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Preface

This volume contains the final versions of papers originally given at the workshop
Vision Algorithms: Theory and Practice, which was held on 21–22 September 1999
during the Seventh International Conference on Computer Vision at the Corfu Holiday
Palace Hotel in Kanoni, Corfu, Greece.

The subject of the workshop was algorithmic issues in computer vision, and espe-
cially in vision geometry: correspondence, tracking, structure and motion, and image
synthesis. Both theoretical and practical aspects were considered. A particular goal was
to take stock of the ‘new wave’ of geometric and statistical techniques that have been
developed over the last few years, and to ask which of these are proving useful in real
applications. To encourage discussion, we asked the presenters to stand back from their
work and reflect on its context and longer term prospects, and we encouraged the audi-
ence to actively contribute questions and comments. The current volume retains some of
the flavour of this, as each paper is followed by a brief edited transcript of the discussion
that followed its presentation.

The theme was certainly topical, as we had 65 submitted papers for only 15 places (an
acceptance rate of only 23%), and around 100 registered participants in all (nearly 1/3 of
the ICCV registration). With so many submissions, there were some difficult decisions to
make, and our reviewers deserve many thanks for their thoroughness and sound judgment
in paper evaluation. As several authors commented, the overall quality of the reviews was
exceptionally high. The accepted papers span the full range of algorithms for geometric
vision, and we think that their quality will speak for itself.

To complement the submitted papers, we commissioned two invited talks “from the
shop floor”, two “expert reviews” on topical technical issues, and a panel session.

The invited talks were by two industry leaders with a great deal of experience in
building successful commercial vision systems:

– Keith Hanna of the Sarnoff Corporation described Sarnoff’s real time video align-
ment and annotation systems, which are used routinely in applications ranging from
military reconnaissance to inserting advertisements and annotations on the Super
Bowl field. This work is presented in the paper Annotation of Video by Alignment
to Reference Imagery on page 253).

– Luc Robert of REALViZ S.A. described REALViZ’s MatchMover and ReTimer
post-production systems for movie special effects, which are used in a number of
large post-production houses. Unfortunately there is no paper for this presentation,
but the discussion that followed it is summarized on page 265.

Both presenters tried to give us some of the fruits of their experience in the difficult art
of “making it work”, illustrated by examples from their own systems.

The two “expert reviews” were something of an experiment. Each was a focused
technical summary prepared jointly by a small team of people that we consider to be
domain experts. In each case, the aim was to provide a concise technical update and state
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of the art, and then to discuss the advantages of the various implementation choices in
a little more depth.

The motivation for these review sessions was as follows. As active members of the
vision community and referees of many papers, we continually find that certain basic
topics are poorly understood. This applies particularly to areas where a cultural split has
occurred, with two or more camps following more or less separate lines of development.
There are several such splits in the vision community, and we feel that every effort must
be made to heal them. For one thing, it is fruitless for one group to reduplicate the
successes and failures of another, or to continue with a line of research that others know
to be unprofitable. More positively, intercommunication breeds innovation, and it is often
at the boundaries between fields that the most rapid progress is made. The workshop
as a whole was intended to take stock of the rapid progress made in vision geometry
over the past decade, and hopefully to narrow the gap between “the geometers” and “the
rest”. Within this scope, we singled out the following two areas for special treatment: (i)
the choice between direct and feature-based correspondence methods; and (ii) bundle
adjustment.

Direct versus feature-based correspondence methods: One of the significant splits
that has emerged in the vision community over the past 15–20 years is in the analysis of
image sequences and multi-view image sets. Two classes of techniques are used:

– “Feature-based” approaches: Here, the problem is broken down into three stages:
(i) local geometric features are extracted from each image (e.g. “points of interest”,
linear edges . . . ); (ii) these features are used to compute multi-view relations, such
as the epipolar geometry, and simultaneously are put into correspondence with one
another using a robust search method; (iii) the estimated multi-view relations and
correspondences are used for further computations such as refined correspondences,
3D structure recovery, plane recovery and alignment, moving object detection, etc.

– “Direct” approaches: Here, rather than extracting isolated features, dense spatio-
temporal variations of image brightness (or color, texture, or some other dense
descriptor) are used directly. Instead of a combinatorial search over feature corre-
spondences, there is a search over the continuous parameters of an image motion
model (translation, 2D affine, homographic), that in principle establishes dense cor-
respondences as well as motion parameters. Often, a multi-scale search is used.

The experts in this session were P. Anandan & Michal Irani, who present the direct
approach in the paper About Direct Methods on page 267, and Phil Torr & Andrew
Zisserman, who present the feature-based approach in the paper Feature Based Methods
for Structure and Motion Estimation on page 278. In each case, the authors try: (i) to give
a brief, clear description of the two classes of methods; (ii) to identify the applications
in which each has been most successful; and (iii) to discuss the limitations of each
approach. The discussion that followed the session is summarized on page 295.

Bundle adjustment for visual reconstruction: Bundle adjustment is the refinement
of visual reconstructions by simultaneous optimization over both structure and camera
parameters. It was initially developed in the late 1950’s and 1960’s in the aerial pho-
togrammetry community, where already by 1970 extremely accurate reconstruction of
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networks of thousands of images was feasible. The computer vision community is only
now starting to consider problems of this size, and is still largely ignorant of the theory
and methods of bundle adjustment. In part this is because cultural differences make the
photogrammetry literature relatively inaccessible to most vision researchers, so one aim
of this session was to present the basic photogrammetric techniques from a computer
vision perspective. The issues raised in the session are reported in the survey paper Bun-
dle Adjustment — A Modern Synthesis on page 298. This paper is rather long, but we
publish it in the hope that it will be useful to the community to have the main elements
of the theory collected in one place.

The workshop ended with an open panel session, with Richard Hartley, P. Anandan,
Jitendra Malik, Joe Mundy and Olivier Faugeras as panelists. Each panelist selected a
topic related to the workshop theme that he felt was important, and gave a short position
statement on it followed by questions and discussion. The panel finished with more
general discussion. A brief summary of the discussion and the issues raised by the panel
is given on page 376.

Finally, we would like to thank the many people who helped to organize the workshop,
and without whom it would not have been possible. The scientific helpers are listed on the
following pages, but thanks must also go to: John Tsotsos, the chairman of ICCV’99,
for his help with the logistics and above all for hosting a great main conference; to
Mary-Kate Rada and Maggie Johnson of the IEEE Computer Society, and to Danièle
Herzog of INRIA for their efficient organizational support; to the staff of the Corfu
Holiday Palace for some memorable catering; and to INRIA Rhône-Alpes and the IEEE
Computer Society for agreeing to act as sponsors.

June 2000 Bill Triggs, Andrew Zisserman and Richard Szeliski
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An Experimental Comparison
of Stereo Algorithms

Richard Szeliski1 and Ramin Zabih2

1 Microsoft Research, Redmond, WA 98052-6399, szeliski@microsoft.com
2 Cornell University, Ithaca, NY 14853-7501, rdz@cs.cornell.edu

Abstract. While many algorithms for computing stereo correspondence
have been proposed, there has been very little work on experimentally
evaluating algorithm performance, especially using real (rather than syn-
thetic) imagery. In this paper we propose an experimental compari-
son of several different stereo algorithms. We use real imagery, and ex-
plore two different methodologies, with different strengths and weak-
nesses. Our first methodology is based upon manual computation of
dense ground truth. Here we make use of a two stereo pairs: one of
these, from the University of Tsukuba, contains mostly fronto-parallel
surfaces; while the other, which we built, is a simple scene with a slanted
surface. Our second methodology uses the notion of prediction error,
which is the ability of a disparity map to predict an (unseen) third
image, taken from a known camera position with respect to the in-
put pair. We present results for both correlation-style stereo algorithms
and techniques based on global methods such as energy minimization.
Our experiments suggest that the two methodologies give qualitatively
consistent results. Source images and additional materials, such as the
implementations of various algorithms, are available on the web from
http://www.research.microsoft.com/˜szeliski/stereo.

1 Introduction

The accurate computation of stereo depth is an important problem in early
vision, and is vital for many visual tasks. A large number of algorithms have
been proposed in the literature (see [8,10] for literature surveys). However, the
state of the art in evaluating stereo methods is quite poor. Most papers do not
provide quantitative comparisons of their methods with previous approaches.
When such comparisons are done, they are almost inevitably restricted to syn-
thetic imagery. (However, see [13] for a case where real imagery was used to
compare a hierarchical area-based method with a hierarchical scanline matching
algorithm.)

The goal of this paper is to rectify this situation, by providing a quantitative
experimental methodology and comparison among a variety of different methods
using real imagery. There are a number of reasons why such a comparison is valu-
able. Obviously, it allows us to measure progress in our field and motivates us to
develop better algorithms. It allows us to carefully analyze algorithm characteris-
tics and to improve overall performance by focusing on sub-components. It allows

B. Triggs, A. Zisserman, R. Szeliski (Eds.): Vision Algorithms’99, LNCS 1883, pp. 1–19, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



2 R. Szeliski and R. Zabih

us to ensure that algorithm performance is not unduly sensitive to the setting
of “magic parameters”. Furthermore, it enables us to design or tailor algorithms
for specific applications, by tuning these algorithms to problem-dependent cost
or fidelity metrics and to sample data sets.

We are particularly interested in using these experiments to obtain a deeper
understanding of the behavior of various algorithms. To that end, we focus on
image phenomena that are well-known to cause difficulty for stereo algorithms,
such as depth discontinuities and low-texture regions.

Our work can be viewed as an attempt to do for stereo what Barron et al.’s
comparative analysis of motion algorithms [3] accomplished for motion. The mo-
tion community benefited significantly from that paper; many subsequent papers
have made use of these sequences. However, Barron et al. rely exclusively on
synthetic data for their numerical comparisons; even the well-known “Yosemite”
sequence is computer-generated. As a consequence, it is unclear how well their
results apply to real imagery.

This paper is organized as follows. We begin by describing our two evaluation
methodologies and the imagery we used. In section 3 we describe the stereo
algorithms that we compare and give some implementation details. Section 4
gives experimental results from our investigations. We close with a discussion of
some extensions that we are currently investigating.

2 Evaluation Methodologies

We are currently studying and comparing two different evaluation methodolo-
gies: comparison with ground truth depth maps, and the measurement of novel
view prediction errors.

2.1 Data Sets

The primary data set that we used is a multi-image stereo set from the University
of Tsukuba, where every pixel in the central reference image has been labeled
by hand with its correct disparity. The image we use for stereo matching and
the ground truth depth map are shown in figure 1. Note that the scene is fairly
fronto-planar, and that the ground truth contains a small number of integer-
valued disparities.

The most important limitation of the Tsukuba imagery is the lack of slanted
surfaces. We therefore created a simple scene containing a slanted surface. The
scene, together with the ground truth, are shown in figure 2. The objects in
the scene are covered with paper that has fairly high-texture pictures on it.
In addition, the scene geometry is quite simple. Additional details about this
imagery can be found at the web site for this paper,
http://www.research.microsoft.com/˜szeliski/stereo.

2.2 Comparison with Ground Truth

The ground truth images are smaller than the input images; we handle this by
ignoring the borders (i.e., we only compute error statistics at pixels which are
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Image Ground truth

Discontinuities Smooth regions

Fig. 1. Imagery from the University of Tsukuba

given a label in the ground truth). Discarding borders is particularly helpful for
correlation-based methods, since their output near the border is not well-defined.

The interesting regions in the Tsukuba imagery include:
– Specular surfaces, including the gray shelves in the upper left of the image,

the orange lamp, and the white statue of a face. Specularities cause difficulty
in computing depth, due to the reflected motion of the light source.
– Textureless regions, including the wall at the top right corner and the deeply

shadowed area beneath the table. Textureless regions are locally ambiguous,
which is a challenge for stereo algorithms.
– Depth discontinuities, at the borders of all the objects. It is difficult to

compute depth at discontinuities, for a variety of reasons. It is especially
difficult for thin objects, such as the orange lamp handle.
– Occluded pixels, near some of the object borders. Ideally, a stereo algorithm

should detect and report occlusions; in practice, many algorithms do not do
this, and in fact tend to give incorrect answers at unoccluded pixels near the
occlusions.

Our goal is to analyze the effectiveness of different methods in these differ-
ent regions. We have used the ground truth to determine the depth disconti-
nuities and the occluded pixels. A pixel is a depth discontinuity if any of its
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Image Ground truth

Fig. 2. Imagery from Microsoft Research.

(4-connected) neighbors has a disparity that differs by more than 1 from its dis-
parity.1 A pixel is occluded if according to the ground truth it is not visible in
both images.

While the Tsukuba imagery contains textureless regions, there is no natural
way to determine these from the ground truth. Instead, we looked for large
regions where the image gradient was small. We found five such regions, which
are shown in figure 1. These regions correspond to major features in the scene;
for example, one is the lamp shade, while two come from shadowed regions under
the table.

We have computed error statistics for the depth discontinuities and for the
textureless regions separately from our statistics for the other pixels. Since the
methods we wish to compare include algorithms that do not detect occlusions, we
have ignored the occluded pixels for the purpose of our statistics. Our statistics
count the number of pixels whose disparity differs from the ground truth by more
than ±1. This makes sense because the true disparities are usually fractional.
Therefore, having an estimate which differs from the true value by a tiny amount
could be counted as an error if we required exact matches. In fact, we also
computed exact matches, and obtained quite similar overall results.

2.3 Comparison Using Prediction Error

An alternative approach to measuring the quality of a stereo algorithm is to
test how well it predicts novel views.2 This is a particularly appropriate test
when the stereo results are to be used for image-based rendering, but it is also
useful for other tasks such as motion-compensated prediction in video coding and
frame rate conversion. This approach parallels methodologies that are prevalent
1 Neighboring pixels that are part of a sloped surface can easily differ by 1 pixel, but

should not be counted as discontinuities.
2 A third possibility is to run the stereo algorithm on several different pairs within a

multi-image data set, and to compute the self-consistency between different disparity
estimates [16]. We will discuss this option in more detail in section 5.
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in many other research areas, such as speech recognition, machine learning, and
information retrieval. In these disciplines, it is traditional to partition data into
training data that is used to tune up the system, and test data that is used
to evaluate it. In statistics, it is common to leave some data out during model
fitting to prevent over-fitting (cross-validation).

To apply this methodology to stereo matching, we compute the depth map
using a pair of images selected from a larger, multi-image stereo dataset, and
then measure how well the original reference image plus depth map predicts the
remaining views. The University of Tsukuba data set is an example of such a
multi-image data set: the two images in figure 1 are part of a 5× 5 grid of views
of this scene. Many other examples of multi-image data sets exist, including the
Yosemite fly-by, the SRI Trees set, the NASA (Coke can) set, the MPEG-4
flower garden data set, and many of the data sets in the CMU Image Database
(http://www.ius.cs.cmu.edu/idb). Most of these data sets do not have an
associated ground truth depth map, and yet all of them can be used to evaluate
stereo algorithms if prediction error is used as a metric.

When developing a prediction error metric, we must specify two different
components: an algorithm for predicting novel views, and a metric for determin-
ing how well the actual and predicted images match. A more detailed description
of these issues can be found in our framework paper, which lays the foundations
for prediction error as a quality metric [20].

In terms of view prediction, we have a choice of two basic algorithms. We can
generate novel views from a color/depth image using forward warping [22], which
involves moving the source pixels to the destination image and potentially filling
in gaps. Alternatively, we can use inverse warping to pull pixels from the new
(unseen) views back into the coordinate frame of the original reference image.
This is easier to implement, since no decision has to be made as to which gaps
need to be filled.

Unfortunately, inverse warping will produce erroneous results at pixels which
are occluded (invisible) in the novel views, unless a separate occlusion (or vis-
ibility) map is computed for each novel view. Without this occlusion masking,
certain stereo algorithms actually outperform the ground truth in terms of pre-
diction error, since they try to match occluded pixels to some other pixel of the
same color. In our experiments, therefore, we do not include occluded pixels in
the computation of prediction error.

The simplest error metric that can be used in an L2 (root mean square)
distance between the pixel values. It is also possible to use a robust measure,
which downweights large error, and to count the number of outliers [17]. Another
possibility is to compute the per-pixel residual motion between the predicted and
real image, and to compensate one of the two images by this motion to obtain a
compensated RMS or robust error measure [20]. For simplicity, we use the raw
(uncompensated and un-robustified) RMS error.
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3 Algorithms

Loosely speaking, methods for computing dense stereo depth can be divided
into two classes.3 The first class of methods allow every pixel to independently
select its disparity, typically by analyzing the intensities in a fixed rectangular
window. These methods use statistical methods to compare the two windows,
and are usually based on correlation. The second class of methods relies on global
methods, and typically find the depth map that minimizes some function, called
the energy or the objective function. These methods generally use an iterative
optimization technique, such as simulated annealing.

3.1 Local Methods Based on Correlation

We implemented a number of standard correlation-based methods that use fixed-
size square windows. We define the radius of a square whose side length is 2r+1
to be r. The methods we chose were:
– Correlation using the L2 and L1 distance. The L2 distance is the simplest

correlation-based method, while the L1 distance is more robust.
– Robust correlation using M-estimation with a truncated quadratic [5].
– Robust correlation using Least Median Squares [17].

3.2 Global Methods

Most global methods are based on energy minimization, so the major variable
is the choice of energy function. Some stereo methods minimize a 1-dimensional
energy function independently along each scanline [1,4,15]. This minimization
can be done efficiently via dynamic programming [14]. More recent work has
enforced some consistency between adjacent scanlines. We have found that one of
these methods, MLMHV [9], performs quite well in practice, so we have included
it in our study.

The most natural energy functions for stereo are two-dimensional, and con-
tain a data term and a smoothness term. The data term is typically of the form∑

p [I(p)− I ′(p + d(p))]2 , where d is the depth map, p ranges over pixels, and I
and I ′ are the input images. For our initial experiments, we have chosen a simple
smoothness term which behaves well for largely front-planar imagery (such as
that shown in figure 1). This energy function is the Potts energy, and is simply
the number of adjacent pixels with different disparities.

In the energy minimization framework, it is difficult to determine whether an
algorithm fails due to the choice of energy function or due to the optimization
method. This is especially true because minimizing the energy functions that
arise in early vision is almost inevitably NP-hard [21]. By selecting a single
energy function for our initial experiments, we can control for this variable.
3 There are a number of stereo methods that compute a sparse depth map. We do not

consider these methods for two reasons. First, a dense output is required for a number
of interesting applications, such as view synthesis. Second, a sparse depth map makes
it difficult to identify statistically significant differences between algorithms.



An Experimental Comparison of Stereo Algorithms 7

Graph cuts [7] Simulated annealing

Zitnick/Kanade [23] L1 Distance (r = 6)

Fig. 3. Results for several algorithms, on the imagery of figure 1

We used three methods to minimize the energy:

– Simulated annealing [12,2] is the most common energy minimization tech-
nique. Following [6], we experimented with several different annealing sched-
ules; our data is from the one that performed best.
– Graph cuts are a combinatorial optimization technique that can be used to

minimize a number of different energy functions [7]. Other algorithms based
on graph cuts are given in [18,15].
– Mean field methods replace the stochastic update rules of simulated anneal-

ing with deterministic rules based either on the behavior of the mean or
mode disparity at each pixel [11], or the local distribution of probabilities
across disparity [19]. We present results for the latter algorithm.

The final method we experimented with is a global method that is not based
on energy minimization. This algorithm, due to Zitnick and Kanade [23], is a
cooperative method in the style of the Marr-Poggio algorithm. A particularly in-
teresting feature of the algorithm is that it enforces various physical constraints,
such as uniqueness. The uniqueness constraint states that a non-occluded pixel
in one image should map to a unique pixel in the other image.
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# errors (> ±1) Total pixels Discontinuities Low-texture areas
Image 84,863 1,926 6,037
L1 distance 10,457 1,025 967
Annealing 4,244 720 765
Zitnick/Kanade [23] 2,191 749 60
Graph cuts [7] 1,591 572 0

Fig. 4. Errors on ground truth data, from the results shown in figure 3.

4 Experimental Results

We have run all the mentioned algorithms on the Tsukuba imagery, and used
both ground truth and prediction error to analyze the results. In addition, we
have run the correlation-based algorithms on the Microsoft Research imagery.

4.1 Results on the Tsukuba Imagery

Figure 3 shows the depth maps computed by three different algorithms. Fig-
ures 5–7 show the performance of various algorithms using the ground truth
performance methodology. Figure 5 shows the performance of correlation-based
methods as a function of window size. Figure 6 shows the performance of two
global optimization methods.

Figure 7 summarizes the overall performance of the best versions of different
methods. The graph cuts algorithm has the best performance, and makes no
errors in the low-textured areas shown in figure 1. Simulated annealing, mean-
field estimation, M-estimation, and MLMHV [9] seem to have comparable perfor-
mance. Note that the differences in overall performance between methods cannot
be explained simply by their performance at discontinuities or in low-textured
areas. For example, consider the data for annealing and for graph cuts, shown in
figure 4. There is a substantial difference in performance at discontinuities and
in textureless regions, but most errors occur in other portions of the image.

4.2 Analysis of Ground-Truth Data

Our data contains some unexpected results. First of all, it is interesting that the
different correlation-based methods are so similar in terms of their performance.
In addition, there was surprisingly little variation as a function of window size,
once the windows were sufficiently large. Finally, the overall performance of
the correlation-based methods was disappointing, especially near discontinuities.
Note that an algorithm that assigned every pixel a random disparity would be
within ±1 of the approximately 20% of the time, and thus correct under our
definition.

It is commonly believed that it is important for matching algorithms to
gracefully handle outliers. In terms of statistical robustness, the L2 distance is
the worst, followed by the L1 distance. M -estimation is better still, and least
median squares is best of all. There is some support for this argument in our
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Fig. 5. Performance of standard correlation-based methods as a function of window
radius, using the ground truth of figure 1. The graph at top shows errors for all pixels
(discarding those that are occlusions according to the ground truth). The graph at
bottom only considers pixels that are discontinuities according to the ground truth.

data, but it is not clear cut. The L1 distance has a small advantage over the L2
distance, and M -estimation has a slightly larger advantage over the L1 distance.
Least median squares does quite badly (although to the naked eye it looks fairly
good, especially with small windows). The regions where it makes the most
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imagery of figure 1.

Prediction error vs. frame (3 = L, 4 = R)
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Fig. 8. RMS prediction error (in gray levels) as a function of frame number using the
imagery of figure 1.
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Fig. 9. Performance of correlation methods as a function of window radius, using pre-
diction error.

mistakes are the low-texture regions, where it appears that the least median
squares algorithm treats useful textured pixels (e.g., the bolts on the front of the
workbench) as outliers.
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4.3 Analysis of Prediction Error Data

The prediction error metrics for various algorithms are shown in figures 8 and
9. Figure 8 shows the RMS (uncorrected) prediction error as a function of frame
number for four different algorithms and two versions of the ground truth data.
The frames being tested are the ones in the middle row of the 5×5 University of
Tsukuba data set (we will call these images LLL, LL, L, R, and RR in subsequent
discussions). The ground truth data was modified to give sub-pixel estimates
using a sub-pixel accurate correlation-based technique whose search range was
constrained to stay within a 1

2 pixel disparity of the original ground truth. As
we can see in figure 8, this reduces the RMS prediction error by about 2 gray
levels.

We can also see from this figure that error increases monotonically away from
the reference frame 3 (the left image), and that prediction errors are worse when
moving leftward. This is because errors in the depth map due to occlusions in
the right image are more visible when moving leftward (these areas are being
exposed, rather than occluded). It is also interesting that the graph cut, mean
field, and annealing approaches have very similar prediction errors, even though
their ground truth errors differ. Our current conjecture is that this is because
graph cuts do a better job of estimating disparity in textureless regions, which
is not as important for the prediction task.

Figure 9 shows the prediction error as a function of window size for the
four correlation-based algorithms we studied. These figures also suggest that a
window size of 7 is sufficient if prediction error is being used as a metric. The
shape of these curves is very similar to the ground truth error (figure 5), which
suggests that the two metrics are producing consistent results.

4.4 Results on the Microsoft Research Imagery

The results from running different variants of correlation on the imagery of
figure 2 are shown in figure 11. Selected output images are given in figure 10. The
overall curves are quite consistent with the results from the Tsukuba imagery.
Here, the least median squares algorithm does slightly bettern than the other
techniques. This is probably because there are no low-texture regions in this
dataset.

5 Discussion

In this paper, we have compared two methodologies for evaluating stereo match-
ing algorithms, and also compared the performance of several widely used stereo
algorithms. The two methodologies produce different, but somewhat consistent
results, while emphasizing (or de-emphasizing) certain kinds of errors.

The ground truth methodology gives the best possible evaluation of a stereo
matcher’s quality, since it supposedly knows what the perfect result (“gold stan-
dard”) should be. However, it is possible for the ground truth to be inaccurate,
and it typically is so near discontinuities where pixels are mixtures of values
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M-estimation output and errors L2 output and errors

Fig. 10. Results for correlation algorithms (r = 4), on the imagery of figure 2. Errors
> ±1 are shown in black, while errors of ±1 are shown in gray.

from different surfaces. Quantization to the nearest integer disparity is a further
source of error, which we compensate for by only counting errors > ±1 disparity.
Ground truth also weights regions such as textureless or occluded regions (where
it is very difficult, if not impossible, to get a reliable result) equally with regions
where all algorithms should perform well. In our experiments, we have deliber-
ately excluded occluded regions from our analysis. It may be desirable to treat
these regions on the same footing as other potential problem areas (textureless
regions and discontinuities). Breaking down the error statistics by their location
in the image, is a step towards trying to rationalize this situation.

Intensity prediction error is a different metric, which de-emphasizes errors in
low-texture areas, but emphasizes small (one pixel or sub-pixel) errors in highly
textured areas. The former is a reasonable idea if the stereo maps are going to
be used in an image-based rendering application. Those regions where the depth
estimates are unreliable due to low texture are also regions where the errors are
less visible. The problem with sub-pixel errors should be fixable by modifying or
extending the algorithms being evaluated to return sub-pixel accurate disparity
estimates.

A third methodology, which we have not yet evaluated, is the self-consistency
metric of Leclerc et al. [16]. In this methodology, the consistency in 3D location
(or re-projected pixel coordinates) of reconstructed 3D points from different
pairs of images is calculated. This shares some characteristics with the intensity
prediction metric error used in this paper, in that more than two images are used
to perform the evaluation. However, this metric is more stringent than intensity
prediction. In low texture areas where the results tend to be error-prone, it is
unlikely that the self-consistency will be good (whereas intensity prediction may
be good). There is a possibility that independently run stereo matchers may
accidentally produce consistent results, but this seems unlikely in practice. In
the future, we hope to collaborate with the authors of [16] to apply our different
methodologies to the same sets of data.

5.1 Extensions

In work to date, we have already obtained interesting results about the relative
performance of various algorithms and their sensitivity to certain parameters
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Fig. 11. Performance of standard correlation-based methods as a function of window
radius, using the ground truth of figure 2. The graph at top shows errors for all pixels
(discarding those that are occlusions according to the ground truth). The graph at
bottom only considers pixels that are discontinuities according to the ground truth.
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(such as window size). However, there are many additional issues and questions
that we are planning to examine in ongoing work. These issues include:

– Sub-pixel issues and sampling error: investigate the effects of using a finer
set of (sub-pixel) disparities on both the ground truth and prediction error
metrics.
– Study more algorithms, including minimization with non-Potts energy and

the use of weighted windows for correlation.
– Evaluate more data sets.
– Determine whether it is more important to come up with the correct energy

to minimize, or whether it is more important to find a good minimum.
– Investigate the sensitivity of algorithms to various parameter values.
– Study whether cross-validation (using prediction error in a multi-image stereo

dataset) can be used to fine-tune algorithm parameters or to adapt them lo-
cally across an image.

We hope that our results on stereo matching will motivate others to perform
careful quantitative evaluation of their stereo algorithm, and that our inquiries
will lead to a deeper understanding of the behavior (and failure modes) of stereo
correspondence algorithms.
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Discussion

Jean Ponce: You only showed one data set, how much can you say from one
data set?
Ramin Zabih: Yes, that’s clearly the major weakness so far — there’s only
one data set. The two different methodologies point in the same direction. It
might still be that there’s something strange about the way the ground truth
was presented, but I think that the agreement is encouraging. So far the state
of the art has been just to show off different pictures. We’re trying to move
beyond that, but getting ground truth for the ground-truth methodology is very
difficult. At the least the prediction error stuff allows you to work on lots of
different data sets, which we’re in the process of doing.
Jean Ponce: Yes, but prediction error is so application dependent. It works very
well for image-based rendering, but if you want to do navigation or whatever,
then it’s not really appropriate.
Ramin Zabih: Yes, I agree.
Yvan Leclerc: Yesterday I talked about our self-consistency methodology for
comparing stereo algorithms. I was wondering if you could comment on the
relationship between your approach and ours.
Rick Szeliski: For those who missed Yvan’s talk, his technique is similar in that
you start with a multi-image data set. But instead of what we call prediction
error, where you take a depth map computed with one image pair and predict
the appearance in all the other images, Yvan’s methodology computes depth
maps between all possible pairs, and then sees whether they’re consistently pre-
dicting the same 3D point. I think that it’s a very valid methodology. What
we hope to do is to test a wider range of data sets with more algorithms, and
eventually publish a survey paper, along the lines of the kind of comparative
work that we see already in motion estimation. I think it will be essential to
include Yvan’s methodology as well. Hopefully we’ll be able to work out some
sort of a joint evaluation. The two metrics won’t necessarily give the same re-
sults — appearance prediction is oriented towards image-based rendering and
is tolerant of errors in low texture regions, whereas Yvan’s method is oriented
towards structure and might heavily penalize those. Jean’s comment is very well
taken — this is application-dependent. But you know, in computer vision we’ve
worked on robotics, robotics, robotics. Even when we stopped working on that
we still kept the same mind set. But if you look for example at what happens
with stereo algorithms when you try to do z-keying — you try to extract the
foreground person from a textured background and put something synthetic be-
hind him — the result is horrible, it’s just not acceptable, you get these spiky
halos full of the wrong pixels. As Luc Robert commented yesterday, we can’t
use computer vision yet in Hollywood. The reason is basically that we’re not
focusing on the right problems. That’s why I like prediction error — it penalizes
you heavily for those visible little single pixels errors.
Yvan Leclerc: Combining our methodologies would be a great idea. Let’s do
it.
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Ramin Zabih: One comment about Jean’s point is that in many situations
there do seem to be consistent differences between the algorithms. We don’t
have enough ground truth to do convincing statistics yet, but it looks like the
optimization-based approaches are doing better, certainly at discontinuities, and
often in low texture areas as well.
Rick Szeliski: One final comment. We have made these data sets available
on http://www.research.microsoft.com/˜szeliski/stereo/, so that people
can run their stereo algorithms on them. We are interested in hearing about the
results, as we intend to publish a comparative survey of the performance of the
different methods we have access to.
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Abstract. Popular algorithms for feature matching and model extrac-
tion fall into two broad categories, generate-and-test and Hough trans-
form variations. However, both methods suffer from problems in prac-
tical implementations. Generate-and-test methods are sensitive to noise
in the data. They often fail when the generated model fit is poor due to
error in the selected features. Hough transform variations are somewhat
less sensitive the noise, but implementations for complex problems suffer
from large time and space requirements and the detection of false posi-
tives. This paper describes a general method for solving problems where
a model is extracted from or fit to data that draws benefits from both
generate-and-test methods and those based on the Hough transform,
yielding a method superior to both. An important component of the
method is the subdivision of the problem into many subproblems. This
allows efficient generate-and-test techniques to be used, including the use
of randomization to limit the number of subproblems that must be ex-
amined. However, the subproblems are solved using pose space analysis
techniques similar to the Hough transform, which lowers the sensitivity
of the method to noise. This strategy is easy to implement and results in
practical algorithms that are efficient and robust. We apply this method
to object recognition, geometric primitive extraction, robust regression,
and motion segmentation.

1 Introduction

The generate-and-test paradigm is a popular strategy for solving model match-
ing problems such as recognition, detection, and fitting. The basic idea of this
method is to generate (or predict) many hypothetical model positions using the
minimal amount of information necessary to identify unique solutions. A se-
quence of such positions is tested, and the positions that meet some criterion
are retained. Examples of this technique include RANSAC [6] and the alignment
method [10].

The primary drawback to generate-and-test paradigm is sensitivity to noise.
Let us call the features that are used in predicting the model position for some
test the distinguished features, since they play a more important role in whether
the test is successful. The other features are undistinguished features. Error in
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the distinguished features causes the predicted position to be in error. As the
error grows, the testing step becomes more likely to fail.

To deal with this problem, methods have been developed to propagate errors
in the locations of the distinguished features [1,8]. Under the assumption of a
bounded error region for each of the distinguished image features, these methods
can place bounds on the locations to which the undistinguished model features
can be located in an image. When we count the number of undistinguished
model features that can be aligned with image features (with the constraint
that the distinguished features must always be in alignment up to the error
bounds) these techniques can guarantee that we never undercount the number
of alignable features. The techniques will thus never report that the model is
not present according to some counting criterion when, in fact, the model does
meet the criterion.

On the other hand, this method is likely to overcount the number of alignable
features, even if the bounds on the location of each individual feature are tight.
The reason for this is that, while this method checks whether there is a model
position that brings each of the undistinguished model features into alignment
with image features (along with all of the distinguished features) up to the error
bounds, it does not check whether there is a position that brings all of the
counted undistinguished features into alignment up to the error bounds.

A competing technique for feature matching and model extraction is based
on the Hough transform. This method also generates hypothetical model posi-
tions solutions using minimal information, but rather than testing each solution
separately, the testing is performed by analyzing the locations of the solutions in
the space of possible model positions (or poses). This is often, but not always, ac-
complished through a histogramming or clustering procedure. The large clusters
in the pose space indicate good model fits. We call techniques that examine the
pose space for sets of consistent matches among all hypothetical matches Hough-
based methods, since they derive from the Hough transform [11,15]. While these
techniques are less sensitive to noise in the features, they are prone to large com-
putational and memory requirements, as well as the detection of false positive
instances [7], if the pose space analysis is not careful.

In this paper, we describe a technique that combines the generate-and-test
and Hough-based methods in a way that draws ideas and advantages from each,
yielding a method that improves upon both. Like the generate-and-test method,
(partial) solutions based on distinguished features are generated for further ex-
amination. However, each such solution is under-constrained and Hough-based
methods are used to determine and evaluate the remainder of the solution. This
allows both randomization to be used to reduce the computational complexity
of the method and error propagation techniques to be used in order to better ex-
tract the relevant models. We call this technique RUDR (pronounced “rudder”),
for Recognition Using Decomposition and Randomization.

First, it is shown that the problem can be treated as many subproblems, each
of which is much simpler than the original problem. We next discuss various
methods by which the subproblems can be solved. The application of random-
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ization to reduce the number of subproblems that must be examined is then
described. These techniques yield efficiency gains over conventional generate-
and-test and Hough-based methods. In addition, the subdivision of the problem
allows us to examine a much smaller parameter space in each of the subproblems
than in the original problem and this allows the error inherent in localization
procedures to be propagated accurately and efficiently in the matching process.

This method has a large number of applications. It can be applied to essen-
tially any problem where a model is fit to cluttered data (i.e. with outliers or
multiple models present). We discuss the application of this method to object
recognition, curve detection, robust regression, and motion segmentation.

The work described here is a generalization of previous work on feature
matching and model extraction [19,20,22]. Similar ideas have been used by other
researchers. A simple variation of this method has been applied to curve detec-
tion by Murakami et al. [18] and Leavers [14]. In both of these cases, the problem
decomposition was achieved through the use of a single distinguished feature in
the image for each of the subproblems. We argue that the optimal performance
is achieved when the number of distinguished features is one less than the num-
ber necessary to fully define the model position in the errorless case. This has
two beneficial effects. First, it reduces the amount of the pose space that must
be considered in each problem (and the combinatorial explosion in the sets of
undistinguished features that are examined). Second, it allows a more effective
use of randomization in reducing the computational complexity of the method.
A closely related decomposition and randomization method has been described
by Cass [4] in the context of pose equivalence analysis. He uses a base match to
develop an approximation algorithm for feature matching under uncertainty.

2 General Problem Formalization

The class of problems that we attack using RUDR are those that require a model
to be fit to a set of observed data features, where a significant portion of the
observed data may be outliers or there may be multiple models present in the
data. These problems can, in general, be formalized as follows.

Given:
• M : The model to be fit. This model may be a set of distinct features as is
typical in object recognition, or it may be a parameterized manifold such as a
curve or surface, as in geometric primitive extraction and robust regression.
• D : The data to match. This data consists of a set of features or measurements,
{δ1, ..., δd}, that have been extracted, for example, from an image.
• T : The possible positions or transformations of the model. We use τ to denote
individual transformations in this space.
• A(M,D, T , τ, D) : A binary-valued acceptance criterion that specifies whether
a transformation, τ , satisfactorily brings the model into agreement with a set of
data features, D ∈ D. We allow this criterion to be a function of the full set of
data features and the set of transformations to allow the criterion to select the
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single best subset of data features according to some criterion or to take into
account global matching information.

Determine and report:
• All maximal sets of data features, D ∈ D, for which there is a transformation,
τ ∈ T , such that the acceptance criterion, A(M,D, T , τ, D), is satisfied.

This formalization is very general. Many problems can be formalized in this
manner, including object recognition, geometric primitive extraction, motion
segmentation, and robust regression.

A useful acceptance criterion is based on bounding the fitting error between
the model and the data. Let C(M, δ, τ) be a function that determines whether
the specified position of the model fits the data feature δ (e.g. up to a bounded
error). We let C(M, δ, τ) = 1, if the criterion is satisfied, and C(M, δ, τ) = 0,
otherwise. The model is said to be brought into alignment with a set of data
features, D = {δ1, ..., δx} up to the error criterion, if all of the individual features
are brought into alignment:

x∏

i=1

C(M, δi, τ) = 1 (1)

The bounded-error acceptance criterion specifies that a set of data features,
D = {δ1, ..., δx}, should be reported, if the cardinality of the set meets some
threshold (x ≥ c), there is a position of the model that satisfies (1), and the set
is not a subset of some larger set that is reported.

While this criterion cannot incorporate global information, such as mean-
square-error or least-median-of-squares, RUDR is not restricted to using this
bounded-error criterion. This method has been applied to least-median-of-squares
regression with excellent results [19].

Example As a running example, we will consider the detection of circles in
two-dimensional image data. For this case, our model,M, is simply the param-
eterization of a circle, (x − xc)2 + (y − yc)2 = r2, and our data, D, is a set
of image points. The space of possible transformations is the space of circles,
T = [xc, yc, r]T . We use a bounded-error acceptance criterion such that a point
is considered to be on the circle if

∣
∣
∣
√
(x− xc)2 + (y − yc)2 − r

∣
∣
∣ < ε. We will

report the circles that have
∑d

i=1 Cε(M, δi, τ) > πr. In other words, we search
for the circles that have half of their perimeter present in the image.

3 Approach

Let us call the hypothetical correspondence between a set of data features and
the model a matching. The generate-and-test paradigm and many Hough-based
strategies solve for hypothetical model positions using matchings of the minimum
cardinality to constrain the model position up to a finite ambiguity (assuming
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errorless features). We call the matchings that contain this minimal amount
of information the minimal matchings and we denote their cardinality k. We
consider two types of models. One type of model consists of a set of discrete
features similar to the data features. The other is a parameterized model such
as a curve or surface. When the model is a set of discrete features, the minimal
matchings specify the model features that match each of the data features in
the minimal matching and we call these explicit matchings. Otherwise, the data
features are matched implicitly to the parameterized model and we thus call
these implicit matchings.

In the generate-and-test paradigm, the model positions generated using the
minimal matchings are tested by determining how well the undistinguished fea-
tures are fit according to the predicted model position. In Hough-based methods,
it is typical to determine the positions of the model that align each of the min-
imal matchings and detect clusters of these positions in the parameter space
that describes the set of possible model positions, but other pose space analysis
techniques can be used (e.g. [3,4]).

The approach that we take draws upon both generate-and-test techniques
and Hough-based techniques. The underlying matching method may be any one
of several pose space analysis techniques in the Hough-based method (see Section
4), but unlike previous Hough-based methods, the problem is subdivided into
many smaller problems, in which only a subset of the minimal matchings is
examined. When randomization is applied to selecting which subproblems to
solve, a low computational complexity can be achieved with a low probability of
failure.

The key to this method is to subdivide the problem into many small sub-
problems, in which a distinguished matching of some cardinality g < k between
data features and the model is considered. Only those minimal matchings that
contain the distinguished matching are examined in each subproblem and this
constrains the portion of the pose space that the subproblem considers. We could
consider each possible distinguished matching of the appropriate cardinality as
a subproblem, but we shall see that this is not necessary in practice.

Let’s consider the effect of this decomposition of the problem on the match-
ings that are detected by a system using a bounded-error criterion, C(M, d, t),
as described above. For now, we assume that we have some method of deter-
mining precisely those sets of data features that should be reported according to
the bounded-error acceptance criterion. The implications of performing match-
ing only approximately and the use of an acceptance criterion other than the
bounded-error criterion are discussed subsequently.

Proposition 1. For any transformation, τ ∈ T , the following statements are
equivalent:
1. Transformation τ brings at least x data features into alignment with the model
up to the error criterion.
2. Transformation τ brings at least (xk) sets of data features with cardinality k
into alignment with the model up to the error criterion.
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3. For any distinguished matching of cardinality g that is brought into alignment
with the model up to the error criterion by τ , there are (x−g

k−g) minimal matchings
that contain the distinguished matching that are brought into alignment up to the
error criterion by τ .

The proof of this proposition, which follows directly from combinatorics,
is sketched in [20]. This result indicates that as long as we examine one distin-
guished matching that belongs to each of the matchings that should be reported,
the strategy of subdividing the problem into subproblems yields equivalent re-
sults to examining the original problem as long as the threshold on the number
of matches is set appropriately.

This decomposition of the problem allows our method to be viewed as a
class of generate-and-test methods, where distinguished matchings (rather than
minimal matchings) are generated and the testing step is performed using a pose
space analysis method (such as clustering or pose space equivalence analysis)
rather than comparing a particular model position against the data.

While distinguished matchings of any cardinality could be considered, we
must balance the complexity of the subproblems with the number of subproblems
that are examined. Increasing the cardinality of the distinguished matching is
beneficial up to a point. As the size of the distinguished matching is increased, the
number of minimal matchings that is examined in each subproblem is decreased
and we have more constraint on the position of the model. The subproblems are
thus simpler to solve. By itself, this does not improve matters, since there are
more subproblems to examine. However, since we use randomization to limit the
number of subproblems that are examined, we can achieve a lower computational
complexity by having more simple subproblems than fewer difficult ones. On the
other hand, when we reach g = k, the method becomes equivalent to a generate-
and-test technique and we lose both the benefits gained through the Hough-based
analysis of the pose space and the property that the subproblems become simpler
with larger distinguished matchings. We thus use distinguished matchings with
cardinality g = k − 1.

Now, for practical reasons, we may not wish to use an algorithm that reports
exactly those matchings that satisfy the error criterion, since such algorithms
are often time consuming. In this case, we cannot guarantee that examining a
distinguished matching that belongs to a solution that should be reported will
result in detecting that solution. However, empirical evidence suggests that the
examination of these subproblems yields superior results when an approximation
algorithm is used [20], owing to failures that occur in the examination of full
problem.

We can also use these techniques with acceptance criteria other than the
bounded-error criterion. With other criteria, the proposition is no longer always
true, but if an approximation algorithm is used to detect good matchings, exam-
ination of the subproblems often yields good results. For example, an application
of these ideas to least-median-of-squares regression has yielded an approxima-
tion algorithm that is provably accurate with high probability, while previous
approximation algorithms do not have this property [19].
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Example For our circle detection example, k = 3, since three points are suffi-
cient to define a circle in the noiseless case. The above analysis implies that,
rather than examining individual image features, or all triples of features, we
should examine trials (or subproblems) where only the triples that share some
distinguished pair of features in common. Multiple trials are examined to guard
against missing a circle.

4 Solving the Subproblems

Now, we must use some method to solve each of the subproblems that are ex-
amined. We can use any method that determines the number of matchings of a
given cardinality can be brought approximately into alignment with the model at
a particular position. The simplest method is one that uses a multi-dimensional
histogramming step in order to locate large clusters in the pose space. This
method can be implemented efficiently in both time and space [20]. However,
errors in the data cause the clusters to spread in a manner that can be difficult to
handle using this technique. For complex problems, it can become problematic
to detect the clusters without also detecting a significant number of false posi-
tives [7]. Alternatively, recently developed pose equivalence analysis techniques
developed by Breuel [3] and Cass [4] can be applied that allow localization error
to be propagated accurately. Breuel’s experiments indicate that his techniques
can operate in linear expected time in the number of matchings, so we can, in
general, perform this step efficiently.

In our method, only a small portion of the parameter space is examined in
each subproblem. If it is assumed that there is no error in the data features in
the distinguished matching, then each subproblem considers only a sub-manifold
of the parameter space. In general, if there are p transformation parameters and
each feature match yields b constraints on the transformation, then a subproblem
where the distinguished matchings have cardinality g considers only a (p− gb)-
dimensional manifold of the transformation space in the errorless case. This
allows us to parameterize the sub-manifold (using p−gb parameters) and perform
analysis in this lower dimensional space. A particularly useful case is when the
resulting manifold has only one dimension (i.e. it is a curve). In this case, the
subproblem can be solved very simply by parameterizing the curve and finding
positions on the curve that are consistent with many minimal matchings.

When localization error in the data features is considered, the subproblems
must (at least implicitly) consider a larger space than the manifold described
above. The subproblems are still much easier to solve. A technique that is useful
in this case is to project the set of transformations that are consistent with a
minimal matching up to the error criterion onto the manifold that results in the
errorless case and then perform clustering only in the parameterization of this
manifold as discussed above [22].

Example For circle detection, the circle positions that share a pair of points lie on
a curve in the pose space. (The center of the circle is always on the perpendicular
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bisector of the two distinguished points.) We parameterize the positions using
the signed distance d from the center of the circle to the midpoint between the
distinguished points (positive if above, negative if below). This yields a unique
descriptor for every circle containing the distinguished points. For each triple
that is considered, we can project the pose space consistent with the triple onto
the parameterization by considering which centers are possible given some error
bounds on the point locations [22]. We determine if a circle is present in each
trial by finely discretizing d and performing a simple Hough transform variation,
where the counter for each bin is incremented for each triple that is consistent
with the span represented by the counter. Peaks in the accumulator are accepted
if they surpass some predetermined threshold.

5 Randomization and Complexity

A deterministic implementation of these ideas examines each possible distin-
guished matching with the appropriate cardinality. This requires O(nk) time,
where n is the number of possible matches between a data feature and the
model. When explicit matchings are considered, n = md, where m is the number
of model features and d is the number of data features. When implicit match-
ings are considered, n = d. Such a deterministic implementation performs much
redundant work. There are many distinguished matchings that are part of each
of the large consistent matchings that we are seeking. We thus find each match-
ing that meets the acceptance criterion many times (once for each distinguished
matching that is contained in the maximal matching). We can take advantage
of this redundancy through the use of a common randomization technique to
limit the number of subproblems that we must consider while maintaining a low
probability of failure.

Assume that some minimum number of the image features belong to the
model. Denote this number by b. Since our usual acceptance criterion is based
on counting the number of image features that belong to the model, we can
allow the procedure to fail when too few image features belong to the model.
Otherwise, the probability that some set of image features with cardinality g =
k − 1 completely belongs to the model is approximately bounded by

(
b
d

)k−1
.

