larger values, more
components of the hardware are powered-off to save energy. In general for CSTATE
above 1, the clock for the APIC chip is stopped, which can block the scheduler.

5 Testing the Installed Packages

A simple test for the installation of the packages described in Sect. 3 is performed
here.

In order to test the installation of the ROS packages lets load the Barrett WAM
modem in Gazebo and launch the computed torque controller. This can be done with
the commands:

source /opt/ros/indigo/setup.bash
source ~/catkin_ws/devel/setup.bash
roslaunch wam_controllers computed_torque.launch

The robot should appear in Gazebo as shown in Fig. 5. Note that the robot is
launched with all joints at zero degrees.

Then, start the simulation by clicking in the play button in the Gazebo panel and
issue the following commands to move the robot to its home position as shown in
Fig. 6:

source /opt/ros/indigo/setup.bash
source ~/catkin_ws/devel/setup.bash
rosrun wam_controllers move_home.sh

Implementation of Real-Time Joint Controllers 685

Fig. 6 Gazebo with the Barrett WAM robot on its home position

The WAM robot can be returned to the starting position, as shown in Fig. 5, with
the commands:

rosrun wam_controllers move_zero.sh

The move_home.sh, move_zero.sh are scritps with examples of how to
set the reference position, velocity and acceleration for the controller. Here, the
scripts just publish the required values by using the rostopic command. In a real
application, those references would be generated by a planning package, such as
MoveIt! [26] or a robot navigation package.

6 Implementing Controllers in ROS

In a first look it appears that is a good idea to associate the block diagram of a
control system such as the one in Fig. 2 to a ROS computation graph, with blocks
implemented as ROS nodes and signals implemented as ROS topics. At least for real-
time joint controllers that is not a good idea. ROS nodes do not operate in real-time
and ROS topics are an asynchronous communication mechanism, for which there
are no guarantees on timing of message delivery. ROS nodes and topics are adequate
for higher level tasks.

For low-level joint control there are the ROS controllers and the ROS real-time
loop, where computations are real-time safe and communication is based on synchro-
nous function calls. Of course, that is not enough to ensure real-time. For real-time,
controller execution should be scheduled by a preemptive strict priority based sched-
uler policy. Here, ROS relies on the underling operating system. The default Linux
scheduler policy is not strict priority based and only privileged processes can chance
their scheduler policy to a real-time one. To enable processes from normal users to
do this, it is necessary to configure the user limits, as detailed in Sect. 4. Even then,

686 W.F. Lages

trajectory generation
planning (MoveIt!)

navigation
action server

user interface

control
action

R
O

S
in

fr
as

tr
uc

tu
re

joint controller

robot hardware

feedback

reference

user command

Fig. 7 Software stack of a robot

at most soft-real-time would be possible because the stock Linux kernel is not fully
preemptible. To obtain hard-real-time it is necessary to install the PREEMPT_RT
kernel patch as discussed in Sect. 4.

Note also, that a real-time capable system (be it soft or hard) does not ensure, by
itself, that the timing requirements of the tasks are satisfied. For that, a schedulability
analysis of the tasks on the system is necessary. See [4] for details on how to assure
the timing requirements of the tasks.

The joint controller is one of the many software layers necessary to make a robot
useful. In particular, it is responsible for ensuring that the joints of the robot are
driven in a such a way that the reference commands from higher level layers are
followed. Figure 7 shows the place of joint controllers in the software stack of a
robot. The joint controllers are first software layer above the robot hardware and
communicate directly with actuators and sensors. They receive the reference from
higher level layers such as MoveIt! [26] which makes planning, trajectory generation
and/or navigation. Usually those packages implement an action server for receiving
commands from the user and then generates the desired reference for each sampling
period of the controller.

6.1 Controllers in ROS

From the control engineering point of view, ROS presents some particularities regard-
ing controllers. One of them is related to nomenclature, as what is called a con-
troller in ROS is not necessarily a controller in control systems nomenclature. A
controller in ROS is a plugin for the controller manager which implements the

Implementation of Real-Time Joint Controllers 687

Fig. 8 Architecture of ROS controllers (source: http://wiki.ros.org/ros_control)

Controller interface and typically actuates the joint through some object expos-
ing a JointCommandInterface and obtains data from sensors through an object
exposing a JointStateInterface. Note that a ROS controller can perform a
function which not necessarily the function of a controller in a control system. An
interesting example is the JointStateController, which by its name seems
an state-space controller in the joint space, but actually is just a publisher for the
values of the position and velocities of the joints.

Another problem is that it appears that the ROS infrastructure was conceived
for single-input, single-output (SISO) controllers. Advanced control laws for robots
are intrinsically MIMO and can not be decomposed in a set of SISO control laws.
Furthermore, there is the synchronization problem. In a MIMO controller all outputs
are driven at the same time, while a set of SISO controllers would need some sort of
synchronization to achieve the same effect.

This chapter explains how to implement generic control laws in a ROS controller.
Note that contrariwise to most ROS controllers available in standard ROS packages
[9, 18, 21], where independent PID controllers for each joint are described, here, the
implementation of general, possibly MIMO, non-linear, control laws are described.

http://wiki.ros.org/ros_control

688 W.F. Lages

ROS is not a real-time system. However, it has some real-time capability when
executed in a Linux system with the PREEMP_RT kernel patch [22]. Even then,
there is a single real-time loop where all controllers are executed by the controller
manager.

This may not be adequate for every real-time task in a complex system. In this
cases, an alternative for executing many real-time tasks with diverse rates is to use
the OROCOS (Open Robot Control Software) [3] framework as a lower-level layer
for running the real-time tasks. See [10, 14, 24] for examples on how to do this.

Figure 8 shows the architecture of controllers in ROS. Controllers are plugins
loaded by the controller manager. The controller manager can load, unload, activate
and deactivate controllers. It is also the controller manager that calls the update()
function of each controller in the real-time loop of ROS, described in Sect. 6.2.

In each control cycle, the update() function of each active controller is sequen-
tially invoked and used by each controller to perform his task. From the point of
view of digital control theory, the paradigm is that of a continuous time controller
implemented in a digital computer with a sampling rate fast enough to neglect the
digitization effects.

Anyway, the paradigm of a continuous time controller is appropriate for non-
linear controllers as the one proposed here. Theupdate() function of the controller
implements the control law, as described in Sect. 6.5.

6.2 The ROS Real-Time Loop

Figure 9 (adapted from [17]) shows a diagram of the real-time loop in ROS. The
rectangular blocks represent the classes of objects used to implement the loop and the
arrows represent function calls or access to variables through pointers. For functions,
the arrow points to the class implementing the function while its base is at the class
that calls the function. For pointers, the arrow points to the class that holds the
variable. The ellipsis represent topics published or subscribed by the classes and are
used, basically, for communication with nodes outside the real-time loop.

TheRobotHW class implements the ROS interface with the robot hardware. In the
case of a simulation, this class is derived to the RobotSim class, which implements
the interface with the Gazebo simulator. Here, the RobotSim class is derived to the
RobotSimWam class, which implements the details of the interface of ROS with
the simulation of the Barrett WAM robot.

The GazeboRosControlPlugin class implements the time synchronization
between the Gazebo simulator and ROS, more specifically, with the controller man-
ager. When the robot is simulated that is very important because the time is also
simulated and then the ROS should operate with basis on simulated time and not
on real-time. When driving the real robot, this class should be replaced by a custom
class that generates the synchronization for sampling sensors, running the controller
and outputting the control action to the actuator.

Implementation of Real-Time Joint Controllers 689

pos effcmd vel
setForce()

getAngle()

getVelocity()

Gazebo

GazeboRosControlPlugin

readSim() writeSim()

update()

RobotHW

*cmd *vel *pos *eff

JointHandle getPosition()
getVelocity()

setCommand()

Controller

getVelocity()
getPosition()

getEffort()

ControllerManager

update()

update()

unlockAndPublish()

/joint_states

/controller/command

update()

co
m

m
an

dC
B

()

JointStateController

Fig. 9 Real-time loop in ROS

The ROS controller manager is implemented by the ControllerManager
class. The function of the ControllerManager in the real-time loop is to execute
the active controllers at each sampling time. The active controllers are executed one-
by-one, in sequence. Again, it is important to note that in ROS nomenclature a
controller is an object which is loaded by the controller manager as a plugin and
has its update() function called at each sampling period. Not necessarily this
object implements a control law. It can just sample a sensor and publish its data
or perform any other function in the system. In the diagram shown in Fig. 9, the
JointStateController and Controller classes are ROS controllers, but
just the latter one implements a control law. The JointStateController class
just publishes the robot state on the /joint_states topic and does not have a
controller function in the control systems sense.

The reference is received through the /controller/command topic. Actu-
ally, the way in which the reference is received depends on the class that imple-
ments the Controller class. Here, the Controller class will be derived to the
ComputedTorqueController class to implement the computed torque con-
troller control law (7), as shown in Sect. 6.5.

The JointHandle class implements an abstraction of the robot joints, exposing
functions for reading joint positions, velocities and efforts and to apply efforts to the
joints. Those functions use pointers to access the respective variables in the objects
of the RobotHW class, which implements the real access to the robot hardware or
simulation and maintain copies of the values read from the hardware or simulator.

In ROS nomenclature, the structure shown in Fig. 9 is called the real-time loop
and executes at a constant sampling period. It is important to note that there is only
one real-time loop where all controllers are executed in sequence and therefore, at
the same rate. If a lower frequency is required by some controller, it has to implement
a sub-sampling by itself.

The execution of the real-time loop follows the sequence (see Fig. 9):

690 W.F. Lages

1. The Gazebo simulator simulates the time as well. Hence, at each sampling time
it calls the GazeboRosControlPlugin::update() function.

2. The GazeboROSControlPlugin::uptate() function calls the Robot
HWSim::readsim() function. The RobotHWSim class is the implementa-
tion of the RobotHW class for a simulated robot, thus interfacing with Gazebo.

3. The RobotHWSim::readSim() function reads the data from robot sensors,
through the getAngle() and getVelocity() functions from the Gazebo
library. The values are stored in private variables for latter use.

4. The GazeboROSControlPlugin::update() function calls Cont
rollerManager::update() function.

5. The ControllerManager::update() function calls, in sequence the
update() function of each active controller.

6. The update() function of each active controller, obtains (if necessary) the
readings of the sensors, typically throughJointHandle::getPosition()
and JointHandle::getVelocity() functions, computes the control law
and drives the actuators, typically, through the JointHandle:
:setCommand() function.

7. The JointHandle::getPosition() and JointHandle::getVelo
city() functions just return the values which were stored by the Robot
HWSim::readSim() function. The JointHandle::setCommand()
function just stores the command value to be used by the RobotHWSim:
:writeSim(). If a real robot were used those functions would access the
actual sensors and actuators.

8. The GazeboROSControlPlugin::update() function calls the
RobotHWSim::writeSim() function.

9. The RobotHWSim::writeSim() function, obtains the effort to be applied
to the joint from a private variable and calls the setForce() function from
the Gazebo library to apply the effort to the joint, thus concluding the control
cycle.

Note that this same architecture, including the very same classes would be used
for driving a real robot instead of a simulator. The difference is that the Gazebo and
GazeboRosControlPlugin blocks would not exist and the RobotHW class
would be derived to a class with functions to directly drive the robot hardware instead
of being derived to the RobotHWSim class, which implements the interface with
the robot simulated in Gazebo.

6.3 Implementation of a Computed Torque Controller

In this section, the ufrgs_wam ROS meta-package is detailed. This meta-package
consists of an URDF description of the Barrett WAM robot and an implementation
of a computed torque controller.

Implementation of Real-Time Joint Controllers 691

6.4 The wam_description Package

The wam_description package, has the URDF description of the Barrett WAM.
The files in xacro directory describe the geometric and inertia parameters of the
many parts of the robot and the meshes directory holds the STL (STereoLithogra-
phy) files with the meshes for those parts.

The files in the launch directory are used to load the robot model in the ROS
parameter server. The wam.launch file loads the robot model in the ROS para-
meter server, while the wam_sim.launch file loads the robot model in the ROS
parameter server and calls the Gazebo simulator.

It is beyond the scope of this chapter to discuss the modeling of robots in URDF.
The reader is directed to the introductory ROS references for learning the details about
URDF modeling in general. However, one key point for simulating ROS controllers
in Gazebo is to tell it to load the plugin for connecting with ros_control. In the
wam_description package this is done in the top level URDF file, within the
〈gazebo〉 tag, as shown in Listing 1.

