
Course on SLAM

Joan Solà
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Chapter 1

Intro(duction1)

Fig. 1.1 is a 3D visualization of a truck building a map of its environment while simul-
taneously getting localized in it. It represents the trajectory as an ordered set of past
poses (yellow boxes) and a set of measurements (yellow lines) to landmarks (poles). Poles
correspond to corners in the environment. They are extracted by the vehicle by analyzing
laser scans (colored profiles).

This document formalizes this situation into mathematical problems that can be solved.

1because it is so short!
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6 CHAPTER 1. INTRO(DUCTION2)

Figure 1.1: 3D visualization of a truck building a map of its environment while simultane-
ously getting localized in it.



Chapter 2

Robot motion

2.1 Rigid body transformations

Essential to every work in mobile robotics is the notion to rigid body, and its motion. We
briefly detail here the specification and manipulations of the position and orientation of
rigid bodies in space, through the notion of reference frame. For rigid bodies, all their fea-
tures (pieces, parts, points, planes, or whatsoever) are rigidly specified in a local reference
frame (they constitute constant parameters in this frame). The motion of the body, then,
can be completely specified by the motion of its reference frame.

2.1.1 Frame specification

A reference frame is specified by the position of its origin of coordinates, and its orientation,
always relative to another frame, which is called its parent frame. We call the parent of
all frames the global frame, which is typically considered static and attached arbitrarily
somewhere in the world. We name pose the position and orientation of a rigid body. We
use a light notation, as follows.

� Points and vectors in the body frame B have this indicator as a sub- or super- index
(depending on the situation), pB, vB, pB, vB.

� Points and vectors in the global frame have no indicator, p, v.

� The pose of the body B relative to a frame F is denoted as BF and specified by
its position and orientation, BF = (tFB,ΦFB), where tFB is a translation vector
indicating the position of the origin of B in frame F , and ΦFB is an orientation
specification of our choice, of frame B with respect to frame F .

� In the typical case, only the global and body frames are present. Then, the pose of
the body B can be specified with no indicators, (t,Φ).

7
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8 CHAPTER 2. ROBOT MOTION

2D In 2D, positions are 2D points, and orientations Φ are specified by an angle θ,

B =

[
t
θ

]
∈ R3 . (2.1)

3D In 3D, positions are 3D points, and orientations Φ admit a number of variants. In
this document, we use the unit quaternion representation, q = [qw, qx, qy, qz]

>, so that

B =

[
t
q

]
∈ R7 , ‖q‖ = 1 . (2.2)

NOTE: A brief but sufficient material on quaternion algebra is necessary. It is provided in
App. A.

2.1.2 Frame transformation

Points and vectors in a reference frame can be expressed in another frame through the
operation of frame transformation. In particular, points and vectors in the body frame
B = (t,Φ) have expressions in the global frame given respectively by,

p = R{Φ}pB + t (2.3)

v = R{Φ}vB (2.4)

whereas the opposite relations are

pB = R{Φ}>(p− t) (2.5)

pB = R{Φ}>p . (2.6)

Here, R{Φ} is the rotation matrix associated to the orientation Φ. Its expression depends
on the dimension of the space (2D or 3D) and on the orientation specification, as follows,

2D R{θ} is the rotation matrix associated to the orientation angle θ,

R{θ} =

[
cos θ − sin θ
sin θ cos θ

]
. (2.7)

3D R{q} is the rotation matrix associated to the quaternion q, given by (A.27) as,

R{q} =



q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z


 . (2.8)
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2.1. RIGID BODY TRANSFORMATIONS 9

R

S

SR = S  R

S = R� SR

SR

Figure 2.1: Representation of frame compositions as if they were vectors.

2.1.3 Frame composition

Let us assume a robot with a reference frame R, and a sensor with a reference frame S.
The sensor frame, when expressed in the robot frame, is denoted SR. We are interested in
two kinds of compositions. The additive composition, denoted by ⊕, is a concatenation of
R and SR, providing the sensor in the global frame, S,

S = R⊕ SR , (2.9)

The subtractive composition, denoted by 	, is the inverse, and expresses the local sensor
frame SR given the globals R and S,

SR = S 	R . (2.10)

These frame relations can be sketched as if they were vectors, as in Fig. 2.1.
Let us denote the three involved frame definitions by,

R =

[
tR
ΦR

]
, S =

[
tS
ΦS

]
, SR =

[
tRS
ΦRS

]
. (2.11)

The expressions of their compositions are detailed as follows,

2D

S =

[
tS
θS

]
=

[
tR + R{θR}tRS

θR + θRS

]
(2.12)

SR =

[
tRS
θRS

]
=

[
R{θR}>(tS − tR)

θS − θR

]
. (2.13)

3D

S =

[
tS
qS

]
=

[
tR + R{qR}tRS

qR ⊗ qRS

]
(2.14)

SR =

[
tRS
qRS

]
=

[
R{qR}>(tS − tR)

q∗R ⊗ qS

]
, (2.15)

where q∗ is the quaternion conjugate and ⊗ is the quaternion product, as defined in App. A.
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10 CHAPTER 2. ROBOT MOTION

2.2 Modeling robot motion

We write motion models generically with the state’s time-prediction form,

xn = fn(xn−1,un, i) , i ∼ N{0,Q} , (2.16)

where xn is the robot state at time tn , n∆t, fn is generally a non-linear function, un is the
control signal producing the motion, and i is a vector of random impulses that perturb the
desired trajectory, generally considered Gaussian with covariance Q. In some occasions, in
order to alleviate our notation, we introduce the arrow assignment operator “←”, meaning
that the left-hand term has been updated with the result of the right-hand operation,

x← f(x,u, i) , i ∼ N{0,Q} . (2.17)

Alongside this motion model, we need to compute estimated motion errors so that our
estimators can minimize them. These errors can be defined in different ways, the choice
being guided by a compromise of simplicity and feasibility. Motion errors can be expressed
in general as a function h() of the past state xn−1, the current state xn, and some motion
measurement un,

e = h(xn−1,xn,un) (2.18)

We explore some possibilities hereafter.

2.2.1 Motion errors in the state space

In many occasions, the perturbation impulse vector i is considered additive in the state
space,

xn = fx(xn−1,un) + ix , ix ∼ N{0,Qx} . (2.19)

This representation can be related to the general form (2.17) via linear approximation, by
making use of the Jacobian

Fi =
∂f

∂ i

∣∣∣∣
x,u,0

, (2.20)

so that

xn = f(xn−1,un, 0) + ix , ix = Fi i ∼ N{0,Qx} , Qx = Fi Q F>i . (2.21)

This allows us to use the motion function f(·) to define the errors directly,

ex = hx(xn−1,xn,un) , xn − fx(xn−1,un) (2.22)

= xn − f(xn−1,un, 0) ∼ N{0,Qx} . (2.23)

But BEWARE: assuming that Q is by nature a well defined, positive covariances matrix,
the matrix Qx = Fi Q F>i becomes singular if the Jacobian Fi is rank-deficient.
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2.3. POPULAR MOTION MODELS AND THEIR VARIANTS 11

2.2.2 Motion errors in the control space

In other occasions, the perturbations impulse is considered additive in the control space,

x← fu(x,u + iu) , iu ∼ N{0,Qu} . (2.24)

This case is very common and interesting, because such perturbations have a well-defined
covariances matrix Qu. It allows us to express motion errors in the control space,

eu = hu(xn−1,xn,un) , u− f−1
u (xn−1,xn) ∼ N{0,Qu} (2.25)

with f−1
u (·) a suitable inversion of the motion model fu(·), i.e., returning the estimated

control that produces a step from xn−1 to xn. Now, the noise model of this error coincides
with that of the perturbation iu, with a well-defined covariances matrix Qu.

2.2.3 Motion errors in the perturbations space

In the cases where perturbations are not practical in the state space nor in the control
space, one needs to find a way to express motion errors. It makes sense to express these
errors in the perturbation space directly, thus preserving a noise definition with a proper
covariances matrix Q,

ei = hi(xn−1,xn,un) , f−1
i (xn−1,xn,un) ∼ N{0,Q} (2.26)

where f−1
i (·) is a suitable inversion of the motion model fi(·) returning a vector in the

perturbation space.

2.2.4 Well-defined motion errors

In any case, motion errors have to be well defined, in the sense that the covariance of the
error must have the same rank as the number of degrees of freedom of the motion model.
This has two consequences:

� The final form of the covariances matrix Q of the motion error e must be of full rank,

rank(Q) = dim(e) (2.27)

� All the degrees of freedom in the motion model must have a non-null uncertainty
contribution encoded in the covariances matrix,

rank(Q) = DoF (f(x,u)) (2.28)

2.3 Popular motion models and their variants

We provide a collection of popular motion models. They come in the general form (2.17),
and we specify, for each one of them, the contents of the state vector x, the control vector
u, the perturbations vector i, and the nonlinear algebra implementing the model f(·).



12 CHAPTER 2. ROBOT MOTION

2.3.1 Constant-velocity model and variants

Useful when no control signals are available. For example, for a hand-held camera.

Constant velocity In the absence of perturbations, it corresponds to the motion of a
free body in space, subject to absolutely no forces, not even gravity. The effect of forces is
unknown and included in the perturbation terms vi and ωi.

x =




p
v
q
ω


 , i =

[
vi
ωi

]
(2.29)

p ← p + v∆t (2.30a)

v ← v + vi (2.30b)

q ← q⊗ q{ω∆t} (2.30c)

ω ← ω + ωi (2.30d)

Here, we used the quaternion to represent orientation in 3D space. The notation q{θ}
represents the quaternion associated to a rotation θ = θu, of θ radians around the axis u,
with θ = ‖ω∆t‖ and u = ω/‖ω‖. Its expression is given by (A.23) in App. A.

Constant acceleration It follows the same idea but adds an additional derivative. Use-
ful when the motions are very smooth, as accelerations are not allowed here to change
abruptly.

x =




p
v
a
q
ω
α



, i =

[
ai
αi

]
(2.31)

p ← p + v ∆t+
1

2
a ∆t2 (2.32a)

v ← v + a ∆t (2.32b)

a ← a + ai (2.32c)

q ← q⊗ q{ω∆t+
1

2
α∆t2} (2.32d)

ω ← ω +α∆t (2.32e)

α ← α+αi (2.32f)
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Constant jerk and beyond The scheme can be extended to constant jerk (the deriva-
tive of acceleration), and beyond, if such extra smoothness is beneficial for the application.

2.3.2 Odometry models

Frame composition with a local pose increment. Useful for wheeled or legged robots where
the control u acts over the local displacement of the robot. Generically, used when we have
means for measuring ego-motion and we want to integrate it into trajectories.

2D Control signal is u = [∆p, ∆θ] ∈ R3

x =

[
p
θ

]
, u =

[
∆p
∆θ

]
, i =

[
∆pi
∆θi

]
(2.33)

p ← p + R{θ} (∆p + ∆pi) (2.34a)

θ ← θ + ∆θ + ∆θi (2.34b)

where R{θ} is the rotation matrix associated to the orientation angle θ. Observe that this
corresponds exactly to a frame composition between the old robot pose and the odometry
increment, x← x⊕ (u + i).

3D Control signal is u = [∆p, ∆θ] ∈ R6

x =

[
p
q

]
, u =

[
∆p
∆θ

]
, i =

[
∆pi
∆θi

]
(2.35)

p ← p + R{q} (∆p + ∆pi) (2.36a)

q ← q⊗ q{∆θ + ∆θi} , (2.36b)

where R{q} is the rotation matrix associated to the quaternion q, given by (A.27). This
corresponds to the frame composition x← x⊕ [ ∆p + ∆pi , q{∆θ + ∆θi} ].

2.3.3 IMU-driven model

Inertial measurement units (IMU) and the related motion model are useful for agile plat-
forms with or without contact to the ground. IMU measurements of acceleration aS and
angular rates ωS are taken as control signals in the sense that they are used to predict the
future pose of the robot.

x =




p
v
q
ab
ωb



, u =

[
aS
ωS

]
, i =




vi
θi
ai
ωi


 (2.37)
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p ← p + v ∆t+
1

2
(R{q}(aS − ab) + g) ∆t2 (2.38a)

v ← v + (R{q} (aS − ab) + g) ∆t+ vi (2.38b)

q ← q⊗ q{(ωS − ωb)∆t+ θi} (2.38c)

ab ← ab + ai (2.38d)

ωb ← ωb + ωi , (2.38e)

where p,v,q are respectively the position, velocity and orientation quaternion of the IMU
reference frame, ab and ωb are respectively the accelerometer and gyrometer biases, vi and
θi are perturbation impulses due to the measurement noises integrated over the time step
∆t, and ai and wi are the biases’ random walks.



Chapter 3

Environment perception

3.1 Geometry of robot-centered measurements

The ways a robot may acquire information about its environment are multiple. Here, we
will focus in the most popular ones:

� Laser range scanner for 2D and 3D mapping.

� Vision with perspective cameras. Monocular and stereo vision.

� Vision+depth (RGBD) cameras.