If we take t trials that select sets of k − 1 image features randomly, then the
probability that none of them will completely belong to the model is:

pt ≈
(

1−
(

b

d

)k−1)t

. (2)

Setting this probability below some arbitrarily small threshold (pt < γ) yields:

t ≈ ln γ

ln(1− ( b
d )

k−1) ≈
(

d

b

)k−1
ln

1
γ

. (3)

Now, for explicit matches, we assume that some minimum fraction fe of the
model features appear in the image. In this case, the number of trials necessary
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is approximately
(

d
fem

)k−1
ln 1

γ . For each trial, we must consider matching the
set of image features against each possibly matching set of model features, so the
total number of distinguished matchings that are considered is approximately
(

d
fe

)k−1
(k−1)! ln 1

γ . Each explicit distinguished matching requires O(md) time

to process, so the overall time required is O(mdk).
For implicit matches, we may assume that each significant model in the image

comprises some minimum fraction fi of the image features. The number of trials
necessary to achieve a probability of failure below γ is approximately fi

1−kln 1
γ ,

which is a constant independent of the number of model or image features. Since
each trial can be solved in O(d) time, the overall time required is O(d).

Note that the complexity can be reduced further by performing subsampling
among the matchings considered in each trial. Indeed, O(1) complexity is possible
with some assumptions about the number of features present and the rate of
errors allowable [2]. We have not found this further complexity reduction to be
necessary in our experiments. However, it may be useful when the number of
image features is very large.

Example Our circle detection case uses implicit matchings. If we assume that
each circle that we wish to detect comprises at least fi = 5% of the image data
and require that the probability of failure is below γ = 0.1%, then the number of
trials necessary is 2764. Each trial considers the remaining d− 2 image features.
Note that techniques considering all triples will surpass the number of triples
considered here when d > 53.

6 Comparison with Other Techniques

This section gives a comparison of the RUDR approach with previous generate-
and-test and Hough-based techniques.

Deterministic generate-and-test techniques require O(nk+1) time to perform
model extraction in general, since there are O(nk) minimal matchings and the
testing stage can be implemented O(n) time. This can often be reduced slightly
through the use of efficient geometric searching techniques during the testing
stage (e. g. [16]). RUDR yields a superior computational complexity requirement
for this case. When randomization is applied to generate-and-test techniques, the
computation complexity becomes O(mdk+1) (or slightly better using efficient ge-
ometric search) for explicit matches and O(d) for implicit matches. RUDR yields
a superior computational complexity for the case of explicit matches and, while
the generate-and-test approach matches the complexity for the case of implicit
matches, RUDR examines less subproblems by a constant factor (approximately
1
fi
) and is thus faster in practice.
In addition, previous generate-and-test techniques are inherently less precise

in the propagation of localization error. The basic generate-and-test algorithm
introduces false positives unless care is taken to propagate the errors correctly
[1,8], since error in the data features leads to error in the hypothetical model
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pose and this error causes some of the models to be missed as a result of a poor
fit. A more serious problem is that, while the generate-and-test techniques that
propagate errors correctly ensure that each of the undistinguished features can
be separately brought into alignment (along with the distinguished set) up to
some error bounds by a single model position, this position may be different for
each such feature match. It does not guarantee that all of the features can be
brought into alignment up to the error bounds by a single position and thus
causes false positives to be found.

Hough-based methods are capable of propagating localization error such that
neither false positives nor false negatives occur (in the sense that only match-
ings meeting the acceptance criterion are reported) [3,4]. However, previous
Hough-based methods have had large time and space requirements. Determinis-
tic Hough-based techniques that examine minimal matchings require O(nk) time
and considerable memory [20].

Randomization has been previously applied to Hough transform techniques
[2,13,14,24]. However, in previous methods, randomization has been used in a
different manner than it is used here. While RUDR examines all of the data in
each of the subproblems, previous uses of randomization in Hough-based meth-
ods subsample the overall data examined, causing both false positives and false
negatives to occur as a result. While false negatives can occur due to the use
of randomization in the RUDR approach, the probability of such an occurrence
can be set arbitrarily low.

Our method draws the ability to propagate localization error accurately from
Hough-based methods and combines it with the ability to subdivide the problem
into many smaller subproblems and thus reap the full benefit of randomization
techniques. The result is a model extraction algorithm with superior computa-
tional complexity to previous methods that is also robust with respect to false
positives and false negatives.

All of the techniques considered so far have been model-based methods. The
primary drawback to such techniques is a combinatorial complexity that is poly-
nomial in the number of features, but exponential in the complexity of the pose
space (as measured by k). This can be subverted in some cases by assuming that
some fraction of the data features arises from the model (this shifts the base
of the exponent to the required fraction). An alternative that can be useful in
reducing this problem is the use of grouping or perceptual organization methods
that use data-driven techniques to determine features that are likely to belong
to the same model (for example, [12,17]). In cases where models can be identi-
fied by purely data-driven methods, such techniques are likely to be faster than
the techniques described here. However, work has shown the even imperfect fea-
ture grouping methods can improve both the complexity and the rate of false
positives in the RUDR method [21].

There are some situations where RUDR can not be applied effectively. If a
single data feature is sufficient to constrain the position of the model, the RUDR
problem decomposition will not be useful. In addition, the techniques we describe
will be of less value is when there is a small number of features in the image. In
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this case, the randomization may not yield an improvement in the speed of the
algorithm. However, the error propagation benefits will still apply.

7 Applications of RUDR

RUDR has been applied to several problems. We review the important aspects of
these applications here and discuss additional areas where RUDR can be applied.

7.1 Extraction of Geometric Primitives

The Hough transform is a well known technique for geometric primitive extrac-
tion [11,15]. The application of RUDR to this method improves the efficiency
of the technique, allows the localization error to be propagated accurately, and
reduces the amount of memory that is required [22].

Consider the case of detecting curves from feature points in two-dimensional
image data. If we wish to detect curves with p parameters, then we use distin-
guished matchings consisting of p−1 feature points, since, in general, p points are
required to solve for the curve parameters. Each distinguished matching maps
to a one-dimensional manifold (a curve) in the parameter space, if the points are
errorless and in general position. Methods have been developed to map minimal
matchings with bounded errors into segments of this curve for the case of lines
and circles [22]. O(d) time and space is required for curve detection with these
techniques, where d is the number of data points extracted from the image.

Figure 1 shows the results of using RUDR to detect circles in a binary image
of an engineering drawing. The results are very good, with the exception of
circles found with a low threshold that are not perceptually salient. However,
these circles meet the acceptance criterion specified, so this is not a failure of
the algorithm.

The image in Figure 1 contains 9299 edge pixels. In order to detect circles
comprising 4% of the image, RUDR examines 4318 trials and considers 4.01 ×
107 triples. Contrast this to the 8.04 × 1011 possible triples. A generate-and-
test technique using the same type of randomization examines 1.08× 105 trials
(1.00×109 triples) to achieve the same the same probability of examining a trial
where the distinguished features belong to some circle, but will still miss circles
due to the error in the features.

7.2 Robust Regression

RUDR can be applied to the problem of finding the least-median-of-squares
(LMS) regression line. The most commonly considered problem is to fit a line
to points in the plane. We apply RUDR to this problem by considering a series
of distinguished points in the data. A single distinguished point is examined
in each trial (since only two are required to define a line). For each trial, we
determine the line that is optimal with respect to the median residual, but with
the constraint that the line must pass through the distinguished point.
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(a) (b)

(c) (d)

Fig. 1. Circle detection. (a) Engineering drawing. (b) Circles found comprising 4% of
the image. (c) Perceptually salient circles found comprising 0.8% of the image. (d)
Insalient circles found comprising 0.8% of the image.

It can be shown that the solution to this constrained problem has a median
residual that is no more than the sum of the optimal median residual and the
distance of the distinguished point from the optimal LMS regression line [19].
Now, at least half of the data points must lie no farther from the optimal re-
gression line than the optimal median residual (by definition). Each trial thus
has a probability of at least 0.5 of obtaining a solution with a residual no worse
than twice the optimal median residual. The use of randomization implies that
we need to perform only a constant number of trials to achieve a good solution
with high probability (approximately − log2 δ trials are necessary to achieve an
error rate of δ).

Each subproblem (corresponding to a distinguished point) can be solved using
a specialized method based on parametric search techniques [19]. This allows
each subproblem to be solved exactly in O(n log2 n) time or in O(n log n) time
for a fixed precision solution using numerical techniques. These techniques have
also been extended to problems in higher dimensional spaces.
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Fig. 2. Robust regression examples. The solid lines are the RUDR LMS estimate. The
dashed lines are the PROGRESS LMS estimate. The dotted lines are the least-squares
fit.

The complexity of our method is superior to the best known exact algorithms
for this problem [5]. The PROGRESS algorithm [23] is a commonly used approx-
imation algorithm for LMS regression that is based on the generate-and-test
paradigm. It requires O(n) time. However, unlike our algorithm, this algorithm
yields no lower bounds (with high probability) on the quality of the solution
detected.

Figure 2 shows two examples where RUDR, PROGRESS, and least-squares
estimation were used to perform regression. In these examples, there were 400
inliers and 100 outliers, both from two-dimensional normal distributions. For
these experiments, 10 trials of the RUDR algorithm were considered, and 50
trials of the PROGRESS algorithm. For both cases, RUDR produces the best
fit to the inliers. The least-squares fit is known to be non-robust, so it is not
surprising that it fairs poorly. The PROGRESS algorithm has difficulty, since,
even in 50 trials, it does not generate a solution very close to the optimal solution.

7.3 Object Recognition

The application of RUDR to object recognition yields an algorithm with O(mdk)
computational complexity, where m is the number of model features, d is the
number of data features, and k is the minimal number of feature matches neces-
sary to constrain the position of the model up to a finite ambiguity in the case
of errorless features in general position.

For recognizing three-dimensional objects using two-dimensional image data,
k = 3. In each subproblem, we compute the pose for each minimal matching
containing the distinguished matching using the method of Huttenlocher and
Ullman [10]. We then use a multi-dimensional histogramming technique that
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(a) (b)
Fig. 3. Three-dimensional object recognition. (a) Corners detected in the image. (b)
Best hypothesis found.

examines each axis of the pose space separately. After finding the clusters along
some axis in the pose space, the clusters of sufficient size are then analyzed
recursively in the remainder of the pose space [20]. The poses for all sets of points
sharing a distinguished matching of cardinality k − 1 lie in a two-dimensional
subspace for this case. Despite this, we perform the histogramming in the full
six-dimensional space, since this requires little extra time and space with this
histogramming method. Feature error has been treated in an ad hoc manner in
this implementation through the examination of overlapping bins in the pose
space. Complex images may require a more thorough analysis of the errors.

We can also apply these techniques to images in which imperfect grouping
techniques have determined sets of points that are likely to derive from the same
object [21]. This allows a reduction in both the computational complexity and
the rate of false positives. Figure 3 shows an example where this approach has
been applied to the recognition of a three-dimensional object.

7.4 Motion Segmentation

RUDR can be used to perform motion segmentation with any technique for
determining structure and motion from corresponding data features in multiple
images. In this problem, we are given sets of data features in multiple images. We
assume that we know the feature correspondences between images (e.g. from a
tracking mechanism), but not which sets of features belong to coherent objects.

Say that we have an algorithm to determine structure and motion using
k feature correspondences in i images and that there are d features for which
we know the correspondences between the images (see [9] for a review of such
techniques). We examine distinguished matchings of k − 1 sets of feature corre-
spondences between the images. Each subproblem is solved by determining the
hypothetical structure and motion of each minimal matching (k sets of feature
correspondences) containing the distinguished matching and then determining
how many of the minimal matchings yield consistent structures for the distin-
guished matching and motions that are consistent with them belonging to a
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single object. This is repeated for enough distinguished matchings to find all
of the rigidly moving objects consisting of some minimum fraction of all image
features.

Our analysis for implicit matchings implies that we must examine approxi-
mately ε1−k ln 1

γ trials to find objects whose fraction of the total number of data
features is at least ε with a probability of failure for a particular object no larger
than γ.

8 Summary

This paper has described a technique that we have named RUDR for solving
model extraction and fitting problems such as recognition and regression. This
approach is very general and can be applied to a wide variety problems where
a model is fit to a set of data features and it is tolerant to noisy data features,
occlusion, and outliers.

The RUDR method draws advantages from both the generate-and-test para-
digm and from parameter space methods based on the Hough transform. The
key ideas are: (1) Break down the problem into many small subproblems in
which only the model positions consistent with some distinguished matching of
features are examined. (2) Use randomization techniques to limit the number
of subproblems that need to be examined to guarantee a low probability of
failure. (3) Use clustering or parameter space analysis techniques to determine
the matchings that satisfy the criteria.

The use of this technique yields two primary advantages over previous meth-
ods. First, RUDR is computationally efficient and has a low memory require-
ment. Second, we can use methods by which the localization error in the data
features is propagated precisely, so that false positives and false negatives do not
occur.
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Discussion

Tom Drummond: It seems to me that there’s an asymmetry between the
noise-fitting of the points you choose for your (k − 1)-D model and the noise
distribution in pose space. Can you comment on how you cope with this?
Clark Olson: The features of the distinguished matching (the (k−1)-D model)
do play a more important role in each trial than the remaining features. The error
in each feature is treated the same way in each minimal matching that is exam-
ined, but the features in the distinguished matching are seen in every minimal
matching for a particular trial. The use of a distinguished matching constrains
the pose to a sub-manifold of the pose space. Within this sub-manifold, the poses
of the minimal matchings will be clustered in a smaller area, and the center will
be shifted from the center of the set of all correct minimal matchings. However,
with a precise method to process each trial, proposition 1 implies that the use
of distinguished matchings has no effect on the overall result of the algorithm so
long as we include at least one distinguished matching belonging to each model
that should be reported.
Andrew Fitzgibbon: Just an observation. As well as reducing the dimension-
ality of the loci in the Hough space, in the circle case you also make them simpler
— they’re cones with raw Hough, but just lines with your case. That makes them
easier to cluster, etc.
Clark Olson: Yes, that’s correct.
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Abstract. A new approach to characterizing the performance of point-
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It allows one to evaluate algorithms for a given class of scenes, as well as
to estimate the accuracy of every element of the output of the algorithm
for a given set of views. Experiments to demonstrate the usefulness of
the methodology are presented.

1 Introduction and Motivation

One way of characterizing the performance of a stereo algorith is to compare
its matches against “ground truth.” If sufficient quantities of accurate ground
truth were available, estimating the distribution of errors over many image pairs
of many scenes (within a class of scenes) would be relatively straightforward.
This distribution could then be used to predict the accuracy of matches in new
images. Unfortunately, acquiring ground truth for any scene is an expensive and
problematic proposition at best.

Instead, we propose to estimate a related distribution, which can be derived
automatically from the matches of many image pairs of many scenes, assuming
only that the projection matrices for the image pairs (and their covariances)
have been correctly estimated, up to an unknown projective transformation.

The related self-consistency distribution, as we call it, is the distribution of
the normalized difference between triangulations of matches obtained when one
image is fixed and the projection matrix of the second image is changed, averaged
over all matches, many images, and many scenes.
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Intuitively, a perfect stereo algorithm is one for which the triangulations are
invariant to changes in the second image, that is, one for which the mean and
variance of the self-consistency distribution are zero. The extent to which the
distribution deviates from this is a measure of the accuracy of the algorithm. Of
course, a stereo algorithm that is perfectly self-consistent in this sense can still
have systematic biases. We will discuss such biases in a more complete version
of this paper.

Although the self-consistency distribution is an important global characteri-
zation of a stereo algorithm, it would be better if we could refine the predicted
accuracy of individual matches given just a pair of images. We propose to do
this by estimating the self-consistency distribution as a function of some type of
“score” (such as sum of squared difference) that can be computed for each match
using only the image pair. Conditionalizing the self-consistency distribution like
this not only allows us to better predict the accuracy of individual matches,
it also allows us to compare different scoring functions to see which one best
correlates with the self-consistency of matches.

The self-consistency distribution is a very simple idea that has powerful con-
sequences. It can be used to compare algorithms, compare scoring functions,
evaluate the performance of an algorithm across different classes of scenes, tune
algorithm parameters, reliably detect changes in a scene, and so forth. All of this
can be done for little manual cost beyond the precise estimation of the camera
parameters and perhaps manual inspection of the output of the algorithm on a
few images to identify systematic biases.

In the remainder of this paper we will describe the algorithm we use for
estimating the self-consistency distribution of general n-point correspondence
algorithms given prior collections of images. This includes the development of a
method to normalize the triangulation (or reprojection) differences due to the
inherent errors arising from the nominal accuracy of the matches, the projec-
tion matrices, and their covariances. Monte Carlo experiments are presented to
justify the normalization method. We will then show how the self-consistency
distribution can be used to to compare stereo algorithms and scoring functions.

2 Previous Work in Estimating Uncertainty

Existing work on estimating uncertainty without ground truth falls into two
categories: analytical approaches and statistical approaches.

The analytical approaches are based on the idea of error propagation [17].
When the output is obtained by optimizing a certain criterion (like a correlation
measure), the shape of the optimization curve [5,12,8] or surface [1] provides esti-
mates of the covariance through the second-order derivatives. These approaches
make it possible to compare the uncertainty of different outputs given by the
same algorithm. However, it is problematic to use them to compare different
algorithms.
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Statistical approaches make it possible to compute the covariance given only
one data sample and a black-box version of an algorithm, by repeated runs of
the algorithm, and application of the law of large numbers [4].

Both of the above approaches characterize the performance of a given output
only in terms of its expected variation with respect to additive white noise.
In [15], the accuracy was characterized as a function of image resolution. The
bootstrap methodology [3] goes further, since it makes it possible to characterize
the accuracy of a given output with respect to IID noise of unknown distribution.
Even if such an approach could be applied to the multiple image correspondence
problem, it would characterize the performance with respect to IID sensor noise.
Although this is useful for some applications, for other applications it is necessary
to estimate the expected accuracy and reliability of the algorithms as viewpoint,
scene domain, or other imaging conditions are varied. This is the problem we
seek to address with the self-consistency methodology.

3 The Self-Consistency Distribution

To understand the self-consistency distribution, consider the following thought
experiment. Consider a match (mA, mB) derived from two images, A and B.
Now, fix image A and mA, vary the projection matrix of the second image to
produce image B′, and apply the stereo algorithm to images A and B′ produc-
ing the match (mA, mB′). Because the coordinates of the matches are identical
in image A, the two matches should triangulate to the same point in space,
within the expected error induced by the nominal precision of the matches, the
projection matrices, and their covariances.

The distribution of the difference between the triangulations of the two
matches, after suitable normalization, averaged over all matches derived from
many image pairs of many scenes, is what we call the self-consistency distribu-
tion for that algorithm. We will discuss in detail the normalization later in the
paper.

When the triangulations are equal to within the expected error, the matches
are said to be consistent. When an an algorithm produces matches that are
always consistent in this sense, we say that the algorithm is self-consistent.

Note that the self-consistency distribution is directly applicable to change
detection by using the x% confidence interval for a match. The x% confidence
interval is the largest normalized distance that two matches (with the same
coordinate in one image) can have x% of the time. Thus, two matches derived
from images of a scene taken at different times can then be compared against
this confidence interval to see if the scene has changed over time at that point
(see [9]).

3.1 A Methodology for Estimating the Self-Consistency
Distribution

Ideally, the self-consistency distribution should be computed using all possible
variations of viewpoint and camera parameters (within some class of variations)
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over all possible scenes (within some class of scenes). However, we can compute
an estimate of the distribution using some small number of images of a scene,
and average this distribution over many scenes.

In the thought experiment above, we first found a match, fixed the coordinate
of the match in one image, varied the camera parameter of the second image to
get a second match, and then computed the normalized distance between their
triangulations.

Here we start with some fixed collection of images assumed to have been
taken at exactly the same time (or, equivalently, a collection of images of a static
scene taken over time). Each image has a unique index and associated projection
matrix and (optionally) projection covariances. We then apply a stereo algorithm
independently to all pairs of images in this collection.1. The image indices, match
coordinates, and score, are reported in match files for each image pair.

We now search the match files for pairs of matches that have the same co-
ordinate in one image. For example, if a match is derived from images 1 and 2,
another match is derived from images 1 and 3, and these two matches have the
same coordinate in image 1, then these two matches correspond to one instance
of the thought experiment. Such a pair of matches, which we call a common-point
match set, should be self-consistent because they should correspond to the same
point in the world. This extends the principle of the trinocular stereo constraint
[16,2] to arbitrary camera configurations and multiple images.

Given two matches in a common-point match set, we can now compute the
distance between their triangulations, after normalizing for the camera con-
figurations. The histogram of these normalized differences, computed over all
common-point matches, is our estimate of the self-consistency distribution.

Another distribution that one could compute using the same data files would
involve using all the matches in a common-point match set, rather than just
pairs of matches. For example, one might use the deviation of the triangulations
from the mean of all triangulations within a set. This is problematic for several
reasons.

First, there are often outliers within a set, making the mean triangulation
less than useful. One might mitigate this by using a robust estimation of the
mean. But this depends on various (more or less) arbitrary parameters of the
robust estimator that could change the overall distribution.

Second, and perhaps more importantly, we see no way to extend the normal-
ization used to eliminate the dependence on camera configurations, described in
Sect. 4, to the case of multiple matches.

Third, we see no way of using the above variants of the self-consistency
distribution for change detection.

1 Note that the “stereo” algorithm can find matches in n > 2 images. In this case, the
algorithm would be applied to all subsets of size n. We use n = 2 to simplify the
presentation here.
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Fig. 1. Results on two different types of images: terrain (top) vs. tree canopy (bottom).

3.2 An Example of the Self-Consistency Distribution

To illustrate the self-consistency distribution, we first apply the above method-
ology to the output of a simple stereo algorithm [6]. The algorithm first rectifies
the input pair of images and then searches for 7×7 windows along scan lines that
maximize a normalized cross-correlation metric. Sub-pixel accuracy is achieved
by fitting a quadratic to the metric evaluated at the pixel and its two adjacent
neighbours. The algorithm first computes the match by comparing the left image
against the right and then comparing the right image against the left. Matches
that are not consistent between the two searches are eliminated.

The stereo algorithm was applied to all pairs of five aerial images of bare
terrain, one of which is illustrated in the top row of Fig. 1(a). These images
are actually small windows from much larger images (about 9000 pixels on a
side) for which precise ground control and bundle adjustment were applied to
get accurate camera parameters.

Because the scene consists of bare, relatively smooth, terrain with little veg-
etation, we would expect the stereo algorithm described above to perform well.
This expectation is confirmed anecdotally by visually inspecting the matches.

However, we can get a quantitative estimate for the accuracy of the algorithm
for this scene by computing the self-consistency distribution of the output of the
algorithm applied to the ten images pairs in this collection. Figure 1(b) shows
two versions of the distribution. The solid curve is the probability density (the
probability that the normalized distance equals x). It is useful for seeing the mode
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and the general shape of the distribution. The dashed curve is the cumulative
probability distribution (the probability that the normalized distance is less than
x). It is useful for seeing the median of the distribution (the point where the curve
reaches 0.5) or the fraction of match pairs with normalized distances exceeding
some value.

In this example, the self-consistency distribution shows that the mode is
about 0.5, about 95% of the normalized distances are below 1, and that about
2% of the match pairs have normalized distances above 10.

In the bottom row of Fig. 1 we see the self-consistency distribution for the
same algorithm applied to all pairs of five aerial images of a tree canopy. Such
scenes are notoriously difficult for stereo algorithms. Visual inspection of the
output of the stereo algorithm confirms that most matches are quite wrong.
This can be quantified using the self-consistency distribution in Fig. 1(b). Here
we see that, although the mode of the distribution is still about 0.5, only 10% of
the matches have a normalized distance less than 1, and only 42% of the matches
have a normalized distance less than 10.

Note that the distributions illustrated above are not well modelled using
Gaussian distributions because of the predominance of outliers (especially in the
tree canopy example). This is why we have chosen to compute the full distribu-
tion rather than use its variance as a summary.

3.3 Conditionalization

As mentioned in the introduction, the global self-consistency distribution, while
useful, is only a weak estimate of the accuracy of the algorithm. This is clear
from the above examples, in which the unconditional self-consistency distribution
varied considerably from one scene to the next.

However, we can compute the self-consistency distribution for matches having
a given “score” (such as the MDL-base score described in detail below). This
is illustrated in Fig. 1(c) using a scatter diagram. The scatter diagram shows a
point for every pair of matches, the x coordinate of the point being the larger
of the scores of the two matches, and the y coordinate being the normalized
distance between the matches.

There are several points to note about the scatter diagrams. First, the terrain
example (top row) shows that most points with scores below 0 have normalized
distances less than about 1. Second, most of the points in the tree canopy ex-
ample (bottom row) are not self-consistent. Third, none of the points in the tree
canopy example have scores below 0. Thus, it would seem that this score is able
to segregate self-consistent matches from non-self-consistent matches, even when
the scenes are radically different (see Sect. 5.3).

4 Projection Normalization

To apply the self-consistency method to a set of images, all we need is the set
of projection matrices in a common projective coordinate system. This can be
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obtained from point correspondences using projective bundle adjustment [13,14]
and does not require camera calibration. The Euclidean distance is not invariant
to the choice of projective coordinates, but this dependance can often be reduced
by using the normalization described below. Another way to do so, which actually
cancels the dependance on the choice of projective coordinates, is to compute the
difference between the reprojections instead of the triangulations, as described
in more detail in [11]. This, however, does not cancel the dependance on the
relative geometry of the cameras.

4.1 The Mahalanobis Distance

Assuming that the contribution of each individual match to the statistics is the
same ignores many imaging factors like the geometric configuration of the cam-
eras and their resolution, or the distance of the 3D point from the cameras. There
is a simple way to take into account all of these factors, applying a normaliza-
tion which make the statistics invariant to these imaging factors. In addition,
this mechanism makes it possible to take into account the uncertainty in camera
parameters, by including them into the observation parameters.

We assume that the observation error (due to image noise and digitalization
effects) is Gaussian. This makes it possible to compute the covariance of the
reconstruction given the covariance of the observations. Let us consider two
reconstructed estimates of a 3-D point, M1 and M2 to be compared, and their
computed covariance matrices Λ1 and Λ2. We weight the squared Euclidean
distance between M1 and M2 by the sum of their covariances. This yields the
squared Mahalanobis distance: (M1 − M2)T (Λ1 + Λ2)−1(M1 − M2) .

4.2 Determining the Reconstruction and Reprojection Covariances

If the measurements are modeled by the random vector x, of mean x0 and of
covariance Λx, then the vector y = f(x) is a random vector of mean is f(x0)
and, up to the first order, covariance Jf (x0)ΛxJf (x0)T , where Jf (x0) is the
Jacobian matrix of f , at the point x0.

In order to determine the 3-D distribution error in reconstruction, the vector
x is defined by concatenating the 2-D coordinates of each point of the match, ie
[x1, y1, x2, y2, . . . xn, yn] and the result of the function is the 3-D coordinates
X, Y, Z of the point M reconstructed from the match, in the least-squares
sense. The key is that M is expressed by a closed-form formula of the form
M = (LTL)−1LTb, where L and b are a matrix and vector which depend on
the projection matrices and coordinates of the points in the match. This makes
it possible to obtain the derivatives of M with respect to the 2n measurements
wi, i = 1 . . . n, w = x, y. We also assume that the errors at each pixel are in-
dependent, uniform, and isotropic. The covariance matrix Λx is then diagonal,
therefore each element of ΛM can be computed as a sum of independent terms
for each image.

The above calculations are exact when the mapping between the vector of
coordinates of mi and M (resp. m′

j and M ′) is linear, since it is only in that



44 Y.G. Leclerc, Q.-T. Luong, and P. Fua

case that the distribution of M and M ′ is Gaussian. The reconstruction oper-
ation is exactly linear only when the projection matrices are affine. However,
the linear approximation is expected to remain reasonable under normal view-
ing conditions, and to break down only when the projection matrices are in
configurations with strong perspective.

5 Experiments

5.1 Synthetic Data

In order to gain insight into the nature of the normalized self-consistency distri-
butions, we investigate the case when the noise in point localization is Gaussian.

We first derive the analytical model for the self-consistency distribution in
that case. We then show, using monte-carlo experiments that, provided that
the geometrical normalization described in Sec.4 is used, the experimental self-
consistency distributions fit this model quite well when perspective effects are
not strong. A consequence of this result is that under the hypothesis that the
error localization of the features in the images is Gaussian, the difference self-
consistency distribution could be used to recover exactly the accuracy distribu-
tion.

Modeling the Gaussian Self-Consistency Distributions The squared Mahalanobis
distance in 3D follows a chi-square distribution with three degrees of freedom:

χ2
3 =

1√
2π

√
xe−x/2 .

In our model, the Mahalanobis distance is computed between M , M ′, recon-
structions in 3D, which are obtained from matches mi, m′

j of which coordinates
are assumed to be Gaussian, zero-mean and with standard deviation σ. If M ,
M ′ are obtained from the coordinates mi, m′

j with a linear transformation A,
A′, then the covariances are σ2AAT , σ2A′A′T . The Mahalanobis distance follows
the distribution:

d3 = x2/σ3
√

2/πe−x2/2σ2
. (1)

Using the Mahalanobis distance, the self-consistency distributions should be
statistically independent of the 3D points and projection matrices. Of course, if
we were just using the Euclidean distance, there would be no reason to expect
such an independence.

Comparison of the Normalized and Unnormalized Distributions. To explore the
domain of validity of the first-order approximation to the covariance, we have
considered three methods to generate random projection matrices:

1. General projection matrices are picked randomly.
2. Projection matrices are obtained by perturbing a fixed, realistic matrix

(which is close to affine). Entries of this matrix are each varied randomly
within 500% of the initial value.
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3. Affine projection matrices are picked randomly.

Each experiment in a set consisted of picking random 3D points, random
projection matrices according to the configuration previously described, pro-
jecting them, adding random Gaussian noise to the matches, and computing the
self-consistency distributions by labelling the matches so that they are perfect.

To illustrate the invariance of the distribution that we can obtain using the
normalization, we performed experiments where we computed both the normal-
ized version and the unnormalized version of the self-consistency. As can be
seen in Fig. 2, using the normalization reduced dramatically the spread of the
self-consistency curves found within each experiment in a set. In particular, in
the two last configurations, the resulting spread was very small, which indicates
that the geometrical normalization was successful at achieving invariance with
respect to 3D points and projection matrices.
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Fig. 2. Un-normalized (top) vs normalized (bottom) self-consistency distributions.

Comparison of the Experimental and Theoretical Distributions. Using the Ma-
halanobis distance, we then averaged the density curves within each set of ex-
periments, and tried to fit the model described in Eq. 1 to the resulting curves,
for six different values of the standard deviation, σ = 0.5, 1, 1.5, 2, 2.5, 3. As illus-
trated in Fig. 3, the model describes the average self-consistency curves very well
when the projection matrices are affine (as expected from the theory), but also
when they are obtained by perturbation of a fixed matrix. When the projection
matrices are picked totally at random, the model does not describe the curves
very well, but the different self-consistency curves corresponding to each noise
level are still distinguishable.
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5.2 Comparing Two Algorithms

The experiments described here and in the following section are based on the
application of stereo algorithms to seventeen scenes, each comprising five images,
for a total of 85 images and 170 image pairs. At the highest resolution, each image
is a window of about 900 pixels on a side from images of about 9000 pixels on
a side. Some of the experiments were done on gaussian-reduced versions of the
images. These images were controlled and bundle-adjusted to provide accurate
camera parameters.

A single self-consistency distribution for each algorithm was created by merg-
ing the scatter data for that algorithm across all seventeen scenes. In previous
papers, [11,10], we compared two algorithms, but using data from only four im-
ages. By merging the scatter data as we do here, we are now able to compare
algorithms using data from many scenes. This results in a much more compre-
hensive comparison.

The merged distributions are shown in Fig. 4 as probability density func-
tions for the two algorithms. The solid curve represents the distribution for our
deformable mesh algorithm [7], and the dashed curve represents the distribution
for the stereo algorithm described above.
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Comparing these two graphs shows some interesting differences between
the two algorithms. The deformable mesh algorithm clearly has more outliers
(matches with normalized distances above 1), but has a much greater proportion
of matches with distances below 0.25. This is not unexpected since the strength
of the deformable meshes is its ability to do very precise matching between im-
ages. However, the algorithm can get stuck in local minima. Self-consistency now
allows us to quantify how often this happens.

But this comparison also illustrates that one must be very careful when
comparing algorithms or assessing the accuracy of a given algorithm. The dis-
tributions we get are very much dependent on the scenes being used (as would
also be the case if we were comparing the algorithms against ground truth—the
“gold standard” for assessing the accuracy of a stereo algorithm). In general,
the distributions will be most useful if they are derived from a well-defined class
of scenes. It might also be necessary to restrict the imaging conditions (such as
resolution or lighting) as well, depending on the algorithm. Only then can the
distribution be used to predict the accuracy of the algorithm when applied to
images of similar scenes.

5.3 Comparing Three Scoring Functions

To eliminate the dependency on scene content, we propose to use a score asso-
ciated with each match. We saw scatter diagrams in Fig. 1(c) that illustrated
how a scoring function might be used to segregate matches according to their
expected self-consistency.

In this section we will compare three scoring functions, one based on Mini-
mum Description Length Theory (the MDL score, Appendix A), the traditional
sum–of–squared–differences (SSD) score, and the SSD score normalized by the
localization covariance (SSD/GRAD score) [5]. All scores were computed using
the same matches computed by our deformable mesh algorithm applied to all
image pairs of the seventeen scenes mentioned above. The scatter diagrams for
all of the areas were then merged together to produce the scatter diagrams show
in Fig. 5.

MDL SSD/Grad SSD

Fig. 5. Scatter diagrams for three different scores.
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The MDL score has the very nice property that the confidence interval (as
defined earlier) rises monotonically with the score, at least until there is a paucity
of data, when then score is greater than 2. It also has a broad range of scores
(those below zero) for which the normalized distances are below 1, with fewer
outliers than the other scores.

The SSD/GRAD score also increases monotonically (with perhaps a shallow
dip for small values of the score), but only over a small range.

The traditional SSD score, on the other hand, is distinctly not monotonic. It
is fairly non-self-consistent for small scores, then becomes more self-consistent,
and then rises again.

Another way that we can compare the scores is with a measure we call the
efficiency of the scoring function. This is the number of match pairs for which
the confidence interval is below some value d divided by the total number of
match pairs having normalized distances less than d. Intuitively, the efficiency
represents how well the scoring function can predict that match pairs will have
normalized differences below some value given just the score. An ideal score
would have an efficiency of 1 for all values of d.

The 99% efficiency of all three scores is illustrated in Fig. 6. Note that, overall,
the MDL score is somewhat more efficient than the SSD/GRAD score, both of
which are significantly more efficient than the SSD score.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

99% Efficiency of Different Scores

MDL Efficiency
SSD/Grad Efficiency

SSD Efficiency

Fig. 6. Comparing three scoring schemes (MDL vs. SSD/GRAD vs. SSD) using the
efficiency measure.

Our previous publication [11] compared two scoring function by comparing
their cumulative distributions in two different scenes. Here we compare scores
using the merged data from many scenes using confidence-interval and efficiency
graphs, again providing a more comprehensive comparison than was possible
before.

6 Conclusion and Perspectives

We have proposed the self-consistency methodology as a means of estimating the
accuracy and reliability of point-correspondence algorithms algorithms, compar-
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ing different algorithms, and comparing different scoring functions. We have pre-
sented a detailed prescription for applying this methodology to multiple-image
point-correspondence algorithms, without any need for ground truth or camera
calibration, and have demonstrated it’s utility in two experiments.

The self-consistency distribution is a very simple idea that has powerful con-
sequences. It can be used to compare algorithms, compare scoring functions,
evaluate the performance of an algorithm across different classes of scenes, tune
algorithm parameters, reliably detect changes in a scene, and so forth. All of this
can be done for little manual cost beyond the precise estimation of the camera
parameters and perhaps manual inspection of the output of the algorithm on a
few images to identify systematic biases.

Readers of this paper are invited to visit the self-consistency web site to
download an executable version of the code, documentation, and examples at
http://www.ai.sri.com/sct/ described in this paper.

Finally, we believe that the core idea of our methodology, which examines
the self-consistency of an algorithm across independent experimental trials, can
be used to assess the accuracy and reliability of algorithms dealing with a range
of computer vision problems. This could lead to algorithms that can learn to be
self-consistent over a wide range of scenes over a wide range of scenes without
the need for external training data or “ground truth.”

A The MDL Score

Given N images, let M be the number of pixels in the correlation window and
let gj

i be the image gray level of the ith pixel observed in image j. For image j,
the number of bits required to describe these gray levels as IID white noise can
be approximated by:

Cj = M(log σj + c) , (2)

where σj is the measured variance of the gj
i 1≤i≤N and c = (1/2) log(2πe).

Alternatively, these gray levels can be expressed in terms of the mean gray
level gi across images and the deviations gj

i − gi from this average in each indi-
vidual image. The cost of describing the means, can be approximated by

C = M(log σ + c) , (3)

where σ is the measured variance of the mean gray levels. Similarly the coding
length of describing deviations from the mean is given by

Cd
j = M(log σd

j + c) (4)

where σd
j is the measured variance of those deviations in image j. Note that,

because we describe the mean across the images, we need only describe N − 1
of the Cd

j . The description of the Nth one is implicit.
The MDL score is the difference between these two coding lengths, normalized

by the number of samples, that is

Loss = C +
∑

1≤j≤N−1

Cd
j −

∑

1≤j≤N

Cj . (5)
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When there is a good match between images, the gj
i 1≤j≤N have a small variance.

Consequently the Cd
j should be small, C should be approximately equal to any of

the Cj and Loss should be negative. However, Cj can only be strongly negative
if these costs are large enough, that is, if there is enough texture for a reliable
match. See [9] for more details.
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Discussion

Andrew Fitzgibbon: The metric you propose sounds a little like a quantifica-
tion of Jacobs work on the generic view assumption, where solutions to shape
from shading algorithms are consistent if, when you move the camera a little bit,
they don’t change much. Are you aware of that, and have you looked at it?
Yvan Leclerc: I’m well aware of the work. What they do is ask as a thought
experiment, if I was to change my viewpoint a little bit, how would the output
of the algorithm change. That’s the generic viewpoint constraint. Here what I
do is look at how the real algorithm behaves under real changes in viewpoint
provided by real new imagery. Also, as I understand the generic viewpoint thing,
you look at local perturbations in viewpoint or viewing conditions, see how that
affects the output, and pick the output that is most generic — that gives you
the smallest change. The philosophy is a little different from what we are trying
to do here. There’s a relationship between them, but I’m not sure that I can go
further than that right now.
Joe Mundy: The stereo case and the 3D model you reconstruct is pretty well
defined and constrained. What if there was a large space of possible solutions,
all of which could explain the data? How would you approach that?
Yvan Leclerc: Well, I’m not sure exactly what you mean by that, but the
methodology as I’ve described it should still let you pick out the sets of hy-
potheses that are consistent. I certainly agree that for any single image or image
pair there may be many hypotheses that can explain them. But as you get more
and more observations, more and more views, the set of hypotheses that are
consistent with the data should shrink until you get down to a core set that are
consistent with all the images. That would be my expectation.
Rick Szeliski: Perhaps this is a follow-on from Joe’s question. In stereo match-
ing when you have textureless regions there are a lot of equivalent hypotheses,
each as good as the others. So depth predictions from independent groups of
measurements are unlikely to agree with each other. Is there a mechanism where
the algorithms could say, this is my estimate but I have very low confidence in
it, or perhaps even have a confidence interval.
Yvan Leclerc: Exactly, that’s what the score is for. For each pair of matches,
the algorithm supplies a score. Here I used the MDL score, for which scores near
zero usually correspond to textureless regions. So you can tell which matches are
in textureless regions, and which have large outliers. If you want, you can just
keep the matches with good scores. So you have a fairly general algorithm that
is able to separate good matches from bad ones. What is nice here is that you
can guess “Oh yes, the MDL score ought to do that” and then actually verify
that it does with the methodology.
Bill Triggs: Given your experience with testing stereo on these difficult scenes
with dirt ground and tree cover and things like that, which correlation or pixel
correspondence method works the best?
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Yvan Leclerc: So far I’ve only compared the two examples that I gave, a sim-
ple stereo algorithm and the deformable patches. As I showed, the deformable
patches tend to give a much more accurate solution in some circumstances where
the score is negative. When the surface is somewhat smooth and it isn’t like a tree
canopy, they are much better than traditional stereo. What I’d like to do is to
have people try their stereo algorithms on sets of images and use self-consistency
to characterize the results. Then we’d have a nice quantitative measure to com-
pare different algorithms under different conditions, for various classes of images.
That’s why I’m providing the software, so that people can download it and try
it for themselves. (Provisional site: http://www.ai.sri.com/sct/).
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Abstract.  The recently proposed CONDENSATION algorithm and its variants
enable the estimation of arbitrary multi-modal posterior distributions that
potentially represent multiple tracked objects. However, the specific state
representation adopted in the earlier work does not explicitly supports
counting, addition, deletion and occlusion of objects. Furthermore, the
representation may increasingly bias the posterior density estimates towards
objects with dominant likelihood as the estimation progresses over many
frames.  In this paper, a novel formulation and an associated
CONDENSATION-like sampling algorithm that explicitly support counting,
addition and deletion of objects are proposed.  We represent all objects in an
image as an object configuration.  The a posteriori distribution of all possible
configurations are explored and maintained using sampling techniques.  The
dynamics of configurations allow addition and deletion of objects and handle
occlusion. An efficient hierarchical algorithm is also proposed to approximate
the sampling process in high dimensional space.  Promising comparative results
on both synthetic and real data are demonstrated.

1 Introduction

Tracking multiple objects in videos is a key problem in many applications such as
video surveillance, human computer interaction, and video conferencing.  It is also a
challenging research topic in computer vision.  Some difficult issues involved are
cluttered background, unknown number of objects, and complicated interaction
between objects.  Many tracking algorithms can be interpreted in a probabilistic
framework called hidden Markov model (HMM) [1], explicitly or implicitly.
As shown in Fig.1, the states of an object Xxt ∈  at different time instances

nt …,2,1=  form a Markov chain.  State tx  contains object deformation parameters
such as positions and scale factors.  At each time instance t , conditioned on tx ,
observation tz  is independent of other previous object states or observations.  This
model is summarized as
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The tracking problem can be posed as the computation of the a posteriori distribution
)|( ttxP Z  for given observations },,,{ 21 tt zzz …=Z .  When a single object is

tracked, the maximum a posteriori (MAP) solution is desired.  If both the object
dynamics )|( 1−tt xxP  and the observation likelihood )|( tt xzP  are Gaussian
distributions, )|( ttxP Z  is also a Gaussian distribution.  The MAP solution is

)|( ttxE Z .
In order to compute )|( ttxP Z , a forward algorithm [1] is applied.  It computes

)|( ttxP Z  based on )|( 11 −− ttxP Z  inductively and is formulated as
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Using this formula, the well-known Kalman filter that computes )|( ttxE Z  for a
Gaussian process can be derived [2].  When multiple objects present, if the number of
objects is fixed and the posterior of each object is Gaussian, similar solution in
analytic form is obtained.  If the number of objects may change over time, data
association method such as multiple-hypothesis tracking (MHT) [3] has to be used.
The complexity of MHT algorithm is exponential with respect to the time and
pruning techniques are necessary for real applications [4].

1−tx tx 1+tx

1−tz
tz 1+tz

Fig. 1. The hidden Markov model.

When the analytic form of either )|( 1−tt xxP  or )|( tt xzP  is not available, sampling
techniques such as the CONDENSATION algorithm [5] are preferred.  The idea is to
represent )|( ttxP Z  with samples and to propagate the posterior distribution over
time by computing the likelihood function )|( tt xzP  and simulating the dynamics

)|( 1−tt xxP .  In [6], a variance reduction method called importance sampling
algorithm is used to reduce the number of samples and to handle data associate
problems.  A more recent paper [8] deal with fixed number of object using a sampling
scheme.
The original CONDENSATION algorithm and its variants use a single object state as
the basic state representation. Presence of multiple objects is implicitly contained in
the multiple peaks of the posterior distribution.  When the CONDENSATION
algorithm is applied to such a representation, it is very likely that a peak
corresponding to the dominant likelihood value will increasingly dominate over all
other peaks when the estimation progresses over time.  In other words, a dominant
peak is established if some objects obtain larger likelihood values more frequently.  If
the posterior is propagated with fixed number of samples, eventually, all samples will
be around the dominant peak.  Dominant peak may occur in many model based
tracking algorithms.  For example, a head-shoulder contour deformable model may fit
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one person better than another in most frames of a video sequence.  This phenomenon
is further illustrated here with a synthetic example.
Fig. 6 shows two frames of the synthetic sequence.  More details of the sequence can
be found in Section 6.  In Fig. 9, the tracking results using the original
CONDENSATION algorithm are illustrated.  Since the likelihood function is biased
to certain objects, the differences between these objects and the other objects in the
posterior distribution increase exponentially with respect to the number of frames
observed.  In frame 15 (Fig. 9b), three peaks can be identified.  In frame 25 (Fig. 9c),
one object looses most of its samples because of its constantly relatively smaller
likelihood. . In frame 65 (Fig. 9d), another object vanishes due to its smaller
likelihood.  This phenomenon can also be observed in Fig. 9e and Fig. 9f.
Besides the dominant peak problem, the above example also illustrates that the events
such as addition, deletion, and occlusion can not be naturally handled.  In Fig. 9d, a
new object appears but no samples are allocated to it.  In Fig. 9h, an object
disappears, but the samples are not redistributed to the other object.
Importance sampling [6] is a data-driven mechanism that may alleviate some of the
above problems. However, in order to maintain and update the count and state of
multiple objects explicitly, a new representation is required.
It should be noticed that the limitation described here is not of the CONDENSATION
process but of the state representation that is used by the tracker.  In this paper we
present a new representation and apply a CONDENSATION-like sampling algorithm
for the estimation of the joint distribution of multiple objects under the presence of
clutter, varying object counts and appearance/disappearance of objects.

2 Tracking Multiple Objects

Our goal is to (i) track multiple instances of an object template, (ii) maintain an
expected value of the number of objects at any time instant, and (iii) be resilient to
clutter, occlusion/deocclusion and appearance/disappearance of objects.  In order to
be able to represent multiple objects, we enhance the basic representation by
representing all objects in the image as an object configuration (the term
configuration is used in the rest of this paper for conciseness).  A configuration is

represented by a set of object deformation parameters =ts },,,{ ,2,1, mttt xxx …  mX∈ ,

where m  is the number of objects.  If K  is the maximum possible number of objects

in an image, the configuration space is ∪
K

m

m
X0= .  Given the enhanced representation,

the goal is to compute the a posteriori probability of the configuration parameters
)|( ttsP Z  instead of the a posteriori probability of object parameters )|( ttxP Z .

The posterior for a configuration is given by
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To estimate this distribution, the configuration dynamics )|( 1−tt ssP  and the
configuration likelihood )|( tt szP  need to be modeled.  Then a CONDENSATION-
like sampling algorithm can be applied.  Distribution )|( 1−tt ssP  describes the
temporal behavior of a configuration in terms of how each of the individual objects
changes, how a new object is introduced, how an existing object is deleted, and how
to handle occlusion.  The likelihood )|( tt szP  measures how well the configuration
fits the current observation.

2.1 Dynamics of a Configuration - )|( 1−tt ssP

)|( 1−tt ssP  is decomposed into object-level and configuration-level dynamics.