Listing 1. Plugin description in wam.urdf.xacro
<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so" >

<robotNamespace>/wam</robotNamespace>
<robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType>
<controlPeriod>0.001</controlPeriod>

</plugin>
</gazebo>

The 〈gazebo〉 tag is used to add the gazebo_ros_contol plugin, which
is the connection between the Gazebo simulator and the controller implemented
in ROS. The parameters are the name of the plugin and the name of the library
implementing it. The child elements are:

〈robotNamespace〉: the namespace to be used for this instance of the plugin
〈robotSimType〉: the name of the robot interface to be used
〈controlPeriod〉: the period for controller update, in seconds

The default robot interface is DefaultRobotHWSim and is also implemented
in the gazebo_ros_control library. It implements a simulated ros_control
hardware_interface::RobotHW. For most robots, whose joints are actuated
by effort (torque or force) and have position and/or velocity sensors, there is no reason
to not use the default robot interface. For robots with more sophisticated types of
actuation or sensors, a custom plugin may be necessary and would be specified by
the 〈robotSimType〉 tag.

6.5 The wam_controllers ROS Package

The wam_controllers package implements controllers for the Barrett WAM
robot. In particular, the computed torque controller, described in Sect. 2.1 is imple-

692 W.F. Lages

mented. The files in the config directory specify the parameters for the controllers
such as joint of the robot, gains and update rate. The script directory has some
useful scripts for setting the reference for the controller for some interesting positions
and can be used for testing the controller.

The wam_controllers_plugins.xml file specifies that the classes imple-
menting the controllers are plugins for the ROS controller manager. The files in the
launch directory are used to load the controllers with their respective configuration
files.

The package.xml file for the wam_controllers package should use the
〈export〉 tag to export the name of the file which describes the plugin imple-
menting the controller, as shown in Listing 2. In this case, this file is called
wam_controllers_plugins.xml and resides on the root directory of the
package.

Listing 2. Exporting the plugin configuration in package.xml
<export>
<controller_interface plugin="${prefix}/wam_controllers_plugins.xml"/>

</export>

The wam_controllers_plugins.xml file is shown in Listing 3. The first
line specifies the path to the shared library with the binary of the plugin. Then, the
classes implemented in this plugin are described. In this case there is only the class
named wam_controllers/ComputedTorqueController, which has the
type wam_controllers::ComputedTorqueController and is derived
from the controller_interface::ControllerBase class.

Listing 3. wam_controllers_plugins.xml
<library path="lib/libwam_controllers">

<class name="wam_controllers/ComputedTorqueController"
type="wam_controllers::ComputedTorqueController"
base_class_type="controller_interface::ControllerBase">
<description>

The ComputedTorqueControllers linearizes the Barrett WAM dynamic
model. The linearized inputs are joint accelerations.
It expects an EffortJointInterface type of hardware interface.

</description>
</class>

</library>

The ComputedTorqueController class is derived from the Controller
class template (see Fig. 9) and its declaration is shown in Listing 4. The argument
to the template is the type of the interface used by the controller. In this case, it is a
EffortJointInterface because the computed torque controller is a controller
whose control action is torque.

Implementation of Real-Time Joint Controllers 693

Listing 4. ComputedTorqueController class
class ComputedTorqueController: public controller_interface::

Controller<hardware_interface::EffortJointInterface>
{

ros::NodeHandle node_;

hardware_interface::EffortJointInterface *robot_;
std::vector<hardware_interface::JointHandle> joints_;

ros::Subscriber sub_command_;

KDL::ChainIdSolver_RNE *idsolver;

KDL::JntArray q;
KDL::JntArray dq;
KDL::JntArray v;

KDL::JntArray qr;
KDL::JntArray dqr;
KDL::JntArray ddqr;

KDL::JntArray torque;

KDL::Wrenches fext;

Eigen::MatrixXd Kp;
Eigen::MatrixXd Kd;

void commandCB(const trajectory_msgs::JointTrajectoryPoint::ConstPtr
&referencePoint);

public:
ComputedTorqueController(void);
~ComputedTorqueController(void);

bool init(hardware_interface::EffortJointInterface *robot,
ros::NodeHandle &n);

void starting(const ros::Time& time);
void update(const ros::Time& time,const ros::Duration& duration);

};

The private variable members of the ComputedTorqueController class
are:

node_: the ROS node in which the controller runs, this variable is used to store
the node handle received as argument to the init() function.

robot_: handle for the hardware interface received as argument to the init()
function

joints_: vector with the handles for the joints
sub_command_: ROS topic subscriber to receive the controller reference
idsolver: handle for the recursive Newton-Euler solver implemented in the KDL

library
q: vector of joint positions
dq: vector of joint velocities
v: vector of virtual joint accelerations

694 W.F. Lages

qr: vector of reference joint positions
dqr: vector of reference joint velocities
ddqr: vector of reference joint accelerations
torque: vector of torques to be applied to the joints
fext: external wrenches applied to the robot
Kp: proportional gain matrix
Kd: differential gain matrix

The commandCB() function is the callback for the ROS topic subscriber that
receives the references for the controller.

A controller should define the init(), starting() and update() func-
tions. The init() function is called by the ROS controller manager when the
controller is loaded, the starting() function is called when the controller is
started and the update() function is called at each execution of the real-time loop,
as described in Sect. 6.2.

The implementation of the init() function shown in Listing 5. Its arguments
are a pointer to a hardware interface and a reference to the ROS node where the
controller is running. Those parameters are stored for latter use.

Listing 5. ComputedTorqueController::init() function
bool ComputedTorqueController::

init(hardware_interface::EffortJointInterface *robot,ros::NodeHandle &n)
{

node_=n;
robot_=robot;

XmlRpc::XmlRpcValue joint_names;
if(!node_.getParam("joints",joint_names))
{

ROS_ERROR("No ’joints’ in controller. (namespace: %s)",
node_.getNamespace().c_str());

return false;
}

if(joint_names.getType() != XmlRpc::XmlRpcValue::TypeArray)
{

ROS_ERROR("’joints’ is not a struct. (namespace: %s)",
node_.getNamespace().c_str());

return false;
}

for(int i=0; i < joint_names.size();i++)
{

XmlRpc::XmlRpcValue &name_value=joint_names[i];
if(name_value.getType() != XmlRpc::XmlRpcValue::TypeString)
{

ROS_ERROR("joints are not strings. (namespace: %s)",
node_.getNamespace().c_str());

return false;
}

hardware_interface::JointHandle j=robot->
getHandle((std::string)name_value);

joints_.push_back(j);
}

Implementation of Real-Time Joint Controllers 695

sub_command_=node_.subscribe("command",1000,
&ComputedTorqueController::commandCB, this);

std::string robot_desc_string;
if(!node_.getParam("/robot_description",robot_desc_string))
{

ROS_ERROR("Could not find ’/robot_description’.");
return false;

}

KDL::Tree tree;
if (!kdl_parser::treeFromString(robot_desc_string,tree))
{

ROS_ERROR("Failed to construct KDL tree.");
return false;

}

KDL::Chain chain;
if (!tree.getChain("wam_origin","wam_tool_plate",chain))
{

ROS_ERROR("Failed to get chain from KDL tree.");
return false;

}

KDL::Vector g;
node_.param("/gazebo/gravity_x",g[0],0.0);
node_.param("/gazebo/gravity_y",g[1],0.0);
node_.param("/gazebo/gravity_z",g[2],-9.8);

if((idsolver=new KDL::ChainIdSolver_RNE(chain,g)) == NULL)
{

ROS_ERROR("Failed to create ChainIDSolver_RNE.");
return false;

}

q.resize(chain.getNrOfJoints());
dq.resize(chain.getNrOfJoints());
v.resize(chain.getNrOfJoints());
qr.resize(chain.getNrOfJoints());
dqr.resize(chain.getNrOfJoints());
ddqr.resize(chain.getNrOfJoints());
torque.resize(chain.getNrOfJoints());

fext.resize(chain.getNrOfSegments());

Kp.resize(chain.getNrOfJoints(),chain.getNrOfJoints());
Kd.resize(chain.getNrOfJoints(),chain.getNrOfJoints());

return true;
}

Joint names are recovered from the ROS parameter server and then used to obtain
joint handles which are stored in the joints_ vector for latter use.

A subscriber to the ROS topic command is created to receive the references for
the controller through the commandCB() call-back function.

For the implementation of a computed torque controller it is necessary to compute
the inverse model of the robot (5). This can be done by using the recursive Newton-
Euler solver implemented in the KDL library. In order to create that solver, the URDF
robot description is obtained from the parameter server and converted to a KDL tree
description. Then, a single chain from "wam_origin" to "wam_tool_plate"

696 W.F. Lages

is extracted from the KDL tree. KDL trees are used to represent a general mecha-
nisms which may present bifurcations. A KDL chain represents a mechanism without
bifurcations. The Newton-Euler solver implemented in KDL works only with open
chains.

One important point here is that URDF and KDL use different conventions for rep-
resenting the inertia of the links. KDL specifies the inertia parameters in the reference
frame of the link, while URDF specifies the inertia in the center of inertia reference
frame. This difference is handled automatically considered by the kdl_parser.
However, the programmer should take care of it if creating a KDL tree or chain
directly from scratch.

The gravity vector is recovered from Gazebo through the parameter server or, if
not created by Gazebo, it is set to default values of 0 in X and Y axis and −9.8 m/s2

in the Z axis.
In the end of the init() function, the vectors created with zero length in the

constructor of the ComputedTorqueController class are resized to the proper
size as a function of the number of joints of the robot.

The init() function should return true to indicate success.
The starting() function, shown in Listing 6, is called when the controller is

started and should set everything for controller operation. It is important to keep in
mind that a controller may be stopped and started again, hence this function should
reset the controller to its default initial condition. Here, the gain matrices Kp and Kd
are set and the current values for joint positions and velocities are stored in q and
dq vectors, respectively. The reference position and velocities are set to be equal to
the current position and velocity and the reference acceleration is set to zero. That
is important to avoid large values of control actions when the controller starts to
operate. By setting the references to the actual position and velocity, the position and
velocity errors would be zero, thus avoiding a large control signal.

The real-time properties of the controller are determined by the scheduler policy
and priority configured at the end of the starting() function. Note that the
update() function, which actually implements the control law, is called by the
same thread as the starting() function, therefore, the settings made in here are
in effect when the update() function is called. The scheduling policy is changed
to SCHED_FIFO, which is a real-time policy enforcing strict priority scheduling.
Task with lower priority are run only while there are no higher priority task ready
run. The priorities in this policy range from 0 (the lowest priority) to 99 (the highest
priority). In this example the maximum priority is obtained through a call to the
sched_get_priority_max() function for compatibility. Note that the priority
of a task in a real-time system has no relation with the importance of the task and that
generally it is not a good idea to set the maximum priority for the task. In general, it
its more appropriate to assign the task priorities by using a rate monotonic or deadline
monotonic strategy [4, 15, 16].

Also note that setting a high priority by using the sched_setscheduler()
function is not enough to ensure hard real-time scheduling. A real-time scheduling
still depends on proper support from the underlying operating system. In Linux,
a hard real-time patch, such as PREEMPT_RT, RTAI or Xenomai, is required

Implementation of Real-Time Joint Controllers 697

Listing 6. ComputedTorqueController::starting() function
void ComputedTorqueController::starting(const ros::Time& time)
{

Kp.setZero();
Kd.setZero();
for(unsigned int i=0;i < joints_.size();i++)
{

Kp(i,i)=Wn*Wn;
Kd(i,i)=2.0*Xi*Wn;
q(i)=joints_[i].getPosition();
dq(i)=joints_[i].getVelocity();

}
qr=q;
dqr=dq;
SetToZero(ddqr);

struct sched_param param;
param.sched_priority=sched_get_priority_max(SCHED_FIFO);
if(sched_setscheduler(0,SCHED_FIFO,¶m) == -1)
{

ROS_WARN("Failed to set real-time scheduler.");
return;

}
if(mlockall(MCL_CURRENT|MCL_FUTURE) == -1)

ROS_WARN("Failed to lock memory.");
}

to ensure hard real-time behavior. For plain Linux or other operating systems
without hard real-time support, such as OS X, at most a soft real-time behav-
ior is obtained. The sched_setscheduler() function is not available in OS
X and some other operating systems, but most of those systems supports the
pthread_setschedparam() function, which can be used to change the pri-
ority of a task as well.

Another important point for a setting up a real-time task is to lock its memory
so that it is not paged-out to disk by the virtual memory system. This is done by
the mlockall() function. It is obvious that if low-latencies are required, it is not
possible to afford the extra time to page-in from disk the code or data of a real-time
task.

The actual implementation of the control law is in the update() function,
shown in Listing 7. It reads the robot sensors by calling the getPosition()
and getVelocity() functions through the joint handles stored in the joints_
vector. Then, it sets the external wrenches fext to zero, assuming that there are
no external forces acting on the robot. Anyways, in our setup there are no sensors
to measure those forces, therefore any external force would be considered by the
controller as a perturbation. Then, the virtual acceleration (9) and the torque to be
applied to the joints are computed by using the recursive Newton-Euler solver. The
torque is applied to the joints by calling the setCommand() function.

The macro PLUGINLIB_EXPORT_CLASS() should be used to make the con-
troller available as a plugin.