All these sensors share a common pattern: they provide information on the sensor’s envi-
ronment in the form of range and/or bearing measurements to obstacles, objects, or other
features, relative to the sensor pose. Range refers to the distance to obstacles. Bearing
refers to the direction to the obstacle, i.e., the angle (or angles, in 3D) between the sensor’s
principal axis and the obstacle’s line of sight from the sensor. The following table provides
an overview of the outcome of some popular sensors. In the table, ‘Poor’ refers to the fact

Table 3.1: Range and bearing capabilities of popular sensors

Sensor Range Bearing

Sonar YES Poor
Radar YES Poor

Laser range scanner (Lidar) YES YES
Monocular camera NO YES

Stereo camera Fragile YES
V+D (RGBD) camera YES YES

Avalanche beacona Poor Poor
aAn avalanche beacon is a sensor used for search and res-

cue of victims in snow avalanches, based on a RF transmitter
beacon (with the victim) and a receiver (with the rescuer).

15
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that the measurements are not accurate, whereas ‘Fragile’ means that the conditions for a
successful measurement are not always met.

Additionally, a robot may acquire information about its location in absolute forms,
such as with a GPS, or in relative or incomplete forms, such as when processing pseudo-
ranges or Doppler velocities of individual GPS satellites. Other sensors such as altimeters
or compasses also fall in this category. We only cover some of these cases very generically.

3.2 Modeling environment perception

Observation model We write generic observation models with,

z = h(x) + v , v ∼ N{0,R} , (3.1)

where x is a state vector, z is a measurement depending on x through the non-linear
function h(·), and v is the sensor’s additive noise, usually considered Gaussian with zero
mean and covariances matrix R. To make this model more concise, we notice that the
function h(·) depends only on small parts of the state x, usually, but not limited to, these
two:

� the robot state, which we note here xR, tipically containing position and orientation,
and eventually velocities or other parameters.

� the state of the perceived feature, xL, usually known as landmark, existing somewhere
in the robot surroundings.

We have the observation model,

z = h(xR,xL) + v , v ∼ N{0,R} . (3.2)

On sensor pose and robot pose In fact, the pose of interest when dealing with obser-
vations is that of the sensor, rather than that of the robot. However, the sensor is usually
attached to the robot via a rigid transformation, that we can name the robot-to-sensor
transform xRS (i.e., the pose of the sensor in the robot reference frame). This is usually a
parameter, thus not part of the state –though it could perfectly be so.

In systems with only one sensor, one usually makes both definitions coincide for the
sake of simplicity, xR = xS, but the general case of a robot with several sensors makes the
robot state xR a preferable variable to estimate. In this section, we may indistinctly refer
to the robot pose or the sensor pose, depending on the context. The reader is warned,
and suggested to make the necessary adaptations to the math presented here, whenever
necessary.
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Inverse observation model In cases where the observation model is invertible, one is
interested in finding the location of the perceived landmark from the robot pose and the
measurement. This leads to the inverse observation model,

xL = g(xR, z− v) , v ∼ N{0,R} , (3.3)

where, if desired, the noise sensor v can be made additive via the Jacobian of g(·),

Gz =
∂g

∂z

∣∣∣∣
xR,z

, (3.4)

leading to

xL = g(xR, z) + v′ , v′ = Gz v ∼ N{0,R′} , R′ = Gz R G>z . (3.5)

However, while R is by nature a positive-definite covariance matrix, the matrix R′ might
be singular due to the Jacobian Gz being rank-deficient.

3.3 Popular sensors and their models

3.3.1 2D laser range scanner

A 2D laser range scanner is constituted of a laser beam rotating on a plane, and a receiver
measuring the time of flight of the light echoed by obstacles. For each laser direction, the
sensor records a range, computed as half the time of flight times the speed of light. The
outcome is a N -vector of ranges di, each associated to an orientation azimuth αi,

[
d1 d2 · · · dN

]
.

For example, see Fig. 3.1, if a range measurement is acquired for every degree, and the
scan is performed from −135◦ to +135◦, a complete laser scan is formed by a 270-vector
of ranges. Each individual echo i of a point πSi = [xSi , y

S
i ]> consists of an azimuth angle αi

and a range di, and is therefore a 2D point in polar coordinates,

[
αi
di

]
= polar2(πS) ,

[
arctan(yS, xS)√

(yS)2 + (xS)2

]
, (3.6)

where πS is expressed in the sensor frame, as denoted by the super-index •S. Expressing it
in the global frame through the sensor pose, (p, θ), yields the complete observation model,

[
αi
di

]
= polar2(R{θ}(π − p)) . (3.7)

Often, processing of the scan data starts by converting it into a sensor-referenced Carte-
sian coordinate frame, then eventually to a globally-referenced Cartesian space. Each re-
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Figure 3.1: 2D laser range scan. Left: principle of operation. Right: example of 2D laser
scan rendered in a 3D view.

ceived echo [αi, di] can be converted to the global 2D coordinate frame if the sensor pose
(p, θ) is known, yielding the inverse observation model,

πi = p + di R{θ}
[
cosαi
sinαi

]
. (3.8)

As with all scanners, one often needs to take care of the velocity of the vehicle, for
its position and orientation may not be constant during all the scan (typical 2D scanning
periods are in the order of 100ms). For this, the previous formula needs to be understood
as valid for each echoed point as long as the vehicle pose corresponds to the moment when
the echoed point was perceived. One way to express so is by introducing ti as the time
associated to echo i, and writing,

πi = p(ti) + di R{θ(ti)}
[
cosαi
sinαi

]
, (3.9)

where [p(t), θ(t)] is the pose of the sensor at time t. The time ti can be easily recovered
from the scan time stamp TS [s], the scanning velocity ω [rad/s], and the echoes density
δ [echoes/rad] (the formula may admit slight variations depending on the way the scan is
time-stamped; here, we considered that TS corresponds to echo i0),

ti = TS +
i− i0
δ · ω . (3.10)

3.3.2 3D laser range scanner

3D laser range scanners can be built in two ways: either we take a 2D scanner and mount
it on a tilting platform to explore different planes, or we use a set of rotating beams, each
one at a different inclination or elevation.
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Tilted 2D scanner In the first case, a 2D ranger is cyclically tilted up and down. The
observation model is the same as in the 2D laser range scanner, taking care of performing a
3D frame transformation instead of the earlier 2D, but now only the points π in the planar
slice scanned by the laser are to be considered. By construction, the result is always a local
point πS with a null Z component, and whose XY components are transformed to polar
coordinates to form the scan readings,

[
αi
di

]
= polar2 (R{q(ti)}(πi − p(ti))|XY ) . (3.11)

For the inverse observation model we just need to transform each 2D scan into its 3D
Cartesian orientation to build the full 3D scan in 3D space. In this case, the 3D position
πi of the echoed point [αi, di] can be recovered from the 3D sensor pose [p(t),q(t)] with,

πi = p(ti) + di R{q(ti)}




cosαi
sinαi

0


 . (3.12)

The collection of all points πi forms a cloud of points in 3D space, that we call, not
surprisingly, the point cloud.

As in the 2D case, the vehicle motion needs to be taken into account. This case is
however more severe, because the tilting motion of the scanner is often very slow so as to
allow for sufficient 2D scans for a complete tilt cycle. Typically, full 3D scans require one
or more seconds to complete. This fact is a serious limitation for the vehicle’s maximum
speed, since high vehicle speeds degrade the density of the resulting 3D scans.

Multi-beam scanner In the second case, a set of M beams at different elevation angles
εj, j ∈ 1 · · ·M, turn in parallel around a vertical axis (Fig. 3.2). The sensor output is
therefore a matrix of ranges,




d11 d12 · · · d1N

d21 d22 · · · d2N
...

dM1 dM2 · · · dMN


 ,

where each row corresponds to an elevation εj, and each column to an azimuth αi. The
geometrical model is different from the tilted 2D scanner in that, due to the different
elevation angles, most of the beams do not explore a plane, as in the 2D case, but a cone
(Fig. 3.2, left). We use the 3D polar coordinates,



αi
εj
dji


 = polar3

(
πCji
)
,




arctan
(
yC , xC

)

arctan
(
zC ,
√

(xC)2 + (yC)2
)

√
(xC)2 + (yC)2 + (zC)2


 , (3.13)
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Figure 3.2: 3D laser range scan. Left: principle of operation of a 5-beam scanner. Only
the central scan (shaded) is planar. Right: example of 64-beam 3D laser scan rendered in
a 3D view

and a 3D frame transformation, yielding the observation model,


αi
εj
dji


 = polar3 (R{q(ti)}(πji − p(ti))) . (3.14)

The 3D position πji of the echoed point [αi, εj, dji] can be recovered from the 3D sensor
pose [p(t),q(t)] at time t = ti with the inverse observation model,

πji = p(ti) + dji R{q(ti)}




cosαi cos εj
sinαi cos εj

sin εj


 . (3.15)

For each azimuth αi , the time ti is common to all beams j ∈ 1 · · ·M , and can be
recovered with (3.10). Again, the collection of all the points πji forms a 3D point cloud.
Here, full 3D point clouds can be completed with a single scan in the order of 100ms, thus
allowing for higher vehicle speeds for an equivalent scan density. Notice finally that only
for the one beam with null elevation, εj = 0, the scan is planar and the formula matches
that of the tilted 2D scanner.

3.3.3 Monocular camera

A perspective, monocular camera is a projective sensor that associates points in 3D space,
πC = [xC , yC , zC ]>, with points in the 2D image plane, u = [u, v]>, through the processes
of projection and pixelization. Each projected point u, or pixel, contains photometric
information I(u, v) that is intimately related to the photometric properties of the external
3D point. The matrix I is then the image of the perceived scene, in the commonly used
sense of the term ‘image’.
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zCP

X [m]

Y [m]

u [pix]

v [pix]

(u0, v0)

u = (u, v)

f

⇡C = (xC , yC , zC) su [pix/m]

s v
[p
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/
m

]

P = (X, Y )

X

Y

O

Figure 3.3: Pin-hole camera model. Left: projection from 3D to 2D. Right: pixelization
from metric to pixel units.

Projection Projection is explained through the pin-hole camera model. A pin-hole cam-
era (Fig. 3.3, left) consists of an optical center, O, an optical axis, and a plane, named the
image plane, perpendicular to the optical axis, and situated at a distance f from the optical
center, named the focal length. The point where the optical axis intersects the image plane
is called the principal point. For convenience, we align the optical axis with the local zC

axis, and arrange the other two axes (xC , yC) departing from the optical center as shown.
Then, projection of a point πC = [xC , yC , zC ]> in 3D space, named the object point, is
accomplished by intersecting the line OπC with the image plane. The expression of the
projected point P = [X, Y ]>, named the image point, is obtained by applying triangle
similarities, that is,

X

f
=
xC

zC
,

Y

f
=
yC

zC
, (3.16)

with which we can build the 3D→ 2D projection equation,

P =

[
X
Y

]
=

[
xC

yC

]
f

zC
. (3.17)

Here, the object point is expressed in the local coordinate frame of the camera, as denoted
by the super-index •C . In these coordinates, we refer to zC as the depth of the object point.
This equation can be elegantly put in linear form by using homogeneous coordinates in the
left-hand side, 


X
Y
1


 ∼ P =



f 0 0
0 f 0
0 0 1





xC

yC

zC


 , Kf π

C , (3.18)

where the underlined P denotes homogeneous coordinates, and the symbol ∼ denotes
equivalence under (non-zero) proportionality transforms.

Pixelization Pixelization consists in expressing the image point P in pixel units instead
of metric units (Fig. 3.3, right). This is an affine transformation that involves the horizontal
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and vertical pixel densities [su, sv]
> [pix/m], and the pixel coordinates of the principal point,

[u0, v0]> [pix],

u = u0 + suX , v = v0 + sv Y . (3.19)

These relations can also be put in linear form using homogeneous coordinates,



u
v
1


 ∼ u =



su 0 u0

0 sv v0

0 0 1





X
Y
1


 , Ks P . (3.20)

Full model Concatenating projection and pixelization leads to

u = Ks Kf π
C = KπC . (3.21)

where the matrix,

K , Ks Kf =



αu 0 u0

0 αv v0

0 0 1


 , (3.22)

is known as the intrinsic matrix, because all its parameters are intrinsic to the camera itself.
The intrinsic parameters, k = (u0, v0, αu, αv), are then sufficient to specify the complete
pin-hole camera. Just for reference, we have αu = f ·su [pix] and αv = f ·sv [pix] . The
parameters αu and αv are interpreted as the focal length f measured respectively in terms
of horizontal and vertical pixels.

Knowing the camera pose (p,q), whose parameters are also known as the extrinsic
parameters, the object point πC in the camera coordinate frame can be obtained from its
global coordinates π, using a simple frame transformation. Concatenating frame transfor-
mation, projection and pixelization yields the complete pin-hole camera model,

u = K R{q}> (π − p) , (3.23)

where we recall that the Cartesian coordinates of the projected pixel, u = [u, v]>, are
obtained from its homogeneous coordinates, u = [u1, u2, u3]>, with,

u =

[
u
v

]
=

[
u1/u3

u2/u3

]
. (3.24)

Photometric properties of the image A pixelized 2D image I can be regarded as an
application R2 → Rn

I : R2 → Rn , (u, v)→ I(u, v) , (3.25)

where I(u, v) ∈ Rn is a n-vector containing the photometric properties of the pixel (u, v).
These properties can be the luminance for gray level images (with n = 1), the color for RGB
images (with n = 3), or other possibilities (IR images, multispectral images, etc.). Through
projection, the light emanating from the object point, I(x, y, z), reaches the image point,
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and thus the photometric properties of the image point are intimately related to those of
the object point,

I(u, v) = f(I(x, y, z)) , (3.26)

where f(·) models photometric effects, either intentional (light filters inserted at the camera
optics) or uncontrolled (optical or sensor imperfections), and is often taken as the identity
function for simplicity. This tight photometric correspondence is the one that allows us to
associate interesting features in the image with interesting features in the outer 3D space,
via the processes of feature detection and matching. These processes are studied in other
sections of this document, as they are not part of the camera model.