Suppose 1−ts  contains m  objects, or =−1ts },,,{ 12,11,1 ,mttt xxx −−− … .  Object-level

dynamics )|( ,1, itit xxP −  is first applied to predict the behavior of each object.  The

resulted configuration is },,,{ 12,11,1 ,mtttt xxxs −−−= … .  Then, the configuration-level

dynamics )|( tt ssP  will perform the object deletion and addition.

2.1.1 Object-Level Dynamics )|( ,1, itit xxP −

A commonly used model is:
wxx itit += − ,1, A                                                (4)

where ),0(: ΣNw  is a Gaussian noise and A  is the state transition matrix.

According to this model, )|( ,1, itit xxP −  has Gaussian distribution ),( ,1 Σ− itxN A .

2.1.2 Configuration-Level Dynamics - )|( tt ssP

The configuration-level dynamics should allow deletion and addition of objects in ts .

Domain-dependent information should be brought in to model these events. For
instance, knowledge about deletion and addition can be described as spatial birth and
death processes [9].
Deletion probability ),( yxβ  is defined as a function of the image coordinates ),( yx .

For example, ),( yxβ may have higher values around the scene boundaries because

objects usually disappear at those locations.  For an object at ),( yx , its chance of

survival in the current frame is ),(1 yxβ− .  When occlusion happen in an area with

low deletion probability, the occluded object is unlikely to be deleted.
By the same token, addition probability is defined as ),( yxα .  Since new objects

always cause image changes, motion blobs are used to construct ),( yxα .  For video

with static background, motion blobs are detected by image differencing method.
),( yxα  is non-zero only in the regions of the motion blobs.  For the case of a pan/tilt

or moving camera, the blob detection may be accomplished using background
alignment techniques and change detection algorithms [10].
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(a)

(b) (c)

Fig. 2.  Configuration-level dynamics: (a) a video frame with static background (b)
deletion probability ),( yxβ  (c) motion blobs.

In Fig. 2a, a frame from a test video clip is shown. Fig. 2b shows the deletion
probability ),( yxβ .  The highest value in the image is around the border.  The

motion corresponding blobs are shown in Fig. 2c.  The addition probability ),( yxα  is

0.01 in these blobs.

2.2 Likelihood of a Configuration )|( ttt szP=π

)|( tt szP  is a very complicated distribution.  One possible type of approximation is

observation decomposition [7].  The image is spatially decomposed into small regions
and the likelihood is formulated as the product of local likelihood.  Since the
configuration is not decomposed, it will lead to algorithms manipulating in a high-
dimensional configuration space.  In this paper, we propose an approximation using
configuration decomposition.  The likelihood is replaced by an energy function and
decomposed into object-level and configuration-level terms.  The energy function is
designed to gives the more desired configurations higher values.  Intuitively, three
factors should be considered.  The first factor is, in average, how well individual
objects in a configuration fit the observation.  This is noted as the object-level
likelihood.  For example, a contour matcher may be applied to calculate the
likelihood of each object in a configuration, and their geometric average is computed
as the object-level likelihood for that configuration.  The average is taken to make it
independent of the number of objects.  The second factor is how much of the
observation has been explained by the configuration.  This is noted as the
configuration coverage.  The third factor is the compactness.  It is always desirable to
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explain the observation using minimum number of objects.  All these three factors are
indispensable.  In Fig. 3, the likelihood of some configurations is illustrated.

2.2.1 Object-Level Likelihood
For a given object, the likelihood ),( ,itt xzL  measures how well the image data

supports the presence of this object.  The likelihood can be defined as any reasonable
match measures, e.g. the normalized correlation between the object and the image, or
the Chamfer matching score for a contour representation of an object.  For a
configuration with m  objects, the object-level likelihood is computed as the
geometric average of ),( ,itt xzL .  More precisely,

mm

i
itt xzL

1

1
, ),( 


= ∏

=
λ .                                          (5)

(a) (b)

(d)(c)

Fig. 3.  Likelihood of a configuration (a) highest (b) low: interested region is not
covered (c) low: too many object are used to explain the data (d) low: likelihood of
individual objects are low.

2.2.2 Configuration Coverage
In general, it is difficult to compute configuration coverage.  However, for moving
object tracking, motion blobs are good cues.  If we assume all the motion blobs in a
frame are caused by the objects to be tracked, the configuration coverage can be
computed as the percentage of the motion blob areas being covered by objects.  It is
formulated as
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where A  is the union of motion blobs. iB  is the area covered by object i in a
configuration.  b  is a small positive constant used to avoid zero division.  If 0|| =A ,

1=γ .

2.2.3 Configuration Compactness
The compactness is defined as the ratio between data that has been explained and the
amount of cost.  In terms of motion blobs, it can be computed as
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where a  is a small positive constant like b .  If too many objects are used to explain a
small area, ξ  will be small.  c  is a positive number so that when 0|| =A , the
configurations with smaller number of objects have higher score.
Finally, the overall likelihood of configuration ts  is approximated by

( )βγξλπ ⋅=t                                                    (8)

where β , a positive constant that controls the relative importance of the last two

terms.  It should be mentioned that, depending on the application, different cues may
be used to compute the configuration coverage and compactness.  For instance, color
blobs with skin colors can be applied for face tracking.

3 A Sampling Algorithm

Given the above formulation of configuration dynamics and likelihood, we now
present a CONDENSATION-like algorithm to estimate the a posteriori configuration
densities. Subsequently, we show how the standard CONDENSATION algorithm can
be approximated using a fast hierarchical algorithm.

Suppose )|( j
tt

j
t szP=π , sRj …,2,1=  is the likelihood of the j th configuration j

ts ,

where sR  is the total number of configuration samples. sR  is a constant in the

algorithm.
For j  from 1 to sR , perform the following three steps.

Step 1.  At time instance 1>t , randomly select the jth configuration sample j
ts 1−′  from

all sR  samples i
ts 1− , sRi …,2,1=  in the previous frame according to their

corresponding likelihood i

t 1−π , sRi …,2,1= .

Step 2. Apply the dynamics to predict the current configuration j

ts  from j
ts 1−′  using

)'|( 1
j

t

j

t ssP −

Step 3: Compute the new likelihood )|( j

tt

j

t szP=π
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To initialize this process, js1  is sampled randomly in the configuration space

∪K

m

mX0= .  For example, if the maximum possible number of objects in a

configuration is 9=K  and 1000 configuration samples are initiated ( 1000=sR ),

then for the 10 categories of configurations that contain 0 to 9 objects, 100 samples
are assigned to each category.  For a configuration sample with m  objects, the
parameters of each object are randomly chosen in the parameter space.  The
configuration likelihood is then computed.  If the likelihood of a configuration is
high, according to Step 1, in the next iteration, this configuration is likely to be
selected.  The expected number of objects in a frame can also be computed as

∑ =
sR

j

j
t

j
ts

1
|| π , where || j

ts  is the number of objects in j

ts .

The above algorithm samples the a posteriori distribution of the configurations in a
high dimensional space ∪K

m

mX0= .  If there are m  objects in the scene, the posterior

has to be sampled in the space mX .  To maintain the same sample density, the number
of samples needs to be exponential with respect to m , which makes the algorithm
impractical.  Importance sampling techniques [6] alleviate the problem to some extent
by reducing the volume of the parameter space X , however, the dimensionality of
the sampling space is not reduces.  A possible solution to this problem is to sample
from configurations with high likelihood.  More specifically, in the first step, j

ts 1−′  is

only drawn from i

ts 1−  with relatively large i

t 1−π .  This strategy makes the sampling

process focus on the posterior distribution around the MAP solution, which is
desirable because the goal of the tracking process is to actually obtain the MAP
configuration.  A problem of this method is that the tracker is easily trapped by local
maximum solutions.

4 An Efficient Hierarchical Sampling Algorithm

In this section, we describe an efficient hierarchical algorithm that decouples the
sampling process into two stages: local configuration sampling stage and global
configuration sampling stage.  The local sampling stage track the motion of
individual objects, while the configuration sampling process handles object addition,
deletion.  Strictly speaking, it does not propagate the configuration posterior
distribution.  It reinforces the likelihood portion to some extent so that the tracker is
less likely to be trapped by local optimal solutions.  To explain the algorithm more
clearly, examples will be provided for each step of the algorithm.
The first step is selecting new configuration samples based on the previous samples
and their corresponding likelihood (see Section 3).  For example, in Fig. 4a, four
configurations are selected.  They contain two, three, four, and four objects
respectively.   There are total of thirteen objects in these four configurations.
Different shapes are used in the figure to distinguish objects in different
configurations.
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The second step is local sampling of the object-level a posteriori distribution
conditioned on given configurations.  More specifically, the image is first partitioned
into non-overlapping regions and configurations are broken into sub-configurations
according to the partition.  For example, in Fig. 4b, the configuration marked by "!"
is decomposed into three sub-configurations in region 2, 3, and 4.  The sub-
configuration in region 4 contains two objects.  In region 4, there are three other sub-
configurations containing 1, 1, and 2 objects respectively.  After the partitioning, in
each region, object-level dynamics is applied to every object and likelihood is
computed for each sub-configuration (Fig. 4c).  Note that the configuration-level
dynamics such as object deletion and object addition is not performed in this step.
Next, in each image region, all sub-configurations with the same number of objects
are grouped together.  According to their likelihood, they are sampled to produce the
same number of new sub-configurations.  These samples are then assigned back to the
global configurations randomly (because there is no identity left after sampling).  For
example, in region 4, based on the two resulted two-object sub-configurations in Fig.
4c and their corresponding likelihood, sampling process is applied to obtain two
"new" sub-configurations (Fig. 4d).  Actually, these two sub-configurations are
identical because the sub-configuration with higher likelihood has been selected
twice.  The resulted configurations are assigned arbitrarily back to the global
configuration.
In the third step, configuration-level dynamics computation (see Section 2.1.2) is
applied and likelihood is computed for each configuration (see Section 2.2). Fig. 4e
shows the result after configuration-level dynamics being applied.  A new """ object
is added and a "#" object is deleted.
The hierarchical tracking algorithm is summarized as follows:
Step 1. Select configurations: At time 1>t , select sR  configuration samples.  The jth
configuration sample j

ts 1−′  is select randomly from all sR  samples i

ts 1− , sRi …,2,1=  in
the previous frame according to their likelihood i

t 1−π , sRi …,2,1= .

(a) (b) (c)

1
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4

2

4
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3

(e)(d)

1

3 4

2

Fig. 4.  The hierarchical sampling algorithm for tracking multiple objects. (a) select
configurations (b) partition configurations into sub-configurations (c) local object-
level sampling (d) recover configurations from new sub-configurations (e) global
configuration-level dynamics and likelihood computation.
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Step 2. Local object-level sampling: Partition the 2D image into regions and break
configurations into sub-configurations.  In each region, apply object-level dynamics.
For sub-configurations containing the same number of objects, do sampling according
to their local configuration-level likelihood.  Assign them randomly back to the
global configurations.
Step 3: Global configuration-level sampling: The configuration-level samples are

recovered. The likelihood )|( j
tt

j
t szP=π  is computed.  Go to the next frame.

5 Implementation

The proposed hierarchical algorithm has been implemented on a Pentium II 400 MHz
PC.  It runs at 1 frame/s when 300 configuration samples are used on 320x240 video
frames.

5.1 Video Preprocessing

Detecting motion blobs is an important step for computing configuration-level
likelihood.  Several methods such as background subtraction, two-image or three-
image differencing algorithms are available.  Three-image differencing method is
used in our implementation [10].

5.2 Object Representation

As shown in Fig. 5, a contour-plus-region representation is designed.  To track
multiple people, the head-shoulder contour in Fig. 5a is compared with the edge
images in order to obtain object likelihood ),( ,itt xzL .  The contour template is

divided into several line segments. ),( ,itt xzL  is computed as the weighted average of

the matching score for individual template contour segments.  The regions of the
template are represented by rectangles and are used to compute γ  and ξ  using

Equation (6) and (7).  The parameter β , which controls the relative importance of

the object-level likelihood and the configuration-level likelihood, equals 1.5.

5.3 The Hierarchical Algorithm

A fixed number of configuration samples are used in the algorithm.  These samples
are evenly distributed to configurations with different number of objects at the
initialization stage.  For the first frame, several iterations of the algorithm are
executed to obtain the initial prior (with different dynamics).  The size of each local
image region in our implementation is 1010 ×  pixels.
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(a) (b)

Fig. 5.  (a) A simple contour-region representation of people, (b) a coarse 2D
contour-region representation of spherical objects.

6 Experimental Results

6.1 The Synthetic Sequence

Both a synthetic image sequence and natural video data are tested.  The synthetic
sequence contains four moving objects of similar shapes (Fig. 6).  They approximate
a circle with six, seven, eight, and thirty laterals.  These objects undergo only
translations in this test sequence.  A translation invariant object-level likelihood
function is computed based on a generic contour model and a contour matching
algorithm.  The likelihood values of these four objects remain consistent over time
and have small differences due to their different shapes.  This setup resembles many
model based trackers in the way that a generic model (built either by learning or
designing) is used to track an entire class of objects.  These objects enter and leave
the scene at the image boundaries.  There is one instance of object occlusion in this
sequence.
The background image is formed by Gaussian noise.  To simulate some random
irrelevant moving objects, white noise is added to the background at two locations
that gives rise to some spurious motions blobs.  Finally, noise is added to the
appearance of the moving objects.  Quantitative analysis is conducted based on the
tracking results and the actual number and positions of objects in each frame.
For the synthetic sequence, we compared the results of the CONDENSATION
algorithm and the hierarchical algorithm.  In the CONDENSATION algorithm, 600
object samples are used.  In the latter one, 300 configuration samples are initialized.
These 300 samples are evenly distributed in terms of number of objects in a
configuration and object parameter values.
In Fig. 9, the tracking results of the original CONDENSATION algorithm with a
single object state representation are shown.  Importance sampling is used in the first
frame to obtain a better prior.  Object samples are represented by white dots.  In Fig.
9i, marginal sample distributions on vertical image axis for every five frames are
shown.  As explained in Section 1, dominant peaks and inappropriate handling of
object addition and deletion are observed.
In Fig. 10, the corresponding results of the hierarchical tracking algorithm with the
multiple object representation are demonstrated.  Four distinct trajectories are
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observed in Fig. 10i.  Events such as addition, deletion, and occlusion can be easily
distinguished.

(a)

(d)(c)

(b)

Fig. 6.  (a)(b) Two frames in the synthetic sequence (c) the edge map and the tracking
result (white dots are object samples) (d) motion blobs.

As mentioned in Section 3, by applying the new representation, expected number of
objects in each frame is computed from configuration samples.  In Fig. 7, the
expected number of objects in each frame using the hierarchical algorithm is shown.
In the same figure, the actual number of objects is also drawn.  (The first 20 iterations
are used the algorithm initialization and are not significant in the comparison).  The
number of objects in most of frames is correctly estimated, even during the occlusion
period.
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Fig. 7.  Object counts in the synthetic sequence.

6.2 Tracking Multiple People

Both algorithms have been tested on real video sequences.  For tracking multiple
people, a simple contour-plus-region template is designed (Fig. 5a).  Only translation
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is modeled in the transformation.  A frame is shown in Fig. 2a.  Its corresponding
motion blobs are shown in Fig. 2c.  For this particular sequence, deletion is only
allowed in the gray regions drawn in Fig. 2b.  Fig. 8 demonstrates the tracking results
in some frames.  Four persons are simultaneously tracked.  The number of persons in
the scene is automatically estimated in the hierarchical algorithm.

(a) (b)

(c) (d)

Fig. 8. The results of tracking multiple people.

7 Conclusions

The new representation proposed in this paper explicitly models multiple objects in a
video frame as an object configuration.  The events such as object addition, deletion,
and occlusion are modeled in configuration-level dynamics.  With this formulation,
CONDENSATION-like tracking algorithms can be designed to propagate the
configuration posterior.  A hierarchical sampling algorithm is also proposed in this
paper.  Promising comparative experimental results of the CONDENSATION
algorithm and the new algorithm on both synthetic and real data are demonstrated.
Compared to the multiple-hypothesis tracking method, which is an approximation of
the Viterbi algorithm based on local maximums of likelihood function, the proposed
algorithm explores the likelihood function in the whole parameter space.  However,
the concept of configuration tracks needs to be introduced to fully model the data
association over time.
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(a) (b)

(c) (d)
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Fig. 9.  Results of the CONDENSATION algorithm in frame (a) 1 (b) 10 (c) 25 (d)
65 (e) 85 (f) 90 (g) 110 (h) 140 and (i) the marginal sample distribution along the
vertical image axis.  Left side is the top of the images.
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Fig. 10.  Results of the hierarchical algorithm in frame (a) 1 (b) 10 (c) 25 (d) 65 (e)
85 (f) 90 (g) 110 (h) 140 (i) and the marginal sample distribution along the vertical
image axis.  Left side is the top of the images.
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Discussion

Tom Drummond: It's clear that insertion is harder than deletion because you have to
generate a whole new set of parameters to describe the new object. Judging by your
results, you allocated maybe 10-15% of the samples to insertion. Did you find that you
needed to artificially amplify the probability of a new object to provide dense enough
samples for insertion?

Harpreet Sawhney: We selected the addition and deletion probabilities empirically,
but there wasn't a lot of tuning as there are very few free parameters.

Bill Triggs: You suggested combining multiple hypothesis tracking and
CONDENSATION. With classical MH tracking there's a combinatorial search over the
joint hypotheses, to enforce the exclusion principle / unicity. How would you put that
together with CONDENSATION, what are the trade-offs and what sort of computational
complexities would you expect?

Harpreet Sawhney: I haven't done any real experiments to explore this, but the trade-
offs you mention are certainly the questions to ask for multiple hypothesis tracking.
Something like CONDENSATION, but with more explicit data associations, might allow
us to maintain the identity of object configurations over time without doing all the
combinatorics that multiple hypotheses imply. But this is just a vague idea that we are
beginning to explore.

Olivier Faugeras: I think that the Bayesian formalisms that you and others have been
using recently are just not the right way to do tracking, because you are really pushing
reality into being Bayesian and using Bayes Rule. I don't think these probabilities are
really attainable in practice.  Have you considered an alternative approach based on
variational calculus, using the very efficient and well developed and practically useful
theory of partial differential equations?

Harpreet Sawhney: No, I haven't thought about that approach. But I don't really
agree that the probabilistic models are not the right ones. For one thing, in tracking the
specific object models can be very complex and difficult to capture in a complete state
description.  You could have an ideal model, but real objects will vary from that both
statistically and systematically.  Secondly, when you need to discover new objects in
the data, it seems to me that probabilistic representations offer an efficient method of
capturing what is going on. I don't see how you would use a variational  representation
for doing something like tracking, but I am happy to talk to you about that.
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Abstract. This paper presents a visual servoing system which incor-
porates a novel three-dimensional model-based tracking system. This
tracking system extends constrained active contour tracking techniques
into three dimensions, placing them within a Lie algebraic framework.
This is combined with modern graphical rendering technology to create
a system which can track complex three dimensional structures in real
time at video frame rate (25 Hz) on a standard workstation without spe-
cial hardware. The system is based on an internal CAD model of the
object to be tracked which is rendered using binary space partition trees
to perform hidden line removal. The visible features are identified on-line
at each frame and are tracked in the video feed. Analytical and statistical
edge saliency are then used as a means of increasing the robustness of
the tracking system.

1 Introduction

The tracking of complex three-dimensional objects is useful for numerous appli-
cations, including motion analysis, surveillance and robotic control tasks.

This paper tackles two problems. Firstly, the accurate tracking of a known
three-dimensional object in the field of view of a camera with known internal
parameters. The output of this tracker is a continuously updated estimate of the
pose of the object being viewed. Secondly, the use of this information to close
the loop in a robot control system to guide a robotic arm to a previously taught
target location relative to a workpiece. This work is motivated by problems such
as compensation for placement errors in robotic manufacturing. The example
presented in this paper concerns the welding of ship parts.

1.1 Model-Based Tracking

Because a video feed contains a very large amount of data, it is important to
extract only a small amount of salient information, if real-time frame (or field)
rate performance is to be achieved [11]. This observation leads to the notion
of feature based tracking [9] in which processing is restricted to locating strong
image features such as contours [19,3].
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A number of successful systems have been based on tracking the image con-
tours of a known model. Lowe [15] used the Marr-Hildreth edge detector to ex-
tract edges from the image which were then chained together to form lines. These
lines were matched and fitted to those in the model. A similar approach using
the Hough transform has also been used [21]. The use of two-dimensional im-
age processing incurs a significant computational cost and both of these systems
make use of special purpose hardware in order to achieve frame rate processing.

An alternative approach is to render the model first and then use sparse one-
dimensional search to find and measure the distance to matching (nearby) edges
in the image. This approach has been used in RAPID [10], Condensation [14]
and other systems [4,20,17]. The efficiency yielded by this approach allows all
these systems to run in real-time on standard workstations. The approach is also
used here and discussed in more detail in Section 2.1.

Using either of these approaches, most systems (except Condensation) then
compute the pose parameters by linearising with respect to image motion. This
process is reformulated here in terms of the Lie group SE(3) and its Lie algebra.
This formulation is a natural one to use since the group SE(3) exactly represents
the space of poses that form the output of the system. The Lie algebra of a group
is the tangent space to the group at the identity and is therefore the natural
space in which to represent differential quantities such as velocities and small
motions in the group. Thus the representation provides a canonical method for
linearising the relationship between image motion and pose parameters. Further,
this approach can be generalised to other transformation groups and has been
successfully applied to deformations of a planar contour using the groups GA(2)
and P(2) [5].

Outliers are a key problem that must be addressed by systems which measure
and fit edges. They frequently occur in the measurement process since additional
edges may be present in the scene in close proximity to the model edges. These
may be caused by shadows, for example, or strong background scene elements.
Such outliers are a particular problem for the traditional least-squares fitting
method used by many of the algorithms. Methods of improving robustness to
these sorts of outliers include the use of RANSAC [1], factored sampling [14] or
regularisation, for example the Levenberg-Marquadt scheme used in [15]. The
approach used here employs iterative re-weighted least squares (a robust M-
estimator) which is then extended to incorporate a number of additional saliency
measures. This is discussed in more detail in Section 4.

There is a trade-off to be made between robustness and precision. The Con-
densation system, for example, obtains a high degree of robustness by taking a
large number of sample hypotheses of the position of the tracked structure with
a comparatively small number of edge measurements per sample. By contrast,
the system presented here uses a large number of measurements for a single po-
sition hypothesis and is thus able to obtain very high precision in its positional
estimates. This is particularly relevant in tasks such as visual servoing since the
dynamics and environmental conditions can be controlled so as to constrain the
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robustness problems, while high precision is needed in real-time in order for the
system to be useful.

Occlusion is also a significant cause of instabilities and may occur when the
object occludes parts of itself (self occlusion) or where another object lies between
the camera and the target (external occlusion). RAPID handles the first of these
problems by use of a pre-computed table of visible features indexed by what is
essentially a view-sphere. By contrast, the system presented here uses graphical
rendering techniques to dynamically determine the visible features and is thus
able to handle more complex situations (such as objects with holes) than can be
tabulated on a view-sphere.

External occlusion can be treated by using outlier rejection, for example in [1]
which discards primitives for which insufficient support is found, or by modifying
statistical descriptions of the observation model (as in [16]). If a model is available
for the intervening object, then it is possible to use this to re-estimate the visible
features [8,21]. Both of these methods are used within the system presented here.

1.2 Visual Servoing

The use of visual feedback output by such tracking systems for robotic control is
increasingly becoming an attractive proposition. A distinction is often made [13]
between image-based [7] and position-based [2] visual servoing. The approach
presented here is position-based but closes the control loop by projecting the
action of three-dimensional camera motion into the image where it is fitted to
image measurements. Since the eye-in-hand approach is used, this generates a
motion-to-image Jacobian (also known as the interaction screw [7]) which can
be used to generate robot control commands to minimise the image error.

2 Theoretical Framework

The approach proposed here for tracking a known 3-dimensional structure is
based upon maintaining an estimate of the camera projection matrix, P , in the
co-ordinate system of the structure. This projection matrix is represented as the
product of a matrix of internal camera parameters:

K =
[ fu s u0
0 fv v0
0 0 1

]
(1)

and a Euclidean projection matrix representing the position and orientation of
the camera relative to the target structure:

E =
[
R t
]

with RRT = I and |R| = 1 (2)

The projective co-ordinates of an image feature are then given by

(
u
v
w

)
= P

(
x
y
z
1

)

(3)
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with the actual image co-ordinates given by

( ũ
ṽ ) =

(
u/w
v/w

)
(4)

Rigid motions of the camera relative to the target structure between con-
secutive video frames can then be represented by right multiplication of the
projection matrix by a Euclidean transformation of the form:

M =
[

R t
0 0 0 1

]

(5)

These M , form a 4 × 4 matrix representation of the group SE(3) of rigid
body motions in 3-dimensional space, which is a 6-dimensional Lie Group. The
generators of this group are typically taken to be translations in the x, y and z
directions and rotations about the x, y and z axes, represented by the following
matrices:

G1 =
[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]

,G2 =
[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]

, G3 =
[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

, (6)

G4 =
[
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]

,G5 =
[
0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

]

, G6 =
[
0 1 0 0−1 0 0 0
0 0 0 0
0 0 0 0

]

These generators form a basis for the vector space (the Lie algebra) of deriva-
tives of SE(3) at the identity. Consequently, the partial derivative of projective
image co-ordinates under the ith generating motion can be computed as:

(
u′
v′
w′

)

= PGi

(
x
y
z
1

)

(7)

with

Li =
(

ũ′

ṽ′

)

=

(
u′
w + uw′

w2

v′
w + vw′

w2

)

(8)

giving the motion in true image co-ordinates. A least squares approach can then
be used to fit the observed motion of image features between adjacent frames.
This process is detailed in Section 3.3.

This method can be extended to include the motion of image features due to
the change in internal camera parameters [6] or internal model parameters by
incorporating the vector fields they generate into the least squares process.

2.1 Tracking Edges

An important aspect of the approach presented here is the decision to track
the edges of the model (which appear as intensity discontinuities in the video
feed). Edges are strong features that can be reliably found in the image because
they have a significant spatial extent. Furthermore, this means that a number of
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Fig. 1. Computing the normal component of the motion

measurements can be made along each edge, and thus they may be accurately
localised within an image.

This approach also takes advantage of the aperture problem (that the com-
ponent of motion of an edge, tangent to itself, is not observable locally). This
problem actually yields a substantial benefit since the search for intensity dis-
continuities in the video image can be limited to a one dimensional path that
lies along the edge normal, n̂ (see Figure 1) and thus has linear complexity in
the search range, rather than quadratic as for a two-dimensional feature search.
This benefit is what makes it possible to track complex structures in real time
on a standard workstation without additional hardware. The normal component
of the motion fields, Li are then also computed (as Li · n̂).

3 Tracking System

The three-dimensional tracking system makes use of constrained snake technol-
ogy [3] to the follow edges of the workpiece that are visible in the video image.
One novel aspect of this work is the use of a real-time hidden-line-removal ren-
dering system (using binary space partition trees [18]) to dynamically determine
the visible features of the model in real-time. This technique allows accurate
frame rate tracking of complex structures such as the ship part shown in Figure
2.

Figure 3 shows system operation. At each cycle, the system renders the ex-
pected view of the object (a) using its current estimate of the projection matrix,
P . The visible edges are identified and tracking nodes are assigned at regular
intervals in image co-ordinates along these edges (b). The edge normal is then
searched in the video feed for a nearby edge (c). Typically m ≈ 400 nodes are
assigned and measurements made in this way. The system then projects this m-
dimensional measurement vector onto the 6-dimensional subspace corresponding
to Euclidean transformations (d) using the least squares approach described in
Section 3.3 to give the motion, M . The Euclidean part of the projection matrix,
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Fig. 2. Image and CAD model of ship part

E is then updated by right multiplication with this transformation (e). Finally,
the new projection matrix P is obtained by multiplying the camera parameters
K with the updated Euclidean matrix to give a new current estimate of the local
position (f). The system then loops back to step (a).

3.1 Rendering the Model

In order to accurately render a CAD model of a complex structure such as the
one shown in Figure 2 at frame rate, an advanced rendering technique such as
the use of binary space partition trees is needed [18]. This approach represents
the object as a tree, in which each node contains the equation of a plane in the
model, together with a list of edges and convex polygons in that plane. Each
plane partitions 3-dimensional space into the plane and the two open regions
either side of the plane. The two branches of the tree represent those parts of
the model that fall into these two volumes. Thus the tree recursively partitions
space into small regions which, in the limit, contain no remaining model features.
The rendering takes place by performing an in-order scan of the tree, where at
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Fig. 3. Tracking system operation
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Fig. 4. Tracking nodes assigned and distances measured

each node, the viewpoint is tested to see if it lies in front, or behind the plane.
When this is determined, those features lying closer to the camera are rendered
first, then the plane itself, and finally, the more distant features. The use of a
stencil buffer prevents over-writing of nearer features by more distant ones and
also provides a layer map when the rendering is complete. The ship part contains
12 planes, but since 8 of these (corresponding to the T and L beams) are split
into two parts by a vertical plane partition, there are 20 nodes in the tree.

3.2 Locating Edges

Once rendering is complete, the layer map is used to locate the visible parts
of each edge by comparing the assigned layer of the plane for each edge in the
model with the layer in the stencil buffer at a series of points along that edge.
Where the depths agree, trackers are assigned to search for the nearest edge in
the video feed along the edge normal (see Figure 4).

The result of this process is a set of trackers with known position in the model
co-ordinate system, with computed edge normals and the distance along those
normals to the nearest image edge. Grouping these distances together provides
an m-dimensional measurement vector.

3.3 Computing the Motion

Step (d) in the process involves the projection of the measurement vector onto
the subspace defined by the Euclidean transformation group. The action of each
of the generators of SE(3) on the tracking nodes in image co-ordinates can be
found by computing PGi and applying this to the homogeneous co-ordinates
of the node in 3-space. This can be projected to give a vector, Lξ

i describing
the image motion of the ξth node for the ith generator of Euclidean motion
of the object. Lξ

i · n̂ξ then describes the magnitude of the edge normal motion
that would be observed in the image at each node for each group generator.
These can be considered as a set of m-dimensional vectors which describe the
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Fig. 5. Frames from tracking sequence

motion in the image for each mode of Euclidean transformation. The system then
projects the m-vector corresponding to the measured distances to the observed
edges onto the subspace spanned by the transformation vectors. This provides a
solution to finding the geometric transformation of the part which best fits the
observed edge positions, minimising the square error between the transformed
edge position and the actual edge position (in pixels). This process is performed
as follows:

Oi =
∑

ξ

dξ(Lξ
i · n̂ξ) (9)

Cij =
∑

ξ

(Lξ
i · n̂ξ)(Lξ

j · n̂ξ) (10)

αi = C−1
ij Oj (11)

(with Einstein summation convention over Latin indices). The αi are then the
coefficients of the vector in the Lie algebra representing the quantity of each
mode of Euclidean motion that has been observed. The final step is to compute
the actual motion of the model and apply it to the matrix E in (2). This is done
by using the exponential map relating αi to SE(3).

Et+1 = Et exp(
∑

iαiGi) (12)

This section has described the basic version of the tracking system. This
system performs well over a wide range of configurations (see Figure 5). However,
in order to improve robustness to occlusion and critical configurations which
cause instability, saliency characteristics are introduced.

4 Extended Iterative Re-weighted Least Squares

The näıve least squares algorithm presented in Section 3.3 is vulnerable to in-
stabilities caused by the presence of outliers. This is because the sum-of-squares
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objective function can be significantly affected by a few measurements with
large errors. Equivalently, the corresponding Gaussian distribution dies off far
too quickly to admit many sample measurements at a large number of standard
deviations.

A standard technique for handling this problem is the substitution of a ro-
bust M-estimator for least squares estimator by replacing the objective function
with one that applies less weighting to outlying measurements [12]. This can
be achieved by modifying the least squares algorithm and replacing(9) and (10)
with:

Oi =
∑

ξ

s(dξ)dξ(Lξ
i · n̂ξ) (13)

Cij =
∑

ξ

s(dξ)(Lξ
i · n̂ξ)(Lξ

j · n̂ξ) (14)

A common choice for the weighting function, s is:

s(dξ) =
1

c+ dξ
(15)

which corresponds to replacing the Gaussian error distribution with one that lies
between Gaussian and Laplacian. The parameter c is chosen here to be approx-
imately one standard deviation of the inlying data. This approach is known as
iterative re-weighted least squares (IRLS) since s depends on d, which changes
with each iteration. In the current implementation, only a single iteration is per-
formed for each frame of the video sequence and convergence occurs rapidly over
sequential frames. Incorporating IRLS into the system improves its robustness
to occlusion (see Figure 6). The function s controls the confidence with which
each measurement is fitted in the least squares procedure and thus can be viewed
as representing the saliency of the measurement.

This can be further exploited by extending IRLS by incorporating a number
of additional criteria into the saliency estimate. These are chosen to improve

Fig. 6. Frames from tracking sequence with occlusion
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the robustness of the system when it is exposed to critical configurations which
have been identified as causing instabilities. The saliency or re-weighting of each
measurement is modified to include four additional terms. The first three of
these terms address statistical saliency (can a feature be detected reliably?) while
the fourth is concerned with analytical saliency (does the feature constrain the
motion?).

Multiple edges: When the tracker sees multiple edges within its search range,
it is possible for the wrong one to be chosen. Typically many trackers on the
same edge will do this, compounding the problem. To reduce this problem,
the saliency is inversely proportional to the number of edge strength maxima
visible within the search path.

Many trackers disappear simultaneously: If a major edge is aligned along
an image axis then it is possible for the entire edge to leave the field of view
between two frames. This entails a sudden change in the set of trackers used
and may cause a sudden apparent motion of the model. This sudden change
in the behaviour of the tracker can be removed by constructing a border at
the edge of the image. The saliency of nodes within this border is weakened
linearly to zero as the pixel approaches the edge. A border of 40 pixels has
been found to be sufficiently large for this purpose.

Poor visibility: Generally the best measurements come from the strongest
edges in the image, since weak edges may be difficult to locate precisely.
This is taken into account by examining the edge strengths found in the
search path. If the edge strength along a search path is below a threshold,
no measurement is made for that node. Between this threshold and a higher
threshold (equal to double the lower one), the saliency of the node is var-
ied linearly. Above the higher threshold, the visibility does not affect the
saliency.

Weak conditioning: If the majority of the trackers belong to a single plane of
the model (for example the feature rich front plane of the ship part) which
is front on to the camera then the least squares matrix generated by these
nodes becomes more weakly conditioned than in the general configuration.
This can be improved by increasing the saliency of measurements that help
to condition the least squares matrix. If the vector comprising the six image
motions at node i lies in the subspace spanned by the eigen vectors of Cij

corresponding to the smallest eigen values, then that node is particularly
important in constraining the estimated motion. This is implemented by
the simple expedient of doubling the saliency when (Lξ

i · n̂ξ)(Lξ
j · n̂ξ)C−1

ij is
greater than the geometric mean of that quantity, computed over the visible
features in the image.

These measures have been found to provide increased robustness and while
they represent a heuristic method of dealing with critical configurations, the
general approach of modifying the re-weighting function, s, provides a powerful
method of incorporating domain knowledge within the least squares framework
in a conceptually intuitive manner.
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Fig. 7. Visual servoing system operation

5 Visual Servoing System

The visual servoing system (shown in Figure 7) takes the Euclidean matrix, E as
output from the tracking system and uses this within a non-linear control law to
provide feedback to servo the robot to a stored target position. These are learned
by acquiring the Euclidean matrix with the robot placed in the target position
by the supervisor. The inverse of this target matrix, E−1

t , is easily computed and
the product of this with the current position matrix yields the transformation
from the target position to the current position (A).

T = EE−1
t (16)

The translation and rotation vectors that must be applied to the robot are
then easily extracted from this representation (B). (here i, j, k = 1,2,3):

ti = Ti4 (17)

r′
i =

1
2

∑

jk

εijkTjk

ri =
r′
i sin

−1(|r′|)
|r′| (18)

The vectors t and r are then multiplied by a gain factor and sent to the robot
as end effector translation and rotation velocities (C). The gain is dependent
on the magnitudes of t and r so that small velocities are damped to obtain
higher precision, while large errors in position may be responded to quickly. A
maximum velocity clamp is also applied for safety reasons and to prevent possible
instabilities due to latency. Figures 8 and 9 show the visual servoing system in
action tracing a path between recorded waypoints and performing closed loop
control tracking a moving part.
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6 Results

The tracking system and visual servoing system have been tested in a number of
experiments to assess their performance both quantitatively and qualitatively.
These experiments were conducted with an SGI O2 workstation (225 MHz)
controlling a Mitsubishi RV-E2 robot.

6.1 Stability of the Tracker

The stability of the tracker with a stationary structure was measured to assess
the effect of image noise on the tracker. The standard deviation of position and
rotation as measured from the Euclidean matrix were measured over a run of
100 frames. From a viewing distance of 30cm, the apparent rms translational
motion was found to be 0.03mm with the rms rotation being 0.015 degrees.

6.2 Accuracy of Positioning

The accuracy of positioning the robot was measured with two experiments.
Firstly, the ship part was held fixed and the robot asked to home to a given
position from a number of different starting points. When the robot had ceased
to move, the program was terminated and the robots position queried. The
standard deviation of these positions was computed and the r.m.s. translational
motion was 0.08mm with the r.m.s. rotation being 0.06 degrees.

The second accuracy experiment was performed by positioning the ship part
on an accurate turntable. The part was turned through fifteen degrees, one
degree at a time and the robot asked to return to the target position each time.
Again, the position of the robot was queried and a circle was fitted to the data.
The residual error was computed and found to give an r.m.s. positional error of
0.12mm per measurement (allowing for the three degrees of freedom absorbed
into fitting the circle).

Fig. 8. Closed-loop visual servoing. The task is to maintain a fixed spatial position
relative to the workpiece.
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Fig. 9. Visual servoing. The task is to trace out a trajectory relative to the workpiece.

6.3 Closed Loop Tracking

The qualitative performance of the tracking and servoing systems were assessed
in a closed loop tracking experiment. The robot was asked to maintain a fixed
position relative to the part whilst it was moved through a series of perturbations.
This experiment is shown in Figure 8.

6.4 Saliency Enhancements

The modifications to the least squares fitting procedure were tested by running
two versions (with and without the modifications) of the tracking system con-
currently. A series of ten experiments were conducted in which the model was
moved through a configuration known to cause difficulties. Because two processes
were running concurrently, the average frame rate attained by both was only 12
frames per second. Of the ten experiments, the unmodified version lost track
of the model on five occasions. The modified version successfully tracked on all
ten experiments, although on two of these the tracking suffered a significant
temporary deviation.

6.5 Path Following

The servoing system made to perform path following by recording the Euclidean
matrices at a series of waypoints along the path. The system was then made to
home to each of these in succession, moving on to the next node as soon as the
current one had been reached. This experiment is shown in Figure 9.

7 Conclusion

This paper has introduced a real-time three-dimensional tracking system based
on an active wire frame model which is rendered with hidden line removal. A for-
mulation which uses the Lie algebra of the group of rigid body transformations
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(SE(3)) to linearise the tracking problem has been presented and saliency mea-
surements have been described which enhance the robustness of the tracker. A
visual servoing system which uses the tracker has been implemented and results
from a number of experiments presented.
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Discussion

Kenichi Kanatani: I’ve seen this kind of model tracking problem many times
and each uses different techniques. You project the model edge and look at gray
levels along the perpendicular to find discontinuities. Many other authors use
edge images and look for edge pixels. What are the advantages of gray levels
over edge pixels?
Tom Drummond: Edges are a very popular approach, but there’s an enormous
cost in processing the entire image to find edges first. All of the systems I know
that do this rely on special image processing hardware like the DataCube. With
gray levels, we only have to process at tiny fraction of the image pixels — say 400
tracks of 40 pixels each — and we can do this with a standard Silicon Graphics
workstation.
Yongduek Seo: How precisely can you control the robot?
Tom Drummond: There are two issues: global precision and repeatability.
When we control the robot we teach it the position by putting the camera at the
target viewpoint. It learns the view, and this gives us a very high repeatability.
At a distance of about 25 cm we get about 0.1mm repeatability, because the
camera just has to move to make the image identical to the training one. But
that’s much higher than the global precision — from a different relative viewpoint
the relative mesh of the tracker and real structure are slightly different and the
precision is less.
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Abstract. In this paper we present an algorithm that estimates dense
planar-parallax motion from multiple uncalibrated views of a 3D scene.
This generalizes the “plane + parallax” recovery methods to more than
two frames. The parallax motion of pixels across multiple frames (relative
to a planar surface) is related to the 3D scene structure and the camera
epipoles. The parallax field, the epipoles, and the 3D scene structure
are estimated directly from image brightness variations across multiple
frames, without pre-computing correspondences.

1 Introduction

The recovery of the 3D structure of a scene and the camera epipolar-geometries
(or camera motion) from multiple views has been a topic of considerable research.
The large majority of the work on structure-from-motion (SFM) has assumed
that correspondences between image features (typically a sparse set of image
points) is given, and focused on the problem of recovering SFM based on this
input. Another class of methods has focused on recovering dense 3D structure
from a set of dense correspondences or an optical flow field. While these have
the advantage of recovering dense 3D structure, they require that the correspon-
dences are known. However, correspondence (or flow) estimation is a notoriously
difficult problem.

A small set of techniques have attempted to combine the correspondence
estimation step together with SFM recovery. These methods obtain dense cor-
respondences while simultaneously estimating the 3D structure and the camera
geometries (or motion) [3,11,13,16,15]. By inter-weaving the two processes, the
local correspondence estimation process is constrained by the current estimate of
(global) epipolar geometry (or camera motion), and vice-versa. These techniques
minimize the violation of the brightness gradient constraint with respect to the
unknown structure and motion parameters. Typically this leads to a significant
improvement in the estimated correspondences (and the attendant 3D structure)
and some improvement in the recovered camera geometries (or motion). These
methods are sometimes referred to as “direct methods” [3], since they directly
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use image brightness information to recover 3D structure and motion, without
explicitly computing correspondences as an intermediate step.

While [3,16,15] recover 3D information relative to a camera-centered coordi-
nate system, an alternative approach has been proposed for recovering 3D struc-
ture in a scene-centered coordinate system. In particular, the “Plane+Parallax”
approach [14,11,13,7,9,8], which analyzes the parallax displacements of points
relative to a (real or virtual) physical planar surface in the scene (the “refer-
ence plane”). The underlying concept is that after the alignment of the reference
plane, the residual image motion is due only to the translational motion of the
camera and to the deviations of the scene structure from the planar surface. All
effects of camera rotation or changes in camera calibration are eliminated by
the plane stabilization. Hence, the residual image motion (the planar-parallax
displacements) form a radial flow field centered at the epipole.

The “Plane+Parallax” representation has several benefits over the traditional
camera-centered representation, which make it an attractive framework for cor-
respondence estimation and for 3D shape recovery:

1. Reduced search space: By parametrically aligning a visible image struc-
ture (which usually corresponds to a planar surface in the scene), the search
space of unknowns is significantly reduced. Globally, all effects of unknown
rotation and calibration parameters are folded into the homographies used
for patch alignment. The only remaining unknown global camera parame-
ters which need to be estimated are the epipoles (i.e., 3 global unknowns
per frame; gauge ambiguity is reduced to a single global scale factor for all
epipoles across all frames). Locally, because after plane alignment the un-
known displacements are constrained to lie along radial lines emerging from
the epipoles, local correspondence estimation reduces from a 2-D search prob-
lem into a simpler 1-D search problem at each pixel. The 1-D search problem
has the additional benefit that it can uniquely resolve correspondences, even
for pixels which suffer from the aperture problem (i.e., pixels which lie on
line structures).

2. Provides shape relative to a plane in the scene: In many applications,
distances from the camera are not as useful information as fluctuations with
respect to a plane in the scene. For example, in robot navigation, heights
of scene points from the ground plane can be immediately translated into
obstacles or holes, and can be used for obstacle avoidance, as opposed to
distances from the camera.

3. A compact representation: By removing the mutual global component (the
plane homography), the residual parallax displacements are usually very
small, and hence require significantly fewer bits to encode the shape fluc-
tuations relative to the number of bits required to encode distances from
the camera. This is therefore a compact representation, which also supports
progressive encoding and a high resolution display of the data.

4. A stratified 2D-3D representation: Work on motion analysis can be roughly
classified into two classes of techniques: 2D algorithms which handle cases
with no 3D parallax (e.g., estimating homographies, 2D affine transforma-
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tions, etc), and 3D algorithms which handle cases with dense 3D parallax
(e.g., estimating fundamental matrices, trifocal tensors, 3D shape, etc). Prior
model selection [17] is usually required to decide which set of algorithms to
apply, depending on the underlying scenario. The Plane+Parallax repre-
sentation provides a unified approach to 2D and 3D scene analysis, with
a strategy to gracefully bridge the gap between those two extremes [10].
Within the Plane+Parallax framework, the analysis always starts with 2D
estimation (i.e., the homography estimation). When that is all the informa-
tion available in the image sequence, that is where the analysis stops. The
3D analysis then gradually builds on top of the 2D analysis, with the gradual
increase in 3D information (in the form of planar-parallax displacements and
shape-fluctuations w.r.t. the planar surface).

[11,13] used the Plane+Parallax framework to recover dense structure rela-
tive to the reference plane from two uncalibrated views. While their algorithm
linearly solves for the structure directly from brightness measurements in two
frames, it does not naturally extend to multiple frames. In this paper we show
how dense planar-parallax displacements and relative structure can be recov-
ered directly from brightness measurements in multiple frames. Furthermore, we
show that many of the ambiguities existing in the two-frame case of [11,13] are
resolved by extending the analysis to multiple frames. Our algorithm assumes
as input a sequence of images in which a planar surface has been previously
aligned with respect to a reference image (e.g., via one of the 2D parametric
estimation techniques, such as [1,6]). We do not assume that the camera calibra-
tion information is known. The output of the algorithm is: (i) the epipoles for
all the images with respect to the reference image, (ii) dense 3D structure of the
scene relative to a planar surface, and (iii) the correspondences of all the pixels
across all the frames, which must be consistent with (i) and (ii). The estimation
process uses the exact equations (as opposed to instantaneous equations, such as
in [4,15]) relating the residual parallax motion of pixels across multiple frames to
the relative 3D structure and the camera epipoles. The 3D scene structure and
the camera epipoles are computed directly from image measurements by mini-
mizing the variation of image brightness across the views without pre-computing
a correspondence map.

The current implementation of our technique relies on the prior alignment of
the video frames with respect to a planar surface (similar to other plane+parallax
methods). This requires that a real physical plane exists in the scene and is visi-
ble in all the video frames. However, this approach can be extended to arbitrary
scenes by folding in the plane homography computation also into the simultane-
ous estimation of camera motion, scene structure, and image displacements (as
was done by [11] for the case of two frames).

The remainder of the paper describes the algorithm and shows its perfor-
mance on real and synthetic data. Section 2 shows how the 3D structure relates
to the 2D image displacement under the plane+parallax decomposition. Sec-
tion 3 outlines the major steps of our algorithm. The benefits of applying the
algorithm to multiple frames (as opposed to two frames) are discussed in Sec-
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tion 4. Section 5 shows some results of applying the algorithm to real data.
Section 6 concludes the paper.

2 The Plane+Parallax Decomposition

The induced 2D image motion of a 3D scene point between two images can be
decomposed into two components [9,7,10,11,13,14,8,2]: (i) the image motion of
a reference planar surface Π (i.e., a homography), and (ii) the residual image
motion, known as “planar parallax”. This decomposition is described below.