698 W.F. Lages

Listing 7. ComputedTorqueController::update() function
void ComputedTorqueController::update(const ros::Time& time,

const ros::Duration& duration)
{

for(unsigned int i=0;i < joints_.size();i++)
{

q(i)=joints_[i].getPosition();
dq(i)=joints_[i].getVelocity();

}
for(unsigned int i=0;i < fext.size();i++) fext[i].Zero();

v.data=ddqr.data+Kp*(qr.data-q.data)+Kd*(dqr.data-dq.data);
if(idsolver->CartToJnt(q,dq,v,fext,torque) < 0)

ROS_ERROR("KDL inverse dynamics solver failed.");

for(unsigned int i=0;i < joints_.size();i++)
joints_[i].setCommand(torque(i));

}

Configuration files for the controllers are placed in the config directory. Here,
the computed_torque_control.yaml file, shown in Listing 8, is used to
configure two controllers.

Listing 8. computed_torque_control.yaml
wam:

joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 100

computed_torque_controller:
type: wam_controllers/ComputedTorqueController
joints:

- wam_joint_1
- wam_joint_2
- wam_joint_3
- wam_joint_4
- wam_joint_5
- wam_joint_6
- wam_joint_7

The first one is not a controller in the control systems sense, but a sensor that
publishes the position, velocity and effort at the robot joints. However, it is a controller
in ROS sense because it is loaded as a plugin by the controller manager and has
its update() function called at the ROS real-time loop. The second one is the
computed torque controller explained above.

In the first line of computed_torque_control.yaml is the name of
the robot, then there are blocks for configuring the controllers: joint_state_
controller and computed_torque_controller. The configuration of
each controller includes its name, its type and its parameters. For the joint_
state_controller, there is only a single parameter, the publish_rate. In
this case it means that the joint states will be published 100 times per second. For
the computed_torque_controller there is also a single parameter called
joints, but it is a vector where each element is the name of one joint of the robot.

Implementation of Real-Time Joint Controllers 699

For loading the controller, a launch file as shown in Listing 9 can be created.
The 〈arg〉 tag is used to start the Gazebo simulator in paused mode. This way, it is
possible to set the robot to a desired initial position before running the controller. This
is very interesting for experiments evaluating the controller dynamic behavior. The
robot_state_publisher node subscribes to the joint_states published
by the joint_state_controller and publishes the homogeneous of the robot
links.

Listing 9. computed_torque.launch
<launch>

<arg name="paused" default="true"/>

<include file="$(find wam_description)/launch/wam_sim.launch">
<arg name="paused" value="$(arg paused)"/>

</include>

<rosparam file="$(find wam_controllers)/config/computed_torque_control.yaml"
command="load"/>

<node name="controller_spawner" pkg="controller_manager" type="spawner"
respawn="false" output="screen" ns="/wam"
args="joint_state_controller computed_torque_controller"/>

<node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher"
ns="/wam" />

</launch>

Figure 10 shows the ROS computation graph for the system launched with the
computed_torque.launch. Note that the controllers do not appear. That is
because they are not ROS nodes, but just plugins that are loaded by the controller man-
ager. The /wam/computed_torque_controller/command topic is where
the reference (position, velocity and acceleration) for the controller should be pub-
lished. Usually, that comes from a trajectory generation, navigation or planning
package such as MoveIt! [26].

Some scripts useful for operating the Barrett WAM robot with the computed
torque controller are in the scripts directory. The move_home.sh script is
used to move the robot to the home position recommended by the manufacturer. The
script is shown in Fig. 10.

Basically, the move_home.sh script calls sets the reference position for the
controller to the recommended values by publishing in the /wam/computed_
torquecontroller/command topic. The parameters for publishing using
rostopic are the topic name, the topic type, the vectors for reference position,
reference velocity and reference acceleration and the duration of the trajectory in
seconds and nanoseconds.

The move_zero.sh script moves the robot to the position where all joints are
at zero. Although that is the initial position used by the Gazebo simulator it is not
the initial position recommended by the Barrett WAM manufacturer.

700 W.F. Lages

Listing 10. move_home.sh
#!/bin/bash

rostopic pub /wam/computed_torque_controller/command \
trajectory_msgs/JointTrajectoryPoint \
"[0.0,-2.0,0.0,3.1,0.0,0.0,0.0]" \
"[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]" \
"[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]" \
"[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]" \
"[0.0, 0.0]" "-1"

Fig. 10 ROS computation graph for the system launched with thecomputed_torque.launch

7 Conclusion

This chapter presented the implementation of an MIMO, non-linear controller in
ROS, which is an important departure from the traditional low-level ROS controllers
which consider a SISO system using PID controllers. The internal working of the ROS
real-time loop was described in details and a computed torque controller was used
as example and has its implementation discussed. The controller was implemented
for running in hard-real-time under the PREEMPT_RT kernel patch.

References

1. K.J. Åström, B. Wittenmark, Computer Controlled Systems—Theory and Design (Prentice-
Hall, Englewood Cliffs, 1984)

2. WAM User Manual (Barrett Technology Inc., Cambridge, 2011)
3. H, Bruyninckx, Open robot control software: the orocos project, in Proceedings of the 2001

IEEE International Conference on Robotics and Automation, (IEEE Press, Seoul, 2001), pp.
2523–2528

4. A. Burns, A. Wellings, Real-Time Systems and Programming Languages, 3rd edn. (Addison-
Wesley, Reading, 2001)

5. C.T. Chen, Linear System Theory and Design (Holt, Rinehart & Winston, New York, 1984)
6. R. Featherstone, Rigid Body Dynamics Algorithms (Springer, New York, 2008)
7. G.F. Frankin, J.D. Powell, M.L. Workman, Digital Control of Dynamic Systems, 2nd

edn., Addison-Wesley Series in Electrical and Computer Engineering: Control Engineering
(Addison-Wesley, Boston, 1989)

8. K.S. Fu, R.C. Gonzales, C.S.G. Lee, Robotics Control, Sensing, Vision and Intelligence, Indus-
trial Engineering Series (McGraw-Hill, New York, 1987)

Implementation of Real-Time Joint Controllers 701

9. P, Goebel, ROS by Example. Lulu, Raleigh, NC (Abr 2013), http://www.lulu.com/shop/r-
patrick-goebel/ros-by-example-hydro-volume-1/paperback/product-21460217.html

10. Ioris, D., Lages, W.F., Santini, D.C.: Integrating the OROCOS framework and the barrett WAM
robot, in Proceedings of the 5th Workshop on Applied Robotics and Automation. Sociedade
Brasileira de Automática, (Bauru, 2012)

11. A. Isidori, Nonlinear Control Systems, 3rd edn. (Springer, Berlin, 1995)
12. H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice-Hall, Upper Saddle River, 1996)
13. N, Koenig, A, Howard, Design and use paradigms for gazebo, an open-source multi-robot

simulator, in Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2004), Sep 2004, vol. 3 (IEEE Press, Sendai, 2004), pp. 2149–2154

14. W.F. Lages, D. Ioris, D. Santini, An architecture for controlling the barrett wam robot using
ros and orocos, in Proceedings for the Joint Conference of 45th International Symposium on
Robotics and 8th German Conference on Robotics (VDE Verlag, Munich, Germany, 2014).
ISBN: 978-3-8007-3601-0

15. J.Y.T. Leung, J. Whitehead, On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2(4), 237–250 (1982)

16. C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment. J. ACM 20(1), 46–61 (1973)

17. Maciel, E.H., Henriques, R.V.B., Lages, W.F.: Control of a biped robot using the robot operating
system, in Proceedings of the 6th Workshop on Applied Robotics and Automation (Sociedade
Brasileira de Automática, São Carlos, SP, Brazil, 2014)

18. A. Martinez, E. Fernández, Learning ROS for Robotics Programming (Packt Publishing, Birm-
ingham, 2013)

19. H. Nijmeijer, A. van der Schaft, Nonlinear Dynamical Control System (Springer, New York,
1990)

20. K. Ogata, Modern Control Engineering (Prentice-Hall, Englewood Cliffs, 1970)
21. J.M. O’Kane, A Gentle Introduction to ROS. CreateSpace Independent Publishing Platform

(2013), http://www.cse.sc.edu/~jokane/agitr/. Accessed Oct 2013
22. Open Software Automation Development Lab: Osadl project: Realtime linux (2012), https://

www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
23. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, Ng,

A.: ROS: an open-source robot operating system, in Proceedings of the IEEE International
Conference on Robotics and Automation, Workshop on Open Source Robotics, May 2009
(IEEE Press, Kobe, Japan, 2009)

24. D.C. Santini, W.F. Lages, An architecture for robot control based on the OROCOS framework,
in Proceedings of the 4th Workshop on Applied Robotics and Automation. (Sociedade Brasileira
de Automática, Bauru, SP, Brazil, 2010)

25. J.J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, 1991)
26. I.A. Sucan, S. Chitta, MoveIt! (2015), http://moveit.ros.org

http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-hydro-volume-1/paperback/product-21460217.html
http://www.lulu.com/shop/r-patrick-goebel/ros-by-example-hydro-volume-1/paperback/product-21460217.html
http://www.cse.sc.edu/~jokane/agitr/
https://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
https://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html
http://moveit.ros.org

702 W.F. Lages

Authors’ Biography

Walter Fetter Lages graduated in Electrical Engineering at Pontifícia Universidade Católica do
Rio Grande do Sul (PUCRS) in 1989 and received the M.Sc. and D.Sc. degrees in Electronics and
Computer Engineering from Instituto Tecnológico de Aeronáutica (ITA) in 1993 and 1998, respec-
tively. From 1993 to 1997 he was an assistant professor at Universidade do Vale do Paraíba (UNI-
VAP), from 1997 to 1999 he was an adjoint professor at Fundação Universidade Federal do Rio
Grande (FURG). In 2000 he moved to the Universidade Federal do Rio Grande do Sul (UFRGS)
where he is currently an associate professor. In 2012/2013 he held an PostDoc position at Univer-
sität Hamburg. Dr. Lages is a member of IEEE, ACM, the Brazilian Automation Society and the
Brazilian Computer Society.

LIDA Bridge—A ROS Interface to the LIDA
(Learning Intelligent Distribution Agent)
Framework

Thiago Becker, André Schneider de Oliveira, João Alberto Fabro
and Rodrigo Longhi Guimarães

Abstract This chapter presents a tutorial on how to build a cognitive robotic system
with the LIDA Framework. In order to ease this development, a new ROS mod-
ule (the LIDA Bridge, made available at https://github.com/lidabridge/lidabridge) is
presented. The LIDA Framework is a Java implementation of the LIDA conceptual
model, which is a cognitive model of artificial consciousness. This work performs
an in-depth discussion about LIDA conceptual model, its components and how they
interact in order to manage a general-purpose cognitive system. These concepts are
applied in a step-by-step tutorial to create a fully cognitive robot based on this ROS
wrapper to LIDA Framework, that is able to learn with new experiences or different
perceptions.

1 Introduction

In the last few years there was a big leap forward both in industrial and service
robotics [1, 2]. In the service robotics field, a wide range of robots were projected to
operate in human circulation environments [3]. These robots can be used in offices,
hospitals, museums and many others environments where interaction with people
is necessary. These robots can perform tasks like delivery, cleaning, entertainment
and education. There is also the development of robotics towards accessibility like

T. Becker (B) · A.S. de Oliveira · J.A. Fabro · R.L. Guimarães
LASER - Advanced Laboratory of Embedded Systems and Robotics,
Federal University of Technology - Parana,
Av. Sete de Setembro, Curitiba 3165, Brazil
e-mail: beckerthiago@gmail.com

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

J.A. Fabro
e-mail: fabro@utfpr.edu.br

R.L. Guimarães
e-mail: rolongui@yahoo.com.br

© Springer International Publishing Switzerland 2016
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 625, DOI 10.1007/978-3-319-26054-9_27

703

https://github.com/lidabridge/lidabridge

704 T. Becker et al.

autonomous wheeled chairs [4]. Other application that has been widely developed
is the passengers transport by autonomous cars. In these conditions, the robots must
perform their tasks in dynamic environments, while in presence of moving objects,
people and even animals. In such environments, the navigation difficulties raise
substantially, when comparing with robots that act only in controlled environments
(such as the industrial ones). Due to its complexities, many techniques have been
developed to solve the autonomous navigation problem.

The cognitive navigation is a field of research that associate the navigation prob-
lem with artificial intelligence, combining mobile robotics and cognitive processing
of high level perceptions of the environment. One widely used architecture for cog-
nitive navigation uses a two-layer navigator, where the upper layer is responsible
for identifying the high level aspects (such as semantic interpretation of the sensor
readings, and planning). An updated plan of action is then passed as input to the
lower control layer, which then execute the plan.

The low-level layer comprise the numeric and geometric attributes that the robot
must process to execute its navigation. In order to achieve the navigation, the robot
must have a precise estimation of its localization and a consistent environment map.
These goals can be achieved by using the Simultaneous Localization and Mapping
(SLAM) technique. This technique consists in accomplish the two tasks simultane-
ously with the use of probabilistic distributions of the location of the robot given a
set of measurements performed by the robots sensors.