Bearing-only sensing Possibly the main drawback of a projective camera is its inability
to measure the distance or range to the perceived objects. This makes the projective camera
a bearing-only sensor, whose observation model cannot be inverted: given an image point,
we cannot recover the object point that generated it. The determination of the 3D locations
of features perceived in images is possible by considering multiple views. These views can
come from other cameras (as in the stereo case below), or from motion of the same camera
(leading in our context to what is known as monocular SLAM).

We can, nevertheless, find the locus of object points projecting to the pixel of interest,
as a semi-infinite straight line parametrized by the unmeasured depth r,

π(r) = p + rR{q}vC , r ∈ [0,∞) . (3.27)

where

vC =



vx
vy
1


 ∼ K−1 u (3.28)

is a vector of unit depth expressed in camera frame.1

3.3.4 Stereo camera

A stereo camera allows the evaluation of depths by adding a second viewpoint, and taking
profit of the procedure of triangulation. The simplest stereo camera is described by the
so called standard model (Fig. 3.4, left), and consists of two identical pin-hole cameras
arranged so that both optical axes are parallel, and both image planes co-planar. For
convenience, the optical centers OL and OR are aligned along the local xC axes, which are
also made co-linear. The optical centers are separated a distance b, known as the stereo
baseline. Usually, the local axes (xC , yC , zC) of the left pin-hole camera are used as the
local axes for the stereo camera.

1We can also define v as a unit vector, v = K−1 u/
∥∥K−1 u

∥∥, and declare r as a distance instead of
depth.
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f
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⇡C

d = 0dmax

IL IR

JRJL

Figure 3.4: Stereo camera model. Left: sensor setup, with two identical cameras with
co-planar image planes, showing the epipolar line (dashed). Right: scanning for the L−R
pixel correspondence (highlighted patches) along the epipolar line, using the appearances
of the local vicinity of the pixels. The search is performed on a disparity range d ∈ [0, dmax].

Projection and triangulation Given an object point πC = [xC , yC , zC ]> in local coor-
dinates, the image pixels in the left (L) and right (R) images are obtained with the pin-hole
model, 


uL
vL
1


 ∼ uL = K



xC

yC

zC


 ,



uR
vR
1


 ∼ uR = K



xC − b
yC

zC


 . (3.29)

We observe that the vertical pixel coordinates coincide, vL = vR , meaning that one of
these measurements is redundant. Of greater interest are the horizontal measurements,
which satisfy,

uL − uR = αu
xC − (xC − b)

zC
= αu

b

zC
, (3.30)

allowing us to observe the depth zC . Defining the pixel measure (u, v), and the disparity
measure d, as,

u , uL , v , vL , d , uL − uR , (3.31)

we obtain the stereo observation model,

s =



u
v
d


 =



u0 + αu x

C/zC

v0 + αv y
C/zC

αu b/z
C


 . (3.32)

For non-null disparities, this model can be inverted to obtain the object point from the
stereo measurement s = [u, v, d]>,

πC =



xC

yC

zC


 =

αu b

d




(u− u0)/αu
(v − v0)/αv

1


 , d > 0 , (3.33)
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which can be composed with a frame composition, leading to the inverse pin-hole camera
model,

π = p +
αu b

d
R{q}




(u− u0)/αu
(v − v0)/αv

1


 . (3.34)

The case of null disparity, d→ 0, corresponds to points that are very far away (ideally
at infinity), in which case the L and R images coincide, and the stereo camera behaves as
a unique monocular camera. This happens when the baseline b is too small compared to
the distances to observe. In practice, one can expect reasonably good 3D measurements
up to distances of 10 to 100 times (typically 30 times) the stereo baseline.

Stereo correspondence along the epipolar line The problem of L − R or stereo
correspondence is to find the image pixels in the L and R images that correspond to the
same object point in the 3D space. Typically, one takes a pixel in the L image and searches
its correspondent in the R image. Only when the correspondent is found, one can derive
the object point through triangulation.

From the stereo camera model (Fig. 3.4-left) we can observe that the plane joining the
object point, πC , and the two optical centers, OL, OR, named the epipolar plane, intersects
the image planes on two straight lines, called the epipolar lines. Then, given a pixel uL in
the left image, the associated object point πC must lie somewhere on the line defined by
OL and uL. This line belongs to the epipolar plane and thus it projects on the epipolar
line. Therefore, the correspondent pixel uR must be found along the epipolar line of the
R-image. In the standard model of the stereo camera, the L and R epipolar lines coincide
in the horizontal passing over uL, therefore defined in the right image by the ordinate
vR = vL, as we already noticed in (3.29). This is very practical for algorithmic purposes.

The search is performed (Fig. 3.4-right, and Algorithm 1) by extremizing some score of
similarity between the appearances of the local vicinities of the pixels. The appearance of
a pixel can be easily defined by a small (3× 3 to 11× 11) patch of pixels around the pixel
of interest. The outcome is the disparity measure d, with which we complete the stereo
measurement (u, v, d).

Several similarity scores can be used. Assuming that patches J{L,R} cover a window of
N pixels denoted by W , we show some similarity measures in Table 3.2. In the table, we
use the mean and standard deviation of the patches,

J =
1

N

∑

W

J , σJ =

√
1

N

∑

W

(J− J)2 . (3.35)

Please consult specialized literature for further information.

Point clouds 3D point clouds can be generated from stereo image pairs by performing a
stereo correspondence for each pixel on the L-image, and computing all the corresponding
3D points. Each point in the cloud has associated photometric properties coming from the
camera perception.
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Algorithm 1: Stereo correspondence. See text and Fig. 3.4-right for explanations.

Input: Left pixel: uL; Stereo images: {IL, IR}; Maximum disparity: dmax
1 s∗ = 0 // similarity score of the best match
2 JL = patch(IL,uL) // small patch describing the appearance of the L pixel
3 for d = 0 to d = dmax do
4 // we search on the epipolar line defined by vR = vL

5 uR =

[
uL − d
vL

]

6 JR = patch(IR,uR) // appearance of the R pixel
7 s = similarity(JL,JR)
8 if s > s∗ then
9 d∗ = d // disparity

10 s∗ = s // similarity score
11 u∗R = uR // right pixel
12 J∗R = JR // right patch

13 // Search done
Output: {d∗, s∗,u∗R,J∗R}

One limitation of the stereo camera is its inability to establish good L− R correspon-
dences in areas presenting poor texture, which derives in a poorly localized extreme of the
similarity score. Also, when facing repetitive patterns, which derives in multiple extrema
in the similarity scores. In such cases, one should add appropriate tests and filters to make
Algorithm 1 more robust, and eventually label the conflictive disparity measurements as
invalid. The generated point clouds should not contain any of these invalid points.

3.3.5 Vision+depth cameras (RGBD)

RGBD cameras take the acronym from the fact that they deliver color images (RGB
for the red-, green-, and blue- channels), plus a depth channel D. Because of the fact
that delivering color images is not essential here, we prefer to refer to these cameras as
visual+depth cameras, or V+D cameras. Microsoft’s Kinect sensor is a popular example
of a RGBD camera.

V+D cameras try to overcome the limitations of stereo cameras by substituting one
camera by a light projector. This projects a structured pattern of (infrared) light, which
impacts the objects in the scene. The projected pattern is captured by the camera from
a different viewpoint, thereby enabling the same triangulation techniques for depth de-
termination that we used in the stereo camera model. The disparity measurements are
established exactly as for the stereo camera (see Algorithm 1), with the exception that the
patches in the projector (playing the role of JL in the algorithm) are known a priori.

Point clouds produced with V+D cameras are clearly denser than those created by
stereo means, because the necessary texture for a successful correspondence is created by
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Table 3.2: Similarity scores between two patches JL and JR

Similarity score Acronym = Expression Extreme

Sum of absolute differences SAD =
∑

W |JL − JR| min

Sum of squared differences SSD =
∑

W (JL − JR)2 min

Correlation coefficient CC =
∑

W JL JR max

Zero mean CC ZCC =
∑

W (JL − JL)(JR − JR) max

Normalized CC NCC = 1
N

∑
W

JL JR

σL σR
max

Zero mean normalized CC ZNCC = 1
N

∑
W

(JL−JL)(JR−JR)
σL σR

max

Census C =
∑

W xor ((JL < uL), (JR < uR)) max

the projected pattern rather than by the photometric characteristics of the scene. That
is, ideally, we avoid the texture-less areas and repetitive patterns that created problems in
the stereo case. Each point in the cloud has associated photometric properties, typically
in the form of RGB color.

3.3.6 GPS fixes, compasses, altimeters, and the like

These sensors provide indirect measurements on the robot pose (p,q) only, as follows,

GPS fix It only depends on the robot position, expressed in a GPS-specific coordinate
frame. Knowing the transformation between this GPS frame and ours, (R, t), we can write

pGPS = R>(p− t) . (3.36)

The orientation q is not observed.

Compass Compasses, or more exactly magnetometers, measure the Earth’s magnetic
field vector m in the body reference frame,

mB = R{q}>m (3.37)

The measurement only depends on the robot orientation q. The position p is not observed.
The Earth’s magnetic field m is a 3D vector specific of the area, and it is not at all

horizontal (see below). It is usually specified by its intensity F , its dip or inclination I or
angle from the horizon (positive is down), and its declination D or angle from the North
direction (positive is East), resulting in

m = F ·




cosD cos I
− sinD cos I
− sin I


 , (3.38)
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which is a vector specified in the NWU reference frame (the X,Y,Z axes are respectively
North, West, Up).

Magnetic intensity, declination and inclination vary greatly from one zone to another,
and also with time. They are available in charts (keywords: magnetic dip- or inclination-,
declination-, intensity-, charts). Magnetic inclination is small near the Equator, reaches
values of 50◦ to 70◦ in Europe, slightly higher in the North Americas, and negative in the
Southern hemisphere.

Clinometer Clinometers or inclinometers measure the gravity vector in the body frame.
They use accelerometers for this purpose, and thus the measurements are only valid as
inclination indicators if the body accelerations are zero, or very small. We have,

gB = R{q}>(g + a) (3.39)

where the acceleration a must be small, g = [0, 0, g]> is the gravity vector, and g ≈ 9.8
is the gravitational force. For more precise values, g can also be obtained from charts,
although its value has no impact on the measure of the inclination angles.

The only observed values are the pitch and roll angles defining the inclination of the
body frame. The yaw angle defining the heading is not observed. Obviously, the position
is also not observed.

Barometric altimeter It only depends on the vertical coordinate of the position p =
[px, py, pz]

>,
z = h0 + pz , (3.40)

where h0 is a calibration parameter that depends on the current barometric pressure. If
wanted, it can be estimated by the SLAM system, thus becoming a part of the state vector.
The orientation q is not observed.



Chapter 4

Graph-based SLAM

4.1 Problem formulation

In Fig. 1.1 we illustrated a typical problem of Simultaneous Localization and Mapping
(SLAM): a mobile vehicle traverses an unknown environment; while doing so, it measures
its own movement, and detects external objects or features in this environment, with which
it builds a map. This map is concurrently used to get localized in it.

4.1.1 SLAM as a Dynamic Bayes Network

The process can be well represented by the dynamic Bayes network (DBN, Fig. 4.1). A
DBN is a probabilistic graphical model (a type of statistical model) that represents a
set of random variables and their conditional dependencies via a directed acyclic graph.
Conditional dependency is marked by the direction of the arrow connecting two variables:
the sub-graph A ← B indicates that A is conditioned by B (i.e., that A depends on B).
In our case, we have four types of random variables,

Variables

All robot states, X = {xi}, i ∈ 0 · · ·M .
All landmark states, L = {lj}, j ∈ 1 · · ·N .
All robot controls, U = {ui}, i ∈ 1 · · ·M .
All landmark measurements, Z = {zk}, k ∈ 1 · · ·K.

which are related with the following dependencies. Due to motion controls of the vehi-
cle, Section 2.3, a pose xi at time t = i depends on the pose at time t = i − 1 and the
control ui given to the vehicle at time i. This motion model, xi = fi(xi−1,ui) + wi, can be
put as a sub-graph representing the conditional probability of xi given xi−1 and ui, that
is,

x0 x1

u1

P (xi |xi−1,ui) . (4.1)

29
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x0 x1 x2 x3

u3u2u1

z1 z2 z4 z7

l1 l2 l3 l4

z1 z2 z4

x0 x1 x2 x3

u3u2u1

X

U

Z

L

z3 z5 z6

m

z3

Figure 4.1: Dynamical Bayes Networks for two SLAM systems. An arrow from nodes
A to B means that the probability of B is conditioned by that of A. Capitals between
graphs indicate the sets of poses X, controls U , landmarks L and measurements Z. Left :
Each robot pose xi depends on the previous pose and a control input ui. Each mea-
surement zk connects (depends on, is conditioned by) one state pose and the map m.
Right : Landmark-based SLAM, where the map is constituted of landmarks lj than can be
individually measured.