To set the stage for the algorithm described in this paper, we begin with the
derivation of the plane+parallax motion equations shown in [10]. Let p = (x, y, 1)
denote the image location (in homogeneous coordinates) of a point in one view
(called the “reference view”), and let p′ = (x′, y′, 1) be its coordinates in another
view. Let B denote the homography of the plane Π between the two views. Let
B−1 denote its inverse homography, and B−1

3 be the third row of B−1. Let
pw = (xw, yw, 1) = B−1p′

B−13p′ , namely, when the second image is warped towards
the first image using the inverse homography B−1, the point p′ will move to the
point pw in the warped image. For 3D points on the plane Π, pw = p, while for
3D points which are not on the plane, pw �= p. It was shown in [10] that1:

p′ − p = (p′ − pw) + (pw − p)

and
pw − p = −γ(t3pw − t) (1)

where γ = H/Z represents the 3D structure of the point p, where H is the per-
pendicular distance (or ”height”) of the point from the reference plane Π, and
Z is its depth with respect to the reference camera. All unknown calibration pa-
rameters are folded into the terms in the parenthesis, where t denotes the epipole
in projective coordinates and t3 denotes its third component: t = (t1, t2, t3).

In its current form, the above expression cannot be directly used for estimat-
ing the unknown correspondence pw for a given pixel p in the reference image,
since pw appears on both sides of the expression. However, pw can be eliminated
from the right hand side of the expression, to obtain the following expression:

pw − p = − γ

1 + γt3
(t3p− t). (2)

This last expression will be used in our direct estimation algorithm.

3 Multi-frame Parallax Estimation

Let {Φj}lj=0 be l+1 images of a rigid scene, taken using cameras with unknown
calibration parameters. Without loss of generality, we choose Φ0 as a reference
1 The notation we use here is slightly different than the one used in [10]. The change
to projective notation is used to unify the two separate expressions provided in [10],
one for the case of a finite epipole, and the other for the case of an infinite epipole.
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frame. (In practice, this is usually the middle frame of the sequence). Let Π be
a plane in the scene that is visible in all l images (the “reference plane”). Using
a technique similar to [1,6], we estimate the image motion (homography) of Π
between the reference frame Φ0 and each of the other frames Φj (j = 1, . . . , l ).
Warping the images by those homographies {Bj}lj=1 yields a new sequence of
l images, {Ij}lj=1, where the image of Π is aligned across all frames. Also, for
the sake of notational simplicity, let us rename the reference image to be I, i.e.,
I = Φ0 . The only residual image motion between reference frame I and the
warped images, {Ij}lj=1, is the residual planar-parallax displacement pj

w − p
(j = 1..l) due to 3D scene points that are not located on the reference plane Π.
This residual planar parallax motion is what remains to be estimated.

Let uj = (uj , vj) denote the first two coordinates of pj
w − p (the third

coordinate is 0). From Eq. (2) we know that the residual parallax is:

uj =
[

uj

vj

]

= − γ

1 + γtj3

[
tj3x− tj1
tj3y − tj2

]

, (3)

where the superscripts j denote the parameters associated with the jth frame.
In the two-frame case, one can define α = γ

1+γt3
, and then the problem

posed in Eq. (3) becomes a bilinear problem in α and in t = (t1, t2, t3). This
can be solved using a standard iterative method. Once α and t are known, γ
can be recovered. A similar approach was used in [11] for shape recovery from
two-frames. However, this approach does not extend to multiple (> 2) frames,
because α is not a shape invariant (as it depends on t3), and hence varies from
frame to frame. In contrast, γ is a shape invariant, which is shared by all image
frames. Our multi-frame process directly recovers γ from multi-frame brightness
quantities.

The basic idea behind our direct estimation algorithm is that rather than
estimating l separate uj vectors (corresponding to each frame) for each pixel,
we can simply estimate a single γ (the shape parameter), which for a particular
pixel, is common over all the frames, and a single tj = (t1, t2, t3) which for each
frame Ij is common to all image pixels. There are two advantages in doing this:

1. For n pixels over l frames we reduce the number of unknowns from 2nl to
n + 3l.

2. More importantly, the recovered flow vector is constrained to satisfy the
epipolar structure implicitly captured in Eq. (2). This can be expected to
significantly improve the quality of the recovered parallax flow vectors.

Our direct estimation algorithm follows the same computational framework
outlined in [1] for the quasi-parametric class of models. The basic components of
this framework are: (i) pyramid construction, (ii) iterative estimation of global
(motion) and local (structure) parameters, and (iii) coarse-to-fine refinement.
The overall control loop of our algorithm is therefore as follows:
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1. Construct pyramids from each of the images Ij and the reference frame I.
2. Initialize the structure parameter γ for each pixel, and motion parameter tj

for each frame (usually we start with γ = 0 for all pixels, and tj = ( 0, 0, 1 )T

for all frames).
3. Starting with the coarsest pyramid level, at each level, refine the structure

and motion using the method outlined in Section 3.1.
4. Repeat this step several times (usually about 4 or 5 times per level).
5. Project the final value of the structure parameter to the next finer pyramid

level. Propagate the motion parameters also to the next level. Use these as
initial estimates for processing the next level.

6. The final output is the structure and the motion parameters at the finest
pyramid level (which corresponds to the resolution of the input images) and
the residual parallax flow field synthesized from these.

Of the various steps outline above, the pyramid construction and the projec-
tion of parameters are common to many techniques for motion estimation (e.g.,
see [1]), hence we omit the description of these steps. On the other hand, the
refinement step is specific to our current problem. This is described next.

3.1 The Estimation Process

The inner loop of the estimation process involves refining the current values of
the structure parameters γ (one per pixel) and the motion parameters tj (3
parameters per frame). Let us denote the “true” (but unknown) values of these
parameters by γ(x, y) (at location (x, y) in the reference frame) and tj . Let
uj(x, y) = (uj , vj) denote the corresponding unknown true parallax flow vector.
Let γc, t

j
c,u

j
c denote the current estimates of these quantities. Let δγ = γ − γc,

δtj = (δtj1, δt
j
2, δt

j
3) = tj−tj

c, and δuj = (δuj , δvj) = uj−uj
c. These δ quantities

are the refinements that are estimated during each iteration.
Assuming brightness constancy (namely, that corresponding image points

across all frames have a similar brightness value)2, we have:

I(x, y) ≈ Ij(xj , yj) = Ij(x + uj , y + vj) = Ij(x + uj
c + δuj , y + vj

c + δvj)

For small δuj we make a further approximation:

I(x− δuj , y − δvj) ≈ Ij(x + uj
c, y + vj

c).

Expanding I to its first order Taylor series around (x, y) :

I(x− δuj , y − δvj) ≈ I(x, y)− Ixδuj − Iyδvj

2 Note that over multiple frames the brightness will change somewhat, at least due to
global illumination variation. We can handle this by using the Laplacian pyramid
(as opposed to the Gaussian pyramid), or otherwise pre-filtering the images (e.g.,
normalize to remove global mean and contrast changes), and applying the brightness
constraint to the filtered images.
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where Ix, Iy denote the image intensity derivatives for the reference image (at
pixel location (x, y)). From here we get the brightness constraint equation:

Ij(x + uj
c, y + vj

c) ≈ I(x, y)− Ixδuj − Iyδvj

Or:
Ij(x + uj

c, y + vj
c)− I(x, y) + Ixδuj + Iyδvj ≈ 0

Substituting δuj = uj − uj
c yields:

Ij(x + uj
c, y + vj

c)− I(x, y) + Ix(uj − uj
c) + Iy(vj − vj

c) ≈ 0

Or, more compactly:
Iτ
j (x, y) + Ixuj + Iyvj ≈ 0 (4)

where
Iτ
j (x, y) def= Ij(x + uj

c, y + vj
c)− I(x, y)− Ixuj

c − Iyvj
c

If we now substitute the expression for the local parallax flow vector uj given
in Eq. (3), we obtain the following equation that relates the structure and motion
parameters directly to image brightness information:

Iτ
j (x, y) + γ(x,y)

1+γ(x,y)tj
3

(
Ix(t

j
3x− tj1) + Iy(t

j
3y − tj2)

)
≈ 0 (5)

We refer to the above equation as the “epipolar brightness constraint”.
Each pixel and each frame contributes one such equation, where the un-

knowns are: the relative scene structure γ = γ(x, y) for each pixel (x, y), and
the epipoles tj for each frame (j = 1, 2, . . . , l). Those unknowns are computed in
two phases. In the first phase, the “Local Phase”, the relative scene structure, γ,
is estimated separately for each pixel via least squares minimization over mul-
tiple frames simultaneously. This is followed by the “Global Phase”, where all
the epipoles tj are estimated between the reference frame and each of the other
frames, using least squares minimization over all pixels. These two phases are
described in more detail below.

Local Phase In the local phase we assume all the epipoles are given (e.g.,
from the previous iteration), and we estimate the unknown scene structure γ
from all the images. γ is a local quantity, but is common to all the images
at a point. When the epipoles are known (e.g., from the previous iteration),
each frame Ij provides one constraint of Eq. (5) on γ. Therefore, theoretically,
there is sufficient geometric information for solving for γ. However, for increased
numerical stability, we locally assume each γ is constant over a small window
around each pixel in the reference frame. In our experiments we used a 5 × 5
window. For each pixel (x, y), we use the error function:

Err(γ) def=
∑

j

∑

(x̃,ỹ)∈Win(x,y)

(

Ĩτ
j (1 + γtj3) + γ

(
Ĩx(t

j
3x̃− tj1) + Ĩy(t

j
3ỹ − tj2)

))2

(6)
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where γ = γ(x, y), Ĩτ
j = Iτ

j (x̃, ỹ), Ĩx = Ix(x̃, ỹ), Ĩy = Iy(x̃, ỹ), and Win(x, y) is a
5×5 window around (x, y). Differentiating Err(γ) with respect to γ and equating
it to zero yields a single linear equation that can be solved to estimate γ(x, y).
The error term Err(γ) was obtained by multiplying Eq. (5) by the denominator
(1+ γtj3) to yield a linear expression in γ. Note that without multiplying by the
denominator, the local estimation process (after differentiation) would require
solving a polynomial equation in γ whose order increases with l (the number of
frames). Minimizing Err(γ) is in practice equivalent to applying weighted least
squares minimization on the collection of original Eqs. (5), with weights equal
to the denominators. We could apply normalization weights 1

1+γctj
3

(where γc

is the estimate of the shape at pixel (x, y) from the previous iteration) to the
linearized expression, in order to assure minimization of meaningful quantities
(as is done in [18]), but in practice, for the examples we used, we found it was
not necessary to do so during the local phase. However, such a normalization
weight was important during the global phase (see below).

Global Phase In the global phase we assume the structure γ is given (e.g.,
from previous iteration), and we estimate for each image Ij the position of its
epipole tj with respect to the reference frame. We estimate the set of epipoles
{tj} by minimizing the following error with respect each of the epipoles:

Err(tj) def=
∑

(x,y)

(
Wj(x, y)

[
Iτ
j (1 + γtj3) + γ

(
Ix(t

j
3x− tj1) + Iy(t

j
3y − tj2)

)])2

(7)
where Ix = Ix(x, y), Iy = Iy(x, y), Iτ

j = Iτ
j (x, y), γ = γ(x, y). Note that, when

γ(x, y) are fixed, this minimization problem decouples into a set of separate in-
dividual minimization problems, each a function of one epipole tj for the jth
frame. The inside portion of this error term is similar to the one we used above
for the local phase, with the addition of a scalar weight Wj(x, y). The scalar
weight is used to serve two purposes. First, if Eq. (7) did not contain the weights
Wj(x, y), it would be equivalent to a weighted least squares minimization of
Eq. (5), with weights equal to the denominators (1 + γ(x, y)tj3). While this pro-
vides a convenient linear expression in the unknown tj , these weights are not
physically meaningful, and tend to skew the estimate of the recovered epipole.
Therefore, in a fashion similar to [18], we choose the weights Wj(x, y) to be
(1 + γ(x, y)tj3,c)

−1, where the γ is the updated estimate from the local phase,
whereas the tj3,c is based on the current estimate of tj (from the previous itera-
tion).

The scalar weight also provides us an easy way to introduce additional ro-
bustness to the estimation process in order to reduce the contribution of pixels
that are potentially outliers. For example, we can use weights based on residual
misalignment of the kind used in [6].
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4 Multi-frame vs. Two-Frame Estimation

The algorithm described in Section 3 extends the plane+parallax estimation
to multiple frames. The most obvious benefit of multi-frame processing is the
improved signal-to-noise performance that is obtained due to having a larger
set of independent samples. However, there are two additional benefits to multi-
frame estimation: (i) overcoming the aperture problem, from which the two-frame
estimation often suffers, and (ii) resolving the singularity of shape recovery in
the vicinity of the epipole (we refer to this as the epipole singularity).

4.1 Eliminating the Aperture Problem

When only two images are used as in [11,13], there exists only one epipole. The
residual parallax lies along epipolar lines (centered at the epipole, see Eq. (3)).
The epipolar field provides one line constraint on each parallax displacement,
and the Brightness Constancy constraint forms another line constraint (Eq. (4)).
When those lines are not parallel, their intersection uniquely defines the parallax
displacement. However, if the image gradient at an image point is parallel to the
epipolar line passing through that point, then its parallax displacement (and
hence its structure) can not be uniquely determined. However, when multiple
images with multiple epipoles are used, then this ambiguity is resolved, because
the image gradient at a point can be parallel to at most one of the epipolar lines
associated with it. This observation was also made by [4,15].

To demonstrate this, we used a sequence composed of 9 images (105 × 105
pixels) of 4 squares (30×30 pixels) moving over a stationary textured background
(which plays the role of the aligned reference plane). The 4 squares have the same
motion: first they were all shifted to the right (one pixel per frame) to generate
the first 5 images, and then they were all shifted down (one pixel per frame) to
generate the next 4 images. The width of the stripes on the squares is 5 pixels.
A sample frame is shown in Fig. 1.a (the fifth frame).

The epipoles that correspond to this motion are at infinity, the horizontal
motion has an epipole at (∞, 52.5], and the vertical motion has an epipole at
[52.5,∞). The texture on the squares was selected so that the spatial gradients of
one square are parallel to the direction of the horizontal motion, another square
has spatial gradients parallel to the direction of the vertical motion, and the two
other squares have spatial gradients in multiple directions. We have tested the
algorithm on three cases: (i) pure vertical motion, (ii) pure horizontal motion,
and (iii) mixed motions.

Fig. 1.b is a typical depth map that results from applying the algorithm to
sequences with purely vertical motion. (Dark grey corresponds to the reference
plane, and light grey corresponds to elevated scene parts, i.e., the squares). The
structure for the square with vertical bars is not estimated well as expected,
because the epipolar constraints are parallel to those bars. This is true even
when the algorithm is applied to multiple frames with the same epipole.
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(a) (b) (c) (d)

Fig. 1. Resolving aperture problem: (a) A sample image, (b) Shape recovery for pure
vertical motion. Ambiguity along vertical bars, (c) Shape recovery for pure horizontal
motion. Ambiguity along horizontal bars, (d) Shape recovery for a sequence with mixed
motions. No ambiguity.

Fig. 1.c is a typical depth map that results from applying the algorithm to
sequences with purely horizontal motion. Note that the structure for the square
with horizontal bars is not estimated well.

Fig. 1.d is a typical depth map that results from applying the algorithm to
multiple images with mixed motions (i.e., more than one distinct epipole). Note
that now the shape recovery does not suffer from the aperture problem.

4.2 Epipole Singularity

From the planar parallax Eq. (3), it is clear that the structure γ cannot be
determined at the epipole, because at the epipole: tj3x− tj1 = 0 and tj3y − tj2 =
0. For the same reason, the recovered structure at the vicinity of the epipole
is highly sensitive to noise and unreliable. However, when there are multiple
epipoles, this ambiguity disappears. The singularity at one epipole is resolved
by information from another epipole.

To test this behavior, we compared the results for the case with only one
epipole (i.e., two-frames) to cases with multiple epipoles at different locations.
Results are shown in Fig. 2. The sequence that we used was composed of images
of a square that is elevated from a reference plane and the simulated motion
(after plane alignment) was a looming motion (i.e., forward motion). Fig. 2.a,b,c
show three sample images from the sequence. Fig. 2.d shows singularity around
the epipole in the two-frame case. Figs. 2.e,h,i,j show that the singularity at
the epipoles is eliminated when there is more than one epipole. Using more
images also increases the signal to noise ratio and further improves the shape
reconstruction.

5 Real World Examples

This section provides experimental results of applying our algorithm to real world
sequences. Fig. 3 shows an example of shape recovery from an indoor sequence
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Fig. 2. Resolving epipole singularity in case of multiple epipoles. (a-c) sample images
from a 9-frame sequence with multiple epipoles, (d,f) shape recovery using 2 images
(epipole singularity exist in this case), (e,g) using 3 images with 2 different epipoles,
(h,k) using 5 images with multiple epipoles, (i,l) using 7 images with multiple epipoles,
(j,m) using 9 images with multiple epipoles. Note that epipole singularity disappears
once multiple epipoles exist. (f,g,k,l,m) show an enlarge view of the depth image at the
vicinity of the epipoles. The box shows the region where the epipoles are. For visibility
purposes, different images are shown at different scales. For reference, coordinate rulers
are attached to each image.
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(a) (b)

Fig. 3. Blocks sequence. (a) one frame from the sequence. (b) The recovered shape
(relative to the carpet). Brighter values correspond to taller points.

(a) (b)

Fig. 4. Flower-garden sequence. (a) one frame from the sequence. (b) The recovered
shape (relative to the facade of the house). Brighter values correspond to points farther
from the house.

(the “block” sequence from [11]). The reference plane is the carpet. Fig. 3.a
shows one frame from the sequence. Fig. 3.b shows the recovered structure.
Brighter grey levels correspond to taller points relative to the carpet. Note the
fine structure of the toys on the carpet.

Fig. 4 shows an example of shape recovery for a sequence of five frames (part
of the flower garden sequence). The reference plane is the house. Fig. 4.a shows
the reference frame from the sequence. Fig. 4.b shows the recovered structure.
Note the gradual change of depth in the field.
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(a) (b)

Fig. 5. Stairs sequence. (a) one frame from the sequence. (b) The recovered shape
(relative to the ground surface just in front of the building). Brighter values correspond
to points above the ground surface, while darker values correspond to points below the
ground surface.

Fig. 5 shows an example of shape recovery for a sequence of 5 frames. The
reference plane is the flat region in front of the building. Fig. 5.a show one
frame from the sequence. Fig. 5.b shows the recovered structure. The brightness
reflects the magnitude of the structure parameter γ (brighter values correspond
to scene points above the reference plane and darker values correspond to scene
points below the reference plane). Note the fine structure of the stairs and the
lamp-pole. The shape of the building wall is not fully recovered because of lack
of texture in that region.

6 Conclusion

We presented an algorithm for estimating dense planar-parallax displacements
from multiple uncalibrated views. The image displacements, the 3D structure,
and the camera epipoles, are estimated directly from image brightness variations
across multiple frames. This algorithm extends the two-frames plane+parallax
estimation algorithm of [11,13] to multiple frames. The current algorithm re-
lies on prior plane alignment. A natural extension of this algorithm would be
to fold the homography estimation into the simultaneous estimation of image
displacements, scene structure, and camera motion (as was done by [11] for two
frames).
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Discussion

Rick Szeliski: How do you initialize? – You have a sort of back and forth, two
phase method for solving a bilinear problem. But when you have your first plane
stabilized in a set of images, how do you guess the initial epipole or depth-map?
Michal Irani: We start with a zero depth map, and for the epipoles we try five
different positions, one in the centre and one in each of the four quadrants. This
does provide a good enough initialization — even in the case where the epipoles
are at infinity we converge to the correct solution.
Bill Triggs: Just a comment on a comment you made about linearized methods
being stabler than fully nonlinear ones. Assuming that the nonlinear method
optimizes the statistically correct error model, its stability is by definition the
true stability of the problem. If a linear method appears stabler it must be
because it’s either estimating a simplified model, or biased. So linear methods
are not intrinsically stabler, they’re just more often allowed to give wrong results.
Michal Irani: Well, linear algorithms are much simpler, and when their ap-
proximations are valid, they don’t give the wrong results. So that’s exactly the
question — when are they valid, because when they are you would like to use
them. The case I was talking about — the intermediate approximation where
the global component of the homography is exact and only the local component
is approximated — turns out to be valid in many, many cases. That’s what
we’re checking right now. It has the potential to produce very simple algorithms
without making any severe assumptions, whereas the original Longuet-Higgins
approximation was very restrictive.
P. Anandan: I want to make a comment on Bill’s comment. I think you see a
similar thing about nonlinear methods being unstable in the work on encoding
epipolar geometry. I recall Adiv’s work, where at each iteration you normalize
by the current depth to make the flow look more like the exact equation. So
in some sense, by using weights based on the current estimate, you reduce the
error introduced by the linear approximation during the iterative process. I’m
not sure whether linear methods with varying weights should count as linear
or nonlinear for stability. The same issues come up in correspondence based
methods for structure-from-motion as well.
Michal Irani: I’m not sure whether this is what you meant Anandan, but gen-
erally when you solve a nonlinear iteration step you make some approximations
that may not be correct. It’s better to start with valid approximations than to
start with bad ones. So, when you’re assuming linear models, at least you know
which approximations you’re making.
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Abstract. Image-based reconstruction from randomly scattered views is a
challenging problem. We present a new algorithm that extends Seitz and Dyer’s
Voxel Coloring algorithm. Unlike their algorithm, ours can use images from
arbitrary camera locations. The key problem in this class of algorithms is that of
identifying the images from which a voxel is visible. Unlike Kutulakos and
Seitz’s Space Carving technique, our algorithm solves this problem exactly and
the resulting reconstructions yield better results in our application, which is
synthesizing new views. One variation of our algorithm minimizes color
consistency comparisons; another uses less memory and can be accelerated with
graphics hardware. We present efficiency measurements and, for comparison,
we present images synthesized using our algorithm and Space Carving.

1 Introduction

We present a new algorithm for volumetric scene reconstruction.  Specifically, given
a handful of images of a scene taken from arbitrary but known locations, the
algorithm builds a 3D model of the scene that is consistent with the input images.  We
call the algorithm Generalized Voxel Coloring or GVC. Like two earlier solutions to
the same problem, Voxel Coloring [1] and Space Carving [2], our algorithm uses
voxels to model the scene and exploits the fact that surface points in a scene, and
voxels that represent them, project to consistent colors in the input images. Although
Voxel Coloring and Space Carving are particularly successful solutions to the scene
reconstruction problem, our algorithm has advantages over each of them. Unlike
Voxel Coloring, GVC allows input cameras to be placed at arbitrary locations in and
around the scene. This is why we call it Generalized Voxel Coloring. When checking
the color consistency of a voxel, GVC uses the entire set of images from which the
voxel is visible. Space Carving usually uses only a subset of those images. Using full
visibility during reconstruction yields better results in our application, which is
synthesizing new views.

New-view synthesis, a problem in image-based rendering, aims to produce new
views of a scene, given a handful of existing images. Conventional computer graphics
typically creates new views by projecting a manually generated 3D model of the
scene. Image-based rendering has attracted considerable interest recently because
images are so much easier to acquire than 3D models. We solve the new-view
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synthesis problem by first using GVC to create a model of the scene and then
projecting the model to the desired viewpoint.

We first describe earlier solutions to the new-view synthesis and volumetric
reconstruction problems.  We compare the merits of those solutions to our own.  Next,
we discuss GVC in detail.  We have implemented two versions of GVC. One uses
layered depth images (LDIs) to eliminate unnecessary color consistency comparisons.
The other version makes more efficient use of memory. Next, we present our
experimental results. We compare our two implementations with Space Carving in
terms of computational efficiency and quality of synthesized images. Finally, we
describe our future work.

2 Related Work

View Morphing [3] and Light Fields [4] are solutions to the new-view synthesis
problem that do not create a 3D model as an intermediate step. View Morphing is one
of the simplest solutions to the problem. Given two images of a scene, it uses
interpolation to create a new image intermediate in viewpoint between the input
images. Because View Morphing uses no 3D information about the scene, it cannot in
general render images that are strictly correct, although the results often look
convincing. Most obviously, the algorithm has limited means to correctly render
objects in the scene that occlude one another.

Lumigraph [5] and Light Field techniques use a sampling of the light radiated in
every direction from every point on the surface of a volume. In theory, such a
collection of data can produce nearly perfect new views. In practice, however, the
amount of input data required to synthesize high quality images is far greater than
what we use with GVC and is impractical to capture and store. Concentric Mosaics
[6] is a similar technique that makes the sampling and storage requirements more
practical by restricting the range over which new views may be synthesized. These
methods have an advantage over nearly all competing approaches: they treat view-
dependent effects, like refraction and specular reflections, correctly.

Stereo techniques [7, 8] find points in two or more input images that correspond to
the same point in the scene. They then use knowledge of the camera locations and
triangulation to determine the depth of the scene point. Unfortunately, stereo is
difficult to apply to images taken from arbitrary viewpoints. If the input viewpoints
are far apart, then corresponding image points are hard to find automatically. On the
other hand, if the viewpoints are close together, then small measurement errors result
in large errors in the calculated depths. Furthermore, stereo naturally produces a 2D
depth map and integrating many such maps into a true 3D model is a challenging
problem [9].

Roy and Cox [10] and Szeliski and Golland [11] have developed variations of
stereo that, in one respect, resemble voxel coloring: they project discrete 3D grid
points into an arbitrary number of images to collect correlation or color variance
statistics. Roy and Cox impose a smoothness constraint both along and across
epipolar lines, which produces better reconstructions compared with conventional
stereo. A major shortcoming of their algorithm is that it does not model occlusion.

Szeliski and Golland’s algorithm models occlusion but not as generally as GVC.
Specifically, their scheme for finding an initial set of occluding gridpoints is unlikely
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to work when the cameras surround the scene. However, the authors are ambitious in
recovering fractional opacity and correct color for voxels whose projections in the
images span occlusion boundariesa goal we have not attempted.

Faugeras and Keriven [12] have produced impressive reconstructions by applying
variational methods within a level set formulation. Surfaces, initially larger than the
scenes, are refined using PDEs to successively better approximations of the scenes.
Like GVC, their method can employ arbitrary numbers of images, account for
occlusion correctly, and deduce arbibrary topologies. It is not clear under what
conditions their method converges or whether it can be easily extended to use color
images. Neither Szeliski and Golland nor Faugeras and Keriven have provided
runtime and memory statistics so it is not clear if their methods are practical for
reconstructing large scenes.

Voxel Coloring, Space Carving, and GVC all exploit the fact that points on
Lambertian surfaces are color-consistentthey project onto similar colors in all the
images from which they are visible. These methods start with an arbitrary number of
calibrated1 images of the scene and a set of voxels that is a superset of the scene. Each
voxel is projected into the images from which it is visible. If the voxel projects onto
inconsistent colors in several images, it must not be on a surface and, so, it is
carvedthat is, declared to be transparent. Otherwise, the voxel is colored, i.e.,
declared to be opaque and assigned the color of its projections. These algorithms stop
when all the opaque voxels project into consistent colors in the images. Because the
final set of opaque voxels is color-consistent, it is a good model of the scene.

Voxel Coloring, Space Carving and GVC all differ in the way they determine
visibility, the knowledge of which voxels are visible from which pixels in the images.
A voxel fails to be visible from an image if it projects outside the image or it is
blocked by other voxels that are currently considered to be opaque. When the opacity
of a voxel changes, the visibility of other voxels potentially changes, so an efficient
means is needed to update the visibility.

Voxel Coloring puts constraints on the camera locations to simplify the visibility
computation. It requires the cameras be placed in such a way that the voxels can be
visited, on a single scan, in front-to-back order relative to every camera. Typically,
this condition is met by placing all the cameras on one side of the scene and scanning
voxels in planes that are successively further from the cameras. Thus, the
transparency of all voxels that might occlude a given voxel is determined before the
given voxel is checked for color consistency. Although it simplifies the visibility
computation, the restriction on camera locations is a significant limitation. For
example, the cameras cannot surround the scene, so some surfaces will not be visible
in any image and hence cannot be reconstructed.

Space Carving and GVC remove Voxel Coloring’s restriction on camera locations.
These are among the few reconstruction algorithms for which arbitrarily and widely
dispersed image viewpoints are not a hindrance. With the cameras placed arbitrarily,
no single scan of the voxels, regardless of its order, will enable each voxel’s visibility
in the final model (and hence its color consistency) to be computed correctly.

                                                          
1 We define an image to be calibrated if, given any point in the 3D scene, we know where it

projects in the image. However, Saito and Kanade [13] have shown a weaker form of
calibration can also be used.
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Several key insights of Kutulakos and Seitz enable algorithms to be designed that
evaluate the consistency of voxels multiple times during carving, using changing and
incomplete visibility information, and yet yield a color-consistent reconstruction at
the end. Space Carving and GVC initially consider all voxels to be opaque, i.e.
uncarved, and only change opaque voxels to transparent, never the reverse.
Consequently, as some voxels are carved, the remaining uncarved voxels can only
become more visible from the images. In particular, if S is the set of pixels that have
an unoccluded view of an uncarved voxel at one point in time and if S* is the set of
such pixels at a later point in time, then S ⊆ S*. Kutulakos and Seitz assume a color
consistency function will be used that is monotonic, meaning for any two sets of
pixels S and S* with S ⊆ S*, if S is inconsistent, then S* is inconsistent also. This
seems intuitively reasonable since a set of pixels with dissimilar color will continue to
be dissimilar if more pixels are added to the set. Given that the visibility of a voxel
only increases as the algorithm runs and the consistency function is monotonic, it
follows that carving is conservativeno voxel will ever be carved if it would be
color-consistent in the final model.

Space Carving scans voxels for color consistency similarly to Voxel Coloring,
evaluating a plane of voxels at a time. It forces the scans to be front-to-back, relative
to the cameras, by using only images whose cameras are currently behind the moving
plane. Thus, when a voxel is evaluated, the transparency is already known of other
voxels that might occlude it from the cameras currently being used. Unlike Voxel
Coloring, Space Carving uses multiple scans, typically along the positive and negative
directions of each of the three axes. Because carving is conservative, the set of
uncarved voxels is a shrinking superset of the desired color-consistent model as the
algorithm runs.

While Space Carving never carves voxels it shouldn’t, it is likely to produce a
model that includes some color-inconsistent voxels. During scanning, cameras that
are ahead of the moving plane are not used for consistency checking, even when the
voxels being checked are visible from those cameras. Hence, the color consistency of
a voxel is, in general, never checked over the entire set of images from which it is
visible. In contrast, every voxel in the final model constructed by GVC is guaranteed
to be color consistent over the entire set of images from which it is visible. We find
the models that GVC produces, using full visibility, project to better new views.

3 Generalized Voxel Coloring

We have developed two variants of our Generalized Voxel Coloring algorithm. GVC-
LDI is an enhancement of GVC, the basic algorithm. The carving of one voxel
potentially changes the visibility of other voxels. When an uncarved voxel’s visibility
changes, its color consistency should be reevaluated and it, too, should be carved if it
is then found to be inconsistent. GVC-LDI uses layered depth images (LDIs) [14, 15]
to determine exactly which voxels have their visibility changed when another voxel is
carved and thus can reevaluate exactly the right voxels. In the same situation, GVC
does not know which voxels need to be reevaluated and so reevaluates all voxels in
the current model. Therefore, GVC-LDI performs significantly fewer color-
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consistency evaluations than GVC during a reconstruction. However, GVC uses
considerably less memory than GVC-LDI.

Like Space Carving, both GVC and GVC-LDI initially assume all voxels are
opaque, i.e. uncarved. They carve inconsistent voxels until all those that remain
project into consistent colors in the images from which they are visible.

3.1 The Basic GVC Algorithm

GVC determines visibility as follows. First, every voxel is assigned a unique ID.
Then, an item buffer [16] is constructed for each image. An item buffer, shown in
figure 1a, contains a voxel ID for every pixel in the corresponding image. While the
item buffer is being computed, a distance is also stored for every pixel. A voxel V is
rendered to the item buffer as follows. Scan conversion is used to find all the pixels
that V projects onto. If the distance from the camera to V is less than the distance
stored for the pixel, then the pixel’s stored distance and voxel ID are over-written
with those of V. Thus, after a set of voxels have been rendered, each pixel will contain
the ID of the closest voxel that projects onto it. This is exactly the visibility
information we need.

Once valid item buffers have been computed for the images, it is then possible to
compute the set vis(V) of all pixels from which the voxel V is visible. Vis(V) is
computed as follows. V is projected into each image. For every pixel P in the
projection of V, if P’s item buffer value equals V’s ID, then P is added to vis(V). To
check the color consistency of a voxel V, we apply a consistency function consist() to
vis(V) or, in other words, we compute consist(vis(V)).

Since carving a voxel changes the visibility of the remaining uncarved voxels, and
since we use item buffers to maintain visibility information, the item buffers need to
be updated periodically. GVC does this by recomputing the item buffers from scratch.
Since this is time consuming, we allow GVC to carve many voxels between updates.
As a result, the item buffers are out-of-date much of the time and the computed set
vis(V) is only guaranteed to be a subset of all the pixels from which a voxel V is
visible. However, since carving is conservative, no voxels will be carved that
shouldn’t be. During the final iteration of GVC, no carving occurs so the visibility

reconstruction
volume

item
buffer

reconstruction
volume LDI

AB A B A

B A∅(a) (b)

Fig. 1. The data structures used compute visibility. An item buffer (a) is used by GVC and
records the ID of the surface voxel visible from each pixel in an image. A layered depth image
(LDI) (b) is used by GVC-LDI and records all surface voxels that project onto each pixel.
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information stays up-to-date. Every voxel is checked for color consistency on the final
iteration so it follows that the final model is color-consistent.

As carving progresses, each voxel is in one of three categories:
• it has been found to be inconsistent and has been carved;
• it is on the surface of the set of uncarved voxels and has been found to be

consistent whenever it has been evaluated; or
• it is surrounded by uncarved voxels, so it is visible from no images and its

consistency is undefined.

We use an array of bits, one per voxel, to record which voxels have been carved.
This data structure is called carved in the pseudo-code and is initially set to false for
every voxel. We maintain a data structure called the surface voxel list (SVL) to
identify the second category of voxels. The SVL is initialized to the set of voxels that
are not surrounded by other voxels. The item buffers are computed by rendering all
the voxels on the SVL into them. We call voxels in the third category interior voxels.
Though interior voxels are uncarved, they do not need to be rendered into the item
buffers because they are not visible from any images. When a voxel is carved,
adjacent interior voxels become surface voxels and are added to the SVL. To avoid
adding a voxel to the SVL more than once, we need a rapid means of determining if
the voxel is already on the SVL; we maintain a hash table for this purpose.

When GVC has finished, the final set of uncarved voxels may be recorded by
saving the function carved() or the SVL. Pseudo-code for GVC appears in figure 2.

initialize SVL
for every voxel V

carved(V) = false
loop {

visibilityChanged = false
compute item buffers by rendering voxels on SVL
for every voxel V ∈ SVL {

compute vis(V)
if (consist(vis(V)) = false) {

visibilityChanged = true
carved(V) = true
remove V from SVL
for all voxels N that are adjacent to V

if (carved(N) = false and N ∉ SVL)
add N to SVL

}
}
if (visibilityChanged = false) {

save voxel space
quit

}
}

Fig. 2. Pseudo-code for the GVC algorithm. See text for details.
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3.2 The GVC-LDI Algorithm

Basic GVC computes visibility in a relatively simple manner that also makes efficient
use of memory. However, the visibility information is time-consuming to update.
Hence, GVC updates it infrequently and it is out-of-date much of the time. This does
not lead to incorrect results but it does result in inefficiency because a voxel that
would be evaluated as inconsistent using all the visibility information might be
evaluated as consistent using a subset of the information. Ultimately, all the
information is collected but, in the meantime, voxels can remain uncarved longer than
necessary and can therefore require more than an ideal number of consistency
evaluations. Furthermore, GVC reevaluates the consistency of voxels on the SVL
even when their visibility (and hence their consistency) has not changed since their
last evaluation. By using layered depth images instead of item buffers, GVC-LDI can
efficiently and immediately update the visibility information when a voxel is carved
and also can precisely determine the voxels whose visibility has changed.

Unlike the item buffers used by the basic GVC method, which record at each pixel
P just the closest voxel that projects onto P, the LDIs store at each pixel a list of all
the surface voxels that project onto P. See figure 1b. These lists, which in the pseudo-
code are called LDI(P), are sorted according to the distance of the voxel to the
image’s camera. The head of LDI(P) stores the voxel closest to P, which is the same
voxel an item buffer would store. Since the information stored in an item buffer is
also available in an LDI, vis(V) can be computed in the same way as before. The LDIs
are initialized by rendering the SVL voxels into them.

The uncarved voxels whose visibility changes when another voxel is carved come
from two sources:
• They are interior voxels adjacent to the carved voxel and become surface voxels

when the carved voxel becomes transparent. See figure 3a.
• They are already surface voxels (hence they are in the SVL and LDIs) and are

often distant from the carved voxel. See figure 3b.

Fig. 3. When a voxel is carved, there are two categories of other voxels whose visibility
changes: (a) interior voxels that are adjacent to the carved voxel and (b) voxels that are already
on the SVL and are often distant from the carved voxel.

= SVL voxel

= voxel with changed visibility

= recently carved voxel

= interior voxel

(b)

carved voxelscarved voxels

(a)
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Voxels in the first category are trivial to identify since they are next to the carved
voxel. Voxels in the second category are impossible to identify efficiently in the basic
GVC method; hence, that method must repeatedly evaluate the entire SVL for color
consistency. In GVC-LDI, voxels in the second category can be found easily with the
aid of the LDIs; they will be the second voxel on LDI(P) for some pixel P in the
projection of the carved voxel. GVC-LDI keeps a list of the SVL voxels whose
visibility has changed, called the changed visibility SVL (CVSVL in the pseudo-code).
These are the only voxels whose consistency must be checked. Carving is finished
when the CVSVL is empty.

When a voxel is carved, the LDIs (and hence the visibility information) can be
updated immediately and efficiently. The carved voxel can be easily deleted from
LDI(P) for every pixel P in its projection. The same process automatically updates the
visibility information for the second category of uncarved voxels whose visibility has
changed; these voxels move to the head of LDI lists from which the carved voxel has
been removed and they are also added to the CVSVL. Interior voxels adjacent to the
carved voxel are pushed onto the LDI lists for pixels they project onto. As a
byproduct of this process, we learn if the voxel is visible; if it is, we put it on the
CVSVL. Pseudo-code for GVC-LDI appears in figure 4.

initialize SVL
render SVL to LDIs
for every voxel V

carved(V) = false
copy SVL to CVSVL
while (CVSVL is not empty) {

delete V from CVSVL
compute vis(V)
if (consist(vis(V)) = false) {

carved(V) = true
remove V from SVL
for every pixel P in projection of V into all images {

if (V is head of LDI(P))
add next voxel on LDI(P) (if any) to CVSVL

delete V from LDI(P)
}
for every voxel N adjacent to V with N ∉ SVL {

N_is_visible = false
for every pixel P in projection of N to all images {

add N to LDI(P)
if (N is head of LDI(P))

N_is_visible = true
}
add N to SVL
if (N_is_visible)

add N to CVSVL
}

}
}
save voxel space

Fig. 3. Pseudo-code for the GVC-LDI algorithm. See text for details.
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4 Results

We present the results of running Space Carving, GVC, and GVC-LDI on two image
sets that we call “toycar” and “bench”. In particular, we present runtime statistics and
provide, for side-by-side comparison, images synthesized with Space Carving and our
algorithms. The experiments were run on a 440 MHz HP J5000 computer.

The toycar and bench image sets represent opposite extremes in terms of how
difficult they are to reconstruct. The toycar scene is ideal for reconstruction. The
seventeen 800×600-pixel images are computer-rendered and perfectly calibrated. The
colors and textures make the various surfaces in the scene easy to distinguish from
each other. The bench images are photographs of a natural, real-world scene. In
contrast to the toycar scene, the bench scene is challenging to reconstruct for a
number of reasons: the images are somewhat noisy, the calibration is not as good, and
the scene has large areas with relatively little texture and color variation.

We reconstructed the toycar scene in a 167×121×101-voxel volume. Four of the
input images are shown in figure 7. New views synthesized from Space Carving and
GVC-LDI reconstructions are shown in figure 8. There are some holes visible along
one edge of the blue-striped cube in the Space Carving reconstruction. The coloring in
the Space Carving image has a noisier appearance than the GVC-LDI image.

We used fifteen 765×509-pixel images of the bench scene and reconstructed a
75×71×33-voxel volume. We calibrated the images with a product called
PhotoModeler Pro [17]. The points used to calibrate the images are well dispersed
throughout the scene and their estimated 3D coordinates project within a maximum of
1.2 pixels of their measured locations in the images. Four of the input images are
shown in figure 9. New views synthesized from Space Carving and GVC
reconstructions are shown in figure 10. The Space Carving image is considerably
noisier and more distorted than the GVC image.

Figures 5 and 6 show the total time Space Carving, GVC, and GVC-LDI ran on the
toycar and bench scenes until carving completely stopped. They also illustrate the
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Fig. 4. Convergence of the algorithms while reconstructing the “toycar” scene.



                                                                       Generalized Voxel Coloring        109

rates at which the algorithms converged to good visual representations of the scene.
We used reprojection error to estimate visual quality. Specifically, we projected
models to the same viewpoint as an extra image of the actual scene, and computed the
errors by comparing corresponding pixels in the projected and actual images.

Due to the widely varied color and texture in the toycar scene, the color
consistency of most voxels can be correctly determined using a small fraction of the
input image pixels that will ultimately be able to view the voxel in the final model.
Thus, many voxels that must be carved can, in fact, be carved the first time their
consistency is checked. Space Carving, with its lean data structures, checks the
consistency of voxels faster (albeit, less completely) than the other algorithms and
hence, as shown in figure 5, was the first to converge to a good representation of the
scene. After producing a good model, Space Carving spent a long time carving a few
additional voxels and was the last to completely stop carving. However, this
additional carving is not productive visually. Unlike the other two algorithms, GVC-
LDI spends extra time to find all the pixels that can view a voxel when checking a
voxel’s consistency. In the toycar scene, this precision was not helpful and caused
GVC-LDI to converge the slowest to a good visual model. Ultimately, GVC and
GVC-LDI reconstructed models with somewhat lower reprojection error than Space
Carving.

The convergence characteristics of the algorithms were different for the bench
scene, as shown in figure 6. The color and texture of this scene make reconstruction
difficult but are probably typical of the real-world scenes that we are most interested
in reconstructing. In contrast to the toycar scene, many voxels in the bench scene are
very close to the color-consistency threshold. Hence, many voxels that must be carved
cannot be shown to be inconsistent until they become visible from a large number of
pixels. Initially, all three algorithms converge at roughly the same rate. Then Space
Carving stops improving in reprojection error but continues slow carving. GVC and
GVC-LDI produce models of similar quality, both with considerably less error than
Space Carving. After an initial period of relatively rapid carving, GVC then slows to a
carving rate of several hundred voxels per iteration. Because, on each of these
iterations, GVC recalculates all its item buffers and checks the consistency of
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thousands of voxels, it takes GVC a long time to converge to a color-consistent
model. For the bench scene, the efficiency of GVC-LDI’s relatively complex data
structures more than compensates for the time needed to maintain them. Because
GVC-LDI finds all the pixels from which a voxel is visible, it can carve many voxels
sooner, when the model is less refined, than the other algorithms. Furthermore, after
carving a voxel, GVC-LDI only reevaluates the few other voxels whose visibility has
changed. Consequently, GVC-LDI is faster than GVC by a large margin. On both the
toycar and the bench scene, GVC-LDI used the fewer color consistency checks than
the other algorithms, as shown in table 1.

All three algorithms keep copies of the input images in memory. The images
dominate the memory usage for Space Carving. GVC uses an equal amount of
memory for the images and the item buffers and, consequently, uses about twice as
much memory as Space Carving, as shown in table 2. The LDIs dominate the memory
usage in GVC-LDI and consume an amount of memory roughly proportional to the
number of image pixels times the depth complexity of the scene. The table shows that
GVC-LDI uses considerably more memory than the other two algorithms. Memory
consumed by the carve and SVL data structures is relatively insignificant and,
therefore, the voxel resolution has little bearing on the memory requirements for GVC
and GVC-LDI.

Table 2. The memory used by the algorithms while reconstructing the “toycar” and “bench”
scenes.

toycar bench

Space Carving 43.2 MB 26.1 MB
GVC 85.7 MB 53.9 MB
GVC-LDI 462.0 MB 385.0 MB

Kutulakos and Seitz have shown that for a given image set and monotonic
consistency function, there is a unique maximal color-consistent set of voxels, which
they call V*. Since GVC and GVC-LDI do not stop carving until the remaining
uncarved voxels are all color-consistent and since they never carve consistent voxels,
we expect them to produce identical results, namely V*, when used with a monotonic
consistency function. However, monotonic consistency functions can be hard to
construct. An obvious choice for consist(S) would take the maximum difference
between the colors of any two pixels in S. However, using distance in the RGB cube

Table 1. The number of color consistency evaluations performed by the algorithms while
reconstructing the “toycar” and “bench” scenes.

toycar bench

Space Carving 12.70 M 4.24M

GVC 3.15 M 2.54M

GVC-LDI 2.14 M 526M
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as a difference measure, this function is O(n2) on the size of S and has poor immunity
to noise and high-frequency color variation. We actually use standard deviation for
the consistency function and it is not monotonic. Consequently, GVC and GVC-LDI
generally produce models that are different but similar in quality.

Fig. 7. Four of the seventeen images of the toycar scene.

Fig. 8. New views projected from reconstructions of the toycar scene. The image on the left
was created with Space Carving, the image on the right with GVC-LDI. There are some holes
visible along one edge of the blue-striped cube in the Space Coloring reconstruction. The
coloring in the Space Carving image has a noisier appearance than the GVC-LDI image.
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5 Future Work

We have devised a reformulation of the GVC algorithm that we hope to implement in
the near future. Our current implementation renders each voxel into each image twice
per iteration in the outer loop, once to update the item buffers and a second time to
gather color statistics for consistency checking. We treat voxels as cubes and render
them by scan-converting their faces, a process that is time-consuming. In our new
implementation, we will eliminate the second rendering. Instead, after updating an
item buffer, we will scan its pixels, using the voxel IDs to accumulate the pixel colors
into the statistics for the correct voxels. Besides reducing the amount of rendering,
this approach has three other benefits. First, we will not need the item buffer again
after processing an image. Thus, the same memory can be used for all the item
buffers, reducing the memory requirement relative to our current implementation.
Second, the rendering that is still required can be easily accelerated with a hardware
graphics processor. Third, the processing that must be performed on one image is
independent of the processing for the rest of the images. Thus, on one iteration, each
image can be rendered on a separate, parallel processor.

We believe LDIs have great potential for use in voxel-based reconstruction
algorithms. A hybrid algorithm could make the memory requirements for LDIs more
practical. In such an approach, an algorithm like GVC would be used to find a rough
model. GVC runs most efficiently during its earliest iterations, when many voxels can
be carved on each iteration. Once a rough model has been obtained, GVC-LDI could
be used to refine local regions of the model. The rough model should be sufficient to
find the subset of images from which the region is visible. The subset is likely to be
considerably smaller than the original set, so the memory requirements for the LDIs
should be much smaller. GVC-LDI would run until the model of the region converges
to color-consistency. If the convergence is slow, GVC-LDI should be much faster
than GVC.

The algorithms described in this paper find a set of voxels whose color
inconsistency falls below a threshold. It would be preferable to have an algorithm that
would attempt to minimize color inconsistencyto find the model that is most
consistent with the input images. We have already mentioned that LDIs can
efficiently maintain visibility information when voxels are removed from the model,
i.e. carved, but, in fact, they can also be used to efficiently maintain visibility
information when voxels are moved or added to the model. Thus, LDIs could be a key
element in an algorithm that would add, delete, and move voxels in a model to
minimize its reprojection error.