In the high level layer, the semantic interpretation of the environment is respon-
sible for creating a high level model of the current situation of the robot inside the
environment, and to realize the planning of the actions that must be executed by
the robot, coordinating the low level layer in the execution of its tasks. Within the
tasks performed by the high level layer are the recognition of obstacles previously
seen, recognition of new obstacles, the identification of dangerous situations, and the
definitions of the actions to be taken.

This chapter presents a way to implement a dual layer cognitive robot navigator
for any robot using ROS: the LIDA Bridge ROSmodule. The implementation of this
module is just a connector module, that allows the use of the features made available
by the the LIDA Framework [5], which is an implementation of the Baars-Franklins
cognitive architecture [6].

Artificial consciousness is a sub-field of artificial intelligence, that applies the
functional features of the human consciousness to develop computer systems. The
consciousness is quoted by many researches as an attribute of the human being, that
enables us to get along with complex and diverse situations. By applying conscious-
ness models to develop robotic control systems, a larger degree of flexibility and
adaptability to the environment is expected.

The next section explains the Global Workspace Theory which is the cognitive
theory that servers as a basis for the LIDA Framework. Section3 discuss the LIDA
cognitive model, which is the theoretical model of consciousness that makes use the
GlobalWorkspace Theory and other cognitivemodels in order to define amechanism
that emulates several aspects of human consciousness. Section5 presents the LIDA
Bridge, a tool developed by our research group to ease the process of connecting a

LIDA Bridge—A ROS Interface to the LIDA … 705

ROS Robot with the LIDA Framework in order to build a conscious robot. This
section presents a tutorial on how to set up and define a simple LIDA Agent that acts
as a navigator for a Robot.

2 Global Workspace Theory

The Global Workspace Theory, as proposed by Baars [7], presents the consciousness
as a global access that assists the recruitment and integration of independent brain
functions. Baars suggests that the nervous systems has many specialized processors
that execute its functions unconsciously and autonomously. These processors are
highly specialized and efficient in the execution of its own tasks, working in parallel
and creating a system with big processing capabilities. These specialized proces-
sors can cooperate, forming coalitions in order to perform tasks cooperatively, as
proposed by Crick and Koch in their model [8]. The coalitions can be composed
of specialized processors, or composed of other processors coalitions. A processor
can bring its contents to the consciousness when its level of activation is greater
than that of all the other processors. One processor raises its activation level when it
brings new, unexpected information. When a processor brings routine information,
its activation level remains low. The activation level of one processor collaborates
with the activation of the coalition it belongs, augmenting the chances of bringing
its contents to the consciousness.

The GlobalWorkspace is the central structure of the Baars theory. It is at this point
that the conscious experience is realized. It works as a working memory that inter-
mediates the information exchange between the processors. The Global Workspace,
differently from the specialized processors, is a purely serial structure, with low
processing capacity. Because of these two properties (serial and lowprocessing), only
one coalition can be in the workspace at a certain time (only one thing—though—can
be considered conscious at any time). A competition between the coalitions occurs, in
order to select which coalition will gain access to the global workspace. The winning
coalition can then use the broadcast capabilities of the global workspace to transmit
its contents (in a conscious way) to all the other processors.

To explain his theory,Baars uses a theatremetaphor, called the “InteractiveTheatre
Metaphor”. In this theatre there is the stage, a spotlight, the actors, the public and the
backstage. The spotlight leads the publics attention to the actors, and these compete
for the attention of the spotlight. The public is composed of specialized processors
and in the backstage are the auxiliary processors that can influence who is in the
stage.

During the play, many activities occur at the stage, but only what is being illumi-
nated by the spotlight is conscious. The events continue to happen at the stage and
the assistants (backstage unconscious processors) influence the events that are going
under the light of the spotlight. Only the more important actors are illuminated, so
they can transmit their message do the audience and to the backstage. In the interac-
tive theatre, when the audience identifies themselves with the message that is being

706 T. Becker et al.

transmitted, they can go up the stage and realize their performance together with the
actors of the spotlight, or even in the dark part to the stage.

This metaphor represent the most import coalition as being the actors under the
spotlight, transmitting itsmessages to the other specialized processors, expressing the
limitation of the conscious contents. The coalitions that are in the global workspace
(receiving the attention of the processors) are doing tasks related to new or conflicting
situations. The unconscious processors execute their specific tasks continuously,
whenever their find a relevant situation.

The LIDAModel uses the Global Workspace Theory as the core of its consci-
ousness system, this cognitive model is the theoretical base of the LIDA Frame-
work and will be explained in next section.

3 The LIDA Model

The LIDA (Learning Intelligent Distribution Agent) Model [7] is a cognitive model
that tries to specify how to computationally implement the concepts of artificial con-
sciousness, based on the Global Workspace Theory [7]. The LIDA model realizes a
series of cognitive process, including, perception, action selection and learning capa-
bilities. In order to achieve these goals, the architecture uses many technologies pre-
viously developed, like the Copycat architecture [9], behaviour network [10], sparse
distributedmemory [11] and the Pandemonium theory [12]. TheLIDAModel is com-
posed of many modules as can be seen in Fig. 1, where each module is represented

Fig. 1 The LIDA cognitive cycle (Baars and Franklin 2007: Fig. 4)

LIDA Bridge—A ROS Interface to the LIDA … 707

by a box. Blue and green boxes are the modules that interface with the outside world,
receiving sensory data and sending motor actions. Arrows represent the commu-
nication between the modules. Yellow arrows are communications related to the
learning process. The model uses a cognitive cycle in order to execute its processes,
in a way that the system runs multiple cycles of sensing the environment, decid-
ing and acting. Thus the system iterates continuously on this cycle, activating its
modules.

The LIDA Framework is a implementation based on the conceptual model of
LIDA, being the result of a series of research works developed since 1996 [13–15].
It was developed in Java, and the objective of the first applicationswas to autonomous
elaborate the distribution of job rotations to the sailors of the US Navy. In the next
sub-sections, the concepts implemented in each module are briefly described.

3.1 Codelets

The term Codelet comes from the Copycat architecture [9]. Each Codelet correspond
to a processor that is specialized in one task, that is independently executed. In the
Global Workspace Theory, these specialized processors form the base of the cogni-
tive process. Each codelet is implemented as a small portion of code, being executed
in a independent computer thread. Besides of being specialized in the execution of a
simple task, one codelet generally works in group with other codelets, forming coali-
tions in order to build high level behaviours. The codelets normally act as daemons
[16] waiting for the appropriate condition to act.

Each codelet has an activation level. When noticing a convenient situation, a
codeletwill increase its activation level according to a correspondence of the situation
and its preferences. The activation level of a coalition is increasedwhen the activation
level of the codelets that belong to the coalition raises.

3.2 Perception

The perceptionmodule from the LIDAModel utilizes a PerceptualAssociativeMem-
ory (PAM) as a knowledge base, combining messages received with pre-established
models, through a semantic network called slipnet. The slipnet is a correlated
concept network, where each concept is represented by a node and each relationship
between concepts is represented by a link, which has a numeric value that represents
the conceptual distance between the involved nodes. The lower the distance
between the concepts, the higher is the activation level of the relationship. The con-
cepts represented in the form of nodes, act like symbols representing the perceptions
of the agent. A node can represent an individual, a category, or even high level ideas.
The activation level of a note reflects its level of relevance to the current situation.

708 T. Becker et al.

External and internal sensorial stimulus are received and interpreted by the per-
ception module, in an unconscious way. In the perception phase, the sensory entries
are captured by specialized perception codelets. The codelets that find relevant fea-
tures to its capacity, activate the appropriate nodes in the semantic network, then the
network is stabilized, bringing convergence to many streams of different meanings
and grouping meaning parts in bigger parts. These bigger parts in the network form
what is called a Percept.

3.3 Episodic and Long Term Memories

The long term associative memory and the Transient Episodic Memory are imple-
mented in LIDA by a sparse distributed memory (SDM). The SDM was proposed
by Kanerva [11] as a model to the long term human memory. Kanerva’s architecture
enables the storage of patterns and its posterior retrieval based in partial combination
of the current sensorial entries. In other words, it is a content addressable memory,
in a way that part of its content is send as entry (instead of its storage address) in the
retrieval of an item. The sparse distributedmemory is capable of making associations
to the entries with the previously stored content.

Human beings have associative memories, that are transient, and content address-
able. Human memory usually have a decay rate in the order of hours, which enables
us to remember with great detail the events that occurred during a day. These details
stay present in the memory only for a short period of time, for example, when we
remember what we ate for lunch or what was discussed with somebody some hours
ago. We have richness of detail in this memories, but these details are forgiven as
time passes. TheTransient EpisodicMemory in LIDAmodel represent this short term
memory. When a situation that is present in this short term memory is experienced
again, it is reinforced instead of decaying.Memories that haven’t been forgiven in the
given period are stored in the long term associative memory, in the same way human
beings can keep memory of something important or that was experienced several
times, LIDA implements this different memories by having two Episodic memories,
the short term memory with a fast decay rate and the long term memory with a much
slower decay rate.

3.4 Consciousness Mechanism

The mechanism to produce the consciousness is described by [17], in four
components: a coalition manager, a spotlight controller, a broadcast manager and
a set of organized codelets. The components of the consciousness module can be
comprised with a implementation of some aspects of the process executed by the
theatre metaphor.

LIDA Bridge—A ROS Interface to the LIDA … 709

3.4.1 Attention Codelets

Attention codelets recognize problematic or new situations. The task of the attention
codelets is to bring information to the consciousness. The attention codelets con-
stantly observes a particular situation that may occur. When it finds such situation,
the attention codelet will be associated with a small group of codelets that describe
the situation. This association must bring the set of information codelets, together
with the attention codelet that collected them, creating a coalition. The attention
codelet raises its activation according to its fitness to the current situation.

3.4.2 Coalition Manager

The coalition manager creates and monitors coalitions of codelets. A codelet is
initialized without associations and in its own coalition. Active codelets enter the
stage and build associations with other codelets. Associations grows in co-activity
and result in coalitions of one or more codelets [18].

3.4.3 Spotlight Controller

The relevance of a coalition is based on themean of the activation level of the codelets
that compose it. The spotlight controller computes the mean of activation of the
coalitions and chooses the coalitions with the greater mean to go to the consciousness
and be illuminated by the spotlight, according to the theatre metaphor.

3.4.4 Broadcast Manager

The broadcast manager realizes the broadcast of the consciousness contents to all
system codelets, gathering the content of all the codelets in the coalition chosen by
the Spotlight controller. This content is then transmitted to all the codelets, and each
codelet then decides if this information is relevant for itself or not.

3.5 Action Selection

The Action Selection mechanism, uses a Behaviour Network [10], with improve-
ments developed by [19]. This mechanism and the consciousness mechanism are the
core elements of the LIDA model. LIDA selects and execute the actions to attend
its internal purposes, but there may be several purposes running in parallel, which
can vary in urgency along the time and environment changes. An active Behav-
iour Network is composed of structures called Behaviour Chains. These Behaviour
Chains have goal nodes and behaviour nodes. Behaviours and goals in a behaviour

710 T. Becker et al.

network are interconnected through a series of links. Behaviours are typically mid
level actions, and they can have many behaviour codelets for its execution. Goals
are similar to behaviours, with the exception that its actions consists in finish the
goals under specific conditions. The Behaviour Network acts together with the con-
sciousness mechanism to select the actions. If a behaviour codelet finds a relevant
information in a conscious broadcast a behaviour chain is instantiated, then
it becomes part of the active Behaviour Network. Behaviours compete and also coop-
erate with each other, and the dynamics of the network eventually selects a relevant
behaviour to act.

The previous sections presented the conceptual models used in LIDA, the next
section will present in detail the computational framework based on these concepts
that we will use in Sect. 5 to build a cognitive ROS Robot with all of these concepts
inside.

4 LIDA Framework

The conceptual model of LIDA, as presented in the previous section, shows the pro-
posal of a cognitive model that tries to cover a great portion of the human cognitive
system, combining sub-systems of action selection, attention, episodic memory, sen-
sory memory, perceptual memory and sensorimotor memory. This section presents
the LIDA Framework, that is the computational implementation of the conceptual
LIDA model, using the JAVA language.

4.1 Structure

The LIDA framework defines several data structures and algorithms, and it is com-
posed of a variety of components. Themain components are themodules, that consist
of interconnected elements which represent the modules of the conceptual model.
Each of the conceptual model modules has a correspondent on the framework.

Most of the frameworks modules are independent of the problem domain. For
each of thesemodules, the framework has a standard implementation.However, some
modules are dependent of the problem domain and have only a basic implementation,
to be extended with specific features for the domain.