Similarly, each measurement of the environment, zk = hk(xi,m)+vk, depends on the map
of this environment, m, and the pose from which the measurement was taken, xi, and is
represented by the sub-graph,

z2

x1

m

P (zk |xi,m) . (4.2)

Aggregating several sub-graphs of the types (4.1) and (4.2) according to the evolution of
our vehicle leads to the DBN in Fig. 4.1-left. Here, m is an abstract entity representing
the map of the environment, which may take several forms depending on our design of
the SLAM framework. An interesting particular case is when the map is constituted of
landmarks which can be measured individually. In this case, the sub-graph representing a
measurement, zk = hk(xi, lj) + vk, of a landmark lj from the pose xi is,

x1

l2

z3 P (zk |xi, lj) , (4.3)
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x0 x1 x2 x3

u3u2u1

z1 z2 z3 z7

l1 l2 l3 l4

X
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z4 z5 z6

Figure 4.2: Factor graph for the landmark-based SLAM of Fig. 4.1-right. Left : Nodes rep-
resenting known data have been replaced by factors (squares) that depend on the unknown
variables or states (circles) they are connected to. Right : The same graph, where all states
(poses and landmarks) are labeled equal, with a unique running index i ∈ {0, · · · , 7}, and
all factors (controls and measurements) too, with the index k ∈ {1, · · · , 10}.

whose aggregation with the motions (4.1) leads to the DBN of Fig. 4.1-right. This is
precisely the case we illustrated in Fig. 1.1, where measurements to individual landmarks
are clearly visible. In the following, and without loss of generality, we will concentrate on
the case with landmarks.

A DBN contains all dependencies between the variables. This means that all that is
not represented in the graph is independent. Therefore, the joint probability of trajectory,
map, controls and measurements can now be written as a product of all the conditionals,

P (X,L, U, Z) ∝ P (x0)
M∏

i=1

P (xi |xi−1,ui)
K∏

k=1

P (zk |xik , ljk) . (4.4)

Finally, the goal of the SLAM estimator is to find the variables X∗, L∗ that maximize this
probability,

{X∗, L∗} = arg max
X,L

P (x0)
M∏

i=1

P (xi |xi−1,ui)
K∏

k=1

P (zk |xik , ljk) . (4.5)

4.1.2 SLAM as a factor graph

The joint probability (4.4) is a product of a number M+K of factors, of the type (4.1) and
(4.3), all of them independent. These factors come from measurements made, each one
depending on a small number of state nodes (poses or landmarks or a mixed set of them).
It is then appealing to transform our graph into a graph making these factors explicit: the
factor graph, see Fig. 4.2.

A factor graph is a bipartite graph that has two kinds of nodes: the variable nodes,
which constitute our states, and the factor nodes, which represent the constraints between
the states. The factors encode all the information entering the system, whereas the graph
captures the way this information is propagated to the hidden states we wish to estimate.
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The conditional probabilities (4.1–4.3) constituting the factors are easily extracted from
the motion and measurement models (see respectively Chapters 2 and 3 for extensive
explanations on defining motion and measurement models),

Models
Robot motion, xi = fi(xi−1,ui) + wi, wi ∼ N{0,Ω−1

i } ,
Landmark measurements, zk = hk(xik , ljk) + vk, vk ∼ N{0,Ω−1

k } .

By considering that the noises wi and vk in the models are Gaussian variables with re-
spective covariances Ω−1

i and Ω−1
k (that is, the matrices Ω are the information matrices of

the observed data), we have the factors φ,

φi = P (xi |xi−1,ui) ∝ exp

(
−1

2
(xi − fi(xi−1,ui))

>Ωi (xi − fi(xi−1,ui))

)
(4.6)

φk = P (zk |xik , ljk) ∝ exp

(
−1

2
(zk − hk(xik , ljk))>Ωk (zk − hk(xik , ljk))

)
. (4.7)

If we define the error values ek with a unique index k, as,

Errors
Robot motion, ek(xik−1,xik) = fik(xik−1,uik)− xik ,
Landmark measurements, ek(xik , ljk) = hk(xik , ljk)− zk,

the factors (4.6) and (4.7) admit a unique form,

φk = exp
(
− 1

2
e>k Ωk ek

)
. (4.8)

This suggests that, as long as we can compute an error ek from the k-th measurement and
associated states ik and jk,

ek(xik ,xjk , zk) , (4.9)

the distinction we made between motion and measurement factors is not important. There-
fore, for the sake of simplicity and greater genericity, in the following we will consider just
two types of variables: states to estimate, and observed data. On one hand, we have the
states {X,L} we wish to estimate, collected in a unique state vector x with N blocks,

x =
[
x1 · · · xN

]>
, (4.10)

where xi is either a robot state or a landmark state. On the other hand, and linking these
states, we have the observed data, z = {U,Z} with K blocks,

z =
[
z1 · · · zK

]>
, (4.11)

including control and measurements. Then, for each observed data ek, we can compute
the errors ek and the factors φk. The joint probability (4.4) can be written as the product
of all factors,

P (x, z) ∝
K∏

k=1

φk ∝
K∏

k=1

exp(−0.5 e>k Ωk ek) . (4.12)
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Maximizing this PDF is equivalent to minimizing its negative log-likelihood, otherwise
named the cost,

F(x) , − logP (x, z) =
K∑

k=1

Fk =
K∑

k=1

ek(xi,xj)
>Ωk ek(xi,xj) , (4.13)

by solving the equation,

x∗ = arg min
x

K∑

k=1

ek(xi,xj)
>Ωk ek(xi,xj) . (4.14)

We finally notice that the terms Fk = − log φk are no less than the squared Mahalanobis
distance of the errors ek = ek(xik ,xjk). They admit the following forms and notations,

Fk ∝ − log φk ∝ e>k Ωk ek = ‖ek‖2
Ω−1

k
=

∥∥∥Ω>/2k ek

∥∥∥
2

(4.15)

A note on motion errors

So far, we have defined the errors in the motion models as

e = f(xi−1,ui)− xi ,

where we obviated the index k for clarity. As we saw in Section 2.2, this is a definition in
the state space, i.e., of x, which arises from considering a motion model of the type

xi = fx(xi−1,ui) + w′i , w′i ∼ N{0,Ω′−1} .

Very often, the noises w that we know of are associated to measurements u, as in

xi = fu(xi−1,ui −wi) , wi ∼ N{0,Ω−1}

whose information matrices Ω are well defined as full rank, and usually even diagonal. We
saw in Section 2.2 that these two noise definitions are related with the Jacobian of f(), and
pointed out that, if this Jacobian is not full rank, the noise associated to w′ has a singular
covariances matrix, and hence its information matrix, Ω′, is not computable.

In such cases, and in order to have an error definition e with a well-defined information
matrix Ω, we can specify this error in the measurement space. This obliges us to invert
the function f() in (4.1.2) with respect to the measurement u,

ui = f−1(xi,xi−1) + wi , (4.16)

so that the error can be posed as

e = f−1(xi,xi−1)− ui . (4.17)
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This error is now in the measurement space, and has a form equivalent to that of the errors
of the landmark measurements, e = h(xi, lj)− z.

Depending on the motion model used, the determination of the inverse function f−1()
may not be trivial. In extreme cases (e.g., when dealing with IMU motion integration1),
we will seek for a modified measurement z = z(u), so that a function g, defined as

zi = g(xi,xi−1) + wi , (4.18)

is possible, and its associated perturbation wi ∼ N{0,Ω−1} has a computable information
matrix. The error is then

e = g(xi,xi−1)− zi ∼ N{0,Ω−1} . (4.19)

4.2 Iterative non-linear optimization

Let us forget for a while the particular structure of our problem, and consider a general
cost function F(x). The optimal state x∗ is such that it minimizes the cost,

x∗ = arg min
x

F(x) . (4.20)

All iterative optimization methods propose a series of steps, ∆x, so that the series xn =
xn−1 + ∆xn converges to the optimum x∗, i.e., limn→∞ xn = x∗. They proceed by,

1. approximating F(x) around a state estimate x̆, with an analytically tractable form,

2. solving for a good step ∆x under this form,

3. updating the state estimate with the computed step, x̆← x̆ + ∆x, and

4. iterating until convergence.

4.2.1 The general case and the Newton method

The Newton method approximates the cost function at each iteration by a paraboloid;
then, it computes the minimum of this paraboloid exactly, and iterates. The procedure
is sketched in Fig. 4.3. Each Newton step ∆x is established as follows. First, write the
local parabolic approximation of the cost around the current estimate, x̆ = xn−1, using the
2nd-order Taylor expansion,

F(x̆ + ∆x) ≈ F(x̆) +∇F ∆x +
1

2
∆x>HF ∆x , (4.21)

1Typical IMU integration is the result of several IMU measurements, each of them with 6 degrees of
freedom, resulting in a control space of very high dimension, thus in a non-invertible f(). A possible
solution makes use of the delta observations, as described in [1], which pre-integrate several IMU readings
into a single measurement, thus keeping the dimensionality low and rendering the equivalent f() invertible.
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Figure 4.3: Nonlinear optimization using iterative Newton steps. Left : black: nonlinear
function (y = 1.5+cosx), with a minimum known at x∗ = π; red: initial estimate x0 = 2.1,
and fitted parabola p0; blue: minimum of the red parabola at x1 = 3.81, and new fitted
parabola p1; green: minimum of the blue parabola at x2 = 3.02 and new fitted parabola
p2; magenta: minimum of the green parabola at x3 = 3.1422. The next iteration gives
x4 = 3.1416. Right : the same procedure for the 2D function f(x, y) = 1.5 + cosx sin 2y
(solid mesh), showing the fitted 2D paraboloids (other meshes), and the iterated estimates,
x0 · · ·x3, with the same color ordering.

where∇F and HF are respectively the gradient vector and the Hessian matrix of F, defined
by

∇F ,
∂F

∂x

∣∣∣∣
x̆

— is a row vector of first derivatives (4.22)

HF ,
∂2F

∂x2

∣∣∣∣
x̆

— is a symmetric matrix of second derivatives (4.23)

Then, the optimum step ∆x∗ is found by differentiating (4.21) and equaling to zero, giving,

∇F> + HF∆x∗ = 0 , (4.24)

which yields the Newton step,

∆x∗N = −(HF)−1∇F> . (4.25)

The Newton method converges very quickly to the solution if one is not very far from
this solution. Otherwise, the Newton step, as computed in (4.25), has two important
drawbacks: one is that the step length may be too big so as to escape from the minimum,
thus attracting the sequence to a secondary local minimum. This happens when the Hessian
HF is too small, which corresponds to areas with low curvature of the cost F(x). The other
one is that, in concave zones, i.e., when the HF is negative, the step departs towards the
opposite direction, thus getting away from the minimum and increasing the cost. In fact,
by imposing null derivatives of the cost, the Newton method might perfectly converge
to a maximum (though this is indeed an uncommon situation, since local maxima are
improbable). Both situations can combine catastrophically as we show in Fig. 4.4-left.
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Figure 4.4: Left: A failing sequence of Newton steps converging to a local maximum. The
initial estimate (x0 = 1.95, red) is such that the computed step is too large, which leads
to a higher cost (x1, blue) in a region of very small curvature. The following step is thus
very large, leading to a concave area (x2, green), which finally directs the Newton steps
towards the maximum (x3, magenta). Right: Gauss-Newton does not converge to maxima,
but may also escape from local minima due to too large steps.

4.2.2 The least squares case and the Gauss-Newton method

In many cases, the cost function is expressed as the squares function of the errors e(x),2

F(x) =
1

2
e(x)>Ω e(x) , (4.26)

with Ω a symmetric and positive-definite matrix.3 Then, the gradient vector ∇F and the
Hessian matrix HF are given by

∇F =
∂F

∂x

∣∣∣∣
x̆

=

(
e>Ω

∂e

∂x

)∣∣∣∣
x̆

= ĕ>Ω J (4.27)

HF =
∂2F

∂x2

∣∣∣∣
x̆

=

(
∂e

∂x

>
Ω
∂e

∂x
+ e>Ω

∂2e

∂x2

)∣∣∣∣
x̆

= J>Ω J + ĕ>ΩH , (4.28)

where ĕ, J and H are the error and its derivatives up to the second order, around the
current state estimate x̆,

ĕ , e(x̆) — is a column vector (4.29)

J ,
∂e

∂x

∣∣∣∣
x̆

— is a Jacobian matrix of first derivatives (4.30)

H ,
∂2e

∂x2

∣∣∣∣
x̆

— is a Hessian tensor of second derivatives (4.31)

2A quadratic function on e does not imply a quadratic function on x or ∆x, as the relation e(x) is
non-linear.