6 Conclusion

We have described a new algorithm, Generalized Voxel Coloring, for constructing a
model of a scene from images. We use GVC for image-based modeling and
renderingspecifically, for synthesizing new views of the scene. Unlike most earlier
solutions to the new-view synthesis problem, GVC accommodates arbitrary numbers
of images taken from arbitrary viewpoints. Like Voxel Coloring and Space Carving,
GVC colors voxels using color consistency, but it generalizes these algorithms by
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allowing arbitrary viewpoints and using all possible images for consistency checking.
Furthermore, GVC-LDI uses layered depth images to significantly reduce the number
of color consistency checks needed to build a model. We have presented experimental
data and new images, synthesized using our algorithms and Space Carving, that
demonstrate the benefit of using full visibility when checking color consistency.

Fig. 9. Four of the fifteen input images of the bench scene.

Fig. 10. New views projected from reconstructions of the bench scene. The image on the left
was created with Space Carving. The image on the right was created with GVC. The Space
Carving image is considerably noisier and more distorted than the GVC image.
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Discussion

Yvan Leclerc: Do GVC and GVCLDI give you exactly the same answers?

Bruce Culbertson: That's a very good question.  They would if we used a strictly
monotonic consistency function, but for various reasons we haven't. We found that it
was hard to design a strictly monotonic consistency function that was relatively
immune to image noise. We need to do some averaging, and that upsets the
monotonicity. So we don't get voxel-for-voxel identical models with the two
algorithms.  But we found that they usually \emph{look} identical and have nearly
identical reprojection errors.

Rick Szeliski: What can you say about sampling issues? - A voxel projects into
several pixels with partial fill. What do you do about that?

Bruce Culbertson: In general we've used voxels that project into many pixels. We
really haven't explored what happens when we use very small voxels, so I can't say
too much about that. I will say that by using voxels that are large relative to the image
resolution, we get very good noise immunity.  It also extends the runtime, but it's
worth exploring.

Bill Triggs: Two questions.  One: in all of these voxel-based

approaches there's an $n^3$ scaling rule - the voxel resolution cubed - whereas a
surface-based approach would be only $n^2$. That seems to suggest that if you have
a very high resolution or very large scenes, maybe a voxel-based approach would be
inefficient compared to a surface-based one.

Bruce Culbertson: Well, there's one detail that I had to leave out to make my talk
short enough. Although our model consists of all the opaque voxels, the vast majority
of these are on the interior of the model and can't be seen from any of the images.
That makes them really uninteresting, so we've minimized the amount of memory and
time devoted to dealing with them. So our in-memory representation is actually just
the surface.

Bill Triggs: The second question follows on from that. If you somehow get a pixel
wrong and carve it accidentally when you shouldn't have, it makes a hole in the
model. Do the holes tend to remain relatively shallow, or can they become deep or
even punch right through the model, so that the cameras on the other side start carving
away material too and you eventually end up with empty space?

Bruce Culbertson: Our color-consistency functions usually have some threshold for
deciding what we mean by consistency, and if we set that too low we do get holes in
the model. That makes the algorithm think that the cameras can see right through
those holes onto the other side of the object's surface, so errors can sometimes
propagate very badly. When that happens it's often difficult to get intuition about what
went wrong and figure out which camera saw through what hole to make the model so
poor.

Bill Triggs: So do you have any any "repair heuristics" for this ?

Bruce Culbertson: It would be great to have something like that, but we haven't tried
it.
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Abstract. Projective reconstruction recovers projective coordinates of
3D scene points from their several projections in 2D images. We intro-
duce a method for the projective reconstruction based on concatenation
of trifocal constraints around a reference view. This configuration sim-
plifies computations significantly. The method uses only linear estimates
which stay “close” to image data. The method requires correspondences
only across triplets of views. However, it is not symmetrical with respect
to views. The reference view plays a special role. The method can be
viewed as a generalization of Hartley’s algorithm [11], or as a particular
application of Triggs’ [21] closure relations.

1 Introduction

Finding a projective reconstruction of the scene from its images is a problem
which was addressed in many works [7,22,12,13,9]. It is a difficult problem mainly
because of two reasons. Firstly, if more images of a scene are available, it is
difficult to see all scene points in all images as some of the points become often
occluded by the scene itself. Secondly, image data are affected by noise so that
there is usually no 3D reconstruction that is consistent with raw image data. In
order to find an approximate solution which would be optimal with respect to
errors in image data, a nonlinear bundle adjustment has to be performed or an
approximate methods have to be used.

In past, the research addressed both problems. Methods for finding a projec-
tive reconstruction of the scene from many images assuming that all correspon-
dences are available were proposed [20,21,18]. On the other hand, if only two,
three, or four images were used, methods for obtaining a projective reconstruc-
tion by a linear Least Squares method were presented [11,9].

We concentrate on the situation when there are more than four views and not
all correspondences are available. We show that a linear Least Squares method
� This research is supported by the Grant Agency of the Czech Republic under the
grants 102/97/0480, 102/97/0855, and 201/97/0437, and by the Czech Ministry of
Education under the grant VS 96049.
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can be used if there is a common reference view so that the correspondences
between the reference view and other views exist.

The proposed approach extends the Hartley’s method for computing camera
projection matrices [11,9] for more views than four. His method computes the
matrices in two steps. Firstly, the epipoles are computed by a Least Squares
method. Secondly, using the epipoles and image data, the rest of camera projec-
tion matrices – infinite homographies – are estimated, again, by a Least Squares
method.

We assume to have views arranged so that all have some correspondences
with a same reference view. Therefore we can compute all the epipoles between
the reference view and the other views. Let the correspondences be, for instance,
available among triplets of views. Then, trifocal tensors can be estimated inde-
pendently in each triplet and the epipoles can be computed from the tensors.
Having the epipoles, one large linear Least Squares problem for computing the
homographies can be constructed.

The paper is organized as follows. In section 1.1, the definition of the pro-
jective reconstruction is given. Section 1.2 reviews multifocal constraints. Brief
overview of existing methods for projective reconstruction is given in section 1.3.
The method for projective reconstruction from many views sharing a reference
view is introduced in section 2. Experiments showing the feasibility of the pro-
posed method are given in section 3. The work is summarized in section 4.

1.1 Projective Reconstruction

Let a camera be modeled by a projection from a projective space IP3 to IP2. The
homogeneous coordinates of points in the i-th image are denoted by ũ(i) ∈ IP2
and homogeneous coordinates of points in IP3 are denoted by x̃.

Then, the projections of a set of m points by n cameras can be expressed as

s
(i)
j ũ

(i)
j = P̃(i)x̃j , i = 1, . . . , n, j = 1, . . . , m, (1)

where 3×4 real matrix P̃(i) ∈ IM3,4 is a camera projection matrix, s(i)j ∈ IR\{0}
are scale factors.

The goal of a projective reconstruction is to find camera matrices P̃(i) and
homogeneous coordinates x̃j so that the equation (1) is satisfied for all image
points ũ(i)j , i = 1, . . . , n, j = 1, . . . , m.

Since both P̃(i) and x̃j are unknown, it is obvious that they can be recovered
up to a choice of a coordinate system in IP3, i.e. up to a homography. Once
having camera matrices P̃(i), the consequent recovery of points x̃j is trivial (and
vice versa). Therefore, the following definition of projective reconstruction is
introduced:

Definition 1 (Projective reconstruction). The recovery of the equivalence
class P

P =
{ (

P(1), . . . ,P(n)
)
|
(
P(1), . . . ,P(n)

)
=
(
P̃(1)H, . . . , P̃(n)H

)
,

H ∈ IM4,4, det(H) �= 0
}
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from a set of points ũ(i)j i = 1, . . . , n, j = 1, . . . , m, such that there exists a

corresponding set of points x̃j ∈ IP3 and s
(i)
j ∈ IR\{0} so that s

(i)
j ũ

(i)
j = P̃(i)x̃j ,

is called the projective reconstruction.

1.2 Multifocal Constraints

The algorithms for a projective reconstruction are usually based on so-called
multifocal constraints. The multifocal constraints are derived from (1) by elimi-
nating s

(i)
j and x̃j . Introducing matrix

L(i)j =






0 −ũ
(i)3
j ũ

(i)2
j

ũ
(i)3
j 0 −ũ

(i)1
j

−ũ
(i)2
j ũ

(i)1
j 0




 , (2)

the equations (1) can be transformed into the equivalent system







L(1)j P̃
(1)

...
L(n)j P̃(n)





 x̃j =Mjx̃j = 0, j = 1, . . . , m .

Then, the multifocal constraints between P̃(i) and ũ(i)j , assuring the existence of
x̃j ∈ IP3, x̃j �= 0, can be written as

detMικλµ
j = 0 , ∀ Mικλµ

j , j = 1 . . . , m (3)

whereMικλµ
j is the sub-matrix ofMj consisting of rows ι, κ, λ, µ. It is seen from

the size ofMj that m
(3n
4

)
such constraints can be constructed. Since rankL(i) =

2, it follows that at most
(2n
4

)
of them are linearly independent. Depending on

the chosen rows, Mικλµ
j can comprise coordinates of points from two, three,

or four images and therefore we speak about bifocal, trifocal, or quadrifocal
constraints respectively. The terms formed by P̃(i) are just the components of
the well-known multi-view (matching) tensors: epipoles, fundamental matrices,
trifocal and quadrifocal tensors.

Hence the solution of a projective reconstruction from m points projected
to n views can be described by a system of m

(3n
4

)
polynomial equations (3) of

degree four. To solve such a system appears to be a difficult problem [14]1. In
addition, the measured data ũ(i)j involve errors in real situations and thus this
over-constrained system (3) need not have any non-trivial solution. Therefore,
only an approximate solution can be obtained.

1 In this context, we shall mention the paper from Bondyfalat, Mourrain, Pan [3].
They present a method for resolving of over-constraint polynomial systems.
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1.3 Brief Overview of Existing Methods

The “ideal” optimization technique for projective reconstruction is based on a
bundle adjustment, i.e. on minimizing the distances between the original and
the reprojected image points. Due to the non-linearity and the complexity of
the problem, this can be solved only by a numerical search (e.g. by a gradient
descent), which assumes an initial estimate of multi-view geometry, see [6,12].
Let us review the main principles used to obtain an initial estimate of multi-view
geometry which appeared in the literature and compare them with our approach.

Method based on a six point projective invariant. The principle of the
method was firstly introduced by Quan in [16]. He showed that the solution of
a projective reconstruction from three views can be expressed in a closed form
using six point correspondences. It was found that the main disadvantage of
the method in a practical situations is that even a small error in one of the six
selected correspondences can completely corrupt the result. Therefore, if the re-
construction should be correct even in presence of errors in the correspondences,
some additional optimization has to be employed. An algorithm based on ran-
dom sampling of the input set of correspondences applied by Torr’s [2] is an
example.

Methods based on linearization of matching constraints. The lineariza-
tion means that a non-linear task is decomposed into several subtasks, which can
be solved by a least-squares estimate of a linear system. The approaches based
on linearization are not optimal with respect to noise in image data. They mini-
mize imaginary algebraic distances instead of the image discrepancies. Therefore
the estimates should be formulated in a way, so that noise in input data does
not skew the solution too much. The results provided by a linearization can be
used as an initial estimate for the numerical search in a gradient optimization
technique.

The linearization of matching constraints makes use of the two facts: (i) the
matching constraints (3) are linear in multi-view tensors, (ii) the multi-view
tensors or their special combinations can be linearly decomposed into projection
matrices P̃(i). Thus, the nonlinear problem of projective reconstruction can be
approximated in two linear2 steps:

1. Estimate multi-focal tensor(s) from image data.
2. Decompose multiple view tensor(s) to projection matrices P̃(i), i = 1, . . . , n.

Firstly, the methods based only on one matching tensor (bifocal, trifocal, or
quadrifocal) were developed, i.e. the methods only for projective reconstruction
from 2, 3, or 4 views. For detailed description see [6,5,9,11,10,12,19,17,25].

Considering more than four views, the task becomes more complicated. Triggs
described in [21] the method how to concatenate more matching tensors such

2 “Linear problem” is meant in the sense that the problem is equivalent to a Least
Square solution of a system of linear equations.
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that they cover n views and that the relations3 between the tensors and the
projection matrices are linear. However, the tensors have to be scaled consistently
at first. A general way of concatenating the trifocal tensors was presented also
by Avidan and Shahsua in [18]. A different approach [1] is based on threading of
fundamental matrices using trifocal tensors. The estimation is performed only by
triplets of views in a sequence and not from all n views at once. Therefore, errors
of consecutive estimations may cumulate during the process. A reconstruction
from many views under additional constraints was presented e.g. by Fitzgibbon
et al. [8].

The decomposition of the non-linear problem to two consecutive steps brings
the following controversy: since the image data are affected by noise, only ap-
proximations of matching tensors are received by the first estimate. These ap-
proximations does not have to fulfill all the tensor constraints and the successive
decomposition to projection matrices becomes unstable.

Hartley [11,9] has introduced the following improvement: estimate only the
epipoles from the given tensor and then estimate the projective matrices directly
from image data. This finesse stabilizes the process significantly. So far, this
important improvement was known only for the projective reconstruction based
on one matching tensor, i.e. only for projective reconstruction from 2, 3, or 4
views. The improvement is impossible in general for the chains of tensors derived
by Triggs.

Sturm and Triggs [20] improved the method for n views in a different way.
They proposed to recover only ‘projective’ depths of image points from closure
relations. Then, so-called joint image matrix can be constructed from the scaled
image points. This matrix can be directly factorized into projection matrices
(using SVD). The disadvantage of this technique is that the joint image matrix
can contain only the points which are observed in all n views. The points seen
only in some of n views cannot be involved in computations.

In section 2, we present an algorithm for projective reconstruction from n ≥
4 views. The algorithm is based on a linearization of the trifocal constraints
concatenated around a reference view. This configuration is a special application
of Trigg’s e−G−e closure relation and the common reference view simplifies the
computations significantly.

It allows to estimate projection matrices (using the epipoles) directly from
image data analogically to Hartley’s improvement [11,9]. Furthermore, the prob-
lem of the consistent tensor scaling disappears in this case. The used image points
have not to be observed in all n views. It is sufficient if they are observed in a
triplet of views, where one of the views is the reference view.

3 They are called joint image closure relations in [21]
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Fig. 1. Cake configuration of n − 1 triplets of views.

2 Projective Reconstruction from Trifocal Constraints
with a Common Reference View

Let us consider that n views are covered by trifocal constraints so that they have
the common reference view. (The example of such a configuration is for instance
the “Cake” configuration, see Figure 1.) Then, the following two facts hold.

Theorem 1. The trifocal tensor T (a) is related to image data by the linear
constraint

u(1)il
(b)λ
j l

(c)µ
k T (a)jk

i = 0 , λ, µ = 1, 2, 3 , (4)

where a = 1, . . . , n−1 indexes the triplets of views, b = a+1 and c = (a+2)modn

indexes the views and l
(b)λ
j denotes λ-th row of L(b)j from (2).

Proof. See [17,11]. ✷

Theorem 2. The tensors T (a) can be expressed as linear forms of the projection
matrices P̃(b) and the epipoles e(b).

Proof. The general relation between the trifocal tensor T (a), epipoles e(b), e(c),
and P̃(1), P̃(b), P̃(c) is

T (a)•k
• P̃(1) = e(c)kP̃(b) − e(b)p̃(c)k , k = 1, 2, 3 , (5)
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where T (a)•k
• is 3 × 3 matrix (• denotes the free indexes), e(c)k denotes

the k-th component of e(c), and p̃(c)k the k-th row of P̃(c), see [21,23] (Triggs
calls it e−G−e closure relation). Considering P̃(1) = [I,0], P̃(b) = [A(b), e(b)],
and P̃(c) = [A(c), e(c)], we obtain

T (a)•k
• = e(c)kA(b) − e(b)a(c)k , k = 1, 2, 3 , (6)

where a(c)k denotes the k-th row of Ã(c). ✷

When combining (4) with (6), the following consequence is evident.

Consequence 1 Let n views be covered by trifocal tensors so that they all have
a common reference view. Then, having the epipoles e(b), the camera matrices
P̃(b) can be estimated directly (and linearly) from image data.

Thus, the complete algorithm for projective reconstruction can be outlined
as follows:

1. Estimation of epipoles e(c). There are more ways how to estimate epipoles
e(c), e.g. via bifocal, trifocal or quadrifocal constraints. We consider the
estimation from neighboring tensors T (a), T (a+1) as the most ”natural” (i.e.
as the common perpendicular to six null spaces of matrices T (a)•k

• , T (a+1)•k
• ,

k = 1, 2, 3). where a = 1, . . . , n− 1, c = (a+ 2)modn.

2. Estimation of A(b) from image data using e(b), b = 2, . . . , n.
The detail description of the estimation for the “Cake” configuration is given
in Appendix A.

3 Experiments

In all experiments, the “Cake” configuration of the trifocal constraints is used,
i.e. the trifocal constraints arise from the view triplets 〈1, 2, 3〉, 〈1, 3, 4〉, . . . ,
〈1, n, 2〉, see Figure 1.

3.1 Experiment on Synthetic Data

In the first experiment, we have tested the accuracy and the stability of the
algorithm with respect to noise for 3 and 5 views. An artificial scene consisted of
a set of 40 points distributed randomly (uniform distribution) in a cube of size
1 meter. A camera with viewing angle 63◦ was used. Image size was 1000× 1000
units4. Image data were corrupted by Gaussian noise with standard deviation
increasing gradually from 0.5 to 25 image units. The reprojection error of the
reconstruction provided by the above proposed algorithm was evaluated for 200
4 The image units get a physical meaning with respect to the focal length f . One
image unit is 1

500 sin( 1
2α)f in this experiment, where α is the viewing angle.
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Fig. 2. Variance of the reprojection error vs. variance of noise in image data.

measurements for a given value of noise. The camera positions were selected
randomly in the distance between 2 and 2.5 meters from the scene center.

The results of the experiment are illustrated on Figures 2, and 3. Since the
tested algorithm is symmetric with respect to images 2, 3, 4, and 5, we present
the errors only for image 1 and 2. It is seen from Figures 2 and 3, that the
reprojection error increases linearly in the tested range of noise. Furthermore, it
is seen, that the accuracy of the results increases with the number of images.

3.2 Experiments on Real Data

The behavior of the proposed algorithm was tested on two sets of real images.
The first set captures the house from Kampa, the second sets captures a card-
board model of a toy house. The experimental software CORRGUI [4,24] was
used to select the correspondences manually, to define polygonal faces of the
reconstruction, and to map texture from images onto the reconstruction.

House at Kampa. We have taken 7 images of a house using an uncalibrated
photographic camera, see Figure 4. Then, the photographs were digitized in the
resolution 2393× 3521 pixels.

Point correspondences in image triplets were assigned manually. The follow-
ing numbers of correspondences were selected:

Image triplet (1, 2, 3) (1, 3, 4) (1, 4, 5) (1, 5, 6) (1, 6, 7) (1, 7, 2)
Number of correspondences 67 62 46 51 82 82
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(b) 5 views, noise variance = 5 i.u.
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(c) 3 views, noise variance = 15 i.u.
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(d) 5 views, noise variance = 15 i.u.

Fig. 3. Histograms of 200 measurements of the reprojection error in image No. 2 for
noise level 5 and 15 image units.

The projective reconstruction from all 7 images was performed. The following
table shows the maximal and the average distances between input and repro-
jected image points:

image No. 1 2 3 4 5 6 7
Maximal error [pxl] 13.4 27.2 12.2 8.6 14.1 8.8 8.9
Mean error [pxl] 1.3 2.3 2.6 1.9 6.7 1.4 3.1
Median [pxl] 1.0 1.7 1.9 1.6 6.2 1.1 3.4

The recovered class P of the projective reconstruction was used as the input
for Pollefeys’ algorithm [15] computing a similarity reconstruction of the house,
see Figure 5.
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Fig. 4. Seven input images of the house at Kampa.

Fig. 5. Two views on the recovered 3D model of the house at Kampa with image
texture mapped onto the reconstruction.

“Toy” House. In this experiment, 10 images of a “toy” house model were
taken, see Figure 6, by an uncalibrated photographic camera and then digitized
in the resolution 2003× 2952 pixels. Point correspondences were assigned man-
ually across image triplets.
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Fig. 6. Ten input images of the “toy” house and two views of the recovered 3D Eu-
clidean model.
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The following numbers of correspondences were selected:

Image triplets (1, 2, 3) (1, 3, 4) (1, 4, 5) (1, 5, 6) (1, 6, 7)
Number of correspondences 48 60 54 20 41
Image triplets (1, 7, 8) (1, 8, 9) (1, 9, 10) (1, 10, 2)
Number of correspondences 56 41 59 71

The projective reconstruction from all 10 images was done. The following
table shows the maximal and the average distances between the input and the
reprojected image points:

Image No. 1 2 3 4 5 6 7 8 9 10
Maximal error [pxl] 4.9 10.1 8.2 5.7 9.9 7.9 6.4 5.9 8.9 8.0
Mean error [pxl] 1.4 3.7 2.9 2.0 3.1 2.7 1.7 2.1 1.66 2.0
Median [pxl] 1.1 3.4 2.7 1.7 2.7 2.2 1.5 1.7 1.4 1.8

The Euclidean model (Figure 6) was recovered from the projective one by
assigning 3D Euclidean coordinates to 5 points.

4 Conclusions

We have presented a new approach for projective reconstruction from a set of
n views if n > 4. The views are grouped by triplets having a reference view
in common. There are two important advantages of the proposed approach.
Firstly, the existence of a common reference view allows to construct one large
over-determined linear system for all homographies in the projection matrices.
Secondly, correspondences are needed only among the triplets of views containing
the reference view. Thus, in this special arrangement with one reference view, a
simultaneous estimate of all the homographies can be obtained even though not
all correspondences are available. On the other hand, since there is a reference
view in a special position, the method is not symmetrical with respect to all
images.

A Complete Algorithm

1. Estimate the epipoles e(b), b = 2, . . . , n,
e.g. through the trifocal tensors.

2. Estimate A(b), b = 2, . . . , n.
The matrices A(b) are constrained by T (a), and e(b) up to three free
parameters (see Appendix B)





a(2)
i

...
a(n)

i




 ∈ κi , κi =











y(2)
i

...
y(n)

i




+ ωi






e(2)

...
e(n)




 , ωi ∈ IR





, i = 1, 2, 3.
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a) Let us select the element of κi orthogonal (for instance) to f =




e(2)
...
e(n)




 . LetV0, V0 ∈ IM3(n−1),3(n−1)−1, is a matrix which columns

form a basis of the space orthogonal to vector f and let zi ∈ IR3(n−1)−1,
then the selected solution can be expressed as







a(2)i
...
a(n)i





 = V

0zi , i = 1, 2, 3 . (7)

b) Substituting (8) and (6) to (4) we can formulate the linear estimate
directly for zi, i = 1, 2, 3,

minimize

∥
∥
∥
∥
∥
∥
D




GV0 0 0
0 GV0 0
0 0 GV0








z1
z2
z3





∥
∥
∥
∥
∥
∥
subject to

∥
∥
∥
∥
∥
∥




z1
z2
z3





∥
∥
∥
∥
∥
∥
= 1 ,

where the matrix D is composed from image data u(1)il
(b)λ
j l

(c)µ
k .

c) The columns a(2)i , . . . , a(n)i , i = 1, 2, 3, can be easily obtained by the
back projection (7).

B From T (a) and e(b) to A(b)

Consider n− 1 tensors T (1), . . . , T (n−1) of the triplets 〈1, 2, 3〉 , . . . , 〈1, n, 2〉 . As-
sume that we have already performed the estimations of e(j), j = 2, . . . , n.

Equations (6) can be rewritten to the matrix form






vector9(T (1)••
i )

...
vector9(T (n−1)••

i )





 = G







a(2)i
...
a(n)i





 , i = 1, 2, 3 (8)

where G is 9(n− 1)× 3(n− 1) matrix

G =























e(3)1I
e(3)2I
e(3)3I








−e(2) 0 0

0 −e(2) 0
0 0 −e(2)





[
0 0 0
0 0 0
0 0 0

]

. . .

[
0 0 0
0 0 0
0 0 0

] 


e(4)1I
e(4)2I
e(4)3I








−e(3) 0 0

0 −e(3) 0
0 0 −e(3)



 . . .

...
...

. . .


−e(n) 0 0

0 −e(n) 0
0 0 −e(n)





[
0 0 0
0 0 0
0 0 0

]

. . .




e(2)1I
e(2)2I
e(2)3I























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Since the kernel of G is generated by the vector5






e(2)
...
e(n)




 ,

for given T (a) and e(b) there exists a one dimensional set satisfying (8)





a(2)
i

...
a(n)

i




 ∈ κi , κi =











y(2)
i

...
y(n)

i




+ ωi






e(2)

...
e(n)




 , ωi ∈ IR





. (9)

The vector






y(2)
i

...
y(n)

i




 denotes a particular solution of (8) different from






e(2)

...
e(n)




 .
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Discussion

Richard Hartley: In my algorithm I compute the epipoles, then there’s an
optional phase in which you iterate over the positions of the epipoles to get a
global minimum of algebraic error. Could you do the same sort of thing here?
Tomáš Pajdla: Yes, our method can be seen as the first step where we get
some kind of initial estimate. We could follow this with iterations or proceed
with bundle adjustment to optimize the real reprojection error in the images.
We haven’t done this here, but if the initialization is good the bundle adjustment
will converge.
Richard Hartley: Just iterating over the position of the epipoles would be a lot
simpler and faster than bundle adjustment, if you have a lot of matched points.
Tomáš Pajdla: Yes.
Kalle Åström: In your house sequence there seemed to be something wrong
with the texture mapping.
Tomáš Pajdla: Yes, you’re right. The texture mapping is provided by the
VRML viewer, which can only map textures that were taken frontoparallelly. It
splits the polygons into triangles, then maps each triangle independently using
an affine transformation. For non-frontoparallel textures, this introduces discon-
tinuities across the edges, which are visible for big polygons. It’s a problem with
the VRML standard and the VRML consortium ought to fix it.

Note: The texture mapping was fixed in the final version of the paper, by
recursively subdividing the triangles until the error of the affine texture mapping
was less than one pixel.
Marc Pollefeys: In some cases it may be very hard to have a global common
view, but you might have a lot of views from all around an object. Could you
use this technique to reconstruct small patches around several central views,
and then somehow stitch all these patches together? I mean something like the
Kanade dome, where you could choose some of the cameras as central ones,
surrounded by others. Could you patch the whole cage structure together? Or
would you work with trifocal tensors in this case?
Tomáš Pajdla: We only developed the work for a single central view. One
advantage is that we can estimate the homographies from all the image data.
But it would probably be possible to generalize it by gluing things together,
maybe using the trifocal tensor as in other works. I don’t know whether it would
be any better than just using the trifocal tensor — you’d have to try it.
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Abstract. This paper generalizes the parameterized image variety ap-
proach to image-based rendering proposed in [5] so it can handle both
points and lines in a unified setting. We show that the set of all images of
a rigid set ofm points and n lines observed by a weak perspective camera
forms a six-dimensional variety embedded in IR2(m+n). A parameteriza-
tion of this variety by the image positions of three reference points is
constructed via least squares techniques from point and line correspon-
dences established across a sequence of images. It is used to synthesize
new pictures without any explicit 3D model. Experiments with real im-
age sequences are presented.

1 Introduction

The set of all images of m points and n lines can be embedded in a 2(m + n)-
dimensional vector space E, but it forms in fact a low-dimensional subspace V
of E: as will be shown in the next section, V is a variety (i.e., a subspace defined
by polynomial equations) of dimension eight for affine cameras, and an eleven-
dimensional variety for projective cameras. But V is only a six-dimensional va-
riety of E for weak perspective and full perspective cameras. We propose to
construct an explicit representation of V , the Parameterized Image Variety (or
PIV) from a set of point and line correspondences established across a sequence
of weak perspective or paraperspective images. The PIV associated with a rigid
scene is parameterized by the position of three image points, and it can be used
to synthesize new pictures of this scene from arbitrary viewpoints, with applica-
tions in virtual reality.

Like other recent approaches to image synthesis without explicit 3D models
[12,13,18], our method completely by-passes the estimation of the motion and
structure parameters, and works fully in image space. Previous techniques exploit
the affine or projective structure of images [4,10,11] but ignore the Euclidean
constraints associated with real cameras; consequently, as noted in [13], the
synthesized pictures may be subjected to affine or projective deformations. Our
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method takes Euclidean constraints into account explicitly and outputs correct
images.

Parameterized image varieties were first introduced in [5] as a technique for
parameterizing the set of images of a fixed set of points. Here we recall the
original method and present a completely new extension to the problem of pa-
rameterizing the set of images of a fixed set of lines (a potential advantage of
lines over points is that they can be localized very accurately in edge maps). We
show how both the point and line PIVs can be integrated in a general frame-
work for image synthesis without explicit 3D models, and present preliminary
experiments with real images.

1.1 Background

Recent work in computer graphics [3,8,14] and computer vision [1,12,13,18] has
demonstrated the possibility of displaying 3D scenes without explicit 3D mod-
els (image-based rendering). The light field techniques developed by Chen [3],
Gortler, Grzeszczuk, Szeliski and Cohen [8], and Levoy and Hanrahan [14] are
based on the idea that the set of all visual rays is four-dimensional, and can thus
be characterized from a two-dimensional sample of images of a rigid scene.

In contrast, the methods proposed by Laveau and Faugeras [13], Seitz and
Dyer [18], Kutulakos and Vallino [12], and Avidan and Shashua [1] only use a
discrete (and possibly small) set of views among which point correspondences
have been established by feature tracking or conventional stereo matching. These
approaches are related to the classical problem of transfer in photogrammetry:
given the image positions of tie points in a set of reference images and in a new
image, and given the image positions of a ground point in the reference images,
predict the position of that point in the new image [2].

In the projective case, Laveau and Faugeras [13] have proposed to first esti-
mate the pair-wise epipolar geometry between the set of reference views, then
reproject the scene points into a new image by specifying the position of the new
optical center in two reference images and the position of four reference points in
the new image. Once the feature points have been reprojected, realistic rendering
is achieved using classical computer graphics techniques such as ray tracing and
texture mapping. Since then, related methods have been proposed by several
authors in both the affine and projective cases [1,12,18]. The main drawback of
these techniques is that the synthesized images are in general separated from
the “correct” pictures by arbitrary planar affine or projective transformations
(this is not true for the method proposed by Avidan and Shashua [1], which syn-
thesizes correct Euclidean images, but assumes calibrated cameras and actually
estimates the (small) rotation between the cameras used at modeling time).

The approach presented in the rest of this paper generates correct images
by explicitly taking into account the Euclidean constraints associated with real
cameras. In addition, it integrates both point- and line-based image synthesis in a
common framework. We are not aware of any other line-based approach to image-
based rendering, although structure-from-line-motion methods have of course
been proposed in the past (see, for example, [9,17,21] for recent approaches),
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and image-based rendering is close in spirit to methods for transfer based on the
trifocal tensor [19], that are in principle applicable to lines [9].

1.2 The Set of Images of a Rigid Scene

Let us first consider an affine camera observing some 3D scene, i.e., let us assume
that the scene is first submitted to a 3D affine transformation and then ortho-
graphically projected onto the image plane of the camera. We denote the coordi-
nate vector of a scene point P in the world coordinate system by P = (x, y, z)T .
Let p = (u, v)T denote the coordinate vector of the projection p of P onto the
image plane, the affine camera model can be written as

p =MP + p0 (1)

with

M =
(

aT

bT

)

and p0 =
(
u0
v0

)

.

Note that p0 is the image of the origin of the world coordinate system.
Suppose we observe a fixed set of points Pi (i = 1, ..,m) with coordinate

vectors P i, and let pi denote the coordinate vectors of the corresponding image
points. Writing (1) for all the scene points yields

(
u
v

)

=
(

x y z 0 0 0 1 0
0 0 0 x y z 0 1

)



a
b
p0



 ,

where





u = (u1, . . . , um)T ,
v = (v1, . . . , vm)T ,
1 = (1, . . . , 1)T ,
0 = (0, . . . , 0)T ,






x = (x1, . . . , xm)T ,
y = (y1, . . . , ym)T ,
z = (z1, . . . , zm)T ,

and it follows that the set of images of m points is an eight-dimensional vector
space Vp embedded in IR2m.

Let us now consider a line ∆ parameterized by its direction Ω and the vector
D joining the origin of the world coordinate system to its projection onto ∆.
We can parameterize the projection δ of ∆ onto the image plane by the image
vector d that joins the origin of the image coordinate system to its orthogonal
projection onto δ. This vector is defined by the two constraints

{
d · (MΩ) = 0,
d · (MD + p0) = |d|2. (2)

It follows that the set of all affine images of n lines is an eight-dimensional
variety Vl embedded in IR2n and defined by the 2n equations in 2n+8 unknowns
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(namely, the coordinates of the vectors di (i = 1, .., n) associated with the n lines
and the coordinates of the vectors a, b and p0) obtained by writing (2) for n
lines. More generally, the set of all affine images of m points and n lines is an
eight-dimensional variety V embedded in IR2(m+n).

Let us now suppose that the camera observing the scene has been calibrated
so that image points are represented by their normalized coordinate vectors.
Under orthographic projection, aT and bT are the first two rows of a rotation
matrix, and it follows that an orthographic camera is an affine camera with the
additional constraints

|a|2 = |b|2 = 1 and a · b = 0. (3)

Likewise, a weak perspective camera is an affine camera with the constraints

|a|2 = |b|2 and a · b = 0. (4)

Finally, a paraperspective camera is an affine camera with the constraints

a · b = urvr

2(1 + u2r)
|a|2 + urvr

2(1 + v2r)
|b|2

and

(1 + v2r)|a|2 = (1 + u2r)|b|2,
where (ur, vr) denote the coordinates of the image of the reference point associ-
ated with the scene (see [16] for the use of similar constraints in Euclidean shape
and motion recovery).

As shown earlier, the set of affine images of a fixed scene is an eight-dimension-
al variety. If we restrict our attention to weak perspective cameras, the set of
images becomes the six-dimensional sub-variety defined by the additional con-
straints (4). Similar constraints apply to paraperspective and true perspective
projection, and they also define six-dimensional varieties. We only detail the
weak perspective case in the next three sections; the extension to the paraper-
spective case is straightforward [7]. Extending the proposed approach to the full
perspective case would require eliminating three motion parameters among five
quadratic Euclidean constraints, a formidable task in elimination theory [15].

2 Parameterized Image Varieties

We propose a parameterization of the six-dimensional variety formed by the weak
perspective images of m points and n lines in terms of the image positions of
three points in the scene. This parameterization defines the parameterized image
variety (or PIV) associated with the scene. Let us suppose that we observe
three points A0, A1, A2 whose images are not collinear (see Fig. 1). We can
choose (without loss of generality) a Euclidean coordinate system such that
the coordinate vectors of the three points in this system are A0 = (0, 0, 0)T ,
A1 = (1, 0, 0)T , A2 = (p, q, 0)T (the values of p and q are nonzero but unknown).
These points will be used to parameterize the PIV in the next two sections.
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A

A

A
x

y

z

Q

0

1

2

Fig. 1. Geometric setup used in the rest of the paper.

2.1 The Point PIV

This section briefly summarizes the presentation of [5]. Let us consider a point
P and its projection p in the image plane, and denote by P = (x, y, z)T and p =
(u, v)T their coordinate vectors. The values of (x, y, z) are of course unknown.
We will also assume that u0 = v0 = 0 since we can go back to the general case
via an image translation. Applying (1) to A1, A2 and P yields

u
def=




u1
u2
u



 = Aa and v
def=




v1
v2
v



 = Ab, (5)

where

A def=




AT
1

AT
2

P T



 =




1 0 0
p q 0
x y z



 .

In turn, we have a = Bu and b = Bv, where

B def= A−1 =




1 0 0
λ µ 0

α/z β/z 1/z



 and






λ = −p/q,
µ = 1/q,
α = −(x+ λy),
β = −µy.

Letting C def= z2BTB, the weak perspective constraints (4) can now be rewrit-
ten as

{
uTCu− vTCv = 0,
uTCv = 0,

with

C =



ξ1 ξ2 α
ξ2 ξ3 β
α β 1



 and






ξ1 = (1 + λ2)z2 + α2,
ξ2 = λµz2 + αβ,
ξ3 = µ2z2 + β2.
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This equation defines a pair of linear constraints on the coefficients ξi (i =
1, 2, 3), α and β; they can be rewritten as

(
dT
1 − dT

2
dT

)

ξ = 0, (6)

where





d1
def= (u21, 2u1u2, u

2
2, 2u1u, 2u2u, u

2)T ,
d2

def= (v21 , 2v1v2, v
2
2 , 2v1v, 2v2v, v

2)T ,
d
def= (u1v1, u1v2 + u2v1, u2v2, u1v + uv1, u2v + uv2, uv)T ,

ξ
def= (ξ1, ξ2, ξ3, α, β, 1)T .

When the four points A0, A1, A2, and P are rigidly attached to each other,
the five structure coefficients ξ1, ξ2, ξ3, α and β are fixed. For a rigid scene
formed by m points, choosing three of the points as a reference triangle and
writing (6) for the remaining ones yields a set of 2m− 6 quadratic equations in
2m unknowns that define a parameterization of the set of all weak perspective
images of the scenes. This is the PIV. Note that the weak perspective constraints
(6) are linear in the five structure coefficients. Thus, given a collection of images
and point correspondences, we can compute these coefficients through linear
least-squares (see [6] for an alternative solution).

Once the vector ξ has been estimated, we can specify arbitrary image po-
sitions for our three reference points and use (6) to compute u and v. A more
convenient form for this equation is obtained by introducing

E def=
(
ξ1 − α2 ξ2 − αβ
ξ2 − αβ ξ3 − β2

)

=
(
(1 + λ2)z2 λµz2

λµz2 µ2z2

)

,

and defining u2 = (u1, u2)T and v2 = (v1, v2)T . This allows us to rewrite (4) as
{
X2 − Y 2 + e1 − e2 = 0,
2XY + e = 0, (7)

where





e1 = uT
2 Eu2,

e2 = vT
2 Ev2,

e = 2uT
2 Ev2,

and
{
X = u+ αu1 + βu2,
Y = v + αv1 + βv2.

It is easy to show [5] that only two of the (X,Y ) pairs of solutions of (7) are
physically correct, and that they can be computed in closed form. The values of
u and v are then trivially obtained.

2.2 The Line PIV

Line position. Let us now consider a line ∆ and assume that its intersection
with the reference plane spanned by the points A0, A1 and A2 is transversal (see
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Fig. 1). Without loss of generality, we can parameterize this line by the affine
coordinates (χ1, χ2) of the point Q in the basis (A0, A1, A2), i.e.,

Q = A0 + χ1A1 + χ2A2,

and by the coordinate vector Ω = (x, y, 1)T of its direction in the Euclidean
world coordinate system.

Let δ denote the projection of ∆. We can parameterize this line by the
position of the image q of the point Q and the unit coordinate vector ω =
(cos θ, sin θ)T of its direction (see Fig. 2). If we take as before a0 as the origin of
the image plane, and denote by d the distance between a0 and δ, the equation
of δ is

−u sin θ + v cos θ − d = 0, (8)

where (u, v) denote image coordinates. Since the point Q lies in the reference
plane, the affine coordinates of q in the coordinate system a0, a1, a2 are also χ1
and χ2 and substituting in (8) yields

(u1 sin θ − v1 cos θ)χ1 + (u2 sin θ − v2 cos θ)χ2 + d = 0,

which is a linear equation in χ1 and χ2. Given several images of the line ∆, we
can thus estimate χ1 and χ2 via linear least-squares. These affine coordinates
can then be used to predict the position of q in any new image once a0, a1 and
a2 have been specified.

u

v
d

δ

ω

a0

 θ

a

a

q

1

2

Fig. 2. Parameterization of δ.

Line orientation. Let us now turn to the prediction of the orientation θ of the
image line. The equations derived in Section 2.1 still apply when we take P = Ω
and p = ρω, where ρ is an image-dependent scale factor. Note that since the
overall value of ρ is irrelevant, we can take z = 1 without loss of generality.

There are two differences with the point case: (a) the parameters ξi (1 =
1, 2, 3), α and β are no longer independent since there is no z parameter to take
into account, and (b) the equations in (7) contain terms in ρ, that depend on
the image considered since this time

X = ρ cos θ + αu1 + βu2 and Y = ρ sin θ + αv1 + βv2.
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Substituting these values in (7) and eliminating ρ yields, after some algebraic
manipulation

f12 − g12 cos 2θ − g sin 2θ =
√
(e1 − e2)2 + e2, (9)

with





f12
def= uT

2 Fu2 + vT
2 Fv2,

g
def= 2u2Gv2,

g12
def= u2Gu2 − v2Gv2,

and






F def=
(
α2 αβ
αβ β2

)

,

G def=
(
ξ1 ξ2
ξ2 ξ3

)

.

This allows us to construct a minimal set of four structure parameters ε1,
ε2, ε3 and Θ by introducing γ =

√
α2 + β2 and defining






ε1 = (1 + λ2)/γ2,
ε2 = λµ/γ2,
ε3 = µ2/γ2,

and Θ = Arg(α, β).

With this notation, (9) becomes

(i1 + i2)− (h1 − h2 + i1 − i2) cos 2θ − (h+ i) sin 2θ =
√
(h1 − h2)2 + h2, (10)

where





h
def= 2u2Hv2,

h1
def= uT

2Hu2,

h2
def= vT

2Hv2,

i
def= u2Iv2,

i1
def= 1

2u
T
2 Iu2,

i2
def= 1

2v
T
2 Iv2,

and






H def=
(
ε1 ε2
ε2 ε3

)

,

I def=
( 1
2 (1 + cos 2Θ) sin 2Θ

sin 2Θ 1
2 (1− cos 2Θ)

)

.

Given a set of line correspondences, the four structure parameters ε1, ε2,
ε3 and Θ can be estimated via non-linear least-squares. At synthesis time, (10)
becomes a trigonometric equation in 2θ, with two solutions that are easily com-
puted in closed form. Each of this solution only determines θ up to a π ambiguity,
which is immaterial in our case.

Note that directly minimizing the error corresponding to (10) is a biased
process. A better method is to minimize

∑p
i=1(θi − θ̂i)2, where θ̂i is the line

orientation empirically measured in image number i, and θi is the orientation
predicted from (10). This is a constrained minimization problem, and the deriva-
tives of θi with respect to the structure parameters are easily computed from
the partial derivatives of (10) with respect to θ and these parameters.

From lines to line segments. Infinite lines are inappropriate for realistic
graphical display. Thus we must associate with each of them a finite line seg-
ment that can be passed to a rendering module. On the other hand, while lines
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can be localized very accurately in the input images, the position of their end-
points cannot in general be estimated reliably since most edge finders behave
poorly near edge junctions. Additional line breaks can also be introduced by the
program that segments edges into straight lines. Here we present a method for
computing an estimate of the endpoints of a line from its PIV.

Let R denote one of the endpoints of the segment associated with the line
∆, and let r denote its image. We have r − q = lω, and R −Q = LΩ, and we
can once again write ρω =MΩ, where this time ρ = l/L. The (signed) distance
l is known at training time and unknown at synthesis time, while the (signed)
distance L is unknown at training time and known at synthesis time. It is easily
shown that

X2 + Y 2 = γ2
√
(h1 − h2)2 + h2,

and expanding this expression yields a quadratic equation in ρ

ρ2 − 2cρ+ d = 0, (11)

where
{
c
def= γ((u1 cosΘ + u2 sinΘ) cos θ + (v1 cosΘ + v2 sinΘ) sin θ),

d
def= γ2(i12 −

√
h212 + h2).

Note that we can compute γ from the vector (ε1, ε2, ε3)T as

γ =
√
ε3/(ε1ε3 − ε22).

During training, (11) can be used to estimate |L| from a single image or from
several ones (via non-linear least squares). During image synthesis, we estimate
|l| as |ρL|, and give a sign to l using tracking from a real image.

3 Image Synthesis

Once the PIV parameters have been estimated, the scene can be rendered from
a new viewpoint by specifying interactively the image positions of the three
reference points, and computing the corresponding image positions of all other
points and lines. To create a shaded picture, we can construct a constrained
Delaunay triangulation of these lines and points [20], whose vertices and edges
will be a subset of the input points and line segments. Texture mapping is then
easily achieved by using the triangulation of one of the input images. This section
details the main stages of the rendering process.

3.1 Integration of Point and Line PIVs

Once the structure parameters associated with all the points and lines have
been computed, these can be used to construct a refined estimate of the pa-
rameters 1 + λ2, λµ and µ2 that are common across all features. Indeed, the
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vectors (ξ1 − α2, ξ2 − αβ, ξ3 − β2)T and (ε1, ε2, ε3)T associated with the var-
ious lines and points all belong to the one-dimensional vector space spanned
by (1 + λ2, λµ, µ2)T . A representative unit vector (η1, η2, η3)T can be found via
singular value decomposition, and we obtain






1 + λ2 = η1η3/(η1η3 − η22),
λµ = η2η3/(η1η3 − η22),
µ2 = η3η3/(η1η3 − η22).

Once these common structure parameters have been estimated, a better es-
timate of the point PIV can be constructed via linear least squares [5]. In the
case of lines, (10) becomes an equation in γ2 and 2Θ only, and better estimates
of these parameters can be computed once again via non-linear least squares.

With the line segments associated to each line and the refined structure
parameters in hand, we are now in a position to construct a shaded picture.
As noted before, we can construct a constrained Delaunay triangulation of the
line segments and points (using, for example Shewuck’s Triangle public-domain
software [20]) whose vertices and edges form a superset of the input points and
line segments. Texture mapping is then easily achieved by using the triangulation
of one of the input images.

3.2 Hidden-Surface Removal

Here we show how traditional z-buffer techniques can be used to perform hidden-
surface elimination even though no explicit 3D reconstruction is performed. The
technique is the same as in [5] and it is summarized here for completeness. Let
Π denote the image plane of one of our input images, and Π ′ the image plane of
our synthetic image. To render correctly two points P and Q that project onto
the same point r′ in the synthetic image, we must compare their depths.

A

A
Q

a

a

a

r

q

p

a’

a’

a’r’

R

P
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0

1

20

0

1

1

2

2

Fig. 3. Using a z-buffer without actual depth values.

Let R denote the intersection of the viewing ray joining P to Q with the
plane spanned by the reference points A0, A1 and A2, and let p, q, r denote
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the projections of P , Q and R into the reference image. Suppose for the time
being that P and Q are two of the points tracked in the input image; it follows
that the positions of p and q are known. The position of r is easily computed by
remarking that its coordinates in the affine basis of Π formed by the projections
a0, a1, a2 of the reference points are the same as the coordinates of R in the affine
basis formed by the points A0, A1, A2 in their own plane, and thus are also the
same as the coordinates of r′ in the affine basis of Π ′ formed by the projections
a′
0, a

′
1, a

′
2 of the reference points.

The ratio of the depths of P and Q relative to the plane Π is simply the ratio
pr/qr. Not that deciding which point is actually visible requires orienting the line
supporting the points p, q, r, which is simply the epipolar line associated with
the point r′. A coherent orientation should be chosen for all epipolar lines and
all frames. This is easily done, up to a two-fold ambiguity, using the technique
described in [5].