4.1.1 Communication

For the communication to be possible betweenmodules, theLIDA framework utilizes
the Observer design pattern. A listener module receives information from a producer
module. The listener can subscribe to the producer to listen what the producer has
to send. Each time the producer has something to send, it transmits the information

LIDA Bridge—A ROS Interface to the LIDA … 711

to all its listeners. There are several listener instances on LIDA Framework, and a
module can be registered as a listener to several other modules. It is also possible for
a module to be a producer and a listener of other modules at the same time.

4.1.2 Tasks

Since all the modules and codelets run in parallel on the conceptual model of the
Baars-Franklin architecture, the LIDAFramework implements a system of taskman-
agement. The tasks on LIDA wrap small processes. A module can create multiple
tasks to perform its functions. A task can execute only once or it can execute its
functions repeatedly. The task manager controls the execution of all the tasks and
performs their execution on separated threads, in order to achieve parallel execution
in a way that is transparent to the user.

4.1.3 Data Structures

Nodes and Links are the main data structures of the LIDA Framework. Both of them
have an activation, which represents the measure of their importance on the current
context. This activation can be excited in several situation and it decays over time.
A node can represent features, objects, concepts, events, actions, etc. Each node is
based on a PerceptualAssociativeMemory node (PamNode). The nodes are instances
of PamNode, and each node has a reference to the PamNode that originated it, as
well as a unique id that identifies it.

4.1.4 Activation

Nodes, links and other elements like coalitions, codelets, schemes and behaviours,
all have an activation level. The activation is represented by a real number between
0.0 and 1.0. In general, the activation represent the relevancy of an element. Other
elements have and additional activation called base-level activation, which is used
for the learning implementation. The framework uses two interfaces to the imple-
mentation of these functionalities: Activatible and Learnable.

One element that implements the Activatible interface has excitation and decay
methods to regulate the activation. AnActivatible interface should specify two strate-
gies to determine how its activation level changes when the decay and excite methods
are called.

One element that implements the Activatible interface has, in addition, the base-
level activation for the implementation of the learning. The current version of the
LIDA Framework does not have any learning algorithm implemented. To imple-
ment learning, currently, it is possible to develop custom modules that implement
the learning method. These methods shall modify the base-level activation of the
Learnable elements.

712 T. Becker et al.

4.1.5 Graphical User Interface

The LIDA Framework has a customizable user interface that allows the online exhi-
bition of the module contents, parameter values, tasks being executed and other
variables of interest during the LIDA execution. A properties file allows the addi-
tion of standard or custom panels to configure the appearance of the graphical user
interface.

5 Using the LIDA Framework on ROS Through
LIDA Bridge

TheLIDABridge is a Java library that provides the tools to build a navigation strategy
to a ROS robot using the LIDAFramework. It consists in a set of classes that provides
abstraction to the communication between LIDA and the ROS system. This section
will show a step by step tutorial on how to set up a LIDA agent for navigating a
ROS managed robot. This section will present a example of a simple mobile robot
navigator for the following situation: there is a goal position the robot must must
reach; in the environment, there is a moving object (representing a person or other
mobile robot) which will serves as an dynamic obstacle for the robot; the navigator
must decide when to follow its path (pre-defined by the navigation stack) or stop and
wait for the person to pass (if the person is too close to the robot). This is obvious
a unrealistic scenario, but it can demonstrate how to implement a cognitive agent
with LIDA.

5.1 Prerequisites

Before beginning with this tutorial, you must have a ROS environment already con-
figured for your robot. The example used in this tutorial will be of a mobile robot,
so the Navigation Stack must be also working in your environment. LIDA Frame-
work and the LIDA Bridge library are written in Java, so is necessary to have a
Java Development Kit configured in your environment. The example was tested in
Oracle JDK, but it’s likely to work in OpenJDK either. The LIDA Framework can
be downloaded in the Cognitive Computing Research Group from the University of
Memphis (http://ccrg.cs.memphis.edu/framework.html). The user can download the
framework after completing a registration form. The LIDA Bridge library can be
downloaded in https://github.com/lidabridge/lidabridge. The LIDA Bridge library
communicates with ROS through websockets by the Rosbridge package, which can
be downloaded in http://wiki.ros.org/rosbridge_suite.

Once you have a ROS system with the Navigation Stack and Rosbridge running,
we are able to proceed to the next step.

http://ccrg.cs.memphis.edu/framework.html
https://github.com/lidabridge/lidabridge
http://wiki.ros.org/rosbridge_suite

LIDA Bridge—A ROS Interface to the LIDA … 713

5.2 Setting up a New Project

To develop a LIDA agent you need to create a Java Project with the IDE of your
choice and add the jar files for the LIDA Framework and LIDA Bridge in the Java
Classpath, in the LIDA Bridge page you can get a list of all the dependencies needed
to start up the system.

The LIDAFramework uses a set of configuration files in order to set up the system,
it is a very flexible and customizable system, due to the fact that it was developed
for building any kind of intelligent system. We will begin by creating a folder in our
project to store all the configuration files. The file structure for the new project will
be somewhat like this:

• myRobotAgent

– src—Folder to store all the source code of the agent.
– lib—Folder to store the library dependencies.
– configs—Folder to store the configuration files.

There are twomain types of configuration files used by the system, the first of them
is the properties file (.properties). In these files we will set up the basic configuration
for the system like loggings features and graphical interface. The other type of file
is XML. The core LIDA configurations are defined in XML files that define almost
every property of the agent.

Lets begin by creating a property file called lidaConfig.properties in
our configs folder. This file will be the base for defining our system. The file must
have the following content:

Listing 1.1. lidaConfig.properties

1 #Agent properties
2 lida.agentdata=configs/basicAgent.xml
3 lida.elementfactory.data=configs/factoryData.xml
4
5 #Gui properties
6 lida.gui.panels=configs/guiPanels.properties
7 lida.gui.commands=configs/guiCommands.properties
8 lida.gui.enable=true
9
10 #Logging properties
11 lida.logging.configuration=configs/logging.properties

The first line is a commented line (all the lines that begin with a # in the properties
files are ignored by the LIDA Framework). Line 2 defines a basicAgent.xml file
in configs folder associated to the lida.agentdata property. This file is defines
the agent specific configurations. Line 3 defines a factoryData.xml associated
to the lida.elementfactory.data property. This file specifies which classes will be
instantiated by the LIDA Framework for the many components of the system. The
LIDAFramework uses theElement Factory design pattern and this file contains

714 T. Becker et al.

the factories definitions. Lines 6 and 7 define user interface property files and line
8 tells if we will be using the LIDA user interface or not. Finally, line 11 defines a
logging properties file, for setting up the system logs. With all these files created we
have the following project structure:

• myagent

– src—Folder to store all the source code of the agent.
– lib—Folder to store the library dependencies.
– configs—Folder to store the configuration files.

basicAgent.xml
factoryData.xml
guiPanels.properties
guiCommands.properties
logging.properties

We will be editing these files through this tutorial, but you will get a example
version of each file together with the LIDA Framework, now lets go to the Java
source code.

In order to get our agent running we need to define a static main method to serve
as the entry point of our system.Wewill create a file called Run.javawith a proper
class, to handle our emphmain method.

Listing 1.2. Run.java

1 package myagent;
2
3 import edu.memphis.ccrg.lida.framework.initialization.

AgentStarter;
4 public class Run {
5
6 public static void main(String[] args){
7 AgentStarter.main(args);
8 }
9 }

In line 7, the method AgentStarted.main is invoked in order to start the
LIDA Framework agent, this method will read the configuration files and set the
agent running. Our agent won’t run right now, because there are some code and
configurations missing, lets create them.

Earlier in this chapter, it was said that the LIDA Framework’s Environment mod-
ule is problem dependent and we need to implement this module now. LIDA Bridge
comes with an implemented environment module that will provide an environment
almost ready to use in our ROS/LIDA navigator. Although the LIDABridge environ-
ment module provides us a ROS Environment, we still need to specify some specific
settings for our robot. We will create a class called MyRobot that inherits from
lidabridge.ROSEnvironment. Inside this class, we will set up the ROS Top-
ics we will be subscribing and publishing within our system, as well as the actions

LIDA Bridge—A ROS Interface to the LIDA … 715

that, when decided to be taken by LIDA, will affect the ROS system. We will do all
this customization in the constructor method of our main class, because all of this
configurations must be ready before our agent starts.

The code bellow shows the example of the Environment module, inherited from
ROSEnvironment with all the customizations needed to our example. The first
thing that appears in our constructor (line 21) is the rosSetAddr method from
the ROSEnvironment class. It sets the URI (Uniform Resource Indicator) which
points to the ROS Bridge node, so it can communicate with it, through web sockets.

Lines 13–18 define several objects, each one representing a ROS Topic that is
advertised or subscribed by the agent. The PoseStampedTopic class that can
manage a ROS topic with the PoseStamped message type. The StringTopic
class that can manage a ROS topic with the String message type.

Line 13 defines a PoseStampedTopic named robotPosition, that will
be used to handle the position of our robot. Line 23 instantiates the object robot-
Position, of the PoseStampedTopic class, that has the following arguments:
the ROS topic, an alias to be used by LIDA Bridge, and a TopicAccessType that
tells if the topic will be published or subscribed. Besides the robotPosition
we create for our example, we have other three topics for managing positions,
mainGoal that handles the final goal that the robot must pursuit, the goal topic,
that handles temporary positions that LIDAuses to send the goal for the ROSNaviga-
tion Stack, and finally the person topic representing the position of the person (or
any othermobile obstacle). Lines 17 and 18 create two objects of the StringTopic
class, the status topic will be used to publish the last action taken by the agent, and
themessage topicwill publish a simplemessage depending on the action taken. The
StringTopic constructor has the same parameters of thePoseStampedTopic.
Lines 26–40 instantiate all the other topics, just like the robotPosition.

In lines 46–65 two Actions are created and added to the Actions list of the
ROSEnvironment. An Action is a LIDA Bridge class used to define what the
agent must do when a decision is taken by LIDA. The actions are created in this
example with two anonymous classes that inherits from the Action class. The con-
structor takes two parameters, the first is the ROSEnvironment object related to
this action, and the second is the LIDAcommand that is result of LIDA’s action selec-
tion mechanism (commands will be discussed later in this chapter). Every Action
must override the doWork method. In this example the two actions correspond to
the algorithm.goal and algorithm.stop commands. The first is selected
when LIDA decides the robot must continue going to the goal. Line 49 sets a simple
message, and line 51 sets the goal topic with the mainGoal value, as the goal
topic is sent every cycle to the Navigation Stack, the robot will continue going to
the goal. Line 52 sets the status of the robot as goal, which tells LIDA that the last
action taken by the robot was to move towards the goal. The second Action sets
the robot position to the current robot position, so the robot will stop.

716 T. Becker et al.

Listing 1.3. MyRobot.java

1 package myagent;
2
3 import java.util.Random;
4
5 import lidabridge.Action;
6 import lidabridge.ROSEnvironment;
7 import lidabridge.topic.PoseStampedTopic;
8 import lidabridge.topic.StringTopic;
9 import lidabridge.topic.TopicAccessType;
10
11 public class MyRobot extends ROSEnvironment {
12
13 private PoseStampedTopic robotPosition;
14 private PoseStampedTopic mainGoal;
15 private PoseStampedTopic goal;
16 private PoseStampedTopic person;
17 private StringTopic status;
18 private StringTopic message;
19
20 public MyRobot() {
21 setRosAddr("ws://localhost:9090");
22
23 robotPosition = new PoseStampedTopic("odom",
24 "agentpose", TopicAccessType.SUBSCRIBED);
25 this.getTopics().add(robotPosition);
26
27 mainGoal = new PoseStampedTopic("/goal",
28 "maingoal", TopicAccessType.SUBSCRIBED);
29 this.getTopics().add(mainGoal);
30
31 goal = new PoseStampedTopic("/move_base_simple/

goal", "goal", TopicAccessType.ADVERTISED);
32 this.getTopics().add(goal);
33
34 person = new PoseStampedTopic("/person_pose",
35 "person", TopicAccessType.SUBSCRIBED);
36 this.getTopics().add(person);
37
38 message = new StringTopic("/message", "message",

TopicAccessType.ADVERTISED);
39 this.getTopics().add(message);
40

LIDA Bridge—A ROS Interface to the LIDA … 717

41 status = new StringTopic("/status", "status",
TopicAccessType.ADVERTISED);

42 status.setValue("stop");
43 this.getTopics().add(status);
44
45
46 // Actions
47
48 // Action for the robot follow the main goal
49 this.getActions().add(new Action(this,
50 "algorithm.goal") {
51 @Override
52 public void doWork() {
53 message.setValue("Following torwards the

goal");
54
55 goal = mainGoal;
56 status.setValue("goal");
57 }
58 });
59
60 // Action for the robot stop
61 this.getActions().add(new Action(this,
62 "algorithm.stop") {
63 @Override
64 public void doWork() {
65 message.setValue("Stop...");
66 goal.setX(robotPosition.getX());
67 goal.setY(robotPosition.getY());
68 goal.setOrientation(robotPosition.

getOrientation());
69 status.setValue("stop");
70 }
71 });
72 }
73 }

Now thanks to the LIDA Bridge library our environment communication is ready,
and we just need to set up the standard LIDA settings.