3The information matrix Ω is the inverse of the covariances matrix. It is usually diagonal, or sometimes
block-diagonal with small blocks. See e.g. (4.42). This renders the problems at hand tractable.
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leading to a quadratic local approximation of the cost, of the form,

F(x̆ + ∆x) ≈ 1

2
ĕ>Ω ĕ + ĕ>Ω J∆x +

1

2
∆x>(J>Ω J + ĕ>ΩH) ∆x . (4.32)

The Gauss-Newton step is an approximation of the Newton step that consists in ne-
glecting the second term, ĕ>ΩH, in the Hessian HF. This is interesting, because it frees
us from computing and manipulating the Hessian tensor H. It is also pertinent, because
the term ĕ>ΩH is in the majority of cases doubly small, since ĕ is small, and so is H. We
have the Gauss-Newton cost function,

F(x̆ + ∆x) ≈ 1

2
ĕ>Ω ĕ + ĕ>Ω J∆x +

1

2
∆x>J>Ω J ∆x . (4.33)

This expression is usually obtained directly, by writing the linear approximation of the
error, e(x̆ + ∆x) ≈ ĕ + J ∆x, and substituting in (4.26). Then, defining the approximate
Hessian H as

HF ≈ H , J>Ω J , (4.34)

the Gauss-Newton step is,

∆x∗GN = H−1∇F> , (4.35)

or, substituting ∇F and H by their expressions,

∆x∗GN = (J>Ω J)−1J>Ω ĕ , (4.36)

where the matrix

J+
Ω , (J>Ω J)−1J>Ω , (4.37)

is known as the left weighted generalized inverse of the Jacobian J,4 leading to,

∆x∗GN = J+
Ω ĕ , (4.38)

which means that the step is proportional to the observed error. The weighted inverse J+
Ω is

not computed explicitly, because it is too costly. Instead, a series of matrix manipulations
is performed to reduce the complexity of the problem. Two efficient methods are the
QR factorization of the weighted Jacobian Ω>/2J, and the Cholesky factorization of the
approximate Hessian H, which we see in the following sections.

Here, the matrix H = J>Ω J is the approximation of the Hessian matrix HF, and is
often called the Hessian matrix itself, by a (largely tolerated) abuse of terminology. By its
definition, it is properly the Grammian matrix of (the columns of) Ω>/2J. In the Gaussian
case, the matrix H coincides with the information matrix of the vector ∆x, that is, it is
exactly the inverse of its covariance matrix. For this reason, the matrix H is also referred

4This matrix is computable if J has full column rank, which is usually the case in SLAM, because
this renders J>Ω J invertible. Otherwise, one uses J#

Ω , (J>Ω J)+J>Ω, where ()+ indicates the (non-
weighted) generalized inverse.
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to as the information matrix. Such ‘Hessian’, ‘Grammian’, or ‘information’ matrix H plays
a fundamental role in the Cholesky factorization method, as we will see.

The Gauss-Newton method suffers from the same drawbacks as the Newton method,
with the exception that it cannot converge to a maximum, because the modified Hessian H
is positive by construction. See Fig. 4.4-right and the comment at the end of the Newton
section.

4.2.3 Improving convergence with the Levenberg-Marquardt al-
gorithm

As we have seen, Newton-based methods are only valid close to the optimum. Otherwise,
see Fig. 4.4, the approximated paraboloids do not fit the shape of the minimum, and the
computed steps may escape from it and become trapped in other local minima. This is
mainly due to the curvature of the approximated paraboloid, that is, of the Hessian matrix
H = J>Ω J being too small, thus producing too large steps.

Levenberg Levenberg’s key idea is to modify the Gauss-Newton step (4.35) by damping
the Hessian,

∆x∗L = −α (H + λI)−1∇F> , (4.39)

so that, for large λ, the step direction is mainly governed by the gradient ∇F> = J>Ω ĕ,
thus becoming a gradient-descent algorithm. The parameter α provides us with a way of
adjusting the length of the step.

Marquardt Marquardt’s insight draws from Levenberg’s idea, but proposes damping
the matrix with the diagonal of H, instead of the identity I, so that the damping affects
each direction of the state differently, depending on the curvature of the cost function along
that direction,

∆x∗LM = −α (H + λ diag(H))−1∇F> . (4.40)

In both cases, the values of α and λ are continuously adapted in function of the behavior
of the costs — see specialized literature for more information.

4.2.4 The sparse structure of the SLAM problem

The SLAM problem we are willing to solve (see (4.14)) has a square cost function that is
the additive contribution of many square cost functions,

F(x) =
K∑

k=1

ek(x)>Ωk ek(x) . (4.41)

This least-squares form is strictly equivalent to (4.26), as can be seen by collecting all
errors and their information matrices in a large error vector and a large block-diagonal
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information matrix,

e =




e1
...

eK


 , Ω =




Ω1

. . .

ΩK


 , (4.42)

and substituting in (4.26) to get (4.41). Each error 〈ek,Ωk〉 comes from one individual
measurement, either of motion or of the environment, and thus it corresponds to a factor
in the factor graph.

Gauss-Newton minimization of (4.41) is performed by linearizing the errors ek, writing
and solving a linear least-squares problem, and iterating until convergence. For this, we
express the Taylor series of the errors ek up to the linear term,

ek(x̆ + ∆x) ≈ ĕk + Jk ∆x , (4.43)

where ĕk is the k-th expected error given the current state estimate x̆, and Jk is the k-th
Jacobian matrix, i.e.,

ĕk , ek(x̆) , Jk =
∂ek(x)

∂x

∣∣∣∣
x̆

, (4.44)

so that the Jacobian and the Hessian matrices introduced in the Gauss-Newton method
correspond to,

J =




J1
...

JK


 , H = J>Ω J =

∑

k

J>k Ωk Jk . (4.45)

In SLAM, these matrices are largely sparse, which is very good. The Jacobians Jk are
sparse by construction, because the graph is sparsely connected, having non-zero blocks
only at states affected by the factors, i.e., by the constraints imposed by the measurements.
We illustrate the sparsity of Jk linking states xi and xj,

Jk =
[
· · · Jki · · · Jkj · · ·

]
, (4.46)

with Jki situated at node i, Jkj at node j, and computed as

Jki =
∂ek(x)

∂xi

∣∣∣∣
x̆

, Jkj =
∂ek(x)

∂xj

∣∣∣∣
x̆

. (4.47)
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We show here the Jacobian corresponding to the factor graph of Fig. 4.2,

J =




J1
...

J10


 =




J10 J11

J21 J22

J32 J33

J40 J44

J50 J55

J61 J65

J72 J75

J82 J86

J92 J97

J10,3 J10,7




, (4.48)

where all that is not written are zeros.

4.2.5 Optimization on a manifold

We are interested in solving the optimization problem in cases where the state (or a part
of it) is not represented in Euclidean space. For example, orientations in 2D or 3D are not
Euclidean.

As an illustration, let us put three examples of non-Euclidean parametrizations for 3D
orientation.

Rotation matrix A rotation matrix is a representation of 3D rotations with 9 parameters.
A concatenation of two rotations is done through matrix multiplication, which is non-
commutative,

R1 ⊕R2 = R1 ·R2 . (4.49)

The space of rotations is 3-dimensional, while the representation space is 9-dimensional.
We need to impose 6 constraints in the 9-dimensional space to obtain proper rotation
matrices.

Unit quaternion A unit quaternion is a representation of 3D rotations with 4 parameters.
A concatenation of two rotations is done through quaternion product, which is non-
commutative,

q1 ⊕ q2 = q1 ⊗ q2 . (4.50)

The space of rotations is 3-dimensional, while the representation space is 4-dimensional.
We need to impose 1 constraint in the 4-dimensional space to obtain proper unit
quaternions. The case of unit quaternions is developed in detail at the end of this
section.

Euler angles A vector with the roll, pitch and yaw Euler angles is a representation of
3D rotations with 3 parameters. A concatenation of two rotations is done through a
strongly non-linear operation, which is non-commutative,

e1 ⊕ e2 = composeEuler(e1, e2) . (4.51)
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The space of rotations is 3-dimensional, the same as the representation space. We
do not need to impose any constraint, but we encounter the problem of gimbal
lock, where pitch angles of ±π/2 encompass discontinuities in all other angles. This
involves the apparition of singularities.

In such cases, a common approach is to perform the optimization on the manifold
defined by all the constraints in the original space. This approach has alternative names
in the literature: optimization in the error-space, optimization in the tangent space, or
optimization through local parametrization. They are all different names for the same
concept. The idea, see Fig. 4.5, is to represent the correction step in a minimal Euclidean
space (the tangent or error space), keeping the state block itself in the original space
(defining the manifold).

In mathematics, a manifold is a topological space that resembles Euclidean space near
each point (see Fig. 4.5). In optimization, we need minimal definitions of the errors ∆x
so that the minimum of the cost function happens at a single point. We thus define our
error vector ∆x in a Euclidean space that is tangent to the manifold at the point defined
by the current state estimate. This error is of minimal dimension. In such cases, the
additive composition of the error, x = x̆ + ∆x, which assumes both Euclidean spaces of
the same dimension, is not convenient, as the operation may not be well-defined (case of
non-minimal parametrizations), or the resulting state may not represent the desired update
(case of non-linearities). Moreover, such additive updates result in the state escaping from
the manifold (see Fig. 4.5).

Alongside the minimal error, we also define a composition operator ⊕ that maps vari-
ations on the Euclidean space onto a local variation on the manifold, ∆x→ x̆⊕∆x, such
that,

x = x̆⊕∆x . (4.52)

This impacts the linearization of the errors (4.43), which becomes

ek(x) = ek(x̆⊕∆x) ≈ ĕk + J′k ∆x , (4.53)

where ĕk , ek(x̆) as before, and J′k is the new Jacobian matrix, now with respect to the
error-state,

J′k ,
∂ek(x)

∂∆x

∣∣∣∣
x̆

=
[
· · · J′ki · · · J′kj · · ·

]
, (4.54)

with

J′ki =
∂ek(x)

∂∆xi

∣∣∣∣
x̆

, J′kj =
∂ek(x)

∂∆xj

∣∣∣∣
x̆

. (4.55)

Applying the chain rule, and noticing that evaluating the derivatives at x = x̆ means also
an evaluation at ∆x = 0, we write

J′ki =
∂ek
∂∆xi

∣∣∣∣
x̆

=
∂ek
∂xi

∣∣∣∣
x̆

∂xi
∂∆xi

∣∣∣∣
x̆i, ∆xi=0

= Jki Mi (4.56)

J′kj =
∂ek
∂∆xj

∣∣∣∣
x̆

=
∂ek
∂xj

∣∣∣∣
x̆

∂xj
∂∆xj

∣∣∣∣
x̆j , ∆xj=0

= Jkj Mj , (4.57)
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view B

view Bview A

view A

Figure 4.5: Example of Euclidean space locally tangent to a manifold. We use as manifold
the sphere, parametrized by the angles of elevation (parallels) and azimuth (meridians).
This parametrization resembles Euclidean space near the equator (blue, view A), but it
degrades with elevation, with two singularities at the poles defined by elevations of ± π/2.
The locally-defined Euclidean space (red, view B) represents well variations in the man-
ifold around any given point, even if this point is close to the singularity of a particular
parametrization. A nonlinear function is used to map variations in Euclidean space onto
the manifold (see text).

where the first terms of the chains, Jki and Jkj, are exactly the derivative blocks (4.47) of
the precedent case. The second terms are the ones of interest here, the derivatives of the
⊕ operator with respect to the error state of each block,

Mi =
∂x̆i ⊕∆xi
∂∆xi

∣∣∣∣
x̆i, ∆xi=0

, Mj =
∂x̆j ⊕∆xj
∂∆xj

∣∣∣∣
x̆j , ∆xj=0

. (4.58)

To obtain J′k we substitute Jki and Jkj by J′ki and J′kj in (4.46), and proceed as before.
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We write the new Jacobian matrix J′ for the problem of Fig. 4.2 (compare it to (4.48)),

J′ =




J10 M0 J11 M1

J21 M1 J22 M2

J32 M2 J33 M3

J40 M0 J44 M4

J50 M0 J55 M5

J61 M1 J65 M5

J72 M2 J75 M5

J82 M2 J86 M6

J92 M2 J97 M7

J10,3 M3 J10,7 M7




. (4.59)

The resolution of the problem proceeds normally, taking care to use the new composition
operator ⊕ at the end of each iteration,

x̆← x̆⊕∆x∗ . (4.60)

Case of unit quaternion

To circumvent the issues related to the over-parametrization of the quaternion, we consider
a local error quaternion ∆q such that the composition ⊕ can be performed by a quaternion
product ⊗,

q = q̆⊗∆q . (4.61)

We have then different choices for expressing the error quaternion as a function of a min-
imal, Euclidean, error. We present two methods, which can be found in the literature.
Both have a similar performance and complexity, and their exposition here is just to show
that different options are practicable as long as they are well designed.