3.3 Rendering

Given an input triangulation, the entire scene can now be rendered as follows:
(1) pick the correct orientation for the epipolar lines (using one of the point
correspondences and the previous orientation); (2) compute, for each of the data
points P , the position of r in the reference image and the “depth” pr and store
it as its “z” coordinate; (3) render the triangles forming the scenes using a z-
buffer algorithm with orthographic projection along the z-axis. Texture mapping
is easily incorporated in the process. It should be noted that this process can
generate two families of images corresponding to the initial choice of epipolar
line orientation. The choice can be made by the user during interactive image
synthesis.

4 Implementation and Results

We have implemented the proposed approach and tested it on real data sets.
The LQBOX data set is kindly provided by Dr. Long Quan from CNRS, the
TOWER and XL1BOX data sets were acquired by the authors in the Computer
Vision and Robotics Laboratory at the Beckman Institute, using a Canon XL1
Digital Camcorder kindly provided by Dr. David Kriegman.

For completeness, we first present results of point PIV experiments. Along
with the above data sets we have used the HOUSE data set kindly provided
by Dr. Carlo Tomasi, the KITCHEN data set kindly provided by the Modeling
by Videotaping Research Group at the Department of Computer Science of
Carnegie Mellon University and the FLOWER and FACE data sets acquired by
the authors. Note that for both point and line features, we have four variants of
the PIV algorithm, namely, the first and second passes of the weak perspective
and paraperspective algorithms (or W1, P1, W2 and P2 in short). Fig. 4 shows
some quantitative results where we have estimated the PIVs for each data set
using different numbers of images in training. In particular we have used the



Point- and Line-Based Parameterized Image Varieties 143

0

20

40
25% training

Image Point Reconstruction Using PIV

0

5

10 50% training

E
rr

or
 in

 R
ec

on
st

ru
ct

io
n 

[P
ix

el
s]

   
   

   
   

   
 

0

2

4

6

8
75% training

KITCHEN  HOUSE  LQBOX  TOWER XL1BOX FLOWER 
0

2

4
100% training

Data Set

Fig. 4. Average error in image point reconstruction on real data sets: for each data the
bars from left to right represents the W1, P1, W2 and P2 methods. In training, from
top to bottom, the first 25%, 50%, 75% and 100% of the images are used.

first 25%, 50%, 75%, or 100% of the data in training and used the rest of the
data as test images to compute the reprojection errors (except in the last case
where all the data is used in training and testing). Figure 5 shows synthesized
images for novel views using point PIVs.

Fig. 6 shows the mean errors for the reconstruction of images of line features
for four different methods as it is done for point features above. Note that the
line position is computed using affine notions only. We have recorded the error
in reconstruction of the line position in pixels and the line direction in degrees.

Fig. 7 shows the line features with their extents reconstructed for the last
frame in the TOWER data, with the first half of the images used for training.
The original lines plotted as dotted lines.

Finally, Fig. 8 shows view-synthesis results where we have used the line and
point PIVs together. More view synthesis results in the form of movies can found
in http://www-cvr.ai.uiuc.edu/˜ygenc/thesis/index.html.
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Fig. 5. Image synthesis for novel views using point features for the FLOWER and
FACE data sets.

5 Discussion

We have presented an integrated method for image-based rendering from point
and line correspondences established across image sequences, and demonstrated
an implementation using real images. A very interesting problem that we plan
to explore is the construction of better meshes from image sequences. This is
a difficult issue for any image-based rendering technique that does not attempt
to estimate the camera motion or the actual scene structure, and it is also a
very important one in practice since rendering a scene from truely arbitrary
viewpoints requires constructing a mesh covering its whole surface.
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Discussion

Yongduek Seo: In the tower movie I see that there are shadows. Would it be
possible to change the shadow according to the motion?
Jean Ponce: That would be nice, but I don’t know how to do it. David Krieg-
man did something like that for fixed illumination and Lambertian objects. In
principal you could take this funny linear illumination model and put it in, but
if you wanted to use it for real I think there would be a lot of engineering work
to do. It’s not clear how much the graphics companies want these things. Yakup
tells me that building geometric models is not very interesting for them — they
can just buy a set of scanners and do the job like that.
Bill Triggs: Following on from the previous talk, your six-dimensional variety
obviously supports some sort of embedding of Euclidean structure, including the
Euclidean group motions. So it might be possible to use Lie algebra techniques
to move yourself around with your joystick. Secondly, you talk about varieties
but it isn’t clear to me that the global structure is of any use to you — really
you are looking at just one point on the variety.
Jean Ponce: I agree on both points. Let me answer the second question first.
The points are completely independent except when we estimate the structure
coefficients and put it together. There two ways it could be better. First, instead
of the three point basis it would be nice to do it some other way. Second, ideally,
you should take all the data into account at once and we don’t know how yet.

For the first question on how to use the joystick, yes we could do something
like that. For example Avidan and Shashua use the trifocal tensor for that, but
they explicitly put in a representation of the rotation. In our case we didn’t try
it because we didn’t want either motion or 3D structure. We wanted to work
only in the image and see what we could do there. Even then, there is still a lot
of implicit 3D stuff. But yes, if you wanted you could probably go back to some
Euclidean embedding and make it work.
Yvan Leclerc: In your experiments, did you manually segment out the tower
or was it automatic?
Jean Ponce: We built a simple tracker/segmenter and after that cleaned the
results by hand.
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Abstract. This paper addresses the problem of motion recovery from image pro-
files, in the important case of turntable sequences. No correspondences between
points or lines are used. Symmetry properties of surfaces of revolution are ex-
ploited to obtain, in a robust and simple way, the image of the rotation axis of the
sequence and the homography relating epipolar lines. These, together with geo-
metric constraints for images of rotating objects, are used to obtain epipoles and,
consequently, the full epipolar geometry of the camera system. This sequential
approach (image of rotation axis — homography — epipoles) avoids many of the
problems usually found in other algorithms for motion recovery from profiles. In
particular, the search for the epipoles, by far the most critical step for the estimation
of the epipolar geometry, is carried out as a one-dimensional optimization prob-
lem, with a smooth unimodal cost function. The initialization of the parameters is
trivial in all three stages of the algorithm. After the estimation of the epipolar ge-
ometry, the motion is recovered using the fixed intrinsic parameters of the camera,
obtained either from a calibration grid or from self-calibration techniques. Results
from real data are presented, demonstrating the efficiency and practicality of the
algorithm.

1 Introduction

Points and lines have long been used for the recovery of structure and motion from
images of 3D objects. Nevertheless, for a smooth surface the predominant feature in the
image is its profile or apparent contour, defined as the projection of a contour generator
of the surface. A contour generator corresponds to the set of points on a surface where
the normal vector to the surface is orthogonal to the rays joining the points in the set and
the camera center (for details, see [3, 4]). If the surface does not have noticeable texture,
the profile may actually be the only source of information available for estimating the
structure of the surface and the motion of the camera.

The problem of motion recovery from image profiles has been tackled in several
works. The concept of frontier point, defined as a point on a surface tangent to any
plane of the pencil of epipolar planes related to a pair of images, was introduced in
[15]. The idea was further developed in [14], where the frontier point was recognized
as a fixed point on a surface, created by the intersection of two contour generators. A
frontier point projects on its associated images as an epipolar tangency. The use of
frontier points and epipolar tangencies for motion recovery was first shown in [2]. A
parallax based technique, using a reference planar contour was shown in [1], where
the images are registered using the reference contour and common tangents are used
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to determine the projections of the frontier point. The techniques described above face
two main difficulties: the likely non-uniqueness of the solution, due to the presence of
local minima, and the unrealistic requirement of having at least 7 corresponding epipolar
tangencies available on each image pair. Better results can be achieved when an affine
approximation is used, as shown in [11]. In this case the problem can be solved when as
few as 4 epipolar tangencies are available, but the application of the method is constrained
to situations where the affine approximation is valid.

In the case of circular motion, the envelope of the profiles exhibits symmetry prop-
erties that greatly simplify this estimation problem. This is an idea well developed for
orthographic projection. In [15] it is shown that, when the image plane is parallel to
the axis of rotation, the image of the axis of rotation will be perpendicular to common
tangents to the images of the profile. The use of bilateral symmetry to obtain the axis
of rotation was first introduced in [13]. The condition of parallelism between the image
plane and the axis of rotation was relaxed in [8], but orthographic projection was still
used.

In this paper we introduce a novel technique for the estimation of the motion pa-
rameters of turntable sequences. It based on symmetry properties of the set of apparent
contours generated by the object that undergoes the rotation. In Section 2, a method for
obtaining the images of the axis of rotation and a special vanishing point is presented.
The algorithm is simple, efficient and robust, and it does not make direct use of the
profiles. Therefore, its use can be extended to non-smooth objects, and the quality of
the results obtained justifies doing so. Section 3 makes use of the previous results to in-
troduce a parameterization of the fundamental matrix based on the harmonic homology.
This parameterization allows for the estimation of the epipoles to be carried out as inde-
pendent one-dimensional searches, avoiding local minima points and greatly decreasing
the computational complexity of the estimation. These results are used in Section 4,
which presents the algorithm for motion estimation. Experimental results are shown in
Section 5, and conclusions and future work are described in Section 6.

2 Theoretical Background

An object rotating about a fixed axis sweeps out a surface of revolution [8]. Symmetry
properties [18, 19] of the image of this surface of revolution can be exploited to estimate
the parameters of the motion of the object in a simple and elegant way, as will be shown
next.

2.1 Symmetry Properties of Images of Surfaces of Revolution

In the definitions that follow, points and lines will be referred to by their representation
as vectors in homogeneous coordinates.

A 2D homography that keeps the pencil of lines through a point u and the set of
points on a line l fixed is called a perspective collineation with center u and axis l. An
homology is a perspective collineation whose center and axis are not incident (otherwise
the perspective homology is called an elation). Let a be a point mapped by an homology
onto a point a′. It is easy to show that the center of the homology u, a and a′ are collinear.
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Let qa be the line passing through these points, and va the intersection of qa and the
axis l. If a and a′ are harmonic conjugates with respect to u and va, i.e., their cross-ratio
is one, the homology is said to be a harmonic homology (see details in [16, 5]). The
matrix W representing a harmonic homology with center u and axis l in homogeneous
coordinates is given by

W = I− 2
u lT

uTl
. (1)

Henceforth a matrix representing a projective transformation in homogeneous coordi-
nates will be used in reference to the transformation itself whenever an ambiguity does
not arise.

An important property of profiles of surfaces of revolution is stated in the next
theorem:

Theorem 1. The profile of a surface of revolution S viewed by a pinhole camera is
invariant to the harmonic homology with axis given by the image of the axis of rotation
of the surface of revolution and center given by the image of the point at infinity in a
direction orthogonal to a plane that contains the axis of rotation and the camera center.

The following lemma will be used in the proof of Theorem 1.

Lemma 1. Let T : Γ �→ Γ be a harmonic homology with axis l and center u on the
plane Γ , and let H : Γ �→ Γ ′ be a bijective 2D homography. Then, the transformation
W = HTH−1 : Γ ′ �→ Γ ′ is a harmonic homology with axis l′ = H−Tl and center
u′ = Hu.

Proof. Since H is bijective, H−1 exists. Then

W = H

(

I− 2
ulT

uTl

)

H−1

= I− 2
u′l′T

u′Tl′
, (2)

since uTl = u′Tl′. ✷

The following corollary is a trivial consequence of Lemma 1:

Corollary 1. Let T, H and W be defined as in Lemma 1. The transformation H is a
isomorphism between the structures (T, Γ ) and (W, Γ ′), i.e, ∀γ ∈ Γ , HTγ = WHγ.

An important consequence of Lemma 1 and Corollary 1 is that if a set of points s, e.g.,
the profile of a surface of revolution, is invariant to a harmonic homology T, the set
ŝ obtained by transforming s by a 2D projective transformation H is invariant to the
harmonic homology W = HTH−1.

Without loss of generality assume that the axis of rotation of the surface of revolution
S is coincident with the y-axis of an right-handed orthogonal coordinate system. Consid-
ering a particular case of Theorem 1 where the pinhole camera P is given by P = [I |t ],
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where t = [0 0 α]T, for any α > 0, symmetry considerations show that the profile s of
S will be bilaterally symmetric with respect to the image of y (a proof is presented in
the Appendix 1), which corresponds to the line qs = [1 0 0]T in (homogeneous) image
coordinates.

Proof of Theorem 1 (particular case). Since s is bilaterally symmetrical about qs, there
is a transformation T that maps each point of s on its symmetrical counterpart, given by

T =




−1 0 0

0 1 0
0 0 1



 . (3)

However, as any bilateral symmetry transformation, T is also a harmonic homology,
with axis qs and center vx = [1 0 0]T, since

T = I− 2
vxqT

s

vT
x qs

. (4)

The transformation T maps the set s onto itself (although the points of s are not mapped
onto themselves by T, but on their symmetrical counterparts), and thus s is invariant to
the harmonic homology T. Since the camera center lies on the z-axis of the coordinate
system, the plane that contains the camera center and the axis of rotation is in fact the
yz-plane, and the point at infinity orthogonal to the yz-plane is Ux = [1 0 0 0]T, whose
image is vx. ✷

Let P̂ be an arbitrary pinhole camera. The camera P̂ can be obtained by rotating P about
its optical center by a rotation R and transforming the image coordinate system of P by
introducing the intrinsic parameters represented by the matrix K. Let KR = H. Thus,
P̂ = H[I |t ], and the point Ux in space with the image vx in P will project as a point
ux = Hvx in P̂. Analogously, the line qs in P will correspond to a line ls = H−Tqs
in P̂. It is now possible to derive the proof of Theorem 1 in the general case.

Proof of Theorem 1 (general case). Let ŝ be the profile of the surface of revolution S
obtained from the camera P̂. Thus, the counter-domain of the bijection H acting on the
profile s is ŝ (or Hs = ŝ), and, using Lemma 1, the transformation W = HTH−1

is a harmonic homology with center ux = Hvx and axis ls = H−Tqs. Moreover,
from Corollary 1, WHs = HTs, or Wŝ = HTs. From the particular case of the
Theorem 1 it is known that the profile s will be invariant to the harmonic homology T,
so Wŝ = Hs = ŝ. ✷

The images of a rotating object are the same as the images of a fixed object taken
by a camera rotating around the same axis, or by multiple cameras along that circular
trajectory. Consider any two of such cameras, denoted by P and P′. If P and P′ point
towards the axis of rotation, their epipoles e and e′ will be symmetrical with respect to the
image of the rotation axis, or e′ = Te, according to Figure 2. In a general situation, the
epipoles will simply be related by the transformation e′ = We. It is then straightforward
to show that the corresponding epipolar lines l and l′ are related by l′ = W−Tl. This
means that the pair of epipoles can be represented with only two parameters once W is
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(a) (b) (c) (d)

(e)

Fig. 1. Lines joining symmetric points with respect to the image of rotation axis ls (images are
scaled and translated independently for better observation). (a) The optical axis points directly
towards the rotation axis. (b) The camera is rotated about its optical center by an angle ρ of 20◦

in a plane orthogonal to the rotation axis. (c) ρ = 40◦. (d) ρ = 60◦. (e) Same as (d), but the
vanishing point vx is also shown.

known. From (2) it can be seen that W has only four degrees of freedom (dof). Therefore,
the fundamental matrix relating views of an object under circular motion must have only
6 dof, in agreement with [17].

3 Parameterization of the Fundamental Matrix

3.1 Epipolar Geometry under Circular Motion

The fundamental matrix corresponding to a pair of cameras related by a rotation around
a fixed axis has a very special parameterization, as shown in [17, 7]. A simpler derivation
of this result will be shown here.

Consider the pair of camera matrices P1 and P2, given by

P1 = [I| t ] (5)

P2 = [Ry(θ)| t ] ,

where

t =
[
0 0 1

]T
and (6)

Ry(θ) =




cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ



 .
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Fig. 2. If the cameras are pointing towards the axis of rotation, the epipoles e and e′ are symmetric
with respect to the image of the axis of rotation.

Let F be the fundamental matrix relating P1 and P2. From (5) and (6), it is easy to see
that

F =




0 cos θ − 1 0

cos θ − 1 0 sin θ
0 − sin θ 0



 (7)

= − sin θ




1
0
0





×

+ (cos θ − 1)








1
0
0



 [0 1 0] +




0
1
0



 [1 0 0]



 . (8)

Let now UX ,UY and UZ be the points at infinity in the x, y and z direction, respectively,
in world coordinates. Projecting these points using the camera P1, we obtain ux,uy and
uz given by

ux =




1
0
0



 ,uy =




0
1
0



 and uz =




0
0
1



 . (9)

The image of the horizon is the line qh, and the image of the screw axis is the line qs,
where

qs =




1
0
0



 and qh =




0
1
0



 . (10)

Substituting (9) and (10) in (8), the desired parameterization is obtained:

F = − sin θ

[

[ux]× + tan
θ

2
(qsqT

h + qhqT
s )
]

. (11)
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The factor “− sin θ” can be eliminated since the fundamental matrix is defined only
up to an arbitrary scale. Assume now that the cameras P1 and P2 are transformed by a
rotation R about their optical centers and the introduction of a set of intrinsic parameters
represented by the matrix K. The new pair of cameras, P̂1 and P̂2, is related to P1 and
P2 by

P̂1 = HP1 and

P̂2 = HP2, (12)

where H = KR. The fundamental matrix F̂ of the new pair of cameras P̂1 and P̂2 is
given by

F̂ = H−TFH−1

= det(H)[vx]× + tan
θ

2
(lslTh + lhlTs ), (13)

where vx = Hux, lh = H−Tqh and ls = H−Tqs.

3.2 Parameterization via Planar Harmonic Homology

The epipole e′ in the image obtained from the camera P2 in (5) is given by

e′ = ux − tan
θ

2
uz, (14)

which can be obtained from (5). The planar harmonic homography T relating the sym-
metric elements in the stereo camera system P1 and P2 (e.g. epipoles and pencils of
epipolar lines) can be parameterized as

T = I− 2
uxqT

s

uT
x qs

. (15)

Direct substitution of (14) and (15) in (11) shows that the fundamental matrix can be
parameterized by e′ and T as:

F = [e′]×T. (16)

Again, it is easy to show that the result does not depend on the transformation H, and
the general result becomes

F̂ = [ê′]×W, with ê′ = vx − tan
θ

2
vz. (17)

Thus, we have proved that the transformation W corresponds to a plane induced ho-
mography (see [9]). This means that the registration of the images can be done by using
W instead of a planar contour as proposed in [1, 6]. It is known that different choices of
the plane that induces the homography in a plane plus parallax parameterization of the
fundamental matrix will result in different homographies, although they will all generate
the same fundamental matrix, since

F̂ = [ê′]×W = [ê′]×[W + ê′aT] ∀a ∈ R
3. (18)
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Fig. 3. The harmonic homology is a homography induced by the plane that contains the axis of
rotation and bisects the segment joining the camera centers.

The three parameter family of homographies [W+ê′aT] has a one to one correspondence
with the set of planes in R

3. In particular, the homology W relating the cameras P̂1 and
P̂2 is induced by a plane Ξ that contains the axis of rotation y and bisects the segment
joining the optical centers of the cameras, as shown in Figure 3.

4 Algorithms for Motion Recovery

4.1 Estimation of the Harmonic Homology

Consider an object that undergoes a full rotation around a fixed axis. The envelope ε
of the profiles is found by overlapping the image sequence and applying a Canny edge
detector to the resultant image (Figure 4(b)). The homography W is then found by
sampling N points xi along ε and optimizing the cost function

fW(vx, ls) =
N∑

i=1

dist(ε,W(vx, ls)xi)2, (19)

where dist(ε,W(vx, ls)xi) is the distance between the curve ε and the transformed
sample point W(vx, ls)xi.

The initialization of the line ls is trivial, and can be made simply by picking a coarse
approximation for the axis of symmetry of ε. This can be done via user intervention or
by automatically locating one or more pairs of corresponding bitangents. In all practical
situations, the camera should be roughly pointing towards the rotation axis, which means
that the point vx is far (or even at infinity) and at a direction orthogonal to ls. The
estimation of W is summarized in Algorithm 1.

4.2 Estimation of the Epipoles

After obtaining a good estimation of W, one can then search for epipolar tangencies
between pairs of images in the sequence. Epipolar tangencies are important for motion
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(a)

(b) (c)

Fig. 4. (a) Image 1, 8, 15 and 22 in the sequence of 36 images of a rotating vase. (b) Envelope of
apparent contours produced by overlapping all images in the sequence. (c) Initial guess (dashed
line) and final estimation (solid line) of the image of the rotation axis.

Algorithm 1 Estimation of the harmonic homology W.
overlap the images in sequence;
extract the envelope ε of the profiles using Canny edge detector;
sample N points xi along ε;
initialize the axis of symmetry ls and the vanishing point vx;
while not converged do

transfer the points xi using W;
compute the distances between ε and the transferred points;
update ls and vx to minimize the function in (19);

end while

estimation from profiles since they are the only correspondences that can be established
between image pairs [2]. To obtain a pair of corresponding epipolar tangencies in two
images, it is necessary to find a line tangent to one profile which is transferred by W−T to
a line tangent to the profile in the other image (see Figure 6). The search for corresponding
tangent lines may be carried out as a one-dimensional optimization problem. The single
parameter is the angle α that defines the orientation of the epipolar line l in the first
image, and the cost function is given by

fα = dist(W−T l(α), l′‖(α)), (20)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5. Five images from a single camera and circular motion after a rotation of 10◦, 20◦, 40◦ and
80◦ are shown in (b), (e), (h) and (k), and the base image at 0◦ can be seen in (a), (d), (g), (g). The
epipolar geometry between image pairs is shown. The overlapping of corresponding pairs can be
seen in (c), (f), (i) and (l). Corresponding epipolar lines intersect at the image of the rotation axis,
and all epipoles lie on a common horizon.

where dist(W−T l(α), l′‖(α)) is the distance between the transferred line l′ = W−T l
and a parallel line l′‖ tangent to the profile in the second image. Typical values of α lie
between -0.5 rad and 0.5 rad, or −30◦ and 30◦.

Given a pair of epipolar lines near the top and the bottom of a profile, the epipole
can be computed as the intersection point of the two epipolar lines, and the fundamental
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Fig. 6. Corresponding pairs of epipolar tangencies near the top and bottom of two images.

Algorithm 2 Estimation of the orientation of the epipolar lines.
extract the profiles of two adjacent images using Canny edge detector;
fit b-splines to the top and the bottom of the profiles;
initialize α;
while not converge do

find l, l′ and l′‖;
compute the distance between l′ and l′‖;
update α to minimize the function in (20);

end while

matrix relating the two cameras follows from (17). Using the camera calibration matrix
obtained either from a calibration grid or from self-calibration techniques, the essential
matrix can be found. The decomposition of the essential matrix gives the relative motion
between two cameras.

4.3 Critical Configurations

There is a configuration where the algorithm described in Algorithm 2 fails. Let Nt

and N ′
t be subsets of two adjacent apparent contours, with Nt and N ′

t related by the
homography W found in Algorithm 1. Any value of α in Algorithm 2 such that the
resulting epipolar tangencies are in Nt and N ′

t will minimize the cost function in (19).
The proof follows from observing that if α is the orientation of a putative epipolar line
with corresponding epipolar tangency in Nt in the first contour, the mapping of the
epipolar line tangency via W, as required by Algorithm 2, will result in a line tangent
to the second contour, as shown in Figure 7. To overcome this problem it is enough then
to choose another contour as the first one of the pair where the problem appeared, and
proceed with the algorithm.
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Fig. 7. If the apparent contours are related by the homography W, there will be multiple solutions
for the positions of the epipoles. Both pairs (e1, e1

′) and (e2, e2
′) are valid epipoles, consistent

with the transformation W (and thus with l) and the contours s and s′.

The ultimate degenerate configuration occurs when the surface being viewed is a
surface of revolution (if not completely, at least in the neighbourhood of the frontier
points), and the axis of rotation of the turntable is coincident with the axis of rotation
of the surface (or the axis of rotation of the rotationally symmetric neighbourhoods). In
this case, all the contours are the same, since the contour generator is a fixed curve in
space, and the substitution of one contour for another will not make any difference.

5 Implementation and Experimental Results

The algorithms described in the previous session were tested using a set of 36 images
of a vase placed on a turntable (see Figure 4(a)) rotated by an angle of 10◦ between
successive snapshots. To obtain W, the Algorithm 1 was implemented with 40 evenly
spaced sample points along the envelope (N = 40). An approximation for the image
of the rotation axis was manually picked by observing the symmetry of the envelope.
This provided an initial guess for ls. The vanishing point vx was initialized at infinity,
at a direction orthogonal to ls. The cost function (19) was minimized using the BFGS
algorithm [10]. The initial and final configurations can be seen in Figure 4(c).

For the estimation of the motion, the Algorithm 2 was applied for pairs of images
to obtain the essential matrix E. The camera calibration matrix was obtained using a
calibration grid. The cost function in (20) was minimized using the Golden Section
method. This optimization problem is rather simple since the cost function is smooth
and unimodal (see Figure 8).

The direction of the axis of rotation was initialized as that obtained from the first pair
of images. The quality of each subsequent estimation was checked by comparing the
direction of the rotation axis computed from the current pair with the average direction
found for all the previous pairs. If the deviation was greater than 10◦, the motion was
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Fig. 8. Plot of the cost function (20) for a pair of images in the sequence. (a)/(b) Cost function for
a pair of corresponding epipolar tangencies near the top/bottom of the profile.

Algorithm 3 Motion estimation.
estimate motion between IMAGE(1) and IMAGE(2);
update the direction of the axis of rotation;
for i = 3 TO END do

j = i - 1;
while motion is bad do

estimate motion between IMAGE(j) and IMAGE(i);
j = j - 1;

end while
update the direction of the axis of rotation;

end for

estimated by using a different combination of images (see Algorithm 3). Such process
of quality control is completely automatic.

The remaining problem was to fix the ratio of the norm of the relative translations.
Since the camera is performing circular motion, it is easy to show that the relative trans-
lations are proportional to sin θ/2, where θ is the angle of the relative rotation between
the two cameras. The resulting camera configurations are presented in Figure 9(a-c). The
estimated relative angles between adjacent cameras are accurate, as shown in fig 9(d)
and the camera centers are virtually on the same plane and the motion closely follows a
circular path.

6 Conclusions and Future Work

This paper introduces a new method of motion estimation by using profiles of a rotat-
ing object. No affine approximation has been used and only minimal information (two
epipolar tangencies) is required, as long as the object performs a complete rotation. This
means that the algorithm can be applied in any practical situation involving circular mo-
tion. If more information is available, the estimation problem will be more constrained,
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Fig. 9. (a-c) Final configuration of the estimated motion of the cameras. (d) Estimated angles of
rotation.

and numerical results can be further improved. By proceeding in a divide-and-conquer
approach, the difficulties due to initialization and presence of local minima are over-
come. The search space in the main loop of the algorithm is one-dimensional, making
the technique highly efficient.

Some ideas can be explored to further improve the results presented in this work.
A promising approach is to make simultaneous use of the parameterizations shown
in (11) and (17). After estimating the position of the epipoles using Algorithm 2, the
horizon line can be found by fitting a line lh to the epipoles, such that lTh vx = 0. This
should be done by using a robust method, such as Hough transform or RANSAC. Then,
Algorithm 2 can be run again, now with the constraint that all the epipoles must lie
on the horizon line. This procedure constrains the cameras to exactly follow a circular
path, and integrates information from all images in the estimation of the horizon. This
approach has already been proved to produce more accurate results, allowing for high
quality reconstructions [12].
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Appendix A: Bilateral Symmetry of Images of Surfaces of
Revolution

Let S be the surface of revolution parameterized as

S = {S(τ, φ) = [f(τ) sinφ g(τ) − f(τ) cos φ]T, (τ, φ) ∈ Iτ × Iφ}, (21)

where f : R ⊃ Iτ �→ R is a differentiable map for which ∃a > 0 such that 0 < f(τ) < a
∀τ ∈ Iτ , and g : R ⊃ Iτ �→ R is a differentiable map for which ∃b, c such that
b < g(τ) < c ∀τ ∈ Iτ . Also, ḟ2 + ġ2 > 0, where ḟ and ġ are the derivatives of the
maps f and g. The normal vector at the point S(τ, φ) is given by n = Sφ × Sτ =
f(τ)[−ġ sinφ ḟ ġ cos φ]T, where Sχ is the partial derivative of S with respect to the
variable χ. Let P = [I |t ] be the matrix of a pinhole camera, with t = [0 0 α]T and
α > a.

The profile s of S obtained from P is the projection of the set of points of S where
(S(τ, φ)+t) ·n = 0. This constraint can be expressed as g(τ)ḟ− ġf(τ)+αġ cos φ = 0,
and for τ ∈ Iτ such that ġ(τ) �= 0 the resulting expression for s ∈ s after removing the
dependence on φ is given by

s(τ) =



±
f
√

(αġ)2−(ġf−gḟ)2

α2ġ−f(ġf−gḟ)
g

α2ġ−f(ġf−gḟ)



 (22)

∀τ such that |(ġf − gḟ)/(αġ)| < 1. Observe that this condition implies that α2ġ −
f(ġf − gḟ) �= 0, otherwise one would have |(ġf − gḟ)/(αġ)| = |α/f | > 1. From
(22), one can see that the profile s is bilaterally symmetric about the line qs = [1 0 0]T

(observe the sign “±”).
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Discussion

Jean Ponce: This is all very interesting, but given that the motion is circular and the aim
is to model an object, why not calibrate the camera, at least internally, and maybe the
turntable too. After all the camera just sits there on its tripod, and you have the turntable
there.

Paulo Mendonça: For the internal parameters I agree, we can calibrate off line and we
don’t even need the turntable to do it. In fact, in the particular experiment I showed, we
used an off-line internal calibration, not the one extracted from the harmonic homology.
But for the external parameters and the motion I’d rather not do that because I like the
flexibility of not having to rely on a calibration grid.

Andrew Fitzgibbon: To continue that answer, there were several calibrated turntable
systems at SIGGRAPH, and every one was knocked at least ten times during the day
and had to be recalibrated. It was impossible to precalibrate a system there.

My question is: for your object, do the epipolar tangencies have to be far from the
rotation axis to get a good estimate of the epipole?

Paulo Mendonça: No, not really. The thing I have to avoid is contours that are related to
one other by the harmonic homology. That doesn’t mean that the epipolar tangencies have
to be far from the rotation axis. With an irregular object that doesn’t have symmetries
with itself that are close to the symmetry given by the surface of revolution, there’s no
problem.

Andrew Fitzgibbon: OK. Also, in your results it appeared that your camera centres
were not coplanar.

Paulo Mendonça: Yes, as I said the results are preliminary. I haven’t implemented all
the theory I talked about, such as the bit where the epipoles are constrained to lie on the
same horizon. What I used is the cloud of points I showed in one of the slides.

Andrew Fitzgibbon: So you would expect your results to improve.

Paulo Mendonça: Oh yes, I’ve improved on that result already. What I haven’t done yet
is use the full sequence of images to escape from the algorithm’s critical configurations.
There should be a way of doing that, so that if I can’t use a particular pair of images to
get the angle associated with a camera, I can just jump to another pair.

Yvan Leclerc: I was wondering if the harmonic homology for this kind of skew symme-
try you are talking about, would hold even for objects for which the outline is partially
self-occluding from a certain viewpoint? If you think of a dumb bell you get an occluding
edge for example.

Paulo Mendonça: Yes, we still get the symmetry and it is actually better for the ini-
tialization of the rotation axis. Self-occlusions give non-smooth points in the profile of
the surface of revolution. These are good for initialization because they are symmetry
points that are both accurate and trustworthy.

Kalle Åström: Is there a connection between the rotation angles and the epipoles?

Paulo Mendonça: Yes. The angle is directly related to the position of the epipole along
the horizon line.
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Abstract. The prevailing efforts to study the standard formulation of
motion and structure recovery have been recently focused on issues of
sensitivity and robustness of existing techniques. While many cogent ob-
servations have been made and verified experimentally, many statements
do not hold in general settings and make a comparison of existing tech-
niques difficult. With an ultimate goal of clarifying these issues we study
the main aspects of the problem: the choice of objective functions, op-
timization techniques and the sensitivity and robustness issues in the
presence of noise.
We clearly reveal the relationship among different objective functions,
such as “(normalized) epipolar constraints”, “reprojection error” or “tri-
angulation”, which can all be be unified in a new “ optimal triangulation”
procedure formulated as a constrained optimization problem. Regardless
of various choices of the objective function, the optimization problems all
inherit the same unknown parameter space, the so called “essential man-
ifold”, making the new optimization techniques on Riemanian manifolds
directly applicable.
Using these analytical results we provide a clear account of sensitivity
and robustness of the proposed linear and nonlinear optimization tech-
niques and study the analytical and practical equivalence of different
objective functions. The geometric characterization of critical points of
a function defined on essential manifold and the simulation results clarify
the difference between the effect of bas relief ambiguity and other types of
local minima leading to a consistent interpretations of simulation results
over large range of signal-to-noise ratio and variety of configurations. 1

1 Introduction

While the geometric relationships governing the motion and structure recovery
problem have been long understood, the robust solutions in the presence of
noise are still sought. New studies of sensitivity of different algorithms, search
for intrinsic local minima and new algorithms are still subject of great interest.
The seminal work of Longuet-Higgins [9] on the characterization of the so

called epipolar constraint, enabled the decoupling of the structure and motion
1 This work is supported by ARO under the MURI grant DAAH04-96-1-0341
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problems and led to the development of numerous linear and nonlinear algo-
rithms for motion estimation (see [14,7,21] for overviews). The appeal of linear
algorithms which use the epipolar constraint (in the discrete case [21,7,9,14] and
in the differential case [6,13]) is the closed form solution to the problem which,
in the absence of noise, provides true estimate of the motion. However, a further
analysis of linear techniques revealed an inherent bias in the translation esti-
mates [6,7]. The sensitivity studies of the motion estimation problem have been
done both in an analytical [1,18] and experimental setting [19] and revealed the
superiority of the nonlinear optimization schemes over the linear ones. Numerous
nonlinear optimization schemes differed in the choice of objective functions [23],
different parameterizations of the unknown parameter space [22,23,5] and means
of initialization of the iterative schemes (e.g. monte-carlo simulations [21,17], or
linear techniques [6]). In most cases, the underlying search space has been pa-
rameterized for computational convenience instead of being loyal to its intrinsic
geometric structure. Algebraic manipulation of intrinsic geometric relationships
typically gave rise to different objective functions, making the comparison of the
performance of different techniques inappropriate and often obstructing the key
issues of the problem. The goal of this paper is to evaluate intrinsic difficulties
of the structure and motion recovery problem in the presence of large levels of
noise, in terms of intrinsic local minima, bias, sensitivity and robustness. This
evaluation is done with respect to the choice of objective function and opti-
mization technique, in the simplified two-view, point-feature scenario. The main
contributions presented in this paper are summarized briefly below:

1. We present a new optimal triangulation procedure and show that it can be
formulated as an iterative two step constrained optimization: Motion estima-
tion is formulated as optimization on the essential manifold and is followed
by additional well conditioned minimization of two Raleigh quotients for esti-
mating the structure. The procedure clearly reveals the relationship between
existing objective functions used previously and exhibits superior (provable)
convergence properties. This is possible thanks to the intrinsic nonlinear
search schemes on the essential manifold, utilizing Riemanian structucture
of the unknown parameter space.

2. We demonstrate analytically and by extensive simulations how the choice of
the objective functions and configurations affects the sensitivity and robust-
ness of the estimates, making a clear distinction between the two. We both
observe and geometrically characterize how the patterns of critical points
of the objective function change with increasing levels of noise for general
configurations. We show the role of linear techniques for initialization and
detection of these incorrect local minima. Further more we utilize the sec-
ond order information to characterize the nature of the bas relief ambiguity
and rotation and translation confounding for special class of “sensitive” mo-
tions/configurations.

Based on analytical and experimental results, we will give a clear profile of the
performance of different algorithms over a large range of signal-to-noise ratio,
and under various motion and structure configurations.
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2 Optimization on the Essential Manifold

Suppose the camera motion is given by (R,S) ∈ SE(3) (the special Euclidean
group) where R is a rotation matrix in SO(3) (the special orthogonal group) and
S ∈ IR3 is the translation vector. The intrinsic geometric relationship between
two corresponding projections of a single 3D point in two images p and q (in
homogeneous coordinates) then gives the so called epipolar constraint [9]:

pTRŜq = (1)

where Ŝ ∈ IR3×3 is defined such that Ŝv = S × v for all v ∈ IR3. Epipolar
constraint decouples the problem of motion recovery from that of structure re-
covery. The first part of this paper will be devoted to recovering motion from
directly using this constraint or its variations. In Section 3, we will see how this
constraint has to be adjusted when we consider recovering motion and structure
simultaneously.
The entity of our interest is the matrix RŜ in the epipolar constraint; the so

called essential matrix. The essential manifold is defined to be the space of all
such matrices, denoted by E = {RŜ | R ∈ SO(3), Ŝ ∈ so(3)}, where SO(3) is a
Lie group of 3× 3 rotation matrices, and so(3) is the Lie algebra of SO(3), i.e.,
the tangent plane of SO(3) at the identity. so(3) then consists of all 3× 3 skew-
symmetric matrices. The problem of motion recovery is equivalent to optimizing
functions defined on the so called normalized essential manifold:

E1 = {RŜ | R ∈ SO(3), Ŝ ∈ so(3), 12 tr(Ŝ
T Ŝ) = 1}.

Note that 1
2 tr(Ŝ

T Ŝ) = STS. In order to formulate properly the optimization
problem, it is crucial to understand the Riemannian structure of the normalized
essential manifold. In our previous work we showed [11] that the space of es-
sential matrices can be identified with the unit tangent bundle of the Lie group
SO(3), i.e., T1(SO(3))2. Further more its Riemannian metric g induced from
the bi-invariant metric on SO(3) is the same as that induced from the Euclidean
metric with T1(SO(3)) naturally embedded in IR3×4. (T1(SO(3)), g) is the prod-
uct Riemannian manifold of (SO(3), g1) and (S2, g2) with g1 and g2 canonical
metrics for SO(3) and S2 as Stiefel manifolds. Given this Riemannian struc-
ture of our unknown parameter space, we showed [13] that one can generalize
Edelman et al’s methods [3] to the product Riemannian manifolds and obtain in-
trinsic geometric Newton’s or conjugate gradient algorithms for solving such an
optimization problem. Given the epipolar constraint, the problem of motion re-
covery R,S from a given set of image correspondences pi, qi ∈ IR3, i = 1, . . . , N ,
in the presence of noise can be naturally formulated as a minimization of the

2 However, the unit tangent bundle T1(SO(3)) is not exactly the normalized essential
manifold E1. It is a double covering of the normalized essential space E1, i.e., E1 =
T1(SO(3))/ZZ2 (for details see [11]).
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following objective function:

F (R,S) =
N∑

i=1

(pT
i RŜqi)2 (2)

for pi, qi ∈ IR3, where F (R,S) is a function defined on T1(SO(3)) ∼= SO(3)× S2
with R ∈ SO(3) represented by a 3 × 3 rotation matrix and S ∈ S2 a vector of
unit length in IR3. Due to the lack of space below we present only a summary
of the Newton’s algorithm for optimization of the above objective function on
the essential manifold. Please refer for more details to [13] for this particular
objective function and to [3] for the details of the Newton’s or other conjugate
gradient algorithms for general Stiefel or Grassmann manifolds.
Riemannian Newton’s algorithm for minimizing F (R,S):

1. At the point (R,S),
– Compute the gradient G = (FR −RFT

RR, FS − SFT
S S),

– Compute ∆ = − Hess−1G.
2. Move (R,S) in the direction ∆ along the geodesic to (exp(R,∆1), exp(S,∆2)).
3. Repeat if ‖G‖ ≥ ε for pre-determined ε > 0.

FR(FS) is a derivative of the objective function F (R,S) with respect to its
parameters.
The basic ingredients of the algorithm is the computation of the gradient

and Hessian whose explicit formulas can be found in [13]. These formulas can
be alternatively obtained by directly using the explicit expression of geodesics
on this manifold. On SO(3), the formula for the geodesic at R in the direction
∆1 ∈ TR(SO(3)) = R∗(so(3)) is R(t) = exp(R,∆1t) = R exp ω̂t = R(I+ω̂ sin t+
ω̂2(1 − cos t)), where t ∈ IR, ω̂ = RT∆1 ∈ so(3). The last equation is called the
Rodrigues’ formula (see [16]). S2 (as a Stiefel manifold) also has very simple
expression of geodesics. At the point S along the direction ∆2 ∈ TS(S2) the
geodesic is given by S(t) = exp(S,∆2t) = S cosσt + U sinσt, where σ = ‖∆2‖
and U = ∆2/σ, then STU = 0 since ST∆2 = 0. Using these formulae for
geodesics , we can calculate the first and second derivatives of F (R,S) in the
direction ∆ = (∆1, ∆2) ∈ TR(SO(3)) × TS(S2). The explicit formula for the
Hessian obtained in this manner plays an important role for sensitivity analysis
of the motion estimation [1] as we will point out in the second part of the
paper. Furthermore, using this formula, we have shown [13] that the conditions
when the Hessian is guaranteed non-degenerate are the same as the conditions
for the linear 8-point algorithm having a unique solution; whence the Newton’s
algorithm has quadratic rate of convergence.

2.1 Minimizing Normalized Epipolar Constraints

Although the epipolar constraint (1) gives the only necessary (depth indepen-
dent) condition that image pairs have to satisfy, motion estimates obtained from
minimizing the objective function (2) are not necessarily statistically or geomet-
rically optimal for the commonly used noise model of image correspondences. In
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general, in order to get less biased estimates, we need to normalize (or weight)
the epipolar constraints properly, which has been initially observed in [22]. In
this section, we will give a brief account of these normalized versions of epipolar
constraints. In the perspective projection case3, coordinates of image points p
and q are of the form p = (p1, p2, 1)T ∈ IR3 and q = (q1, q2, 1)T ∈ IR3. Sup-
pose that the actual measured image coordinates of N pairs of image points
are: pi = p̃i + xi, qi = q̃i + yi for i = 1, . . . , N , where p̃i and q̃i are ideal
(noise free) image coordinates, xi = (x1i , x

2
i , 0)

T ∈ IR3, yi = (y1i , y
2
i , 0)

T ∈ IR3

and x1i , x
2
i , y

1
i , y

2
i are independent Gaussian random variables of identical dis-

tribution N(0, σ2). Substituting pi and qi into the epipolar constraint (1), we
obtain:

pT
i RŜqi = xT

i RŜq̃i + p̃T
i RŜyi + xT

i RŜyi.

Since the image coordinates pi and qi usually are magnitude larger than xi and yi,
one can omit the last term in the equation above. Then pT

i RŜqi are independent
random variables approximately of Gaussian distribution N(0, σ2(‖ê3RŜqi‖2 +
‖pT

i RŜê3‖2)), where e3 = (0, 0, 1)T ∈ IR3. If we assume the a prior distribution
of the motion (R,S) is uniform, the maximum a posterior (MAP) estimates of
(R,S) is then the global minimum of the objective function:

Fs(R,S) =
N∑

i=1

(pT
i RŜqi)2

‖ê3RŜqi‖2 + ‖pT
i RŜê3‖2

(3)

for pi, qi ∈ IR3, (R,S) ∈ SO(3) × S2. We here use Fs to denote the statisti-
cally normalized objective function associated with the epipolar constraint. This
objective function is also referred in the literature under the name gradient crite-
ria or epipolar improvement. Therefore, we have (R,S)MAP ≈ argminFs(R,S).
Note that in the noise free case, Fs achieves zero, just like the unnormalized ob-
jective function F of equation (2). Asymptotically, MAP estimates approach the
unbiased minimum mean square estimates (MMSE). So, in general, the MAP
estimates give less biased estimates than the unnormalized objective function
F . Note that Fs is still a function defined on the manifold SO(3)× S2. Another
commonly used criteria to recover motion is to minimize the geometric distances
between image points and corresponding epipolar lines. This objective function
is given as:

Fg(R,S) =
N∑

i=1

(pT
i RŜqi)2

‖ê3RŜqi‖2
+
(pT

i RŜqi)2

‖pT
i RŜê

T
3 ‖2

(4)

for pi, qi ∈ IR3, (R,S) ∈ SO(3)×S2.We here use Fg to denote this geometrically
normalized objective function. Notice that, similar to F and Fs, Fg is also a
function defined on the essential manifold and can be minimized using the given
Newton’s algorithm. As we know from the differential case [12], the normaliza-
tion has no effect when the translational motion is in the image plane, i.e., the
3 The spherical projection case is similar and is omitted for simplicity.
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unnormalized and normalized objective functions are in fact equivalent. For the
discrete case, we have similar claim [8]. Therefore in such case the normalization
will have very little effect on motion estimation as will be verified by simulation.

3 Optimal Triangulation

Note that, in the presence of noise, for the motion (R,S) recovered from mini-
mizing the unnormalized or normalized objective functions F , Fs or Fg, the value
of the objective functions is not necessarily zero. Consequently, if one directly
uses pi and qi to recover the 3D location of the point to which the two images pi

and qi correspond, the two rays corresponding to pi and qi may not be coplanar,
hence may not intersect at one 3D point. Also, when we derived the normalized
epipolar constraint Fs, we ignored the second order terms. Therefore, rigorously
speaking, it does not give the exact MAP estimates. Under the assumption of
Gaussian noise model, in order to obtain the optimal (MAP) estimates of cam-
era motion and a consistent 3D structure reconstruction, in principle we need to
solve the following optimal triangulation problem: Seek camera motion (R,S)
and points p̃i, q̃i ∈ IR3 on the image plane such that they minimize the distance
from pi and qi:

Ft(R,S, p̃i, q̃i) =
N∑

i=1

‖p̃i − pi‖2 + ‖q̃i − qi‖2 (5)

subject to the conditions: p̃T
i RŜq̃i = 0, p̃T

i e3 = 1, q̃T
i e3 = 1 for i = 1, . . . , N .

We here use Ft to denote the objective function for triangulation. This objective
function is also referred in literature as the reprojection error. Unlike [4], we
do not assume a known essential matrix RŜ. Instead we seek p̃i, q̃i and (R,S)
which minimize the objective function Ft given by (5). The objective function Ft

then implicitly depends on the variables (R,S) through the constraints. Clearly,
the optimal solution to this problem is exactly equivalent to the optimal MAP
estimates of both motion and structure. Using Lagrangian multipliers, we can
convert the minimization problem to an unconstrained one:

min
R,S,p̃i,q̃i

N∑

i=1

‖p̃i − pi‖2 + ‖q̃i − qi‖2 + λip̃
T
i RŜq̃i + βi(p̃T

i e3 − 1) + γi(q̃T
i e3 − 1).

The necessary conditions for minima of this objective function are:

2(p̃i − pi) + λiRŜq̃i + βie3 = 0 (6)

2(q̃i − qi) + λiŜ
TRT p̃i + γie3 = (7)

From necessary conditions we get p̃i, q̃i. Substituting these and λi obtained from
(6) back to into Ft we get:

Ft(R,S, p̃i, q̃i) =
N∑

i=1

(pT
i RŜq̃i + p̃T

i RŜqi)2

‖ê3RŜq̃i‖2 + ‖p̃T
i RŜê

T
3 ‖2

(8)
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and alternatively using (7) for λi instead, we get:

Ft(R,S, p̃i, q̃i) =
N∑

i=1

(pT
i RŜq̃i)2

‖ê3RŜq̃i‖2
+
(p̃T

i RŜqi)2

‖p̃T
i RŜê

T
3 ‖2

. (9)

Geometrically, both expressions of Ft are the distances from the image points
pi and qi to the epipolar lines specified by p̃i, q̃i and (R,S). Equations (8) and
(9) give explicit formulae of the residue of ‖p̃i − pi‖2 + ‖q̃i − qi‖2 as pi, qi being
triangulated by p̃i, q̃i. Note that the terms in Ft are normalized crossed epipolar
constraints between pi and q̃i or between p̃i and qi. These expressions of Ft can
be further used to solve for (R,S) which minimizes Ft. This leads to the following
iterative scheme for obtaining optimal estimates of both motion and structure,
without explicitly introducing scale factors (or depths) of the 3D points.
Optimal Triangulation Algorithm Outline: The procedure for minimizing
Ft can be outlined as follows:

1. Initialize p̃∗
i (R,S), q̃

∗
i (R,S) as pi, qi.