The next thing we need to do to accomplish this task is to implement our per-
ception codelets. These codelets will monitor the environment and if it recognizes a
particular situation it will activate the corresponding nodes in the Perceptual Asso-
ciative Memory. The following code shows a codelet to activate the node ofar
(obstacle is far) or onear (obstacle is near) in PAM, depending on the distance of
the robot from the person in our environment. In the init method (lines 21–27)

718 T. Becker et al.

the nodes are taken from the PAM using the getNode method by their names.
The detectLinkables method is responsible for executing the detection and
the activation of the nodes. Lines 32 and 35 read the values of the position of the
person and the agent respectively, then a simple euclidian distance is computed and
if the distance is less than 1.2 meters, the onear node is excited (line 50) otherwise
the ofar node is excited (line 53).

Listing 1.4. ObstacleDistanceDetector.java

1 package myagent.featuredetectors;
2
3 import java.util.HashMap;
4 import java.util.Map;
5
6 import lidabridge.topic.PoseStampedTopic;
7 import edu.memphis.ccrg.lida.pam.PamLinkable;
8 import edu.memphis.ccrg.lida.pam.tasks.

DetectionAlgorithm;
9 import edu.memphis.ccrg.lida.pam.tasks.

MultipleDetectionAlgorithm;
10
11 public class ObstacleDistanceDetector extends

MultipleDetectionAlgorithm implements
DetectionAlgorithm {

12
13 private PamLinkable near;
14 private PamLinkable far;
15 private PamLinkable obstaclenode;
16
17 private final String modality = "";
18 private Map<String, Object> detectorParams = new

HashMap<String, Object>();
19
20 @Override
21 public void init() {
22 super.init();
23
24 near = (PamLinkable) pam.getNode("onear");
25 far = (PamLinkable) pam.getNode("ofar");
26 obstaclenode = (PamLinkable) pam.getNode
27 ("obstacle");
28 }
29
30 @Override
31 public void detectLinkables() {
32 detectorParams.put("mode", "person");

LIDA Bridge—A ROS Interface to the LIDA … 719

33 PoseStampedTopic obstacle = (PoseStampedTopic)
sensoryMemory.getSensoryContent(modality,
detectorParams);

34
35 detectorParams.put("mode", "agentpose");
36 PoseStampedTopic agent = (PoseStampedTopic)

sensoryMemory.getSensoryContent(modality,
detectorParams);

37
38 if ((obstacle == null) || (agent == null))
39 return;
40
41 // Compute the euclidian distance between the

agent and the obstacle
42
43 double distance;
44 Double dx = Math.pow(obstacle.getX() - agent.

getX(), 2);
45 Double dy = Math.pow(obstacle.getY() - agent.

getY(), 2);
46 distance = Math.sqrt(dx + dy);
47
48 pam.receiveExcitation(obstaclenode, 1);
49
50 if (distance < 1.2)
51 pam.receiveExcitation(near, 1);
52
53 else
54 pam.receiveExcitation(far, 1);
55
56 }
57
58 }

One more perceptual codelet is needed to our example to detect the the status
of the robot, and excite the nodes corresponding to the two possible actions of the
robot, stop and goal. You can do it yourself or download the full code of this
example in the LIDA Bridge page.

The last piece of code needed is a main class to start our agent, this is accom-
plished by invoking the main method of the AgentStarter class, as shown in
Listing 1.5. This class reads all the configuration from the XML files and runs the
LIDA Framework with the proposed setup.

720 T. Becker et al.

Listing 1.5. Run.java

1 package myagent;
2
3 import edu.memphis.ccrg.lida.framework.initialization.

AgentStarter;
4 public class Run {
5
6 public static void main(String[] args){
7 AgentStarter.main(args);
8 }
9 }

Finally, now we need to set up things in LIDA’s XML files. In lidaConfig.
properties file we defined a basicAgent.xml. This file is the core of LIDA’s
agent declaration, where we can tell LIDA how every module will work. The full
documentation of the file can be found onLIDAproject documentation and a example
file in also be found at LIDA Bridge’s page. Here we will focus only on what is
specifically associated to the problem proposed to our example.

Listing 1.6. basicAgent.xml (Environment)

1 <module name="Environment">
2 <class>myagent.MyRobot</class>
3 <param name="environment.ticksPerRun" type="

int">1</param>
4 <taskspawner>defaultTS</taskspawner>
5 </module>
6 <module name="SensoryMemory">
7 <class>lidabridge.modules.ROSSensoryMemory
8 </class>
9 <associatedmodule>Environment
10 </associatedmodule>
11 <taskspawner>defaultTS</taskspawner>
12 <initialTasks>
13 <task name="backgroundTask">
14 <tasktype>SensoryMemoryBackgroundTask

</tasktype>
15
16 <ticksperrun>5</ticksperrun>
17 </task>
18 </initialTasks>
19 </module>

In the modules section we need to specify the environment module we developed,
to do so in the Environment module configuration we set the class property to our
MyRobot class, then when the agent start it will use our class as the environment
module. Another custom module that must be configured is the SensoryMemory

LIDA Bridge—A ROS Interface to the LIDA … 721

module, because wewill be using the LIDABridge’s sensorymemory. To do this you
must set the class as lidabridge.modules.ROSSensoryMemory as shown
in Listing 1.6.

In the Perceptual Associative Memory module configuration, we define which
will be the nodes that will represent the perceptual model of the environment;.
We do so with the nodes section in the PerceptualAssociativeMemory
module configuration. Listing 1.7 shows the section nodes filled with 6 nodes:
obstacle, onear, ofar, robot, rstop, rgoal. The node obstacle repre-
sent the person moving in the environment, the nodes onear and ofar rep-
resent the distance of the agent from the obstacle (as we defined before in the
Obstacle DistanceDetector), the node robot as the name says represent
the robot itself, the nodes rstop and rgoal represent the two possible states,
the robot has stopped or is moving towards the goal. Still in the PAM configu-
ration, we have a section named links, this section defines which are the links
between the nodes in PAM, and they are represented using the following nota-
tion: <node>:<node>. In Listing 1.7 we defined four links: obstacle:near,
obstacle:far,robot:rstop,robot:rgoal. These nodes and links defined
here will be enough for our simple example.

In order to monitor the sensory data and excite the PAM nodes, we developed
two codelets or feature detectors. The PAM configuration also as to include those
feature detectors information. The perception codelets are defined by adding a TASK
attribute for each codelet.

Listing 1.7. basicAgent.xml (PerceptualAssociativeMemory)

1 <module name="PerceptualAssociativeMemory">
2 <class>edu.memphis.ccrg.lida.pam.

PerceptualAssociativeMemoryImpl</class>
3 <associatedmodule>TransientEpisodicMemory
4 </associatedmodule>
5 <param name="pam.upscale" type="double">
6 0.5 </param>
7 <param name="pam.downscale" type="double">0.6 </

param>
8 <param name="pam.perceptThreshold" type="double">
9 0.8 </param>
10 <param name="pam.excitationTicksPerRun" type="int

">1</param>
11 <param name="pam.propagationTicksPerRun" type="int">
12 1</param>
13 <param name="pam.propagateActivationThreshold" type

="double">0.5</param>
14
15 <param name="nodes">
16 obstacle, onear, ofar,
17 robot, rstop, rgoal

722 T. Becker et al.

18 </param>
19 <param name="links">
20 obstacle:onear, obstacle:ofar,
21 robot:rstop, robot:rgoal
22 </param>
23
24 <taskspawner>defaultTS</taskspawner>
25 <initialTasks>
26 <task name="ObstacleDistanceDetector">
27 <tasktype>ObstacleDistanceDetector</tasktype>
28 <ticksperrun>3</ticksperrun>
29 <param name="nodes" type="string">onear,

ofar</param>
30 </task>
31 <task name="RobotStatusDetector">
32 <tasktype>RobotStatusDetector</tasktype>
33 <ticksperrun>3</ticksperrun>
34 <param name="nodes" type="string">rgoal,

rstop, rexcuse</param>
35 </task>
36 </initialTasks>
37 <initializerclass>edu.memphis.ccrg.lida.pam.

BasicPamInitializer</initializerclass>
38 </module>

The attention module is where the Attention Codelets are defined, just like the
perceptual codelets in the Perceptual Associative Memory, the Attention Codelets
in the Attention Module are defined by TASKS. In this example we set up three
attention codelets:

• AttentionCodelet-01—observes the nodes robot, ofar and rstop;
• AttentionCodelet-02—observes the nodes robot, rgoal and onear;
• AttentionCodelet-03—observes the nodes robot, rstop and obear;

In Listing 1.8 is shown the example of the Attention Module configuration.

Listing 1.8. basicAgent.xml (AttentionModule)

1 <module name="AttentionModule">
2 <class>edu.memphis.ccrg.lida.

attentioncodelets.AttentionCodeletModule
</class>

3 <associatedmodule>Workspace
</associatedmodule>

4 <associatedmodule>GlobalWorkspace
</associatedmodule>

LIDA Bridge—A ROS Interface to the LIDA … 723

5 <param name="attentionModule.
defaultCodeletType" type="string">
NeighborhoodAttentionCodelet</param>

6 <param name="attentionModule.
codeletActivation" type="double">1.0
</param>

7 <param name="attentionModule.
codeletRemovalThreshold" type="double">

8 -1.0</param>
9 <param name="attentionModule.

codeletReinforcement" type="double">0.5</
param>

10
11 <taskspawner>defaultTS</taskspawner>
12
13 <initialTasks>
14 <task name="AttentionCodelet-01">
15 <tasktype>

NeighborhoodAttentionCodelet</
tasktype>

16 <ticksperrun>5</ticksperrun>
17 <param name="nodes" type="string">

robot, ofar, rstop</param>
18 <param name="refractoryPeriod" type="

int">5</param>
19 <param name="initialActivation" type

="double">1.0</param>
20 <param name="learnable.

baseLevelActivation" type="double
">1.0</param>

21 </task>
22 <task name="AttentionCodelet-02">
23 <tasktype>

NeighborhoodAttentionCodelet
</tasktype>

24 <ticksperrun>5</ticksperrun>
25 <param name="nodes" type="string">

robot, rgoal, onear</param>
26 <param name="refractoryPeriod" type="

int">5</param>
27 <param name="initialActivation" type="
28 double">1.0</param>
29 <param name="learnable.
30 baseLevelActivation" type="double">

1.0</param>

724 T. Becker et al.

31 </task>
32 <task name="AttentionCodelet-03">
33 <tasktype>

NeighborhoodAttentionCodelet
</tasktype>

34 <ticksperrun>5</ticksperrun>
35 <param name="nodes" type="string">robot,

rstop, onear</param>
36 <param name="refractoryPeriod" type="int

">5</param>
37 <param name="initialActivation"type="

double">1.0</param>
38 <param name="learnable.

baseLevelActivation" type="double">
1.0</param>

39 </task>
40
41 </initialTasks>
42 </module>

In the Procedural Memory configuration we define the action schemes used by
the action selection mechanism (Listing 1.9).

Listing 1.9. Action schemes syntax

1 <scheme_name>|(<context>)()|<action>|(<result>)()
<base_activation>

Listing 1.10 shows the configuration of the module, where the parameters named
scheme.1a and scheme.2a define the action schemes of our proceduralmemory.

Listing 1.10. basicAgent.xml (ProceduralMemory)

1 <module name="ProceduralMemory">
2 <class>edu.memphis.ccrg.lida.

proceduralmemory.ProceduralMemoryImpl
</class>

3 <param name="proceduralMemory.ticksPerStep"
type="int"> 14 </param>

4 <param name="proceduralMemory.
conditionDecayStrategy">conditionDecay
</param>

5 <param name="proceduralMemory.
schemeSelectionThreshold" type="double
">0.1</param>

6 <param name="proceduralMemory.contextWeight"
type="double">1.0</param>

LIDA Bridge—A ROS Interface to the LIDA … 725

7 <param name="proceduralMemory.
addingListWeight" type="double">1.0
</param>

8 <param name="proceduralMemory.schemeClass">
edu.memphis.ccrg.lida.proceduralmemory.
SchemeImpl</param>

9 <param name="scheme.1a">Move|(robot, ofar,
rstop)()|action.seguir|(rgoal)()|0.2
</param>

10 <param name="scheme.2a">Stop|(robot, rgoal,
onear)()|action.parar|(rstop, ofar,
omoving)()|0.2</param>

11
12 <taskspawner>defaultTS</taskspawner>
13 <initializerclass>edu.memphis.ccrg.lida.

proceduralmemory.
BasicProceduralMemoryInitializer
</initializerclass>

14 <!--<initializerclass>myagent.initializers.
ProceduralMemoryInitializer
</initializerclass>-->

15 </module>

Finally we will set up the Sensory Motor Memory, in which we will map an
action (given by the action schemes) to a command (the ones we used to define
out actions in the environment class). Listing 1.11 shows the configuration of the
SensoryMotorMemory.