Error quaternion’s vector part We choose the minimal orientation error term ∆φ ∈
R3 to be just the vector part of the error quaternion, in which case the error quater-
nion reads,

∆q =

[√
1− ‖∆φ‖2

∆φ

]
. (4.62)

In other words, we project an Euclidean error ∆φ onto the manifold ‖q‖ = 1 at the
point q̆ with the non-linear operation,

q̆⊕∆φ , q̆⊗
[√

1− ‖∆φ‖2

∆φ

]
, (4.63)
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whose projection Jacobian M∆φ is obtained by deriving (4.63) at ∆φ = 0,

M∆φ =
∂(q̆⊕∆φ)

∂∆φ

∣∣∣∣
∆φ=0

=
∂(q̆⊗∆q)

∂∆q

∣∣∣∣
∆φ=0

∂∆q

∂∆φ

∣∣∣∣
∆φ=0

=
∂(Q+(q̆)∆q)

∂∆q

∣∣∣∣
∆φ=0

∂

[√
1− ‖∆φ‖2

∆φ

]

∂∆φ

∣∣∣∣∣∣∣∣∣∣
∆φ=0

= Q+(q̆)




0 0 0
1 0 0
0 1 0
0 0 1


 ,

which leads to

M∆φ =




−q̆x −q̆y −q̆z
q̆w −q̆z q̆y
q̆z q̆w −q̆x
−q̆y q̆x q̆w


 ∈ R4×3 . (4.64)

Angular error We chose the real angular error ∆θ = u∆θ ∈ R3, expressed locally in
the body frame described by the quaternion. The quaternion error ∆q is given by
(A.23),

∆q = q{∆θ} =

[
cos(θ/2)

u sin(θ/2)

]
. (4.65)

leading to the composition,

q̆⊕∆θ , q̆⊗
[

cos(∆θ/2)
u sin(∆θ/2)

]
, (4.66)

whose projection Jacobian M∆θ is obtained by deriving (4.66) at ∆θ = 0,

M∆θ =
∂(q̆⊕∆θ)

∂∆θ

∣∣∣∣
∆θ=0

=
∂(q̆⊗∆q)

∂∆q

∣∣∣∣
∆θ=0

∂∆q

∂∆θ

∣∣∣∣
∆θ=0

=
∂(Q+(q̆)∆q)

∂∆q

∣∣∣∣
∆θ=0

∂

[
cos(∆θ/2)

u sin(∆θ/2)

]

∂∆θ

∣∣∣∣∣∣∣∣
∆θ=0

= Q+(q̆)




0 0 0
1/2 0 0
0 1/2 0
0 0 1/2


 ,
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which leads to

M∆θ =
1

2




−q̆x −q̆y −q̆z
q̆w −q̆z q̆y
q̆z q̆w −q̆x
−q̆y q̆x q̆w


 ∈ R4×3 . (4.67)

We observe that both methods are really close, having M∆θ = 1
2
M∆φ .

Case of pose states with translation and quaternion

We consider a state block xi as the i-th pose state xi = [pi qi]
> defined by a translation

vector (which is Euclidean) and an orientation quaternion (which is not). Let us drop here
the i indices for clarity, so that we have,

x =

[
p
q

]
∈ R7 , x̆ =

[
p̆
q̆

]
∈ R7 , ∆x =

[
∆p
∆φ

]
∈ R6 , (4.68)

with the composition algebra x = x̆ ⊕∆x defined by (we use here the quaternion vector
part as the orientation error)

p = p̆ + ∆p (4.69)

q = q̆⊗
[√

1− ‖∆φ‖2

∆φ

]
. (4.70)

We have the projection Jacobian,

M =
∂x

∂∆x

∣∣∣∣
x̆, ∆x=0

=

[
I3 03×3

04×3 M∆φ

]
∈ R7×6 , (4.71)

with the non trivial block M∆φ given by (4.64). We observe clearly that Euclidean parts
of the state suffer no modification (the composition is the sum, and the Jacobian is the
identity matrix), while non-Euclidean parts take profit of the projection to the manifold,
with the non-linear composition and its non-trivial Jacobian.
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Chapter 5

Solving by matrix factorization

From this point on, two methods are devised. They aim at avoiding the computation of
the weighted inverse J+

Ω, and at taking advantage of the sparse structure of the SLAM
problem. One method uses QR factorization of the Jacobian matrix J given by (4.30); the
other uses Cholesky factorization of the (approximate) Hessian matrix H given by (4.34).
As such, they are both avoiding the Hessian tensor H, necessary for computing the Newton
step, and thus they implement the Gauss-Newton step. These methods take no precautions
for damping the step, as in the Levenberg-Marquardt (LM) methods, and therefore good
initial estimates need to be given to guarantee convergence.

5.1 The sparse QR factorization method

The material here is extracted from [2] and constitutes the basis of the Incremental Smooth-
ing and Mapping algorithm (iSAM). We start by rewriting the minimization problem (4.14),
with the linear approximation of the error (4.43), using the Mahalanobis distance notation,

∆x∗ = arg min
∆x

∑

k

‖ek(x̆ + ∆x)‖2
Ω−1

k
, (5.1)

where the optimal step ∆x∗ is such as to provide the optimal state x∗ through

x∗ = x̆ + ∆x∗ . (5.2)

We notice that the Mahalanobis distance ‖•‖Ω−1 can be put in terms of the 2-norm (or
Euclidean distance),1

‖e‖Ω−1 =
∥∥Ω>/2 e

∥∥ , (5.3)

giving

∆x∗ = arg min
∆x

∑

k

∥∥∥Ω>/2k ĕk + Ω
>/2
k Jk ∆x

∥∥∥
2

. (5.4)

1The matrix Ω>/2 , (Ω1/2)
>

is one square root of Ω such that Ω>/2Ω1/2 = Ω. Most often, Ω is
diagonal and Ω>/2 is trivially computed. Otherwise, one can use the Cholesky decomposition Ω = LL>

to find Ω>/2 = L.

47
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Now, defining,

A =




Ω
>/2
1 J1

...

Ω
>/2
K JK


 , b =




Ω
>/2
1 ĕ1

...

Ω
>/2
K ĕK


 , (5.5)

our problem can be posed as

∆x∗ = arg min
∆x

‖A∆x + b‖2 , (5.6)

which is a typical least-squares problem. We observe that the sparse structure of the
matrix A is the same as J’s (see Section 4.2.4), and b is a full vector. The matrix A can
be interpreted as a weighted Jacobian, and the vector b as a weighted error.

This least squares problem can be solved by QR factorization. The QR factorization
decomposes a matrix A as

A = Q

[
R
0

]
, (5.7)

where Q is a rotation matrix and R is an upper-triangular matrix, so that A>A = R>R.
Then,

‖A∆x− b‖2 =

∥∥∥∥Q
[
R
0

]
∆x + b

∥∥∥∥
2

=

∥∥∥∥Q>Q

[
R
0

]
∆x + Q>b

∥∥∥∥
2

=

∥∥∥∥
[
R
0

]
∆x +

[
d
c

]∥∥∥∥
2

= ‖R ∆x + d‖2 + ‖c‖2 , (5.8)

where [
d
c

]
= Q>b , (5.9)

with d the size of ∆x, and c the rest. Since c does not depend on x, the problem admits
a minimum at ∆x∗ given by

R ∆x∗ = −d , (5.10)

which is solvable in quadratic time n2 using back-substitution, or much faster if R is sparse
(see below). Notice that the remaining term of the cost at the optimum is the residual
squared ‖c‖2. Once a solution ∆x∗ is obtained, we update the state vector,

x̆← x̆ + ∆x∗ , (5.11)

and iterate from (4.43) until convergence. The optimal solution is finally

x∗ = x̆ . (5.12)
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(a) (b) (c) (d)

A A0 R0R

Figure 5.1: Sparse QR factorization using column reordering and Givens rotations. From
left to right: (a) original matrix A; (b) factor R = Givens (A); (c) reordered matrix A′

using an heuristic known as the COLAMD algorithm; (d) factor R′ = Givens (A′). The
COLAMD reordering step greatly reduced the fill-in in the factor R.

5.1.1 Triangulating using reordering and Givens rotations

After the QR factorization A = Q R, the matrix Q is typically dense. Fortunately, the
effect of multiplication by Q can be achieved by using sequences of Givens rotations (see
below), and so Q does not need to be computed explicitly. In turn, the fill-in of the matrix
R can be minimized using reordering of the columns of A (i.e., reordering the states of
∆x), as we show in Fig. 5.1. The sequence of operations would be something like this,

p ← reorder (A)

A′ ← A(:,p)

{R,d} ← Givens (A′,b)

∆θ∗ ← solve ( R ∆θ∗ = −d )

∆x∗(p) ← ∆θ∗ ,

where p is the permutations vector defining the reordering. After reordering, we apply the
Givens rotations to reduce A′ to R. As we do these Givens rotations we also apply them
to b to obtain d = Q>b directly, so that the problems A∆x = −b, A′∆θ = −b and
R∆θ = −d remain equivalent. Solving for the state increment ∆θ∗ by back-substitution
of the triangular system R∆θ∗ = −d is generally O(n2), but thanks to the reordering
step, the matrix R is close to band-diagonal, and thus solving requires linear time O(n).
Reordering ∆θ∗ back using the permutations vector p leads to ∆x∗. Finally, the state
vector is updated with (5.11), and the process is iterated until convergence. There are
many available software packages for performing all these computations.

Reordering using the COLAMD algorithm The optimal reordering problem, that
which minimizes the fill-in in R, is NP-complete. Fortunately, heuristics exist, such as the
COLAMD algorithm [3], that give very good results (see Fig. 5.1).

The COLAMD algorithm is a general heuristic that knows nothing about the SLAM
problem and its structure. In this section, we use the COLAMD heuristic directly, and
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apply it to the block-columns of A, not to the scalar columns, so that the inner structure
of the blocks of the matrix, Aki, associated to each state block i and each factor k (which
are anyway dense) are not affected by the reordering.

Better reordering heuristics than COLAMD are possible by taking care of the structure
of the SLAM problem. These are not explored in this document.

Givens rotations A Givens rotation is a counterclockwise rotation on a plane repre-
sented by two of the variables of the system, xi and xj. It is performed by pre-multiplication
of the system matrix by the Givens rotation matrix,

Gi,j,θ ,




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · − sin θ · · · 0
...

...
. . .

...
...

0 · · · sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




, (5.13)

which is essentially an identity matrix, modified with four non-trivial terms situated at the
intersections of rows and columns i and j, with i < j. Multiplication of this matrix by
another matrix A has the effect of altering the rows [ai] and [aj] of the latter, leaving the
rest of the matrix unchanged. The same rotation is applied to vector b,

Gi,j,θ A =




...
[ai] cos θ − [aj] sin θ

...
[ai] sin θ + [aj] cos θ

...



, Gi,j,θ b =




...
bi cos θ − bj sin θ

...
bi sin θ + bj cos θ

...



. (5.14)

With a suitable choice of the rotation angle θ, Givens rotations can be used for triangulating
matrices. We proceed as follows. For each non-zero entry aji, j > i, of the lower triangular
part of A, and starting at the bottom-leftmost element, apply a Givens rotation so that this
element is canceled. The angle θ is never computed explicitly; instead, the two necessary
parameters, s = sin θ, c = cos θ, are determined so that,


rii

0

�
✓

aii

aji

�
[
c −s
s c

] [
aii
aji

]
=

[
rii
0

]
, rii > 0 , (5.15)
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where the figure represents the same rotation graphically. A numerically stable way of
computing these parameters is with

( c , s ) =





( 1 , 0 ) if aji = 0


−aii

aji

√
1 +

(
aii
aji

)2
,

1√
1 +

(
aii
aji

)2


 if |aji| > |aii|




1√
1 +

(
aji
aii

)2
,

−aji

aii

√
1 +

(
aji
aii

)2


 otherwise ,

(5.16a)

(5.16b)

(5.16c)

because, to avoid overflows, all the terms s = 1 + (·)2 inside the square roots satisfy
1 ≤ s ≤ 2. The Givens rotations (5.14) are repeated from the first column to the last,
each of them traversed bottom-up. An example with a 3×3 matrix follows, where for each
step the pair [ aii , aji ]

> appearing in (5.15) is highlighted in bold, and the modified rows
in red,




0.86 0.08 0.47
0.90 0.47 0.41
0.22 0.83 0.50


→




0.88 0.28 0.58
0.90 0.47 0.41

0 0.79 0.37


→




1.26 0.53 0.70
0 0.13 −0.12
0 0.79 0.37


→




1.26 0.53 0.70
0 0.80 0.35
0 0 0.18


 .

(5.17)

See Algorithm 2 for a comprehensive algorithm including all these features.

5.1.2 Incremental operation

As it is visible in Algorithm 2, most of the time is spent in,

a) computing and appending the Jacobians for all factors, lines 10 to 14,

b) reordering the matrix A and factorizing it to R, lines 18 and 20,

c) solving for the correction step, line 22, and

d) iterating until convergence.

Except for the cases of long loop closings, the information gained by a new measure-
ment is only affecting its own nodes and near neighbors, and rebuilding and iterating the
whole problem is usually too time-consuming for the expected improvement. It would be
convenient to find a way to update the optimization problem instead of having to build
it from scratch at every iteration, thereby achieving incremental operation. The iSAM
algorithm [2] keeps the factorized form {R,d} during a number of frames, without new re-
orderings or re-linearizations, hence without the need of iterating for the solution. The only
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Algorithm 2: SLAM optimization algorithm on a manifold using sparse QR factor-
ization

Input: Initial guess: x; Constraints: C = {〈k, ek(·),Ωk, ik, jk〉}
1 while not converged do
2 forall the xi do
3 // compute Jacobians for the projections onto the manifold
4 Mi = ∂xi / ∂∆xi

5 b = 0
6 A = 0
7 forall the 〈k, ek,Ωk, ik, jk〉 do
8 i = ik, j = jk
9 // compute the Jacobians of the error function

10 Jki = ∂ek / ∂xi , Jkj = ∂ek / ∂xj
11 // project through the manifold
12 J′ki = Jki Mi , J′kj = Jkj Mj

13 // append to matrix A

14 Aki = Ω
>/2
k J′ki , Akj = Ω

>/2
k J′kj

15 // append vector blocks

16 bk = Ω
>/2
k ĕk

17 // reorder columns and QR-factorize
18 p← colamd (A) // p is the permutations vector
19 A′ ← A(:,p) // reorder the columns of A
20 {R,d} ← Givens (A′,b)
21 // solve by back-substitution
22 ∆θ ← solve (R ∆θ = −d)
23 // reorder and update
24 ∆x(p)← ∆θ
25 x← x⊕∆x

26 x∗ = x
27 // Optimization done

Output: x∗
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nz = 173 nz = 183 nz = 173 nz = 218

R

AK+1

0

Figure 5.2: Update of the factor R in iSAM. The old factor (blue) and the new rows (red)
before and after re-triangulation. Left: The new row has entries close to the last states,
with a fill-in of 10. Right: The new row has entries far from the last states, representing
loop closings. The fill-in in this second case is 45, larger than before.

operations to perform, explained hereafter, are, (i) updating the factorized form {R,d},
and (ii) solving once. The procedure is sketched in Fig. 5.2.