2. Motion: Update (R,S) by minimizing F ∗
t (R,S)=Ft(R,S, p̃∗

i (R,S), q̃
∗
i (R,S))

given by (8) or (9) as a function defined on the manifold SO(3)× S2.
3. Structure (Triangulation): Solve for p̃∗

i (R,S) and q̃∗
i (R,S) which min-

imize the objective function Ft (5) with respect to (R,S) computed in the
previous step.

4. Back to step 2 until updates are small enough.

At step 3, for a fixed (R,S), p̃∗
i (R,S) and q̃∗

i (R,S) can be computed by
minimizing the distance ‖p̃i−pi‖2+‖q̃i− qi‖2 for each pair of image points. Let
ti ∈ IR3 be the normal vector (of unit length) to the (epipolar) plane spanned
by (q̃i, S). Given such a ti, p̃i and q̃i are determined by:

p̃i(ti) =
ê3t

′
it

′T
i ê

T
3 pi + t̂′

T

i t̂
′
ie3

eT
3 t̂

′T
i t̂

′
ie3

, q̃i(ti) =
ê3tit

T
i ê

T
3 qi + t̂Ti t̂ie3

eT
3 t̂

T
i t̂ie3

(10)

where t′i = Rti. Then the distance can be explicitly expressed as:

‖q̃i − qi‖2 + ‖p̃i − pi‖2 = ‖qi‖2 + tTi Aiti
tTi Biti

+ ‖pi‖2 + t′Ti Cit
′
i

t′Ti Dit′i
,

where

Ai = I − (ê3qiq
T
i ê

T
3 + q̂iê3 + ê3q̂i), Bi = êT

3 ê3
Ci = I − (ê3pip

T
i ê

T
3 + p̂iê3 + ê3p̂i), Di = êT

3 ê3
. (11)

Then the problem of finding p̃∗
i (R,S) and q̃∗

i (R,S) becomes one of finding t∗i
which minimizes the function of a sum of two singular Rayleigh quotients:

min
tT
i

S=0,tT
i

ti=1
V (ti) =

tTi Aiti
tTi Biti

+
tTi R

TCiRti
tTi R

TDiRti
. (12)
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This is an optimization problem on a unit circle S1 in the plane orthogonal to
the vector S. If n1, n2 ∈ IR3 are vectors such that S, n1, n2 form an orthonormal
basis of IR3, then ti = cos(θ)n1 + sin(θ)n2 with θ ∈ IR. We only need to find θ∗

which minimizes the function V (ti(θ)). From the geometric interpretation of the
optimal solution, we also know that the global minimum θ∗ should lie between
two values: θ1 and θ2 such that ti(θ1) and ti(θ2) correspond to normal vectors
of the two planes spanned by (qi, S) and (RT pi, S) respectively (if pi, qi are al-
ready triangulated, these two planes coincide). Therefore, in our approach the
local minima is no longer an issue for triangulation, as oppose to the method pro-
posed in [4]. The problem now becomes a simple bounded minimization problem
for a scalar function and can be efficiently solved using standard optimization
routines (such as “fmin” in Matlab or the Newton’s algorithm). If one properly
parameterizes ti(θ), t∗i can also be obtained by solving a 6-degree polynomial
equation, as shown in [4] (and an approximate version results in solving a 4-
degree polynomial equation [21]). However, the method given in [4] involves
coordinate transformation for each image pair and the given parameterization is
by no means canonical. For example, if one chooses instead the commonly used
parameterization of a circle S1: sin(2θ) = 2λ

1+λ2 , cos(2θ) = 1−λ2

1+λ2 , λ ∈ IR,
then it is straightforward to show from the Rayleigh quotient sum (12) that the
necessary condition for minima of V (ti) is equivalent to a 6-degree polynomial
equation in λ.4 The triangulated pairs (p̃i, q̃i) and the camera motion (R,S)
obtained from the minimization automatically give a consistent (optimal) 3D
structure reconstruction by two-frame stereo.
In the expressions of Ft given by (18) or (19), if we simply approximate

p̃i, q̃i by pi, qi respectively, we may obtain the normalized versions of epipolar
constraints for recovering camera motion. Although subtle difference between
Fs, Fg and Ft has previously been pointed out in [23], our approach discovers
that all these three objective functions can be unified in the same optimization
procedure – they are just slightly different approximations of the same objective
function F ∗

t . Practically speaking, using either normalized objective function Fs

or Fg, one can already get camera motion estimates which are very close to the
optimal ones. This will be demonstrated by extensive simulations in the next
section.

4 Critical Values and Ambiguous Solutions

We devote the remainder of this paper to study of the robustness and sensitivity
of motion and structure estimation problem in the presence of large levels of
noise. We emphasize here the role of the linear techniques for initialization and
utilize the characterization of the space of essential matrices and the intrinsic
optimization techniques on the essential manifold. The focus of our robustness

4 Since there is no closed form solution to 6-degree polynomial equations, directly
minimizing the Rayleigh quotient sum (12) avoids unnecessary transformations hence
can be much more efficient.
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study deals with the appearance of new local minima. Like any nonlinear sys-
tem, when increasing the noise level, new critical points of the objective function
can be introduced through bifurcation. Although in general an objective func-
tion could have numerous critical points, numbers of different types of critical
points have to satisfy the so called Morse inequalities, which are associated to
topological invariants of the underlying manifold (see [15]). Key to this study
is the computation of the Euler characteristic χ(M) of the underlying manifold
SO(3)× IRIP2 which is in this case 0; χ(SO(3)× IRIP2) = 0. Euler characteristic
is equal to

∑n
λ=0(−1)λDλ, where Dλ is the dimension of the λth homology group

Hλ(M, IK) of M over any field IK, the so called λth Betti number. In our case
Dλ = 1, 2, 3, 3, 2, 1 for λ = 0, 1, 2, 3, 4, 5 types of critical points respectively. For
details of this computation see [13]. Among all the critical points, those belong-
ing to type 0 are called (local) minima, type n are (local) maxima, and types 1
to n − 1 are saddles. From the above computation any Morse function defined
on SO(3) × IRIP2 must have all three kinds of critical values. The nonlinear
search algorithms proposed in the above are trying to find the global minimum
of given objective functions. We study the effect of initialization by linear tech-
niques and apperance of new critical points on different slices of the nonlinear
objective function which we can be easily visualized. The choice of the section is
determined by the estimate of rotation where the nonlinear algorithm converged
by initialization of the linear algorithm.
Rewriting the epipolar constraint as pT

i Eqi = 0, i = 1, . . . , N , minimizing the
objective function F is (approximately) equivalent to the following least square
problem min ‖Ae‖2, where A is a N × 9 matrix function of entries of pi and qi,
and e ∈ IR9 is a vector of the nine entries of E. Then e is the (usually one dimen-
sional) null space of the 9× 9 symmetric matrix ATA. In the presence of noise,
e is simply chosen to be the eigenvector corresponding to the least eigenvalue of
ATA. At a low noise level, this eigenvector in general gives a good initial esti-
mate of the essential matrix. However, at a certain high noise level, the smallest
two eigenvalues may switch roles, as do the two corresponding eigenvectors –
topologically, a bifurcation as shown in Figure 2 occurs. This phenomena is very
common in the motion estimation problem: at a high noise level, the translation
estimate may suddenly change direction by roughly 90o, especially in the case
when translation is parallel to the image plane. We will refer to such estimates
as the second eigenmotion. A similar situation for the differential case and small
field of view has previously been reported in [2].
Figure 1 and 2 demonstrate such a sudden appearance of the second eigen-

motion. They are the simulation results of the proposed nonlinear algorithm of
minimizing the function Fs for a cloud of 40 randomly generated pairs of image
correspondences (in a field of view 90o, depth varying from 100 to 400 units of fo-
cal length.). Gaussian noise of standard deviation of 6.4 or 6.5 pixels is added on
each image point (image size 512× 512 pixels). To make the results comparable,
we used the same random seeds for both runs. The actual rotation is 10o about
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the Y -axis and the actual translation is along the X-axis.5 The ratio between
translation and rotation is 2.6 In the figures, “+” marks the actual translation,
“∗” marks the translation estimate from linear algorithm (see [14] for detail)
and “◦” marks the estimate from nonlinear optimization. Up to the noise level
of 6.4 pixels, both rotation and translation estimates are very close to the actual
motion. Increasing the noise level further by 0.1 pixel, the translation estimate
suddenly switches to one which is roughly 90o away from the actual translation.
Geometrically, this estimate corresponds to the second smallest eigenvector of
the matrix ATA as we discussed before. Topologically, this estimate corresponds
to the local minimum introduced by a bifurcation as shown by Figure 2. Clearly,
in Figure 1, there is 1 maximum, 1 saddle and 1 minimum on IRIP2; in Figure
2, there is 1 maximum, 2 saddles and 2 minima. Both patterns give the Euler
characteristic of IRIP2 as 1. Rotation is fixed at the estimate from nonlinear
algorithm. The errors are expressed in terms of canonical metric on SO(3) for
rotation and in terms of angle for translation.
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Fig. 1. Value of objective
function Fs for all S at noise
level 6.4 pixels. Estimation
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Fig. 3. Bas relief ambigu-
ity. FOV is 20o, points
depths vary from 100 to 150
units of focal length, rota-
tion magnitude is 2o, T/R
ratio is 2. 20 runs with noise
level 1.3 pixels.

From the Figure 2, we can see that the the second eigenmotion ambiguity
is even more likely to occur (at certain high noise level) than the other local
minimum marked by “�” in the figure which is a legitimate estimate of the actual
one. These two estimates always occur in pair and exist for general configuration
even when both the FOV and depth variation are sufficiently large. We propose
a way for resolving the second eigenmotion ambiguity by linear algorithm which
is used for initialization. An indicator of the configuration being close to critical
5 We here use the convention that Y -axis is the vertical direction of the image and

X-axis is the horizontal direction and the Z-axis coincides with the optical axis of
the camera.

6 Rotation and translation magnitudes are compared with respect to the center of the
cloud of 3D points generated.
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is the ratio of the two smallest eigenvalues of ATA σ9 and σ8 . By using both
eigenvectors v9 and v8 for computing the linear motion estimates, the one which
satisfies the positive depth constraint by larger margin (i.e. larger number of
points satisfies the positive depth constraint) leads to the motion estimates closer
to the true one (see [8] for details).
This second eigenmotion effect has a quite different interpretation as the one

which was previously attributed to the bas relief ambiguity. The bas relief effect
is only evident when FOV and depth variation is small, but the second eigen-
motion ambiguity may show up for general configurations. Bas relief estimates
are statistically meaningful since they characterize a sensitive direction in which
translation and rotation are the most likely to be confound. The second eigen-
motion, however, is not statistically meaningful: it is an effect of initialization
which with increasing noise level causes a perturbation to a different slice of the
objective function with a different topology of the residual. This effect occurs
only at a high noise level and this critical noise level gives a measure of the
robustness of linear initialization of the given algorithm. For comparison, Figure
3 demonstrates the effect of the bas relief ambiguity: the long narrow valley of
the objective function corresponds to the direction that is the most sensitive
to noise.7 Translation is along the X-axis and rotation around the Y -axis. The
(translation) estimates of 20 runs, marked as “◦”, give a distribution roughly
resembling the shape of this valley – the actual translation is marked as “+”in
the center of the valley which is covered by circles.

5 Experiments and Sensitivity Analysis

In this section, we clearly demonstrate by experiments the relationship among
the linear algorithm (as in [14]), nonlinear algorithm (minimizing F ), normalized
nonlinear algorithm (minimizing Fs) and optimal triangulation (minimizing Ft).
Due to the nature of the second eigenmotion ambiguity (when not corrected),
it gives statistically meaningless estimates. Such estimates should be treated
as “outliers” if one wants to properly evaluate a given algorithm and compare
simulation results. We will demonstrate that seemingly conflicting statements in
the literature about the performance of existing algorithms can in fact be given
a unified explanation if we systematically compare the simulation results with
respect to a large range of noise levels (as long as the results are statistically
meaningful).
The following simulations were carried out with the points in general config-

uration and camera parameters described in Section 4. All nonlinear algorithms
are initialized by the estimates from the standard 8-point linear algorithm (see
[14]), instead of from the ground truth. The criteria for all nonlinear algorithms
to stop are: (a) The norm of gradient is less than a given error tolerance, which

7 This direction is given by the eigenvector of the Hessian associated with the smallest
eigenvalue.
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usually we pick as 10−8 unless otherwise stated;8 and (b) The smallest eigenvalue
of the Hessian matrix is positive.9

Axis Dependency Profile It has been well known that the sensitivity of
the motion estimation depends on the camera motion. However, in order to
give a clear account of such a dependency, one has to be careful about two
things: 1. The signal-to-noise ratio and 2. Whether the simulation results are
still statistically meaningful while varying the noise level. Figure 4, 5, 6 and
7 give simulation results of 100 trials for each combination of translation and
rotation (“T-R”) axes, for example, “X-Y ” means translation is along the X-
axis and the rotation axis is the Y -axis. Rotation is always 10o about the axis
and the T/R ratio is 2. In the figures, “linear” stands for the standard 8-point
linear algorithm; “nonlin” is the Riemannian Newton’s algorithm minimizing
the epipolar constraints F , “normal” is the Riemannian Newton’s algorithm
minimizing the normalized epipolar constraints Fs.
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Fig. 4. Axis dependency: estimation
errors in rotation and translation at
noise level 1.0 pixel. T/R ratio = 2 and
rotation = 10o.
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Fig. 5. Axis dependency: estimation
errors in rotation and translation at
noise level 3.0 pixels. T/R ratio = 2
and rotation = 10o.

By carefully comparing the simulation results in Figure 4, 5, 6 and 7, we can
draw the following conclusions:

1. Optimization Techniques (linear vs. nonlinear)
(a) Minimizing F in general gives better estimates than the linear algorithm at

low noise levels (Figure 4 and 5). At higher noise levels, this is no longer true
(Figure 6 and 7), due to the more global nature of the linear technique.

(b) Minimizing the normalized Fs in general gives better estimates than the linear
algorithm at moderate noise levels (all figures).

8 Our current implementation of the algorithms in Matlab has a numerical accuracy
at 10−8.

9 Since we have the explicit formulae for Hessian, this condition would keep the algo-
rithms from stopping at saddle points.
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Fig. 6. Axis dependency: estimation
errors in rotation and translation at
noise level 5.0 pixel. T/R ratio = 2 and
rotation = 10o.
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Fig. 7. Axis dependency: estimation
errors in rotation and translation at
noise level 7.0 pixels. T/R ratio = 2
and rotation = 10o.

2. Optimization Criteria (F vs. Fs)
(a) At relatively low noise levels (Figure 4), normalization has little effect when

translation is parallel to the image plane; and estimates are indeed improved
when translation is along the Z-axis.

(b) However, at moderate noise levels (Figure 5, 6 and 7), when translation is along
the Z-axis, little improvement can be gained by minimizing Fs instead of F ;
however, when translation is parallel to the image plane, F is more sensitive
to noise and minimizing the statistically less biased Fs consistently improves
the estimates.

3. Axis Dependency
(a) All three algorithms are the most robust to the increasing of noise when the

translation is along Z. At moderate noise levels (all figures), their performances
are quite close to each other.

(b) Although, at relatively low noise levels (Figure 4, 5 and 6), estimation errors
seem to be larger when the translation is along the Z-axis, estimates are in
fact much less sensitive to noise and more robust to increasing of noise in this
case. The larger estimation error in case of translation along Z-axis is because
the displacements of image points are smaller than those when translation is
parallel to the image plane, thus the signal-to-noise ratio is in fact smaller.

(c) At a noise level of 7 pixels (Figure 7), estimation errors seem to become smaller
when the translation is along Z-axis. This is due to the fact that, at a noise
level of 7 pixels, the second eigenmotion ambiguity already occurs in some of
the trials when the translation is parallel to the image plane.

The second statement about the axis dependency supplements the observa-
tion given in [20]. In fact, the motion estimates are both robust and less sensitive
to increasing of noise when translation is along the Z-axis. For a fixed base line,
high noise level results resemble those for a smaller base line at a moderate noise
level. Figure 7 is therefore a generic picture of the axis dependency profile for
the differential or small base-line case (for more details see [12]).

Non-iterative vs. Iterative In general, the motion estimates obtained from
directly minimizing the normalized epipolar constraints Fs or Fg are already
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T/R ratio is 2. Noises range from 0.5
to 5 pixels.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18
Moderate noise levels: 0.5 to 5 pixels

Noise level (in pixels for image size 512 × 512)

M
ea

n 
er

ro
r 

of
 tr

an
sl

at
io

n 
es

tim
at

es
 (

de
gr

ee
)

Linear     
Norm Nonlin
Triangulate

Fig. 9. Estimation errors of transla-
tion (in degree). 50 trials, rotation 10
degree around Y -axis and translation
along X-axis, T/R ratio is 2. Noises
range from 0.5 to 5 pixels.
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Fig. 10. Estimation errors of rota-
tion (in canonical metric on SO(3)).
40 points, 50 trials, rotation 10 de-
gree around Y -axis and translation
along Z-axis, T/R ratio is 2. Noises
range from 2.5 to 20 pixels.
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Fig. 11. Estimation errors of transla-
tion (in degree). 40 points, 50 trials,
rotation 10 degree around Y -axis and
translation along Z-axis, T/R ratio is
2. Noises range from 2.5 to 20 pixels.

very close to the solution of the optimal triangulation obtained by minimizing
Ft iteratively between motion and structure. It is already known that, at low
noise levels, the estimates from the non-iterative and iterative schemes usually
differ by less than a couple of percent [23].
By comparing the simulation results in Figures 8, 9, 10 and 11 we can draw

the following conclusions:

1. Although the iterative optimal triangulation algorithm usually gives better esti-
mates (as it should), the non-iterative minimization of the normalized epipolar
constraints Fs or Fg gives motion estimates with only a few percent larger er-
rors for all range of noise levels. The higher the noise level, the more evident the
improvement of the iterative scheme is.

2. Within moderate noise levels, normalized nonlinear algorithms consistently give
significantly better estimates than the standard linear algorithm, especially when
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the translation is parallel to the image plane. At very high noise levels, the perfor-
mance of the standard linear algorithm, out performs nonlinear algorithms. This
is due to the more global nature of the linear algorithm. However, such high noise
levels are barely realistic in real applications.

For low level Gaussian noises, the iterative optimal triangulation algorithm
gives the MAP estimates of the camera motion and scene structure, the esti-
mation error can be shown close to the theoretical error bounds, such as the
Cramer-Rao bound. This has been shown experimentally in [21]. Consequently,
minimizing the normalized epipolar constraints Fs or Fg gives motion estimates
close to the error bound as well.

6 Discussions and Future Work

Although previously proposed algorithms already have good performance in
practice, the geometric concepts behind them have not yet been completely
revealed. The non-degeneracy conditions and convergence speed of those al-
gorithms are usually not explicitly addressed. Due to the recent development
of optimization methods on Riemannian manifolds, we now can have a better
mathematical understanding of these algorithms, and propose new geometric al-
gorithms or filters, which exploit the intrinsic geometric structure of the motion
and structure recovery problem. As shown in this paper, regardless of the choice
of different objectives, the problem of optimization on the essential manifold is
common and essential to the optimal motion and structure recovery problem.
Furthermore, from a pure optimization theoretic viewpoint, most of the objective
functions previously used in the literature can be unified in a single optimiza-
tion procedure. Consequently, “minimizing (normalized) epipolar constraints”,
“triangulation”, “minimizing reprojection errors” are all different (approximate)
versions of the same simple optimal triangulation algorithm.
In this paper, we have studied in detail the problem of recovering a discrete

motion (displacement) from image correspondences. Similar ideas certainly ap-
ply to the differential case where the rotation and translation are replaced by
angular and linear velocities respectively [13]. One can show that they all in fact
minimize certain normalized versions of the differential epipolar constraint. We
hope the Riemannian optimization theoretic viewpoint proposed in this paper
will provide a different perspective to revisit these schemes. Although the study
of the proposed algorithms is carried out in a calibrated camera framework, due
to a clear geometric connection between the calibrated and uncalibrated case
[10], the same approach and optimization schemes can be generalized with little
effort to the uncalibrated case as well. Details will be presented in future work.

References

1. K. Danilidis. Visual Navigation, chapter ”Understanding Noise Sensitivity in Struc-
ture from Motion”. Lawrence Erlbaum Associates, 1997.



Optimization Criteria, Sensitivity and Robustness 181

2. K. Danilidis and H.-H. Nagel. Analytical results on error sensitivity of motion
estimation from two views. Image and Vision Computing, 8:297–303, 1990.

3. A. Edelman, T. Arias, and S. T. Smith. The geometry of algorithms with orthog-
onality constraints. SIAM J. Matrix Analysis Applications, to appear.

4. R. Hartley and P. Sturm. Triangulation. Computer Vision and Image Understand-
ing, 68(2):146–57, 1997.

5. B. Horn. Relative orientation. International Journal of Computer Vision, 4:59–78,
1990.

6. A. D. Jepson and D. J. Heeger. Linear subspace methods for recovering translation
direction. Spatial Vision in Humans and Robots, Cambridge Univ. Press, pages 39–
62, 1993.

7. K. Kanatani. Geometric Computation for Machine Vision. Oxford Science Publi-
cations, 1993.
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10. Y. Ma, J. Košecká, and S. Sastry. A mathematical theory of camera self-calibration.
Electronic Research Laboratory Memorandum, UC Berkeley, UCB/ERL M98/64,
October 1998.
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Discussion

Kenichi Kanatani: You compare your method with other techniques, but in
my view what you should really do is compare it with the theoretical accuracy
bound, the lower bound beyond which accuracy can’t be improved. For the
problems you have described so far it is very easy to derive this bound.
Jana Košecká: Theoretical accuracy is usually expressed in terms of the
Cramér-Rao bound, but there’s an alternative way to look at it. If one bases
the optimization on the epipolar constraint, it turns out that no matter what
you do, half of the variance always gets absorbed by the structure. You can
not do better than that — the error along the epipolar line gets absorbed by
the structure, so you can only improve the error perpendicular to the epipolar
line. One can even consider this as an alternative means of putting some lower
bound on the estimates using these kind of techniques. Also, Weng, Huang and
Ahuja [21] already did the comparision with the theoretical bound. Rather than
repeating this analysis, we preferred to give a complementary viewpoint.
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Abstract. We attack the problem of coordinate frame dependence and
gauge freedoms in structure-from-motion. We are able to formulate a
bundle adjustment algorithm whose results are independent of both the
coordinate frame chosen to represent the scene and the ordering of the
images. This method is more efficient that existing approaches to the
problem in photogrammetry.
We demonstrate that to achieve coordinate frame independent results,
(i) Rotations should be represented by quaternions or local rotation pa-
rameters, not angles, and (ii) the translation vector describing the cam-
era/scene motion should be represented in scene 3D coordinates, not
camera 3D coordinates, two representations which are normally treated
as interchangeable. The algorithm allows 3D point and line features to be
reconstructed. Implementation is via the efficient recursive partitioning
algorithm common in photogrammetry. Results are presented demon-
strating the advantages of the new method in terms of the stability of
the bundle adjustment iterations.

1 Introduction

Parameter estimation is usually posed as the minimization of the geometric
error in the image measurements, and solved by a suitable non-linear optimiza-
tion algorithm. Convergence and stability are two recurrent important issues in
implementing such algorithms. There are usually several factors at work here,
from the obvious ones, such as design of the algorithm, and its ability to sup-
press noise, to less obvious ones such as correlations in the measurements. Given
many candidates for culprits when experiencing problems, it is often difficult to
determine which factor(s) are at fault. We shall attack one of these, with the aim
of eliminating it. This effect is the coordinate frame ambiguity, which arises
from the fact that simply selecting different coordinate frames for the space of
parameters may affect the results of algorithms using that representation.

Coordinate frame ambiguities (or gauge freedoms) arise in problems where the
natural representations over-parametrize the problem. The “extra” parameters
are those that specify a coordinate frame. Problems of interpreting geometric
aspects of a scene (e.g. its 3D shape) by combining multiple observations of it,
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using a sensor lacking an absolute frame of reference, always have this property.
This is because to compute geometrical quantities, one must define a frame of
reference, and because no absolute frame of reference is provided by the sensor,
there is no natural frame and the choice of coordinate frame is arbitrary. One can
obtain different, equivalent answers using different frames of reference. However
designing algorithms the necessary independence property to make the choice
truly arbitrary, in the sense that the algorithm behaves in equivalent ways given
different choices, is not trivial.

Achieving coordinate frame independence may seem like a small advance,
especially when good results have been achieved in 3D reconstruction without
much care given to this issue. However we argue that if reconstruction algo-
rithms are to be integrated into larger vision systems, it is vital that they have
predictable performance. Elimination of the effect of arbitrary choices inside al-
gorithms is an important step in this direction. Moreover we have found in the
case of projective 3D reconstruction that our methods deliver improvements in
the convergence compared with alternative methods [9].

One of the surprising results of our work is that even where strong non-
linearity is present in the projection equations, such as in the projective and
perspective models, the effective choice of coordinate frame can be reduced to
an orthogonal transformation without affecting our desideratum of independence
to image ordering. This is achieved by a combination of appropriate choice of
scene motion and structure representation, suitable rank-deficient linear system
solution methods, and a normalisation step which eliminates the non-orthogonal
part of the coordinate frame ambiguity. In [9] we presented the algorithm for
projective reconstruction. Here we discuss the principles of gauge independence
in general while restricting detailed discussion to the case of Euclidean recon-
struction.

1.1 Examples of Gauge Freedoms in Vision

There are many examples of optimisation algorithms in vision where the natural
representation of the parameters to be estimated contains gauge freedoms:–

– The fundamental matrix is a 3× 3 matrix defining the epipolar geometry of
two uncalibrated views of a scene. It has two redundant degrees of freedom,
one being a scale gauge freedom, the other being the constraint that the
matrix is singular.

– The problem of registering multiple range images is typically attacked by
selecting a single “reference” range map, and registering the others to the
coordinate frame of the reference map [3]. Clearly the results will depend on
the choice of reference range map.

– Any optimisation involving quantities whose natural representation is in ho-
mogeneous coordinates, and so has a scale freedom. This turns up in pro-
jective reconstruction, such as estimating the fundamental matrix as above,
and also applies when computing structure and motion. There is always a
choice whether to fix one of the elements of the vector/matrix to unity or to
keep the full representation and use constrained optimisation.
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– Structure-from-motion and photogrammetry share the coordinate frame
problem (known as the ZOD or zero-order design problem by photogram-
metrists [1]). This is the main subject of the current work.

1.2 Three-Stranded Approach

To achieve gauge independent algorithms, our design has three separate but
interrelated strands, which we introduce here. Because of the ubiquity of the
phrase “gauge independence” in the paper, we shall abbreviate it to “GI”. The
meaning of gauge independence in this context is that if two reconstructions
are related by a coordinate frame transformation, which can be thought of as
two separate “runs” of the algorithm, then the optimisation algorithm should
maintain the same coordinate frame transformation throughout, so that at the
end of the algorithm the two reconstructions are still equivalent.

Representation. There are often choices of representation available which are
difficult to distinguish on first appearance. Some examples relevant to the dis-
cussion here:–

1. 3D rotations can be represented in a variety of angle systems, such as Euler
or Cardan angles, quaternions, or local rotation parameters.

2. In projective reconstruction, projective points and projection matrices can be
represented in homogeneous coordinates, or in non-homogeneous coordinates
formed by fixing a chosen coordinate at unity.

3. In Euclidean reconstruction, the translation vector can be represented in
either camera coordinates or scene coordinates.

One of the major contributions of this work is to show that for many optimi-
sation problems the choice of representation may at least partly be decided by
gauge dependence criteria. We shall see that indeed all the three choices of rep-
resentation above can be decided by GI (gauge independence) criteria, in favour
of (1) Local rotation parameters or quaternions, (2) homogeneous coordinates
normalised to unit norm, and (3) translation vector in scene coordinate frame.
It may be somewhat surprising that the last case can be decided in this way,
so we demonstrate the problems with the camera coordinate representation of
translation in section 4.6.

Rank-deficient linear system methods. We will be considering here the so-
lution of optimisation problems with coordinate frame ambiguities, using Gauss-
Newton iterative methods. This gives rise to a rank-deficient linear system to be
solved at each iteration. We shall show how this can be done, maintaining GI.
Matrix pseudo-inverse has been suggested as a solution to this problem both in
photogrammetry [1] and recently in computer vision [10]. We propose a more
flexible approach involving the introduction of artificial extra constraints applies
to the updated solution. With suitable choice of constraints, the two methods
can be made equivalent.
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Coordinate frame normalisation. To facilitate the application of the rank-
deficient linear system methods, it turns out to be necessary in some cases, and
advantageous in others, to adjust the coordinate system among the space of pos-
sible frames and thus impose some pre-specified constraints, which will typically
be the same as the artificial constraints used to solve the rank-deficient system;
in other words the same constraints are employed before each iteration (normal-
isation) and also to the updated solution (when eliminating rank deficiencies).
However the linear system methods are only able to impose the constraints to
first order, which in a non-linear system implies that the normalisation must
be applied between iterations to re-impose the constraints. The normalisation
reduces the effective space of possible coordinate frames, but of course it must
itself be applied in a GI manner, as defined in section 3.3

We propose that these three techniques constitute a good general framework
for applying GI to optimisation problems involving gauge freedoms. In the fol-
lowing sections we shall fill out these ideas in more detail. Section 2 introduces
the concepts mathematically and defines the notation used in the remainder of
the paper. Section 3 defines the Gauss-Newton method, and derives the general
GI criteria in detail, to be applied in later sections to our models. The perspec-
tive projection model for point features is then discussed in detail in section 4.
We demonstrate that our chosen model obeys the GI criteria. The complete
algorithm for gauge-independent Euclidean reconstruction is summarised in sec-
tion 5. Some preliminary results are presented in section 6.

2 Definitions and Notation

Let us consider a general iterative algorithm that estimates a set of parameters
x from an observation

z = h(x) +w

where h(.) is the observation function and w a noise vector with covariance R.
With a realistic scenario with multiple observations in multiple images, one may
consider at this point that all the observations are “stacked” into this single
vector z, and like wise all the unknowns (e.g. the structure and motion param-
eters for the structure-from-motion problem) are stacked into a single vector x.
At each iteration, the algorithm takes as input the previous estimate x−, and
computes a new estimate x+, which is based solely on the old value x− and the
measurement z. We shall assume that an additive rule is being employed, as is
the case for the Gauss-Newton variants used almost exclusively in optimization
algorithms for 3D vision and photogrammetry. Then the update rule may be
written in general as

x+ = x− + f(h,x−, z). (1)

The algorithm is thus defined by the observation function h(.), the latest state
estimate x− and the measurement vector z. As more iterations are made, and
with a good wind, the estimates x+ converge towards the true parameter vector,
as closely as possible given the inevitable errors in the measurements. Now let us



Gauge Independence in Optimization Algorithms for 3D Vision 187

consider redefining the space of parameters in a different way, using parameters
y, which may be assumed to be related by an invertible mapping g(.) to the
original parameter vector x:

y = g(x), x = g−1(y).

In the case of g(.) representing a genuine gauge freedom, the transformation has
no effect on the measurements:

h(y) = h(g(x)) = h(x). (2)

In other words different choices of g(.) represent purely internal choices of coordi-
nate frame in which to represent x. The iterative update rule in this transformed
space is then

y+ = y− + f(h,y−, z). (3)

We can now define our algorithm as independent of the choice of coordinates
if when applying the algorithm from different starting points x−

0 and y−
0 , re-

lated by the coordinate transformation g(.), remain related by the same g(.) at
each corresponding iteration. Thus combining equations (1) and (3) with this
criterion, we need to show that for a particular problem that, given the lat-
est state estimates x−, y− in the two algorithm instances, and the coordinate
transformation g(.) between them, that

g(x− + f(h,x−, z)) = y− + f(h,y−, z)
= g(x−) + f(h,g(x−), z) (4)

This is the gauge independence (GI) criterion. If we can prove it for a particular
problem, we have eliminated the effect of coordinate frame choice.

Throughout the paper we will take the vector norm ‖x‖ of a vector x to
indicate the 2-norm (x�x)

1
2 .

3 The Gauss-Newton Method

We now specialize further to the Gauss-Newton method, a least-squares method
commonly used to obtain maximum likelihood or maximum a posteori estimates
of parameters. An adjusted version of the Gauss-Newton scheme that deals with
conditioning problems is known as the Levenberg-Marquardt algorithm, but we
first consider the simpler form. We first define an error function to be minimized,
based on discrepancies in observations, and extrapolate second-order approxi-
mations to the error function from the current parameter estimate, which then
yields the new estimate as the minimum of the second-order hypersurface, which
may be easily computed.

Following the usual theory of maximum likelihood parameter estimation [4],
we assume that we have made several noisy observations z(j), j = 1, . . . , k, (which
can where appropriate be bundled into a single vector z as above), related to
the parameter vector x through measurement functions h(j):

z(j) = h(j;x) +w(j), j = 1, . . . , k (5)
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Here w(j) is random independently distributed noise with covariance R(j), and
is assumed to have zero mean, i.e. it is unbiased.

We construct the error function J from as the sum-of-squares of discrepancies
between the actual observations and those predicted by a modelling parameter
estimate x:

J(x) =
k∑

j=1

(z(j)− h(j;x))�R(j)−1(z(j)− h(j;x)). (6)

We form a second-order (quadratic) approximation to J(.) around the latest
estimate x−, and locate the minimum of the quadratic extrapolation of J(.)
to obtain a new estimate x+. Omitting details of this standard procedure, we
obtain

A(x+ − x−) =
k∑

j=1

H(j)�R(j)−1ν(j) = a, (7)

where:–

– The matrix A =
∑k

j=1H(j)�R(j)−1H(j) may be identified as the state infor-
mation (inverse covariance) matrix;

– The innovation vectors ν(j) are ν(j) = z(j)− h(j;x−);
– The Jacobian matrices H(j) are H(j) = ∂h(j)

∂x , evaluated at x−.

Equation (7) represents one Gauss-Newton update iteration.

3.1 G-N Iterations with Gauge Freedoms

Summarising the above discussion, our Gauss-Newton update consists of solving
the symmetric matrix equation

A∆x = a (8)

for state change vector ∆x = x+ − x−, given matrix A and vector a computed
from the measurement vectors z(j), measurement functions h(j) and Jacobians
H(j) = ∂h(j)/∂x, evaluated at the latest solution x−. A is rank-deficient, because
of gauge freedoms, and so extra constraints must be introduced in order to
provide a unique solution to the matrix equation. These are the choices we shall
consider for the form of these constraints:–

1. Gauge Fixing methods enforce gauge conditions

c(x) = 0

to force a chosen gauge on the solution. We shall assume that the gauge
conditions apply exactly to the previous solution, i.e. c(x−) = 0. There are
two ways to impose gauge c(x+) = 0 on the new solution x+:
(a) Weighting methods incorporate the gauge conditions c(x+) as extra

“virtual” observations to be integrated with the actual measurements.
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(b) Projection project the state space into a smaller space in which the
gauge conditions are approximately satisfied; solve for the update in the
reduced state space; finally project the solution back into the original
space.

For brevity we shall consider the latter technique only.
2. Pseudo-Inverse methods attack the matrix equation (8) directly using a

form of pseudo-inverse applied to A to solve for ∆x. This method has been
suggested by Morris & Kanatani [10], and possesses the same GI properties
as our proposed gauge fixing method. However it is somewhat slower and
less flexible.

3. Elimination methods eliminate the necessary number of state parameters
by setting them to special values. The remaining parameters can then be
solved for directly. Such a procedure is also referred to as selecting a canonical
frame [8,12,2], or a normal form [14]. This method can be used to eliminate
the effect of coordinate frame ambiguity, simply by fixing the same number
of parameters as there are gauge freedoms, but in the context of 3D recon-
struction from multiple images this procedure introduces a new dependence
on the order of the images.

3.2 Gauge Fixing

Enforcing a chosen gauge c(.) by linearising c(.) about the latest solution x−

gives us the system of equations

A∆x = a, C ∆x = 0, where C =
∂c
∂x

∣
∣
∣
∣
x−

. (9)

The equation C∆x = 0 ensures that the gauge conditions will be enforced to first
order on the solution vector x+. In order for the constraint to entirely remove
the gauge freedoms, it is clear that the rows of C must span the null-space of
A, although the two linear spaces do not have to be equal. Equation (9) is a
standard linear system with equality constraints, and [6] suggest the following
method of solution:

To apply the alternative “projection” method of gauge fixing we first write
the Singular Value Decomposition (SVD) of the constraint Jacobian matrix C =
∂c/∂x as

C = UWV � = U

(
W1 0
0 0

)(
V �
1

V �
2

)

.

If there are r gauge conditions, the size of W1 is r× r. Now define a transformed
state vector (

y′

y

)

=
(
V �
1

V �
2

)

∆x (10)

If we convert the equations (9) into the transformed state space y, y′, we obtain

A(V1 V2)
(
y′

y

)

= a, C(V1 V2)
(
y′

y

)

= 0.
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The latter equation simplifies to

U

(
W1 0
0 0

)(
y′

y

)

= 0 or y′ = 0,

enforcing the gauge conditions C ∆x = 0. The main equation now becomes

AV2y′ = a

from which we can obtain the solutions for y and x+:

y = (V �
2 AV2)−1V �

2 a, x+ = x− + V2y (11)

Thus this method of solution involves projecting x into the smaller state space
y, in which the gauge conditions are enforced to first order, solving the uncon-
strained linear system in that space and projecting back into x space to obtain
the final solution (11).

Gauge independence of projection method. If we hypothesise that coor-
dinate frame changes are always linear orthogonal,

y = φx (12)

for orthogonal matrix φ, and also that the constraint function c(.) transforms
similarly as

c(y) = θc(x) (13)

for orthogonal matrix θ, then we can demonstrate gauge independence. Firstly
we write the SVD of the constraint Jacobian C ′ in the transformed frame as

C ′ = U ′W ′V ′�= θCφ−1= θUWV �φ−1= (θU)W (φV )�

and so we have V ′
2 = φV2. Also the innovation vectors are

ν′(j) = z(j)− h(j;y−) = ν(j),

because of the pure gauge freedom assumption (2). The measurement Jacobians
H ′(j) in the transformed space are related to H(j) as

H ′(j) =
∂h(j)
∂y

=
∂h(j)
∂x

∂x
∂y

= H(j)φ−1

Thus the information matrix A and RHS vector a transform to

A′ = φAφ−1, a′ = φa. (14)

This leads to the update rule is the transformed frame:–

y+=y− + V ′
2(V

′
2

�
A′V ′

2)
−1V ′

2
�a′ = y− + φV2(V �

2 AV2)−1V �
2 a

=y− + φ(x+ − x−)
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which is gauge-independent in the sense of preserving the same φ between the
solutions before and after the iteration, given that y− = φx−, thus satisfying
the main GI criterion (4).

The criteria (12) and (13) can be applied to specific models in order to select
the state representation and constraint functions in specific scenarios, which is
what we do in later sections for the structure-from-motion problem.

3.3 Coordinate Frame Normalisation

The third strand of our method of dealing with gauge freedoms is to normalise
the coordinate frame of our estimated parameters before applying Gauss-Newton
iterations. We select a coordinate frame among the space of frames that agrees
with pre-specified normalisation conditions. There is a strong link with the gauge
fixing conditions discussed, since the most natural choice of gauge fixing condi-
tions is then to re-impose the same conditions as were used to select the initial
coordinate frame.

The intended effect of coordinate frame normalisation is illustrated in figure 1
As before we consider a general change of coordinates y = g(x) relating two

x

y’

normalisation of x

normalisation of y

general g(x) orthogonal x’φ

y

x’

Fig. 1. Illustration of coordinate frame normalisation. Applying normalisation to two
different parameter vectors x related by a general coordinate frame transformation
y = g(x) reduces the space of transformations after normalisation of both to the space
of orthogonal transformations y′ = φx′ for orthogonal matrix φ.

equivalent parameter vector estimates. The idea of normalisation is to reduce
the effective space of coordinate frames, ideally to the space of (possibly scaled)
linear orthogonal transformations. If this can be achieved, we can proceed to
use the GI Gauss-Newton methods described above. We assume in figure 1 that
no scale factor β remains after normalisation, because in the problems we have
looked at we have been able to remove any scale factors, including, perhaps
surprisingly, projective 3D reconstruction.

In the following sections we shall treating each different type of gauge free-
dom separately in demonstrating satisfaction of the GI criteria. This is a valid
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approach because when considered in combination we obtain a product of the
orthogonal transformations corresponding to all the gauge freedoms together,
which is another orthogonal transformation. Hence if we prove that the GI cri-
teria are satisfied for all sub-parts of our representation, we automatically have
GI for the whole system.

4 Perspective Projection Model

The projection model corresponding to Euclidean SFM is the perspective mo-
del [11]. It is the most detailed model and applies when the camera calibration
is known. We can write perspective projection for 3D points X = (X Y Z)� as

p=λK(R | −RT)
(
X
1

)

(15)

=λ




fx α x0
0 fy y0
0 0 1



R(I3×3 | −T)







X
Y
Z
1







where

– p is the projected image point in homogeneous coordinates;
– K is the matrix of calibration parameters, defined by the focal lengths fx,

fy, the image centre coordinates x0, y0 and skew parameter α;
– R is a 3× 3 rotation matrix;
– T is a translation vector in scene coordinates, the camera position.

4.1 Observation Model

To construct a measurement vector for use in Gauss-Newton iterations, p is
converted to non-homogeneous form by dividing through by z. Then the mea-
surement vector zi(j) is the image feature position for scene feature i in image
j, for instance a corner feature.

4.2 Representing Rotations

Representing a 3D rotation is problematic in the context of gauge invariance.
Angle representations do not have the GI properties, because they clearly do
not transform according to the GI criterion (12). There is also the problem that
angle representations, and indeed any non-redundant representations of rotation,
have singularities near which small changes in rotations have uncontrollably
large changes in the rotation parameters. There are however two good choices,
one redundant and one non-redundant. Quaternions are a good choice, and can
provide the solutions to many problems in vision, such can computing the camera
rotation between images [16] or camera pose estimation [7]. However they have
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the problem that quaternions are a redundant representation, having a scale
freedom. This is easy to handle using the gauge methods employed in this paper,
but we prefer the local rotation approach, employed in 3D reconstruction by
Taylor & Kriegman [15]. A local rotation representation has also been developed
independently by Pennec & Thirion [13]. The idea is that if an estimate R0 of
the rotation is available, one can factorise a rotation R as

R = RsR0 (16)

where Rs is a small rotation. Because Rs is small, we can use a representation
that is specialised to small rotations. The exponential representation is ideal for
this purpose. This represents a rotation using a 3-vector r by the Rodriguez
formula

Rs=e[r]×

=I3×3 +
sin θ

θ
[r]× +

(1− cos θ)
θ2

(rr� − ‖r‖2I3×3) (17)

where θ = ‖r‖ is the rotation angle, and [r]× is the “cross-product” matrix for
r. In an iterative algorithm, the small rotation change Rs is compounded with
the previous value R0 to form the new rotation estimate RsR0 to be fed in as
the new R0 at the next iteration.

4.3 Euclidean Ambiguities and Constraints

The global coordinate frame ambiguity for the Euclidean case is a 3D similarity
transformation, as we can see by rewriting (15) as

p=λ(R | −RT)
(
X
1

)

=λK(R | −RT)K
(
RHTH

0� h

)−1(
RHTH

0� h

)(
X
1

)

=λ(R′ | −R′T′)
(
X′

1

)

where RH is a 3×3 rotation matrix,TH a translation vector, h a scale factor, and
R′ = RR−1

H , T′ = h−1(RHT+TH) and X′ = h−1(RHX+TH). The Euclidean
coordinate frame ambiguity is represented by RH , TH and h. This provides 7
degrees of freedom in setting up the global coordinate frame.

4.4 Euclidean Normalisation

We first normalise the coordinate frame using constraints on the translation
vectors (three constraints) and overall scale (one). No normalisation needs to be
applied to the rotations. Then we introduce a constraint function c(.) such that
the rows of its Jacobian C are linear combinations of the null-space vectors of
A, thus guaranteeing elimination of all seven gauge freedoms.
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The coordinate frame normalisation subtracts the centroid of the camera
translation vectors from each translation vector, and then scales the translation
vectors so that their average squared length is unity. Given that the original
centroid of the translations is T̄, and writing

s =

√
∑k

j=1 ‖T(j)− T̄‖2
k

,

averaging over the k images, we need to make the following modifications to all
the parameters:

T(j)← 1
s
(T(j)− T̄)

X← 1
s
(X− X̄) for all 3D points,

The modifications being made together ensures that the modified reconstruc-
tion is equivalent to the original. After the normalisation, the centroid of the
translations is fixed at zero and the scale set to unity. The normalisation leaves
only rotation unchanged. Now under a rotation RH of initial coordinate frame
as above, normalising both coordinate frames as in figure 1, the rotations and
translations in the two frames are related after normalisation as

R′(j) = R(j)R−1
H , T′(j) = RHT.

Since the reference rotations will be reset to the normalised rotations in both
cases, both sets of local rotation parameters will be set to zero. This means that
the motion parameters after normalisation will have the relationship

(
r′(j)
T′(j)

)

=
(
I 0
0 RH

)(
r(j)
T(j)

)

, (18)

an orthogonal change of coordinates, agreeing with the GI criterion (12). Sim-
ilarly the point 3D features are normalised in the two coordinate frames to X′

which will be related as X′ = RHX, again agreeing with (12). So our normal-
isation procedure has successfully achieved its aim of reducing the coordinate
frame freedom to a combination of orthogonal transformations.

4.5 Euclidean Gauge Conditions

Having normalised the coordinate frame, we separate the seven gauge conditions
into three rotation conditions cr(.), three translation cT(.) and one scale cs(.),
as follows:

c =




cr
cT
cs



 =





∑
j(r(j)+ [T̂(j)]×T(j)∑

j T(j)
1
2‖T(j)‖2




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We include the vectors T̂(j) with the convention that they are represented as
constant vectors in c(.), equal to T(j) but not considered as variables. Thus the
Jacobian of c(.) i

C=






∂cr
∂r(1)

∂cr
∂T(1) . . . . . .

∂cr
∂r(k)

∂cr
∂T(k)

∂cT
∂r(1)

∂cT
∂T(1) . . . . . .

∂cT
∂r(k)

∂cT
∂T(k)

∂cs

∂r(1)
∂cs

∂T(1) . . . . . .
∂cs

∂r(k)
∂cs

∂T(k)






=




R(1)�−[T(1)]×. . .. . .R(k)�−[T(k)]×
0 I . . .. . . 0 I
0� T(1)� . . .. . . 0� T(k)�





To demonstrate agreement with the GI criterion (13), we use the relation (18),
obtaining under the transformed normalised coordinate frame,

c′
r=
∑

j

(r′(j)+ [T̂′(j)]×T′(j))

=
∑

j

(r(j)+ [RHT̂(j)]×RHT(j))

=RHcr

Trivially we also have c′
T = RHcT and finally c′

s = cs.