Listing 1.11. basicAgent.xml (SensoryMotorMemory)

1 <module name="SensoryMotorMemory">
2 <class>edu.memphis.ccrg.lida.

sensorymotormemory.
BasicSensoryMotorMemory</class>

3 <associatedmodule>Environment
</associatedmodule>

4 <param name="smm.processActionTaskTicks"
type="int">1</param>

5 <param name="smm.mapping.1">action.stop,
algorithm.stop</param>

6 <param name="smm.mapping.4">action.move,
algorithm.move</param>

7 <!-- <param name="smm.3">action.releasePress
,algorithm.releasePress</param> -->

8 <taskspawner>defaultTS</taskspawner>
9 <initializerclass>edu.memphis.ccrg.lida.

sensorymotormemory.

726 T. Becker et al.

BasicSensoryMotorMemoryInitializer
</initializerclass>

10 </module>

These are the main configurations that must be set up in order to run LIDA. A
complete set of default configuration files can be found inside the LIDA Framework.
Now with our robot configured to read and publish the proper topics we can run our
agent and monitor all the LIDA modules with the LIDA GUI.

The following topics are published by the robot and subscribed by the agent,
they will provide the data that LIDA will use to create the perception model of the
environment:

• /pose
• /person
• /goal

While the agent executes, the following topics are published by the agent:

• /status
• /move_base_simple/goal
• /message

The status and message topics are used to show actions are being selected
by the agent, the move_base_simple/goal is the topic used by the Navigation
Stack and it points to the position the robot must go.

We can see in Fig. 2 the rqt interface, showing all the topics used by the agent
in the ROS system. Figure3 presents the LIDA Framework Interface showing the
graph build by LIDA’s current situational model, which represents the actual state of
the environment in the form of a graph.

Fig. 2 RQT Interface showing the topics managed by the agent

LIDA Bridge—A ROS Interface to the LIDA … 727

Fig. 3 LIDA GUI showing the current situational model graph

6 Conclusions

The main points in developing a LIDA powered robot are due to the its refined atten-
tional system, its learning capabilities and association potential. The core feature
of the conscious system is the attentional system which is the implementation
of the Global Workspace Theory. This feature makes our system more similar to a
biological brain in someways, and it can rapidly change its tasks in the conscious and
unconscious contexts just like a human or animal does when a novel or unexpected
situation is experienced. The LIDA’s graph representation of the situations is a pow-
erful tool, in our example (due to the space limitations for this chapter) the graph
which represent the perceptions is very simple andmay somehow not enough to show
LIDA’s association capabilities. The variousmemory systemsworking together gives
LIDA a high association power, which can infer new information as long as it expe-
riences diverse environment situations. LIDA Bridge is a very helpful tool because
the LIDA Framework is a general purpose cognitive system, it does not have any
ROS integration nor any robot specific settings. This simple but useful tool can ease
the process of building LIDA controlled robots, and allow for an easier starting point
to an exciting new area of study: conscious robotics.

728 T. Becker et al.

References

1. G. Landis, Teleoperation fromMars orbit: a proposal for human exploration. Acta Astronautica
61(1), 59–65 (2008)

2. E. Guizzo, How Googles self-driving car works (2011), http://spectrum.ieee.org/automaton/
robotics/artificial-intelligence/how-google-self-driving-car-works

3. L. Iocchi, J. Ruiz-del-Solar, T. van der Zant, Advances in domestic service robots in the real
world. J. Intell. Robot. Syst. 76(1), 3–4 (2014)

4. B.M. Faria, L.P. Reis, N. Lau, A Survey on Intelligent Wheelchair Prototypes and Simulators,
in New Perspectives in Information Systems and Technologies vol. 1 (Springer International
Publishing, Switzerland, 2014), pp. 545–557

5. J. Snaider, R. McCall, S. Franklin, The LIDA framework as a general tool for AGI, in The
Proceedings of the Fourth Conference on Artificial General Intelligence (AGI-11) (2011)

6. B.J. Baars, S. Franklin, Consciousness is computational: the LIDA model of global workspace
theory. Int. J. Mach. Conscious. 1(1), 23–32 (2003)

7. B.J. Baars, A Cognitive Theory of Consciousness (Cambridge University Press, Cambridge,
1988)

8. F. Crick, C. Koch, A framework for consciousness. Nat. Neurosci. 6(2):119–126 (2003)
9. D.R. Hofstader, M. Mitchell, The Copycat Project: A model of mental fluidity and analogy-

making, in Advances in Connectionist and Neural Computation Theory Volume 2: Analogical
Connections, ed. by K. Holyoak, J. Barnden (Ablex Publishing Corporation, Norwood, 1994),
pp. 31–112

10. P. Maes, How to do the right thing. Connect. Sci. J. 1, 291–323 (1989)
11. P. Kanerva, Sparse Distributed Memory (MIT Press, Cambridge, 1988)
12. J.V. Jackson, Idea for a mind. ACM SIGART Bull. xx(101):23–26 (1987)
13. S. Franklin, A. Graesser, O. Brent, H. Song, N. Aregahegn, Virtual mattie—an intelligent

clerical agent
14. J. Newman, B.J. Baars, S.-B. Cho, A neural global workspace model for conscious attention.

Neural Netw. 10(7), 1195–1206 (1997)
15. S. Franklin, A. Kelemen, L.Mccauley, IDA: a cognitive agent architecture, in IEEE Conference

on Systems, Man and Cybernetics, pp. 2646–2651 (1998)
16. O.G. Selfridge, Pandemonium: a paradigm for learning, ed. by D.V. Blake, A.M. Uttley, Pro-

ceedings of the Symposium on Mechanisation of Thought Processes, London, pp. 511–529
(1959)

17. A.S. Negatu, Cognitively inspired decisionmaking for software agents: integratedmechanisms
for action selection, expectation, automatization and non- routine problem solving. Ph.D. thesis,
The University of Memphis (2006)

18. R. Capitanio, R.R. Gudwin, A conscious-based mind for an artificial creature, in Artificial Life
XII: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of
Living Systems, Odense, Denmark, pp. 616–623 (2010)

19. A.S. Negatu, S. Franklin, An action selection mechanism for “conscious” software agents.
Cogn. Sci. Q. 2, 363–386 (2002)

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works

	Preface
	Acknowledgements
	Acknowledgements to Reviewers
	Contents
	Part I ROS Basics and Foundations
	MoveIt!: An Introduction
	1 Introduction
	2 A Brief History
	3 MoveIt! Architecture
	3.1 Collision Checking
	3.2 Kinematics
	3.3 Motion Planning
	3.4 Planning Scene
	3.5 3D Perception
	3.6 Trajectory Processing
	3.7 Using This Tutorial
	3.8 Installing MoveIt!

	4 Starting with MoveIt!: The Setup Assistant
	4.1 Start
	4.2 Generating the Self-Collision Matrix
	4.3 Add Virtual Joints
	4.4 Planning Groups
	4.5 Robot Poses
	4.6 Passive Joints
	4.7 Adding End-Effectors (Optional)
	4.8 Configuration Files

	5 Using the Rviz Motion Planning Plugin
	5.1 Visualization and Interaction
	5.2 Useful Hints

	6 The move_group_interface
	6.1 Planning to a Pose Goal
	6.2 Planning to a Joint Goal
	6.3 Move to Joint or Pose Goals
	6.4 Adding Objects into the Environment
	6.5 Helpful Hints
	6.6 Additional Resources

	7 Connecting to a Robot
	7.1 Configuring the Controller Interface
	7.2 Debugging Hints
	7.3 Integrating 3D Perception
	7.4 Helpful Hints

	8 Building Applications with MoveIt!
	9 Conclusion
	References

	Hands-on Learning of ROS Using Common Hardware
	1 Introduction
	2 Background
	3 ROS Environment Configuration
	4 Camera Sensors: Driver, Use and Calibration
	5 Custom Node and Messages for Image Processing with OpenCV
	6 RGB-D Sensors and PCL
	7 Actuator Control: Dynamixel and ROS Control
	8 Robot Description with URDF
	9 Motion Planning with MoveIt!
	10 Robot Simulation with Gazebo
	Reference

	Threaded Applications with the roscpp API
	1 Introduction
	2 ROS Environment Configuration
	3 Catkin Build System
	3.1 Creating package.xml
	3.2 CMake Setup
	3.3 Message Generation

	4 ROS Callback Functions
	4.1 Basic Callback Functions
	4.2 Robots as a Thread

	5 GUI Programming with Qt5 and ROS
	5.1 An Overview of Qt5 GUI Programming
	5.2 Connecting the Robot to the GUI
	5.3 Publishing the Velocity Messages
	5.4 Results

	References

	Part II Navigation, Motion and Planning
	Writing Global Path Planners Plugins in ROS: A Tutorial
	1 Introduction
	2 ROS
	2.1 ROS Navigation Stack

	3 Relaxed A*
	4 Integration Steps
	4.1 Writing the Path Planner Class
	4.2 Writing Your Plugin
	4.3 Running the Plugin
	4.4 Testing the Planner with RVIZ

	5 ROS Environment Configuration
	6 Experimental Validation
	References

	A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation
	1 Introduction
	2 Overview
	2.1 Prerequisites and Installation
	2.2 Software Components
	2.3 A Simple Example

	3 Package Description
	3.1 Adding, Accessing, and Removing Layers
	3.2 Setting the Geometry and Position
	3.3 Accessing Cells
	3.4 Moving the Map
	3.5 Basic Layers
	3.6 Iterating over Cells
	3.7 Using Eigen Functions
	3.8 Creating Submaps
	3.9 Converting from and to ROS Data Types
	3.10 Adding Data from Images

	4 Use Case: Elevation Mapping
	4.1 Background
	4.2 Implementation
	4.3 Results

	5 Summary and Conclusion
	References

	ROS Navigation: Concepts and Tutorial
	1 Introduction
	2 Background
	3 ROS Environment
	3.1 Configuring the Kinect Sensor
	3.2 Sick S300 Laser Sensor
	3.3 Transformations
	3.4 Creating a Package
	3.5 The Navigation Stack---System Overview
	3.6 The Navigation Stack---Getting It to Work
	3.7 Layered Costmaps

	4 Starting with a Test
	4.1 Using Rviz
	4.2 Multiple Machines Communication
	4.3 Real Tests on Pioneer 3-AT

	References

	Localization and Navigation of a Climbing Robot Inside a LPG Spherical Tank Based on Dual-LIDAR Scanning of Weld Beads
	1 Introduction
	2 AIR---Autonomous Inspection Robot
	3 Localization Problems in Spherical Tanks
	4 Weld Beads Scanning with LIDAR Sensors
	5 Localization Inside LPG Spheres
	5.1 LIDAR Based Odometry

	6 Experimental Results
	6.1 Experiments on Planar Environment
	6.2 Experiments in LPG Spherical Tank

	7 Navigation
	7.1 Wheel Odometry
	7.2 EKF
	7.3 Simultaneous Localization and Mapping---SLAM

	8 Conclusions
	9 Compliance with Ethical Standards
	References

	Part III Service and Experimental Robots
	People Detection, Tracking and Visualization Using ROS on a Mobile Service Robot
	1 Introduction
	2 Background of the SPENCER Project
	2.1 Robot Hardware and Sensory Setup
	2.2 People Tracking Pipeline

	3 People Detection
	3.1 ROS Message Definitions
	3.2 Person Detection in 2D Laser Data
	3.3 Person Detection in RGB-D
	3.4 Person Detection in Monocular Vision

	4 People Tracking
	4.1 ROS Message Definitions
	4.2 People Tracking Algorithms Used in Our Experiments
	4.3 Example: Nearest-Neighbor Tracker
	4.4 Improving Robustness of Tracking
	4.5 Tracking Metrics

	5 Group Tracking
	5.1 Social Relation Estimation
	5.2 Group Detection and Tracking

	6 Multi-Modal Tracking
	6.1 ROS Message Definitions
	6.2 Strategies for Fusion at the Detection Level
	6.3 Post-Processing Filters
	6.4 Multi-Modal People Tracking Setup on the Robot
	6.5 Exemplary Launch File

	7 Visualizing the Outputs of the Perception Pipeline
	7.1 Custom RViz Visualization Plugins
	7.2 URDF Model for Robot Visualization
	7.3 ROS-based SVG Exporters

	8 Integration with 3rd-Party Simulation Tools
	8.1 Integration with the Robot Simulator Gazebo
	8.2 Integration with the Pedestrian Simulator PedSim