Updating the problem starts by appending the new tuple {AK+1,bK+1}, at the bottom
of the current {R,d}. There are two possibilities: if only new measurements are added
between existing nodes of the graph, we have,

R←
[

R
AK+1

]
, d←

[
d

bK+1

]
, (5.18)

whereas when the graph is also augmented with new nodes (which is the typical case), we
have,

R←
[

R 0
AK+1

]
, d←

[
d

bK+1

]
, (5.19)

where AK+1 = Ω>/2 JK+1 = [ · · · AK+1,i · · · AK+1,j · · · ], and bK+1 = Ω
>/2
K+1 ĕK+1. Notice

that the columns of AK+1 need to be reordered according to the permutation vector p
which was used to reorder the original problem, prior to appending them to R.

Re-triangulating the result using Givens is now a very cheap process, especially when
considering the sparsity of AK+1. The amount of fill-in in the factor R depends on the
distribution of non-zeros in AK+1, as we can observe in Fig. 5.2.

iSAM’s incremental strategy reuses old Jacobians and hence it has a sub-optimal per-
formance that may progressively degrade the solution. To avoid this, the system is fully
re-linearized, reordered, and re-factorized as a batch process from time to time, typically
every 100 poses.

See Algorithm 3 for the incremental version of Algorithm 2.

5.1.3 Variants to the QR factorization method

Similar factorizations to the QR can be used almost equivalently. One of them is the QL
factorization,

A = Q

[
0
L

]
, (5.20)
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where L is lower-triangular, leading to

L ∆x∗ = −d , (5.21)

which is solved by forward substitution. The advantage over the QR method is at the time
of updating the problem, used for incremental operation. This is so because adding a new
row AK+1 below the factor L gives,

L←
[

L 0
AK+1

]
, (5.22)

which is much closer to a lower-triangular form than in the QR case (compare it to (5.19)).
This gain is usually small, but becomes important if the added blocks are far from the
diagonal, in which case the fill-in after re-triangularization grows significantly. This is the
typical case at the time of large loop closings.

The same effect can be achieved with the QR form, just by adding the row on top of
the R factor, producing an update closer to an upper-triangular form,

R←
[
AK+1

0 R

]
. (5.23)

Then, depending on our memory allocation schemes, or algorithmic preferences, it can be
more beneficial to add rows on top, or at the bottom, of the factors R or L, and we can
select the type of factorization providing the greater benefits.
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Algorithm 3: iSAM: SLAM optimization algorithm on a manifold using incremental
QR factorization. From time to time, rebuild the full problem using Algorithm 2.

Input: Current estimate: x; pre-computed Jacobians: {Mi}; current permutation:
p; current factors: {R,d}; new constraint:
C = {〈P, eK+1(·),ΩK+1, iK+1, jK+1〉}

1 i = iK+1, j = jK+1

2 // compute Jacobians for the projection onto the manifold if they are new
3 if i > N then
4 Mi = ∂xi / ∂∆xi

5 if j > N then
6 Mj = ∂xj / ∂∆xj

7 // compute the Jacobians of the new error function
8 JK+1,i = ∂eK+1 / ∂xi , JK+1,j = ∂eK+1 / ∂xj
9 // project through the manifold

10 J′K+1,i = JK+1,i Mi , J′K+1,j = JK+1,j Mj

11 // compute new row and vector

12 AK+1,i = Ω
>/2
K+1J

′
K+1,i , AK+1,j = Ω

>/2
K+1J

′
K+1,j

13 bK+1 = Ω
>/2
K+1eK+1

14 // append to matrix R and vector d

15 R←
[

R
· · · AK+1,i · · · AK+1,j · · ·

]
, d←

[
d

bK+1

]

16 // Re-triangulate
17 {R,d} ← Givens (R,d)
18 // solve by back-substitution
19 ∆θ ← solve (R ∆θ = −d)
20 // reorder and update
21 ∆x← reorder (∆θ,p)
22 x← x⊕∆x
23 x∗ = x
24 // Optimization done

Output: x∗
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5.2 The sparse Cholesky factorization method

The material here is extracted from [4] and constitutes the basis for sparse pose adjustment
(SPA) and g2o [5]. We develop the expression of the cost function (4.13) over the linearized
error (4.43),

Fk(x̆ + ∆x) = ek (x̆ + ∆x)>Ωk ek(x̆ + ∆x)

= (ĕk + Jk ∆x)>Ωk (ĕk + Jk ∆x)

= ĕ>k Ωk ĕk + 2 ĕ>k Ωk Jk ∆x + ∆x>J>k Ωk Jk ∆x . (5.24)

Defining

ck , ĕ>k Ωk ĕk , bk , J>k Ωk ĕk , Hk , J>k Ωk Jk , (5.25)

we have

Fk(x̆ + ∆x) = ck + 2 b>k ∆x + ∆x>Hk ∆x , (5.26)

and thus,

F(x̆ + ∆x) =
∑

k

Fk(x̆ + ∆x)

=
∑

k

(ck + 2 b>k ∆x + ∆x>Hk ∆x) , (5.27)

and still defining

c ,
∑

k

ck , b ,
∑

k

bk , H ,
∑

k

Hk , (5.28)

we get finally

F(x̆ + ∆x) = c+ 2 b>∆x + ∆x>H ∆x . (5.29)

By taking the derivative with respect to ∆x and applying the first extreme condition

∂F

∂∆x

∣∣∣∣
∆x∗

= 0 , (5.30)

the cost function F(x̆ + ∆x) admits a minimum at ∆x∗ given by2

H ∆x∗ = −b , (5.31)

which admits a unique solution if the Hessian matrix H is non-singular. This equation can
be solved via sparse Cholesky factorization of H. The Cholesky factorization decomposes
a positive-symmetrical matrix such as H as

H = R>R , (5.32)

2The vector b here is different from the vector b we defined in (5.5) for the QR method.
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where R is upper-triangular3 with positive diagonal elements (see below). Then, the prob-
lem can be decomposed into two similar and linked problems

R> y = −b (5.33a)

R ∆x∗ = y , (5.33b)

where each equation is solved in quadratic time n2 by forward and backward substitution
respectively. Once a solution ∆x∗ is obtained, we update the state vector with (5.11), and
iterate from (4.43) and (5.25) until convergence.

5.2.1 The basic Cholesky decomposition

The Cholesky factorization is an iterative algorithm that solves in n iterations, n being the
order of the original matrix H. For one iteration, we partition H = R>R as

[
h11 H12

H>12 H22

]
=

[
r11 0
R>12 R>22

] [
r11 R12

0 R22

]
=

[
r2

11 r11R12

r11R
>
12 R>12R12 + R>22R22

]
(5.34)

then, find the terms r11 and R12,

r11 =
√
h11 , R12 =

1

r11

H12 , (5.35)

and compute the term R22 from

H22 −R>12 R12 = R>22 R22 , (5.36)

which is a Cholesky decomposition of order n− 1. The full decomposition needs (1/3)n3

operations for dense matrices, but it can be dramatically accelerated for sparse systems [6].
We explore this sparsity in the next section.

5.2.2 Sparse structure of the problem

The Hessian matrix H is the information matrix of the system. We explore the sparsity
of Hk linking states xi and xj by looking at the Jacobian Jk in (4.46–4.47),

Jk =
[
· · · Jki · · · Jkj · · ·

]
,

where all the terms other than Jki and Jkj are zeros. Then, from (5.25),

Hk =




. . .

J>kiΩkJki . . . J>kiΩkJkj
...

. . .
...

J>kjΩkJki . . . J>kjΩkJkj
. . .



, bk =




...
J>kiΩkek

...
J>kjΩkek

...



, (5.37)

3Some Cholesky decomposition definitions in the literature state that H = LL>, with L lower triangu-
lar. This is obviously no contradiction, because R = L> and so R>R = LL>.
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where the affected blocks are respectively i and j, and all that is not written are zeros.
Finally, from (5.28), the matrix H =

∑
k Hk is also sparse: non-zero blocks Hii = J>kiΩkJki

exist all along the diagonal; non-zero blocks Hij = J>kiΩkJkj exist only where state nodes
i and j are connected by a factor k in the factor graph.

The Cholesky factorization of H can also benefit from reordering, using the COLAMD
algorithm as we did with the A matrix in the QR method. This minimizes the fill-in in R
and allows for an accelerated solving. We use the sequence

p ← colamd (H)

H′ ← H(p,p)

b′ ← b(p)

R ← Cholesky (H′)

∆θ∗ ← solve ( R> y = −b′ ; R ∆θ∗ = y )

∆x∗(p) ← ∆θ∗ .

where the colamd(·) line returns the permutations vector p defining the reordering.
See Algorithm 4 for a comprehensive algorithm including all these features.

5.2.3 Extra sparsity of landmark-based SLAM

The sparsity of the system can be further exploited when the problem offers extra structure.
In the case of landmark-based SLAM (or its equivalent Bundle Adjustment) the state vector
can be ordered with poses first, landmarks last,

x =

[
xP
xL

]
, (5.38)

so that our problem can be written as,

[
HPP HPL

H>PL HLL

] [
∆x∗P
∆x∗L

]
= −

[
bP
bL

]
. (5.39)

Here, because no factors exist linking landmarks to each other, the landmarks part of the
Hessian HLL is block-diagonal (Fig. 5.3), with small square blocks typically the size of the
environment dimension (size 2 for 2D, or 3 for 3D). This is exploited as follows. Write
the system above as,

HPP∆x∗P + HPL∆x∗L = −bP (5.40)

H>PL∆x∗P + HLL∆x∗L = −bL (5.41)

Multiplying the second equation by HPLH−1
LL and subtracting from the first equation we

obtain a sub-problem for the poses, which is solved first,

SPP ∆x∗P = −bP + HPL H−1
LL bL , (5.42)



5.2. THE SPARSE CHOLESKY FACTORIZATION METHOD 59

Algorithm 4: SLAM optimization algorithm on a manifold using sparse Cholesky
factorization

Input: Initial guess: x; Constraints: C = {〈ek(·),Ωk, ik, jk〉}
1 while not converged do
2 forall the xi do
3 // compute Jacobians for the projections onto the manifold
4 Mi = ∂xi / ∂∆xi

5 b = 0
6 H′ = 0
7 forall the 〈ek,Ωk, ik, jk〉 do
8 i = ik, j = jk
9 // compute the Jacobians of the error function

10 Jki = ∂ek / ∂xi , Jkj = ∂ek / ∂xj
11 // project through the manifold
12 J′ki = Jki Mi , J′kj = Jkj Mj

13 // compute non-zero Hessian and vector blocks

14 H′ii + = J′ki
>Ωk J′ki , H′ij + = J′ki

>Ωk J′kj
15 H′ji + = J′kj

>Ωk J′ki , H′jj + = J′kj
>Ωk J′kj

16 bi + = J′ki
>Ωk ek , bj + = J′kj

>Ωk ek

17 // fix first node
18 H′11 + = I
19 // factorize and solve by fwd + bkwd substitution
20 {H′′,b′,p} ← colamd (H′,b) // p is the permutations vector
21 R ← Cholesky (H′′)
22 y ← solve (R>y = −b′) ; ∆θ ← solve (R ∆θ = y)
23 // reorder and update
24 ∆x← reorder (∆θ,p)
25 x← x⊕∆x

26 x∗ = x
27 // Optimization done. Get the Hessian in the manifold
28 H = 0
29 for all 〈ek,Ωk, ik, jk〉 do
30 i = ik, j = jk
31 // compute non-zero Hessian blocks
32 H[ii] + = JkiΩk J>ki , H[ij] + = JkiΩk J>kj
33 H[ji] + = JkjΩk J>ki , H[jj] + = JkjΩk J>kj

Output: x∗, H
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Figure 5.3: Sparsity of the Jacobian J and the Hessian H of the SLAM problem of 4 poses
and 4 landmarks represented by the graph in Fig. 4.2. The landmarks block of the Hessian,
HLL, is block-diagonal. The Schur complement of the poses, SPP , constitutes a denser but
much smaller problem to solve. See Fig. 5.6 for a larger example.

where SPP is precisely the Schur complement of the block HPP ,

SPP , HPP −HPL H−1
LL H>PL . (5.43)

This problem can be solved with the Cholesky factorization of SPP , exactly as in Algo-
rithm 2. Here, because HLL is block-diagonal, computing its inverse is very cheap for its
size,

H−1
LL = diag(H1, · · · ,HN)−1 = diag(H−1

1 , · · · ,H−1
N ) , (5.44)

and therefore the Schur complement (5.43) and the preparation of the poses subproblem
(5.42) can be computed very efficiently. We also obtain a second sub-problem for the
landmarks, which draws from the solution of the first,

HLL∆x∗L = −bL −H>PL ∆x∗P . (5.45)

Once HLL is inverted, solving the landmarks sub-problem (5.45) is straightforward,

∆x∗L = −H−1
LL (bL + H>PL ∆x∗P ) , (5.46)

which constitutes a series of L tiny problems, L being the number of landmarks, overall
requiring linear time O(L).