	9 Results
	9.1 Qualitative Results
	9.2 Runtime Performance
	9.3 Lessons Learned

	10 Conclusion
	References

	A ROS-Based System for an Autonomous Service Robot
	1 Introduction
	2 ROS Environment Configuration
	3 Graphical User Interface
	3.1 Background
	3.2 ROS Environment Configuration
	3.3 Quick Start and Example
	3.4 Package Description

	4 Mapping and Navigation
	4.1 Background
	4.2 ROS Environment Configuration
	4.3 Quick Start and Example
	4.4 Using the homer_gui for Mapping and Navigation
	4.5 Package Description and Code Examples

	5 Object Recognition
	5.1 Background
	5.2 ROS Environment Configuration
	5.3 Quick Start and Example
	5.4 Using the homer_gui for Object Learning and Recognition
	5.5 Package Description and Code Examples

	6 Human Robot Interaction
	6.1 Background
	6.2 ROS Environment Configuration
	6.3 Quick Start and Example
	6.4 Package Description and Code Examples

	7 Conclusion
	References

	Robotnik---Professional Service Robotics Applications with ROS
	1 Contributions of the Book Chapter
	2 RESCUER: Robot for CBRN Intervention
	2.1 Brief Description of the System
	2.2 Challenges

	3 R-INSPECT: Mobile Robot for Tunnel Inspection
	3.1 Brief Description of the System
	3.2 Challenges

	4 CROM: Upper Body Torso Robot
	4.1 Brief Description of the System
	4.2 Main Topics Covered

	5 AGVS: Indoor Healthcare Logistics Transport Robot
	5.1 Brief Description of the System
	5.2 Main Topics Covered
	5.3 Navigation
	5.4 Challenges

	6 VINBOT: Robot for Precision Viticulture
	6.1 Brief Description of the System
	6.2 Challenges

	7 Summary and Conclusions
	References

	Standardization of a Heterogeneous Robots Society Based on ROS
	1 Introduction
	2 Robot Description
	2.1 MariSorgin
	2.2 Tartalo and Galtxagorri
	2.3 Robotino-s
	2.4 NAO
	2.5 Kbot-I

	3 Working Areas of RSAIT Research Group
	4 Case Study 1: Setup of the Navigation Stack
	5 Case Study 2: Kinect Based Teleoperation
	5.1 The robotino_teleop_gesture Package
	5.2 The nao_teleop_gesture Package

	6 Case Study 3: Speech Based Teleoperation in Basque
	6.1 Speech-Based Teleoperation in MariSorgin
	6.2 The nao_teleop_speech_eus Package

	7 Conclusions
	References

	Part IV Real-World Applications Deployment
	ROS-Based Cognitive Surgical Robotics
	1 Introduction
	2 Background
	3 ROS Environment Configuration
	4 Components
	4.1 Robots
	4.2 Endoscope Cameras
	4.3 OR Perception System
	4.4 Marker-Based Optical Tracking
	4.5 Time-of-Flight Cameras
	4.6 RGB-D Cameras
	4.7 Input Devices
	4.8 OpenIGTLink-ROS-Bridge
	4.9 Ultrasound Imaging
	4.10 Surgical Instruments
	4.11 Augmented Reality

	5 Subsystems
	5.1 Telemanipulation
	5.2 Multi-RGBD People Tracking
	5.3 Human-Robot-Interaction
	5.4 Endoscope Guidance
	5.5 Ultrasound Tomography
	5.6 Simulation
	5.7 Software Frameworks

	6 Organization and Software Engineering
	6.1 Registration and Calibration
	6.2 TF and Pose Topics
	6.3 Windows/Matlab Integration
	6.4 Software Repositories and Configuration Management

	References

	ROS in Space: A Case Study on Robonaut 2
	1 Introduction
	2 Architecture Overview
	2.1 System Architecture
	2.2 Software Architecture

	3 Control Software
	3.1 RoboNet
	3.2 JointApi
	3.3 Robodyn

	4 Safety System and Certification
	4.1 Static Force
	4.2 Dynamic Force
	4.3 Crushing Force
	4.4 Health Monitoring
	4.5 Trajectory Monitoring
	4.6 Inadvertent Release
	4.7 Certification

	5 Vision and Supervisory Elements
	6 Simulation and User Interfaces
	6.1 Simulation
	6.2 Affordance Templates
	6.3 Vanguard

	7 Software Deployment
	8 Remote Operations
	9 Discussion
	10 Conclusions
	References

	ROS in the MOnarCH Project: A Case Study in Networked Robot Systems
	1 Introduction
	2 System Architecture
	3 Situational Awareness Module (SAM)
	3.1 Definitions and Overview of the Concepts
	3.2 An Example of the Use of SAM
	3.3 Technical Description
	3.4 Using SAM in Your Own NRS

	4 Current Results
	5 Related Work and Alternatives
	6 Conclusion
	References

	Case Study: Hyper-Spectral Mapping and Thermal Analysis
	1 Introduction
	1.1 Company Information
	1.2 Vehicle Overview
	1.3 Operating Environment

	2 Hardware
	2.1 Imaging
	2.2 Laser Rangefinder
	2.3 Position and Orientation Sensors
	2.4 GPS
	2.5 Environmental Sensors
	2.6 Processing and Storage
	2.7 Network
	2.8 Data Storage
	2.9 Hardware Configuration and Introspection

	3 Software
	3.1 Simulation and Development
	3.2 Diagnostics
	3.3 Operator Interface

	4 Best Practices and Lessons Learned
	4.1 Data Storage and Indexing
	4.2 Configuration Management
	4.3 Startup

	5 Conclusion
	References

	Part V Perception and Sensing
	A Distributed Calibration Algorithm for Color and Range Camera Networks
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Calibration Problem
	3.2 Affine Transformations
	3.3 Reference Frames
	3.4 Pinhole Camera Model
	3.5 Notations

	4 Camera-Only Network Calibration
	4.1 Pose Estimation
	4.2 Optimization
	4.3 Additional Constraints

	5 Extension to a Depth Sensor-Camera Network
	5.1 Pose Estimation
	5.2 Optimization

	6 ROS Environment Configuration
	6.1 Dependencies
	6.2 Basic Configuration

	7 Real-World Example
	8 ROS Package
	8.1 Architecture
	8.2 Device Node
	8.3 Master Node

	9 Conclusions
	References

	Acoustic Source Localization for Robotics Networks
	1 Introduction
	2 State of the Art
	3 DOA-Based Localization Problem
	4 Gaussian Probability over DOA Approach
	5 Algorithm Analysis and Optimization
	6 Simulation
	6.1 Simulation Results

	7 Real Tests
	7.1 Real Tests Results

	8 ROS Package Documentation
	8.1 Why ROS?
	8.2 Package Download
	8.3 Installation and Required Packages
	8.4 Input Parameters
	8.5 Simulation Tests
	8.6 Real Tests

	9 Conclusions and Future Work
	References

	Part VI Software Engineering with ROS
	ROS Web Services: A Tutorial
	1 Introduction
	2 Web Services
	2.1 SOAP Web Services
	2.2 RESTful Web Services

	3 ROSJAVA API
	4 ROS Web Services
	4.1 Prerequisites
	4.2 Implementation and Experimentation

	5 Conclusion
	References

	rapros: A ROS Package for Rapid Prototyping
	1 Introduction
	2 Background
	3 ROS Environment Configuration
	3.1 BeagleBone Black Setup
	3.2 BeagleBoard-xM Setup
	3.3 rapros Package Installation
	3.4 rapros Parameters Setup

	4 Starting with a Test
	4.1 A PIL Example: The Quadrotor Stabilization
	4.2 An HIL Example: The FAN Control

	5 Package Description
	5.1 rapros Simulink Block
	5.2 rapros.py Node

	References

	HyperFlex: A Model Driven Toolchain for Designing and Configuring Software Control Systems for Autonomous Robots
	1 Introduction
	2 Software Product Lines Development with HyperFlex
	2.1 Modeling Stable Architectures
	2.2 Modeling Robotic Requirements
	2.3 System Configuration
	2.4 The HyperFlex Toolchain

	3 Variability Modeling, Composition, and Resolution
	3.1 ROS Component Meta-Model
	3.2 ROS Resolution Meta-Model
	3.3 Architecture Composition Meta-Models
	3.4 Resolution Composition Meta-Models

	4 Case Study: Autonomous Logistics
	4.1 The Robot Navigation Functional System
	4.2 The Autonomous Logistics SPL

	5 Related Works
	5.1 MDE for Software Variability Management
	5.2 Robotics-Specific MDE approaches

	6 Conclusions and Future Works
	References

	Integration and Usage of a ROS-Based Whole Body Control Software Framework
	1 Introduction
	2 Overview of Whole Body Operational Space Control
	3 Software Architecture
	3.1 Core Classes
	3.2 Parameter Binding
	3.3 Multi-threaded Architecture

	4 Plugin Libraries
	5 Example Whole Body Control Configurations
	6 Installation
	7 Usage
	8 Conclusions
	References

	Part VII ROS Simulation Frameworks
	Simulation of Closed Kinematic Chains in Realistic Environments Using Gazebo
	1 Introduction
	2 Preliminaries
	2.1 Kinematic Linkages
	2.2 Description Formats

	3 Creating a Basic Robot Model with Gazebo
	3.1 Basic Skid Steer Robot

	4 Creating a Simulation of a Robot in a Complex Test Environment
	4.1 Creation of Scipio Model: Skid Steer Robot
	4.2 Creation of Environment

	5 Simulating a Robot Featuring Kinematic Loops in a Complex Test Environment
	5.1 Creation of Robot Model Featuring Kinematic Loops
	5.2 Creation of Environment

	6 Lessons Learned
	References

	RotorS---A Modular Gazebo MAV Simulator Framework
	1 Introduction
	2 Background
	2.1 MAV Modeling
	2.2 Control
	2.3 State Estimation
	2.4 Octree Representation

	3 Tutorials
	3.1 Simulator Setup
	3.2 Simulator Overview
	3.3 Hovering Example
	3.4 Hovering with State Estimation
	3.5 Mount Sensors
	3.6 Evaluation

	4 Advanced Tutorials
	4.1 Developing a Custom Controller
	4.2 Tutorial on Xacros
	4.3 Assembling a Model
	4.4 Creating Custom Sensors

	5 Using RotorS for Higher Level Tasks
	5.1 Collision Avoidance
	5.2 Path Planning

	6 Transfer to a Real MAV
	7 Conclusion
	References

	Part VIII Advanced Tools for ROS
	The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems
	1 Introduction
	2 Background
	2.1 ROS Master Change Detection
	2.2 Discovery
	2.3 ROS Master Synchronization

	3 Installation and Usage
	3.1 Installation
	3.2 Usage Example with One Host
	3.3 Remarks to Understand Synchronization
	3.4 Network Setup
	3.5 Synchronization of Multiple Hosts
	3.6 Special Synchronization Parameters
	3.7 Default Configuration

	4 Node Manager
	4.1 ROS Network
	4.2 Host Description Panel
	4.3 ROS Nodes View and Control
	4.4 ROS Topics View
	4.5 ROS-Services and Parameter View
	4.6 Launch Dock
	4.7 Launch Editor
	4.8 Description Dock
	4.9 Capabilities and Additional Description
	4.10 Capability View
	4.11 Auto Update

	Advanced ROS Network Introspection (ARNI)
	1 Introduction
	2 Background
	3 ROS Environment Configuration
	3.1 ARNI: Testing of the Setup

	4 ARNI: Overview
	4.1 Metadata Acquisition
	4.2 ARNI rqt GUI
	4.3 Reference State Specification
	4.4 Countermeasures Specification

	5 ARNI: Advanced Introspection
	6 ARNI: Monitoring
	7 ARNI: Countermeasures
	8 Conclusion
	Reference

	Implementation of Real-Time Joint Controllers
	1 Introduction
	2 Background on Control Systems
	2.1 Computed Torque Controller

	3 ROS Packages for Implementation of Controllers
	3.1 Setting up a Catkin Workspace
	3.2 ros_control
	3.3 ros_controllers
	3.4 robot_model
	3.5 orocos_kdl
	3.6 gazebo_ros_pkgs
	3.7 ufrgs_wam

	4 Configuring the System for Real-Time
	5 Testing the Installed Packages
	6 Implementing Controllers in ROS
	6.1 Controllers in ROS
	6.2 The ROS Real-Time Loop
	6.3 Implementation of a Computed Torque Controller
	6.4 The wam_description Package
	6.5 The wam_controllers ROS Package

	7 Conclusion
	References

	LIDA Bridge---A ROS Interface to the LIDA (Learning Intelligent Distribution Agent) Framework
	1 Introduction
	2 Global Workspace Theory
	3 The LIDA Model
	3.1 Codelets
	3.2 Perception
	3.3 Episodic and Long Term Memories
	3.4 Consciousness Mechanism
	3.5 Action Selection

	4 LIDA Framework
	4.1 Structure

	5 Using the LIDA Framework on ROS Through LIDA Bridge
	5.1 Prerequisites
	5.2 Setting up a New Project

	6 Conclusions
	References