In the typical case, the number of landmarks is much larger than the number of poses.
This means that the poses sub-problem (5.42) is much smaller than the original (5.39).
The landmarks sub-problem is block-diagonal and always fast to solve as stated. On the
contrary, in the cases where the number of poses is larger than the number of landmarks,
the gains of this reduction with respect to the original problem become marginal.

Sparse structure of the Schur complement

The Schur complement, as defined in (5.43), has the sparsity of HPP and HPLH>PL (because
HLL is block-diagonal, it does not interfere in the sparseness of the second term in (5.43)).
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HPP defines non-zero blocks at pose pairs connected by a motion factor. HPLH>PL defines
non-zero blocks at pose pairs having observed the same landmark. All the diagonal blocks
are non-zero too. Due to the contribution of HPLH>PL, SPP is significantly denser than
HPP .

5.3 Links between methods

It is interesting to see that the Cholesky method and the QR method are not that far
apart. Indeed, if we consider a symmetric, positive-definite matrix H = A>A, with A
rectangular, then the QR decomposition of A is,

A = Q R ,

whereas the Cholesky decomposition of H is,

H = R>R .

The two factorizations share the same matrix R, as it is shown below

A>A = (Q R)>Q R = R>Q>Q R = R>R = H . (5.47)

Often times we choose Cholesky, because it’s simpler. The cost for both methods is
similar, for Cholesky is lighter but demands the construction of H = A>A. The following
graph illustrates the paths for both methods, starting at the time where a factor 〈ĕk,Jk,Ωk〉
wants to be incorporated to the problem (we obviated the reordering step, which is not
essential, and the vector parts for clarity).

Jk,Ωk
�
�
�>

A←
[

A

Ω
>/2
k Jk

]
-

QR (Givens)
R ∆x∗ = −d - ∆x∗, R

Z
Z
Z~

H← H + J>k Ωk Jk -
Cholesky

{
R> y = −b

R ∆x∗ = y
- ∆x∗, R, H

See that the Cholesky method provides the information matrix H at the output, something
that might be valuable in some cases. Both methods provide its square root factor R, which
conveys the same information as H.

Finally, we present in Figs. 5.4, 5.5 and 5.6 comparisons of the sparsity of all the involved
matrices in the QR, plain Cholesky, and Cholesky with poses and landmarks sub-problems
via the Schur complement. We include also the Matlab script used to generate the figures.

% Comparing: QR vs. Cholesky vs. Cholesky with Schur complement

N = 20; % nbr of poses, and number of landmarks
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% I. Problem construction: factors
J = []; % start with empty Jacobian
k = 0; % index for factors

% 1. motion
for n = 1:N−1 % index for poses

k = k+1; % add one factor
J(k,n) = rand; % we simulate a non−zero block with just one scalar
J(k,n+1) = rand;

end

% 2. landmark observations
f = 0; % index for landmarks
for n=1:N % index for poses

f = f+1; % add one landmark
jj = [0 randperm(5)]; % random sort a few recent landmarks
m = randi(4); % nbr. of landmark measurements
for j = jj(1:m) % measure m of the recent landmarks

if j < f
k = k+1; % add one factor
J(k,n) = rand; % use state n
J(k,N+f−j) = rand; % use a recent landmark

end
end

end

% II. Factorizing and plotting
% 1. QR
p = colamd(J); % column reordering
A = J(:,p); % reordered J
[∼,Rj] = qr(J,0);
[∼,Ra] = qr(A,0);
figure(1), set(1,'name','QR')
subplot(2,2,1), spy(J), title 'A = \Omegaˆ{T/2} J'
subplot(2,2,2), spy(Rj), title 'R'
subplot(2,2,3), spy(A), title 'A'''
subplot(2,2,4), spy(Ra), title 'R'''

% 2. Cholesky
H = J'*J; % Hessian matrix
p = colamd(H); % column reordering
figure(2), set(2,'name','Cholesky')
subplot(2,2,1), spy(H), title 'H = JˆT \Omega J'
subplot(2,2,2), spy(chol(H)), title 'R'
subplot(2,2,3), spy(H(p,p)), title 'H'''
subplot(2,2,4), spy(chol(H(p,p))), title 'R'''

% 3. Cholesky + Schur
pr = 1:N; % poses
lr = N+1:N+f; % landmarks
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Hpp = H(pr,pr); % poses Hessian
Hpl = H(pr,lr); % cross Hessian
Hll = H(lr,lr); % landmarks Hessian
Spp = Hpp − Hpl / Hll * Hpl'; % Schur complement of Hpp
p = colamd(Spp); % column reordering
figure(3), set(3,'name','Schur + Cholesky')
subplot(2,3,1), spy(Spp), title 'S {PP}'
subplot(2,3,2), spy(chol(Spp)), title 'R {PP}'
subplot(2,3,4), spy(Spp(p,p)), title 'S {PP}'''
subplot(2,3,5), spy(chol(Spp(p,p))), title 'R {PP}'''
subplot(2,3,3), spy(Hll), title 'H {LL}'
subplot(2,3,6), spy(inv(Hll)), title 'H {LL}ˆ{−1}'
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118 438 118 190

A A0 R0R

Figure 5.4: SLAM with 20 poses and 20 landmarks solved by QR factorization. a) weighted
Jacobian matrix A. b) factor R. c) reordered A. d) factor R after reordering. For each
case, we indicate the number of non-zero block-entries (one for each Jacobian block Jki).
See Fig. 5.1 for further explanations.

157 438 157 132

H
H0 R0R

Figure 5.5: SLAM with 20 poses and 20 landmarks solved by Cholesky factorization.
a) Hessian matrix H. b) factor R. c) reordered H. d) factor R after reordering. Observe
that the original R is the same as for the QR case, but that the effect of reordering has
achieved a much sparser R than in the QR case. However, R is used here to solve two
problems (line 22 of Algorithm 4), which counteracts this advantage.

88 72 20 88 72 20

SPP S0
PPRPP R0

PPHLL H�1
LL

Figure 5.6: SLAM with 20 poses and 20 landmarks solved by Cholesky factorization, with
separation into poses and landmarks sub-problems using the Schur complement. Matrices
are drawn at scale with respect to those in Figs. 5.4 and 5.5. a) poses Schur complement
SPP . b) factor RPP . c) landmarks matrix HLL. d) reordered SPP . e) factor RPP after
reordering. f) matrix H−1

LL. Observe that reordering has no effect here, and also that the
two sub-problems (RPP and HLL) sum up 92 non-zeros, much less than the QR or Cholesky
methods. Again, this comes at the cost of having to compute the Schur complement.



Appendix A

Brief on quaternion algebra

We present a brief compendium of formulas of quaternion algebra. For more information
on quaternions, see specialized literature. A complete survey using the same conventions
and notation as here is [7].

A.1 Definition of quaternion

A quaternion is a number with a real part and three imaginary parts,

q = qw + qxi+ qyj + qzk (A.1)

which can also be interpreted as a scalar+imaginary construction,

q = qw + qv (A.2)

with qv = qxi+ qyj + qzk, or as a scalar+vector constuction,

q = qw + qv (A.3)

with qv = [qx, qy, qz], and even, as we usually do, as a special 4-vector,

q =

[
qw
qv

]
=




qw
qx
qy
qz


 , (A.4)

all subject to a specific algebra, known as the Hamilton quaternion algebra, which specifies
the products and powers of the imaginary units,

ij = −ji = k , jk = −kj = i , ki = −ik = j . (A.5)

BEWARE: The Hamilton convention in (A.5) is the most widely used quaternion con-
vention (e.g., software packages Eigen, Ceres, ROS, and most literature), but it is in con-
trast with quite a few remarkable works on visual-inertial odometry (e.g. [8, 9]) using the

65



66 APPENDIX A. BRIEF ON QUATERNION ALGEBRA

JPL convention, with ji = −ij = k. Because of the sign change, the Hamilton quaternion
is right-handed, while the JPL is left-handed [10, 8].

BEWARE: Also, when using the 4-vector form we place the real part qw in the first
position. This is also the most widely used convention, but it is also in contrast with
a number of other works and libraries (e.g., Eigen). We use the notation (qw, qx, qy, qz)
instead of (q0, q1, q2, q3) for extra clarity on the real and vector parts.

In this document, the heterogeneous specifications of q, or of qv, are to be used indis-
tinctly, as in

q = qw + qxi+ qyj + qzk = qw + qv =

[
qw
qv

]
=




qw
qx
qy
qz


 . (A.6)

The correct interpretation is to be drawn from the context.

A.2 Quaternion properties

Sum The sum is straightforward,

p + q =

[
pw
pv

]
+

[
qw
qv

]
=

[
pw + qw
pv + qv

]
=




pw + qw
px + qx
py + qy
pz + qz


 (A.7)

Product Denoted by ⊗, the quaternion product requires applying the quaternion algebra
(A.5) on two quaternions of the type (A.1). Writing the result in vector form gives

p⊗ q =




pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx
pwqz + pxqy − pyqx + pzqw


 . (A.8)

This can be posed also in terms of the scalar and vector parts,

p⊗ q =

[
pwqw − pv

>qv
pwqv + qwpv + pv×qv

]
, (A.9)

where the presence of the cross-product reveals that the quaternion product is in the general
case not commutative,

p⊗ q 6= q⊗ p . (A.10)

It is however associative,
(p⊗ q)⊗ r = p⊗ (q⊗ r) , (A.11)

and distributive over the sum,

p⊗ (q + r) = p⊗ q + p⊗ r and (p + q)⊗ r = p⊗ r + q⊗ r . (A.12)
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The product of two quaternions is bi-linear and can be expressed as two equivalent
matrix products, namely

q1 ⊗ q2 = Q+
1 q2 and q1 ⊗ q2 = Q−2 q1 , (A.13)

with

Q+ = qw I +

[
0 −qv

>

qv [qv]×

]
, Q− = qw I +

[
0 −qv

>

qv − [qv]×

]
. (A.14)

Identity The identity quaternion q 1 with respect to the product is such that q 1 ⊗ q =
q⊗ q 1 = q. It corresponds to the real product identity ‘1’ expressed as a quaternion,

q 1 = 1 =

[
1
0v

]
.

Conjugate The conjugate of a quaternion is defined by

q∗ , qw − qv =

[
qw
−qv

]
. (A.15)

This has the properties

q⊗ q∗ = q∗ ⊗ q = q2
w + q2

x + q2
y + q2

z =

[
q2
w + q2

x + q2
y + q2

z

0v

]
, (A.16)

and
(p⊗ q)∗ = q∗ ⊗ p∗ . (A.17)

Norm The norm of a quaternion is defined by

‖q‖ =
√

q⊗ q∗ =
√

q∗ ⊗ q =
√
q2
w + q2

x + q2
y + q2

z . (A.18)

Inverse The inverse quaternion q−1 is such that

q⊗ q−1 = q−1 ⊗ q = q 1 . (A.19)

It can be computed with
q−1 = q∗/‖q‖2 . (A.20)

Unit or normalized quaternion For unit quaternions, ‖q‖ = 1, and therefore

q−1 = q∗ . (A.21)

When interpreting the unit quaternion as an orientation specification, or as a rotation
operator, this property implies that the inverse rotation can be accomplished with the
conjugate quaternion. Unit quaternions can always be written in the form,

q = cosφ+ u sinφ =

[
cosφ

u sinφ

]
, (A.22)

where u = uxi+ uyj + uzk is a unit vector with ‖u‖ = −1, and φ is a scalar.
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A.3 Quaternion identities

Quaternion equivalent to a rotation Let the vector θ = uθ represent a clockwise
rotation of an angle θ around the axis defined by the unit vector u = [ux, uy, uz]

>. Such
rotation can be represented by the unit quaternion

q{θ} = cos(θ/2) + u sin(θ/2) =

[
cos(θ/2)

u sin(θ/2)

]
. (A.23)

Vector rotation A vector v can be rotated by the unit quaternion q{uθ} above with
the double product, [

0
v′

]
= q⊗

[
0
v

]
⊗ q∗ . (A.24)

For simplicity, we rewrite the previous expression as

v′ = q⊗ v ⊗ q∗ , (A.25)

where the product sign ⊗ indicates that the vector forms must be interpreted as in (A.24).
This double product can be shown to be equivalent to a rotation using the rotation matrix,

v′ = R v , (A.26)

rendering the quaternion-to-rotation-matrix equivalence,

R{q} =



q2
w + q2

x − q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)
2(qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2(qyqz − qwqx)

2(qxqz − qwqy) 2(qyqz + qwqx) q2
w − q2

x − q2
y + q2

z


 . (A.27)

Rotation composition Rotations can be concatenated with the quaternion product,

v′′ = q2 ⊗ v′ ⊗ q∗2 = q2 ⊗ q1 ⊗ v ⊗ q∗1 ⊗ q∗2 , (A.28)

so that the concatenated rotation q is obtained with

q = q2 ⊗ q1 . (A.29)

Time derivative Given a vector of angular rates ω defined in the body frame represented
by the orientation q, we have,

q̇ =
1

2
q⊗ ω . (A.30)

Time integration In the (usually very reasonable) case where the angular rate ω can
be considered constant over the period ∆t = tn+1 − tn , we have

qn+1 = qn ⊗ q{ω∆t} , (A.31)

where q{} is given by (A.23), with θ = ω∆t.
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