4.6 Translation Represented in Camera Frame

We now discuss an alternative model whereby we represent the translation vector
in camera coordinates. In other words the projection model (15) converts to
p = λK(RX+T). We can follow through the previous model, and we find that
the results do not agree with the GI criteria (details omitted).

5 Algorithm Description

1. Start with a prior estimate x− for the state parameters x. Some of them may
be provided in advance, for instance camera calibration parameters where
applicable. Others may be given initial estimates directly from the observa-
tions. In 3D reconstruction, the multi-view tensorial approach is the latest
way to generate motion and structure parameters directly from images [5].
The first step is to normalise the coordinate frame as specified by any nor-
malisation conditions (section 3.3). Then if there are gauge fixing constraints
to be enforced, these must be enforced prior to starting the iterations. They
are then re-enforced between each iteration, as described below.

2. Build the linear system (8) by linearising the measurement equations for each
observation around the latest state parameters x−. For the 3D reconstruc-
tion problem, these are the non-homogeneous versions of the point projection
equation (15). If gauge constraints are to be enforced to first order by the
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weighting or projection methods, the linear system is adjusted to (11). When
the state vector x is partitioned into blocks, constraints can be applied sep-
arately to single blocks or combinations of blocks, and arbitrary mixtures of
different constraint types are allowed for each constraint.

3. Perform a Gauss-Newton iteration (7), to produce a new estimate x+ for the
state parameters. We actually use Levenberg-Marquardt iterations, which
are basic Gauss-Newton iterations with added damping.

4. Re-impose any normalisation and gauge fixing conditions by manipulation
of the state vector x+. Because this only corrects internal gauge freedoms,
the error function J(x+) is not affected.

5. Other internal degrees of freedom that are not gauge freedoms may be reset.
For instance, in the case of Euclidean reconstruction, the reference rotations
R0(j) are adjusted to Rs(j)R0(j), where Rs(j) is the small rotation formed
from the updated rotation parameters r(j). This allows r(j) to be reset to
zero. All such changes are fed back to the state vector x+.

6. If the error function J(x+) in (6) is has decreased from J(x−), replace x−

with the updated and adjusted state vector x+, and decrease the Levenberg-
Marquardt damping factor. Otherwise increase the damping factor and make
no change to x−.

7. If a termination criterion has been reached (e.g. limit on number of iterations
or on the size of a decrease in J), exit. Otherwise loop back to step 2 and
perform another iteration.

6 Results

In figure 2 we show some preliminary results on a test-set of seven simulated
images of fifteen 3D points. To make the reconstruction difficult, the points were
placed so that they almost aligned in a single plane, a critical surface for 3D
reconstruction. This allows the advantages of imposing gauge conditions to be
made apparent. The convergence of the algorithm on this test set is quicker than
the other algorithms here on test, which are:–

– Camera-centred translation (Camera T-1 and Camera T-2). These results
for the camera-centred translation vector representation were obtained for
different initial coordinate frames, and show that the convergence rate in
this case is affected by coordinate frame choice. The total time taken by this
version was 1.60s on a 233MHz PC.

– Free Gauge is the method advocated in [5], whereby Levenberg-Marquardt
damping is used to deal with the gauge freedoms. In well-conditioned sit-
uations this method is comparable in performance with imposing explicit
gauge conditions, but as we see here when the conditioning is quite bad,
having gauge conditions helps because Levenberg-Marquardt is left to deal
with the conditioning of the system, which in the free gauge algorithm are
“masked” by the gauge freedoms. Total time: 1.63s.

– Pseudo-inverse is the of taking the pseudo-inverse of the information ma-
trix used by photogrammetrists [1] and suggested by Morris & Kanatani [10],
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Fig. 2. Results showing convergence rate for a test set of simulated data, testing various
types of bundle adjustment (see text).

although adjusted to firstly eliminate the structure parameters from the sys-
tem to improve the performance. Total time: 11.91s.

– Gauge Conditions is the gauge condition method. Total time: 10.95s.

In other experiments, not shown here because of lack of space, we have shown
that the convergence rates for a well-conditioned 3D Euclidean reconstruction
problem are comparable for all these methods, and others we have tried. It is
only when the conditioning is bad that the gauge condition method is likely to
show great advantages, and it is considerable slower than the free-gauge algo-
rithm, because of the extra expense of factorizing the gauge condition matrix.
Nevertheless where reliability is important, the explicit gauge condition method
should be considered, and in any case our discussions of representation and co-
ordinate frame normalisation still apply. The speed difference will reduce if the
ratio of features to images is increased.

7 Conclusions

We have developed the theory of gauge independence in some detail for the
problem of 3D scene reconstruction. The methods are applicable to many op-
timisation problems having internal gauge freedoms, especially those resulting
in a sparse information matrix structure. We have omitted the generalisation of
the method to reconstructions of lines and other projection models; they will
appear in a longer treatment.
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Discussion

Kenichi Kanatani: As you mentioned, gauge freedom is something that occurs
in our description of the problem. It is nothing to do with the real world, the
observations, or the noise. Changing the gauge doesn’t affect these, the final
results should be the same or at least geometrically equivalent.
Philip McLauchlan: Yes, that’s correct.
Kenichi Kanatani: But you showed some convergence graphs where the fi-
nal results seem to be different for different gauge fixing methods. Apart from
computational efficiency, do the results depend on the gauge or not?
Philip McLauchlan: They are all converging to the same answer — if you
leave them to run long enough they do converge to the same global minimum.
But the speed at which they do it, and whether they do it at different rates for
completely arbitrary reasons like changing the coordinate frame, depends a lot
on the gauge fixing method.
Kenichi Kanatani: So there are two issues for the choice, speed of convergence
and computational efficiency, like fill-in problems.
Philip McLauchlan: Yes, that’s right.
Rick Szeliski: This is a clarification question. In addition to renormalizing at
each step to keep the centroid at zero and the scale at unity, do you also impose
this as a gauge condition so that the delta, the change in movement has zero
centroid and there is no change in scale?
Philip McLauchlan: That is correct.
Rick Szeliski: You also made a comment that by eliminating either the struc-
ture or the motion you can get more efficient. Does that just depend on the
problem, whether there are more frames or more points?
Philip McLauchlan: That’s right. Usually these problem have a large num-
ber of features and a relatively small number of images, so it makes sense to
eliminate the structure parameters first because that is fast, and then to solve
for the motion and then back-substitute to obtain the structure, whereas the
photogrammetrists’ main solution involves doing it the other way round. They
argue that they can do this in an approximate way which doesn’t give them a
big performance problem, but it seems like the whole reason for doing this is
flawed, and it makes more sense to me that we should aim for the more efficient
solution which has no disadvantages.
Joss Knight: Does the gauge conditioning help at all with problems of local
minima in the minimization?
Philip McLauchlan: No, not really. The different versions all assume that the
initial solution is close enough to the global minimum to avoid the local minima.



Uncertainty Modeling
for Optimal Structure from Motion

Daniel D. Morris1, Kenichi Kanatani2, and Takeo Kanade1

1 Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
{ddmorris, tk}@ri.cmu.edu

2 Department of Computer Science, Gunma University,
Kiryu, Gunma 376-8515, Japan
kanatani@cs.gunma-u.ac.jp

Abstract. The parameters estimated by Structure from Motion (SFM)
contain inherent indeterminacies which we call gauge freedoms. Under
a perspective camera, shape and motion parameters are only recovered
up to an unknown similarity transformation. In this paper we investi-
gate how covariance-based uncertainty can be represented under these
gauge freedoms. Past work on uncertainty modeling has implicitly im-
posed gauge constraints on the solution before considering covariance
estimation. Here we examine the effect of selecting a particular gauge on
the uncertainty of parameters. We show potentially dramatic effects of
gauge choice on parameter uncertainties. However the inherent geomet-
ric uncertainty remains the same irrespective of gauge choice. We derive
a Geometric Equivalence Relationship with which covariances under dif-
ferent parametrizations and gauges can be compared, based on their true
geometric uncertainty. We show that the uncertainty of gauge invariants
exactly captures the geometric uncertainty of the solution, and hence
provides useful measures for evaluating the uncertainty of the solution.
Finally we propose a fast method for covariance estimation and show its
correctness using the Geometric Equivalence Relationship.

1 Introduction

It is well known that, for accurate 3D reconstruction from image sequences,
statistically optimal results are obtained by bundle adjustment [2,3,5,6,13,16].
This is just Maximum Likelihood estimation for independent, isotropic Gaussian
noise, and is also used by photogrammetrists. Current research generally focuses
on two areas: (1) simplicity of solution, which includes finding a closed form
approximate solutions such as the Factorization method [4,8,9,10,11,12], and (2)
efficiency, which includes finding fast or robust numerical schemes [1,2].

An important third area to address is the quantitative assessment of the reli-
ability of the solution. While some work has incorporated uncertainty analyzes of
the results [9,14,15,16], none has investigated the effect of parameter indetermi-
nacies on the uncertainty modeling. These indeterminacies are inherent to SFM
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and have a significant effect on parameter uncertainties. Our goal is to create
a framework for describing the uncertainties and indeterminacies of parameters
used in Structure from Motion (SFM). We can then determine how both these
uncertainties and indeterminacies affect the real geometric measurements recov-
ered by SFM.

The standard measure for uncertainty is the covariance matrix. However
in SFM there is a uniqueness problem for the solution and its variance due to
inherent indeterminacies: the estimated object feature positions and motions are
only determined up to a overall translation, rotation and scaling. Constraining
these global quantities we call choosing a gauge. Typically a covariance matrix
describes the second order moments of a perturbation around a unique solution.
In past work [9,15,16] indeterminacies are removed by choosing an arbitrary
gauge, and then the optimization is performed under these gauge constraints
and the recovered shape and motion parameters along with their variances are
expressed in this gauge.

In this paper we provide an analysis of the effects of indeterminacies and
gauges on covariance-based uncertainty models. While the choice of gauge can
dramatically affect the magnitude and values in a covariance matrix, we show
that these effects are superficial and the underlying geometric uncertainty is
unaffected. To show this we derive a Geometric Equivalence Relationship be-
tween the covariance matrices of the parameters that depends only on the es-
sential geometric component in the covariances. Hence we are able to propose
a covariance-based description of parameter uncertainties that does not require
gauge constraints. Furthermore we show how this parametric uncertainty model
can be then used to obtain an uncertainty model for actual geometric properties
of the shape and motion which are gauge-invariant. Optimization is achieved
in an efficient free-gauge manner and we propose a fast method for obtaining
covariance estimates when there are indeterminacies.

2 Geometric Modeling

2.1 Camera Equations

Here we describe an object and camera system in a camera–centered coordinate
system. Analogous equations could be derived in other coordinate systems. Sup-
pose we track N rigidly moving feature points pα, α = 1, . . . , N , in M images.
Let pκα be the 2–element image coordinates of pα in the κth image. We iden-
tify the camera coordinate system with the XY Z world coordinate system, and
choose an object coordinate system in the object. Let tκ be the origin of the
object coordinate system in the κ’th image, Rκ be a 3×3 rotation matrix which
specifies its orientation and sα be the coordinates of the feature point, pα, in the
object coordinate system. Thus the position of feature point pα with respect to
the camera coordinate system in the κth image is Rκsα + tκ.

Assume we have a projection operator Π : R3 → R2 which projects a point
in 3D to the 2D image plane. We can then express the image coordinates, of
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feature pα as:
pκα = Π[Kκ(Rκsα + tκ)] (1)

where Kκ is a 3× 3 internal camera parameter matrix [2] containing quantities
such as focal length for each image. While these parameters can be estimated
along with shape and motion parameters, for simplicity we ignore them in the
rest of the paper and assume Kκ is just the identity matrix for orthography
and diag([f, f, 1]) for perspective projection with focal length f . Various camera
models can be defined by specifying the action of this projection operator on a
vector (X,Y, Z)�. For example we define the projection operators for orthogra-
phy and perspective projection respectively in the following way:

Πo[




X
Y
Z



] =
(
X
Y

)

, Πp[




X
Y
Z



] =
(
X/Z
Y/Z

)

, (2)

Equation (1) can be applied to all features in all images, and then combined in
the form:

p = Π(θ) (3)

where p = (p�
11,p

�
12,p

�
13, . . . ,p

�
MN )� is a vector containing all the image feature

coordinates in all images, and θ is a vector containing the shape and motion
parameters, Rκ, sα, tκ, and possibly unknown internal camera parameters, for
all object features and images, and Π is the appropriate combination of the
projection matrices. More details can be found in [7].

2.2 Parameter Constraints

Not all of the parameters in θ are independent and some need to be constrained.
In particular the columns of each rotation matrix, Rκ, must remain unit orthog-
onal vectors. Small perturbations of rotations are parametrized by a 3-vector:
∆Ωκ which to first order maintain the rotation properties [3]. Let T be the man-
ifold of valid vectors θ such that all solutions for θ lie in T . T will be a manifold
of dimension n, where n is the number of parameters needed to locally specify
the shape and motion, 3 for each rotation, 3 for each translation, and 3 for each
3D feature point, plus any internal camera parameters that must be estimated.
So in general for just motion and shape, the number of unknown parameters is:
n = 3N + 6M .

2.3 Indeterminacies

The camera equations (1) and (3) contain a number of indeterminacies. There
are two reasons for these indeterminacies: first the object coordinate system can
be selected arbitrarily, and second the projection model maps many 3D points
to a single 2D point. These are specified as follows:
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Coordinate System Indeterminacies
If we rotate and then translate the coordinate system by R and t respectively,
we obtain the following transformed shape and motion parameters:

s′
α = R�(sα − t), R′

κ = RκR, t′
κ = Rκt + tκ. (4)

We note that R′
κs′

α + t′
κ = Rκsα + tκ, and hence irrespective of the projection

model, equations (1) and (3) must be ambiguous to changes in coordinates.
Projection Indeterminacies
Many different geometric solutions project onto the same points in the image.
In orthography the depth or Z component does not affect the image, and hence
the projection is invariant to the transformation:

t′
κ = tκ + dκk (5)

for any value dκ. Orthography has a discrete reflection ambiguity, but since
it is not differential we do not consider it. Perspective projection has a scale
ambiguity such that if we transform the shape and translation by a scale s:

s′
α = ssα, and t′

κ = stκ, (6)

we find that Πp[Kκ(Rκs′
α + t′

κ)] = Πp[Kκ(Rκsα + tκ)].

2.4 Solution Manifold

Since the camera equations contain these indeterminacies, then given the mea-
surement data, p, there is not a unique shape and motion parameter set, θ, that
maps to this. Rather equation (3) is satisfied by a manifold,M, of valid solutions
within T which are all mapped to the same p. This manifold has dimension, r,
given by the number of infinitesimal degrees of freedom at a given point. From
the ambiguity equations (4-6) we obtain r = 7 for perspective projection and
r =M + 6 under orthography. Figure 1 illustrates a solution θ ∈M.

θ

MT C

θc

Fig. 1. An illustration of a curve representing a manifold M of solution vectors θ, all
lying in the parameter space T . Choosing a gauge C, which intersects the manifold at
one point, defines a unique solution θC .
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2.5 Gauge Constraints

In order to remove the ambiguity of the solution we can define a gauge or man-
ifold of points: C. Let C contain all those points in T that satisfy a set of r
constraint equations:

ci(θ) = 0 for 1 ≤ i ≤ r. (7)

The gauge C will thus have dimension n − r. We require that C intersect M
transversally and at most at one point per connected component of M. The
intersection of C and M thus provides unique solution within a connected com-
ponent of M, as illustrated in Figure 1. However there may be ambiguities
between components of M, such as the reflection ambiguity in orthography.

For example, we could define an arbitrary gauge with the following con-
straints:

N∑

α=1

sα = 0, R1 = I,
N∑

α=1

s�
α sα = 1. (8)

This fixes the origin of the object coordinate system in its centroid, aligns the
object coordinate system with the first image, and fixes the scale. In orthography
the scale constraint is omitted, but we add the constraint set: tzκ = 0 on the Z
component of translation.

We note that this, or any other choice of gauge is arbitrary, and does not affect
the geometry. It does affect our parameter estimates and their uncertainties, but
in ways that do not affect the geometric meaning of the results.

3 Uncertainty in Data Fitting

When there is noise in the measured data, there will be a resulting uncertainty
in the recovered parameters, which we would like to represent by a covariance
matrix. However, when indeterminacies exist, the solution will be a manifold
rather than a point, and standard perturbation analysis cannot be performed.
The usual approach, in dealing with this, is to choose a gauge and constrain
the solution to lie in this gauge. While this approach is a valid, it introduces
additional constraints into the estimation process, and the resulting uncertainty
values are strongly dependent on the choice of gauge. In this section we ask the
question: How can we estimate the geometric uncertainty without depending on
an arbitrary selection of a gauge? To answer this we introduce gauge invariants
whose uncertainty does not depend on gauge choice. We also derive a Geometric
Equivalence Relationship that considers only this “true” geometric uncertainty.
Along the way we derive the normal form for the covariance which gives us a
convenient way to calculate uncertainty without having to explicitly specify a
gauge.
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3.1 Perturbation Analysis

First we derive an uncertainty measure in an arbitrary gauge. We assume that
the noise is small, and thus that the first order terms dominate. When the noise
is Gaussian the first order terms exactly describe the noise. The measured data,
p is a result of the true feature positions, p̄, corrupted by noise, ∆p:

p = p̄ +∆p. (9)

The noise ∆p is a random variable of the most general type, not necessarily
independent for different points, but it is assumed to have zero mean and known
variance1:

Vp[p] = E{∆p∆p�}. (10)

We note that in the special case when feature points are independent, V [p] will
be block diagonal with the 2×2 block diagonal elements giving the independent
feature covariances.

Given this uncertainty in the measured data, let θ̂ be our estimator of the
shape and motion parameters. There is no unique true solution unless we restrict
our estimation to a particular gauge. If we choose gauge C our estimator can be
written as: θ̂C = θ̄C + ∆θC , for true solution θ̄C and perturbation ∆θC . The
perturbation ∆θC and its variance, V [∆θC ], both lie in the tangent plane to the
gauge manifold, Tθ̄C [C].

We expand equation (3) around θ̄C and get to first order:

∇T
θ Π(θ̄C)∆θC = ∆p (11)

where ∇T
θ is the gradient with respect to θ in the manifold T . We then split the

perturbations,∆θC into two components, those in TθC [M] and those in TθC [M]⊥

as shown in Figure 2:
∆θC = ∆θC‖M +∆θC⊥M. (12)

The gradient ∇T
θ Π(θ̄) is orthogonal to the tangent plane of M and has rank

n− r. We can thus solve for the orthogonal perturbations:

∆θC⊥M = (∇T
θ Π(θ̄C))−

n−r∆p, (13)

where “−” denotes the Moore-Penrose generalized inverse2 constrained to have
rank n − r. We call the covariance of this orthogonal component the normal
covariance:

V⊥M[θ] = (∇T
θ Π(θ̄))−

n−rVp(∇T
θ Π(θ̄))−�

n−r. (14)

The normal covariance is expressed at a particular solution, θ, and depends on
our choice of parametrization and implicitly assumes a metric over parameter
1 We can extend this to the case when variance is known only up to a scale factor
2 The Moore-Penrose generalized inverse is defined such that if A = UΛV � by SVD,
then A−

N = V Λ−
NU�, where Λ−

N has the first N singular values inverted on the
diagonal, and the rest zeroed.
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space. But it does not require explicit gauge constraints, (rather implicitly as-
sumes a gauge normal to the manifold), and as we shall see, it incorporates all
of the essential geometric uncertainty in the solution.

When the indeterminacies are removed by adding constraints the normal
covariance must be obliquely projected onto the appropriate constraint surface.
The uncertainty in the gauge will be in its tangent plane: ∆θC ∈ T [C]. We
already know the perturbation, ∆θC⊥M, orthogonal to T [M], and so it only
remains to derive the component parallel to T [M] as illustrated in Figure 2.

M

C

T[M]

T[C]

∆θc

θc

∆θ  M

∆θ  M

Fig. 2. An illustration of the oblique projection of perturbations along the solu-
tion tangent space, T [M], and onto the gauge manifold tangent space T [C]: ∆θC =
∆θC⊥M +∆θC‖M. This projection transforms the normal covariance matrix into the
local gauge covariance.

Let U be a matrix with r columns spanning T [M] at θC , and let V be a
matrix with r columns spanning the space orthogonal to T [C] at θC . Then we
can express equation (12) as:

∆θC = ∆θC⊥M + Ux. (15)

for some unknown coefficients x. The fact that this perturbation is in the con-
straint tangent plane, implies that V �∆θC = 0. Applying this to (15) and elim-
inating x we obtain:

∆θC = QC∆θC⊥M (16)

where QC = I − U(V �U)−1V � is our oblique projection operator along T [M].
The covariance of θ in this gauge is then given by:

VC [θC ] = QCV⊥M[θC ]QC�
. (17)
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3.2 Inherent Geometric Uncertainty

The camera equations provide geometric constraints on the measurements. Pa-
rameters containing indeterminacies correspond to entities not fully constrained
by the camera equations, whereas parameters which have a unique value over
the solution manifold are fully constrained. These fully constrained parameters
describe the “true” geometric entities. They can be uniquely recovered, (up to
possibly a discrete ambiguity), from the camera equations. Having a unique
value on the solution manifold means that the parameter is invariant to gauge
transformations on the solution. We call these gauge invariants.

Not only are the values of gauge invariants unique, but given the covariance
of the measured data, the covariance of the invariant is uniquely obtainable.
However, the covariance of parameters containing indeterminacies will not be
uniquely specified and many possible “geometrically equivalent” covariances can
be obtained that correspond to the same measurement covariance. In this section
we derive a Geometric Equivalence Relationship for parameters that contain in-
determinacies. This permits us to test whether covariances of these parameters
under different gauges correspond to the same underlying measurement covari-
ance or not. Finally we propose a fast method for covariance estimation and
show its correctness using the Geometric Equivalence Relationship.

Let us assume that we are measuring an invariant property, I(θ), of the
solution. Consider the estimators in two gauges: θC and θC′ with uncertainties:
∆θC and ∆θC′ in their corresponding tangent planes. Let ∂θC

∂θC′ be the Jacobian
matrix that maps perturbations in the tangent plane of C′ to perturbations in
the tangent plane of C:

∆θC =
∂θC
∂θC′

∆θC′ . (18)

The invariant property will have the same value for both solutions: I(θC) =
I(θC′). Moreover, since I is invariant to all points inM, it must also be invariant
to infinitesimal perturbations in M, and hence its gradient must be orthogonal
to the tangent plane of M:

∇T
θ I ∈ T [M]⊥. (19)

A perturbation of the invariant at θC can be written:

∆I(θC) = ∇T
θ I∆θC = ∇T

θ I
∂θC
∂θC′

∆θC′ . (20)

The variance of the invariant can be calculated using both components of this
equation:

V [I] = ∇T
θ IV [θC ]∇T

θ I
� = ∇T

θ I
∂θC
∂θC′

V [θC′ ]
∂θC
∂θC′

�
∇T

θ I
�. (21)

The covariances of parameters with indeterminacies may have “non-geometric”
components along the tangent plane of the solution manifold. This equation
transforms these covariances into the uniquely defined covariance of a gauge
invariant.



208 D.D. Morris, K. Kanatani, and T. Kanade

We then apply the orthogonal constraint from equation (19) to both expres-
sions for V [I] and obtain the following result:

u�(V [θC ]− ∂θC
∂θC′

V [θC′ ]
∂θC
∂θC′

�
)u = 0, ∀u ∈ TθC [M]⊥. (22)

This means that the difference between the covariance and the transformed co-
variance: V [θC ]− ∂θC

∂θC′ V [θC′ ] ∂θC
∂θC′

�
must lie in the the tangent space TθC [M]. Or

equivalently we can say that these two variances have the same orthogonal com-
ponent to T [M] at θC . We denote this relationship as: V [θC ] ≡ V [θC′ ] mod M.
Thus we have:

Geometric Equivalence Relationship The covariance matrices V [θC ] and
V [θC′ ] are geometrically equivalent if and only if

V [θC ] ≡ V [θC′ ] modM. (23)

In essence this says that at a point θ ∈ M, it is only the component of the
covariance that is not in the tangent plane that contributes to the geometric
uncertainty. Any matrix satisfying this equivalence relationship captures the
geometric uncertainty of the parameters. The normal form of the covariance
calculated from equation (14) is a natural choice that captures this uncertainty
for a given parametrization, and does not require constraints to be specified.
From this relationship we see that the covariance in any gauge is equivalent
to the normal covariance, i.e.: VC [θC ] ≡ V⊥M[θ] mod M. Thus the covariance
of an invariant can be calculated directly from either of these covariances by
transforming them with the invariant gradient, ∇T

θ I, as in equation (21).

4 Maximum Likelihood Estimation

It is known that Maximum Likelihood (ML) estimation is unbiased and obtains
the optimal shape and motion parameters. The ML solution is obtained by
minimizing the cost:

J = (p−Π(θ))�V −1
p (p−Π(θ))). (24)

where θ ∈ T . The minimum value of this will have the same camera indetermi-
nacies described in section 2.3, and hence determine a manifold, M, of geomet-
rically equivalent solutions. A unique solution can be obtained by choosing an
arbitrary gauge C.

4.1 Free-Gauge Solution

Instead of constraining our minimization process with our chosen gauge C, at
each step we would like to choose a gauge orthogonal to the solution manifold
M, and proceed in that direction. We expect this to give better convergence to
the manifold M especially when our desired gauge C has a large oblique angle
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to M. Once any point on M is achieved, it is easy to transform this solution
into any desired gauge.

Levenberg-Marquardt (LM) minimization is a combination of Gauss-Newton
and gradient descent. The gradient of J is obtained as

∇θJ = −2∇T
θ Π(θ)V −1

p (p−Π(θ)), (25)

and the Gauss-Newton approximation for the Hessian:

∇2
θJ ≈

1
2
E{∇θJ∇θJ

�} = 2∇T
θ Π(θ)V −1

p ∇T
θ Π(θ)�. (26)

Gauss-Newton proceeds iteratively by solving the linear equation:

∇2
θJ∆θ = −∇θJ. (27)

However, in our case the Hessian, ∇2
θJ , is singular due to the ambiguity direc-

tions with rank n− r. Hence we take steps in the direction:

∆θ = −(∇2
θJ)−

n−r∇J, (28)

which proceeds orthogonally towards the manifold M. This is called free-gauge
minimization. To implement LM we add a gradient term.

At the solution, θ ∈ M, the covariance of the ML estimation of shape and
motion parameters is obtained as:

V [θ] = E{∆θ∆θ�} = 2(∇2
θJ)−

n−r (29)

=
1
2

(∇T
θ Π(θ)V −1

p ∇T
θ Π(θ)�)−

n−r (30)

It can be shown that this is identical to the normal covariance expression in
equation (14), V [θ] ≡ V⊥M[θ], and not just up to a geometric equivalence, and
so we use this as an alternate expression to for the normal covariance.

4.2 Efficient Covariance Estimation

The calculation of the generalized inverse in equations (28) and (30) involves
use of SVD which takes O(n3) operations, and so for many feature points or
images is slow. The Hessian often has sparse structure and when it is multiplied
by the gradient, as in LM, the generalized inverse can be avoided and efficient
minimization methods for J have been proposed [1,2]. Here, however, we not
only want a fast LM method, but also an efficient method to estimate the full
covariance. We propose an efficient method in this section.

Let us assume that our parameter vector is divided into a shape and a motion
part, θs and θm respectively, such that θ = (θ�

s ,θ
�
m)�. The Hessian is then split

into its shape and motion components:

∇2
θJ =

( ∇2
θs
J ∇θsmJ

∇θmsJ ∇2
θm
J

)

=
(
U W
W� V

)

. (31)
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When noise in the feature points specified by Vp are independent of each other, U
and V are full rank3 and sparse with O(N) and O(M) non-zero elements respec-
tively, where N is the number of features and M is the number of images [2].
The cross-term matrix W is not sparse however, and so applying a standard
sparse techniques will not reduce the complexity of determining the generalized
inverse.

First we define the full rank matrix T as follows:

T =
(

I 0
−W�U−1 I

)

(32)

and obtain the block diagonal matrix:

T∇2
θJT

� =
(
U 0
0 V −W�U−1W

)

. (33)

Then we define the covariance VT [θ] by:

VT [θ] = T�(T∇2
θJT

�)−
n−rT (34)

= T�
(
U−1 0

0 (V −W�U−1W )−
m−r

)

T,

where m = 6M is the number of motion parameters. This can be obtained in
O(N2M +M3) operations which, when when the number of images is small (i.e.
M � N), is much faster than the original SVD which is O(N3 +M3).

In order for VT [θ] to be a valid description of the uncertainty, we must show
that it is geometrically equivalent to V⊥M[θ]. Let A = 1

2∇2
θJ be half the Hessian,

and consider the equation:
Ax = u (35)

where u is in the column space of A. The general solution is a combination
of a unique particular solution, xp = A−u, in the column space of A, and a
homogeneous solution, xh, which is any vector in the nullspace of A, i.e. Axh = 0.
We left multiply equation (35) by T and rearrange to obtain:

(TAT�)T−�x = Tu. (36)

Then changing variables: y = T−�x, and solving for y we obtain:
y = (TAT�)−Tu + yh where (TAT�)yh = 0. Now transforming back to x
we can decompose the solution into the particular and homogeneous parts:

x = T�(TAT�)−Tu + T�yh = xp + xh, (37)

where xp = A−u is the particular solution obtained in equation (35). It is easy
to see that T�yh is in the nullspace of A, and hence T�(TAT�)−Tu = xp + x′

h

for some vector x′
h in the nullspace of A.

3 U is full rank for affine and perspective projection, but not when homogeneous coor-
dinates are used as the general projective case, but then we do not obtain Euclidean
shape.
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We now apply the geometric equivalence test to V⊥M[θ] = A− and VT [θ] =
T�(TAT�)−T . The change of constraint Jacobian is the identity: ∂θC

∂θC′ = I, and
the orthogonal component to the tangent space of M, Tθ[M]⊥, is spanned by
the columns of A and so u is any vector in the column space of A. Applying the
equivalence relationship we obtain:

u�(A− − T�(TAT�)−T )u = u�(xp − xp − x′
h) = u�(−x′

h) = 0, (38)

for all u in the column and row space of A, since x′
h is in the nullspace. We thus

conclude that VT [θ] can be efficiently estimated and is geometrically equivalent
to the normal covariance V⊥M[θ].

1 4 8 11

Fig. 3. Four images of an eleven image sequence with significant noise added and the
scaled standard deviation of each point illustrated with an ellipse. (The lines connecting
points are only present for viewing). The synthetic object is shown bottom left. The
optimal reconstruction, given the noise estimates, is shown on the right with uncertainty
ellipsoids. These ellipsoids, corresponding to the 3× 3 block diagonal elements of a full
shape covariance, are significantly correlated as shown in the full covariance matrix in
Figure 5.

5 Results

We give some sample synthetic and real results illustrating our uncertainty mod-
eling. A set of features in an image sequence with known correspondences is
shown in Figure 3. The synthetic object is also shown along with a sample op-
timal reconstruction and ellipsoids illustrating feature-based uncertainty. The
individual feature uncertainties are strongly correlated as illustrated in the sub-
sequent Figures.
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The normal covariance for this shape and motion recovery is shown in Fig-
ure 4. This contains a full description of the uncertainty in the features, but
to experimentally confirm it using Monte Carlo simulation requires that we se-
lect a gauge such as that in equation (8). In Figure 5 we show the predicted
covariance obtained by projecting the normal covariance into this gauge using
equation (17). Even though the normal covariance and the predicted covariance
have significantly different values and correlations, they contain the same ge-
ometric uncertainty (as they are equivalent under the Geometric Equivalence
Relationship) and will give the same predictions for uncertainties of gauge in-
variants. Figure 5 also contains the Monte Carlo covariance estimate in this
gauge, involving 400 SFM reconstruction runs. It is very similar to the predicted
covariance confirming that our uncertainty model is correct. An easier way to
visually compare the covariances is to plot the square root of their diagonal ele-
ments. This gives the net standard deviation in each parameter in this gauge as
illustrated in Figure 6.
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Fig. 4. The predicted normal covariance matrix giving us the geometric uncertainty of
the reconstructed synthetic object. The scaled absolute value is shown by the darkness
of the shading. Here weak perspective was used and µ is the recovered scale for each
image. We note that it can be altered by adding components in the tangent plane to
M without changing the underlying uncertainty, as we see in Figure 5.

The problem with the shape and motion covariance plots is their dependence
on choice of gauge. Gauge invariants, however, will give us unambiguous mea-
sures for the uncertainty of the results. We chose two invariants on our synthetic
object: an angle between two lines and the ratio of two lengths. Their statis-
tics are shown in Table 1, confirming very good matching between predicted
uncertainty and actual uncertainty.

Next we show results for a real image sequence of a chapel in Figure 7 along
with the reconstructed shape from SFM. The feature correspondences were de-
termined manually. Not only can we obtain a texture-mapped reconstruction, we
can also obtain measurements of similarity invariant properties such as angles
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Fig. 5. (Left diagram) The predicted covariance in an arbitrary gauge, see equation
(8). We note that the values and correlations are significantly different from the normal
covariance in Figure 4, and yet it still contains the same geometric uncertainty. The
Monte Carlo estimation of covariance in this gauge is shown on the right. It shows close
similarity to the predicted covariance in this gauge as can also be seen in Figure 6.
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Fig. 6. The square root of the diagonal elements of the covariances in Figure 5 are
shown here. This gives the net standard deviation of each parameter in the experi-
mental gauge (8) obtained from the diagonal of the covariance. The solid line is the
experimentally measured value and the dashed line is our prediction from the projected
normal covariance.

with their uncertainties. We found the angle and its uncertainty (in standard
deviations) between two walls separated by a buttress: 117◦ ± 3.2◦, as well as
two other angles on the chapel: 46.2◦± 2.1◦ and 93.2◦± 2.6◦ as described in the
Figure caption. These quantities are exact and not only up to an unknown trans-
formation. We believe reporting this uncertainty measure is essential for most
quantitative analyzes of the shape, and can only be done for gauge invariant
properties.

6 Concluding Remarks

We have addressed the question of uncertainty representation when parameter
indeterminacies exist in estimation problems. The shape and motion parame-
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Table 1. Predicted and measured values, along with their uncertainties in standard
deviations, of two gauge independent properties of the synthetic object in Figure 3:
(left) the angle between two lines, and (right) the ratio of two lengths.

Angle Mean Uncertainty Ratio Mean Uncertainty
Predicted: 90.11◦ ±2.10◦ Predicted: 0.9990 ±0.0332
Recovered: 90.02◦ ±2.10◦ Recovered: 1.0005 ±0.0345

Fig. 7. An image from a 6 image sequence of a chapel is shown on the left with features
registered by hand. The reconstruction is on the right. We can obtain quantitative
measures and uncertainties from this reconstruction. In this case we estimated the
angle between to walls separated by a buttress, and two other angles as illustrated on
the far right. The values (anti-clockwise from the top) are: 117◦ ± 3.2◦, 46.2◦ ± 2.1◦

and 93.2◦ ± 2.6◦.

ters estimated by SFM contain inherent indeterminacies. Hence to apply per-
turbation analysis, these parameters are first constrained by a gauge and the
covariance is estimated in this gauge. Unfortunately the choice of gauge will
have significant effects on the uncertainties of the parameters, as illustrated in
our results. These effects, however, are “non-physical” and do not correspond
to changes in the actual geometric uncertainty which is unaffected by an arbi-
trary choice of gauge. Thus shape and motion parameter uncertainties contain
artifacts of the choice of gauge. The uncertainties of gauge invariant parameters,
however, are not affected by these indeterminacies and hence correspond directly
to the inherent geometric uncertainty. They thus provide unambiguous measures
for the solution uncertainty.

We derived a Geometric Uncertainty Relationship which permits us to com-
pare the geometric uncertainty contained in covariances described under different
parametrizations and gauges. Using this relationship we showed that the nor-
mal covariance, whose estimation does not need explicit gauge constraints, fully
describes the solution uncertainty. We were also able to derive an efficient es-
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timation method for the solution covariance. Using the Geometric Uncertainty
Relationship, we showed that this estimate also fully captures the solution un-
certainty. Gauge invariant uncertainties can be calculated by transforming this
covariance.
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Discussion

Bill Triggs: When you use your efficient reduction technique, the reduction is
triangular not orthogonal, so you should get a different covariance out at the end
— it will be gauge-equivalent, but a generalized inverse rather than a Moore-
Penrose pseudo-inverse. Can you comment on how large the difference seems to
be in practice, and whether looking at one of these covariance matrices would
give you a misleading idea of the uncertainties in the other one.

Daniel Morris: That’s a good question. There are two issues to consider: the
size of the diagonal elements of the covariance matrix and the size of the off-
diagonal elements indicating correlation between parameters. The normal co-
variance will have the smallest trace of all gauge equivalent covariances. For the
synthetic example we presented, the trace of our efficient covariance estimation
method was 13% larger than that of the normal covariance, and the trace of
the covariance of the standard gauge, in which the centroid was fixed, was 30%
larger than the normal covariance. However, the normal covariance need not
have small off-diagonal elements, and actually in our example it had 50% larger
correlation values between shape and motion parameters than our efficient co-
variance estimate. So numerically our method actually reduced the effect of cross
terms. Also, while the magnitudes of the elements in the covariances varied sig-
nificantly between gauges, the overall structure of the covariances did not seem
to significanly change when different gauges were used.

Rick Szeliski: This is a more open-ended, speculative question. When you look,
for example, at things like the individual variances of points, you sometimes fail
to capture the global things. I guess there are the absolute gauge freedoms that
exist in these problems, for example the coordinate or centroid freedom, and
then there are other softer ambiguities, depending on the imaging, the bas-relief
ambiguity, there are probably others too. I’m just wondering if there is some
way we can gain intuition, perhaps through visualization, or some other way to
get a handle qualitatively on what the error is in a given reconstruction.

Daniel Morris: The question is, can we gain qualitative information from these
covariances?

Rick Szeliski: Is there, for example, some way to pull out that some of these
uncertainties are very highly correlated, to be able to just look at the data set
and say . . . I can tell you very well where it is going to be just like this. . . For
example, where you had the angle between two faces, the one that had most to
do with how flat the scene was, was the one with the largest error.

Daniel Morris: It is interesting to speculate as to what kind of qualitative
information we can obtain from looking at the covariance matrix. In our example
we see large correlation effects between the rotation parameters and the Z-
component of shape, and I think this corresponds to the bas-relief effect. So
you can look at that, and there may be a way of quantifying it, for example,
by looking at the eigenvalues. I think that’s what you do in your paper on
ambiguities to determine how correlated the variables are. It is a bit harder,
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however, to gain qualitative insight into the uncertainty of invariant properties
such as angles from the parameter covariance matrix. To do that it is probably
best to directly calculate the covariance matrix of these invariants.
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Abstract. This paper is focused on error characterization of the factor-
ization approach to shape and motion recovery from image sequence us-
ing results from matrix perturbation theory and covariance propagation
for linear models. Given the 2-D projections of a set of points across mul-
tiple image frames and small perturbation on image coordinates, first or-
der perturbation and covariance matrices for 3-D affine/Euclidean shape
and motion are derived and validated with the ground truth. The prop-
agation of the small perturbation and covariance matrix provides better
understanding of the factorization approach and its results, provides er-
ror sensitivity information for 3-D affine/Euclidean shape and motion
subject to small image error. Experimental results are demonstrated to
support the analysis and show how the error analysis and error measures
can be used.

1 Introduction

The factorization approach to 3-D shape and motion recovery from image se-
quence, first proposed in [1], reconstructs 3-D shape and motion in affine and
Euclidean spaces given the 2-D projections of a set of points across multiple im-
age frames captured by uncalibrated affine cameras [2]. It employs the facts that
the ideal measurement matrix has rank 3 and can be decomposed as 3-D shape
and rotation after canceling the translation terms by singular value decomposi-
tion, and redundant information is good for robust estimation. The introduction
of the factorization approach for orthographic projection [1] was followed by a
series of extensions to more general camera models, from weak perspective [3],
para-perspective [4], affine [5] to projective projection [6], and methods based on
sequential computation [7], line correspondence [8] and occlusion and uncertainty
handling [9].
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The factorization approach has attracted significant interest from various
researchers who have applied it to a variety of tasks. Therefore it is of great
interest to investigate the sensitivity of the estimated 3D shape and motion
measurements to perturbations on image measurements. However, to the best
knowledge of the authors, no thorough attempt was made for the error sensitivity
analysis specific for this method, although there have been quite a few papers ad-
dressing error analysis for the structure from motion algorithms [10,11,12,13,9].

One related work is reported in [12] where a general framework of error anal-
ysis for structure from motion is proposed and the singular values of the derived
Jacobian are used for error interpretation. It is argued in [12] that sensitivity is
a property of the problem and not of an implemented technique for the problem.
Moreover, they point out that absolute statements about errors in the output are
important to understand whether structure from motion is feasible and should
be pursued. It is also pointed out that the Jacobian for the problem is singu-
lar due to the nature of the inverse problem and hence the eigenvectors of the
Jacobian are used to interpret the sensitivity of the results. Our approach falls
within the general framework in [12]. However our analysis is specific for the
factorization approach. Both methods are only applicable to small perturbation
analysis where linearization holds. In addition, if SfM component is one compo-
nent in a larger vision system, it is important to analyze the sensitivity of the
implementation and derive conclusions about the specific technique used in the
system. Thus, an analysis of the a sub-class of techniques that perform SfM is
necessary. We will show that the perturbation theory on eigensystem, proposed
and used for error estimation and analysis for 3-D structure from two perspec-
tive views [10,11], is also applicable to the factorization approach and leads to
analytical expressions for the first order shape and motion error measures.

Our analysis uses a step-by-step error propagation through various stages of
the factorization approach to characterize the errors at every stage of the pro-
cess. The various algorithmic stages include: singular value decomposition of the
observed measurement matrix to identify the 3 dominant singular values and
corresponding eigenvectors. These correspond to the affine shape and motion
matrices up to an 3 by 3 affine transform. A subsequent stage applies metric
constraints to recover the Euclidean shape and rotation matrices. Ambiguity
still exists in this representation as the reference frame is only known up to an
arbitrary rotation. To propagate uncertainties through the first stage, we use
well known results from matrix perturbation theory to derive the expressions for
the perturbations on singular values and eigenvectors [10,11,14,15]. We propa-
gate covariances through each step by assuming that the input perturbations are
Gaussian random variables, linearize and do covariance propagation to derive the
covariances at each step. The ambiguities in the reconstruction at the different
steps make the notion of covariances in these spaces invalid. For example, for
an affine shape we can only make relative comparisons of the output deviations
to determine what points/frames are more sensitive to input perturbations. We
also point out that angle covariances measuring the degree to which relation-
ships such as parallelism and collinearity are preserved in the affine shape (when
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compared to the Euclidean shape) are useful to characterize the degree to which
the intermediate affine shape/motion values are close to the ideal result.

Our paper is organized as follows: Section 2 discusses the theoretical results
governing the relationships between input image errors and output errors for
affine/Euclidean shape and motion parameter estimates. Section 3 provides a
discussion concerning the interpretation of the derived covariance matrices. For
instance, we provide insights on how errors can be measured given that the
estimated affine shape is known up to an unknown affine transform. Section
4 describes experiments we conducted to address three issues: correctness of
theoretical results, example illustration of how errors can be quantified in affine
shape/motion, and an illustration of how relative comparisons of reconstruction
errors can be made to identify the points/frames which are affected most by
input perturbations.

2 Error Characterization

Vectors and matrices will be in bold face. An entity, e.g. the shape, may be
associated with four variables, the error free shape matrix S, the observed noisy
shape matrix Ŝ, the shape perturbation matrix ∆S, and the first order pertur-
bation of the shape matrix δS. According to the definition, we have Ŝ = S+∆S

and Ŝ � S+δS, where � denotes equal in the linear terms. Usually the real shape
perturbation matrix∆S may not be available and we seek for δS as the first order
(linear) approximation of∆S. A matrix S = [sij ]m×n withm rows and n columns
can also be represented in vector form by column first order (unless stated oth-
erwise) as �S with m× n entities, �S = [s11, s21, . . . , sm1, s12, . . . , sm2, . . . , smn]T .

2.1 Problem Formulation

Recall that the factorization approach recovers 3-D shape (x, y, z coordinates)
and motion (affine camera parameters) in affine and Euclidean spaces given the
correspondence of P points across F image frames. Our task is to determine
the first order approximation of the perturbation and covariance matrices of
shape and motion given the observations of 2-D projections of P points across F
frames and covariance of the perturbation on image coordinates. The following
error analysis of the factorization approach is mainly built upon matrix pertur-
bation theory [10,14], especially the theorem derived and proved in Appendix A
[10], where Weng, Huang and Ahuja used for error analysis of their motion and
shape algorithm from two perspective views. The basic ideas are propagating the
small perturbation on image coordinates, i.e. the perturbation on the registered
measurement matrix, to the three dominant singular values and corresponding
eigenvectors, therefore to the affine/Euclidean motion and shape matrices, and
using the covariance matrices as a vehicle for error measures and applications.
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2.2 Affine Shape

Let m = 2 × F and n = P , we first investigate how the perturbation matrix
∆W affects the three largest singular values λ1, λ2, λ3 and the corresponding
eigenvectors v1,v2,v3 of an m × n measurement matrix W, and thus on the
affine shape Sa = ΛVT, where the singular value decomposition of Ŵ is

[Ŵ]m×n = ÛΛ̂V̂T ≈ [M̂a]m×3[Ŝa]3×n. (1)

Before we proceed further, matrices W and ∆W are scaled down by the
maximum absolute value ofW, c = max|w(i, j)|, i = 1, . . . ,m, j = 1, . . . , n. This
guarantees the maximum absolute value of ∆W is sufficiently small. The scale
factor c is later put back to the computed singular values and the perturbation
on the singular values.

Let A be an n× n symmetric matrix defined as:

A =WTW = (UΛVT)T(UΛVT) = VΛ2VT, (2)

we have V−1AV = Λ2 = diag{λ21, λ22, . . . , λ2n}. MatrixW is usually a rectangu-
lar matrix, pre-multiplying with its own transpose yields a symmetric matrix A
so that the Theorem proved in [10] holds.

According to the Theorem [10], the first order perturbations on the three
most significant eigenvalues and corresponding eigenvectors of matrix A are:

δλ2
i
= vT

i ∆Avi,

δvi = V∆iVT∆Avi, (3)

where vi are the column vectors of V = [v1, . . . ,vn], and the diagonal matrix
∆i = diag{(λ2i − λ21)−1, . . . , 0, . . . , (λ2i − λ2n)−1} with the i-th diagonal element
as 0, and i = 1, 2, 3.

The unknowns of ∆Avi in (3) can be written as

∆Avi = [vi1In, vi2In, . . . , vinIn] �δA = Hi �δA, (4)

by rewriting the n × n matrix ∆A as the column-first vector form �δA with n2

elements, where vij is the j-th element of vector vi and In is n × n identity
matrix. Hi is an n × n2 matrix with 1 by n submatrices vikIn, k = 1, 2, . . . , n,
each with n× n elements.

�δA can be further associated with �δW, so that we have a close form solution
for δλ2

i
and δvi as a function of �δW. From the matrix representation of the

perturbation on matrix A

∆A = (W +∆W)T (W +∆W)−WTW, (5)

the first order approximation

[∆A]n×n �
[
WT]

n×m
[∆W]m×n +

[
∆T

W

]
n×m

[W]m×n (6)
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is rewritten as its corresponding vector form
[
�δA

]

n2×1
= [Fs +Gs]n2×mn

[
�δW

]

mn×1
, (7)

where matrix Fs = [Fij] has n by n submatrices of Fij =
{
WT if i = j
0 if i �= j , and

matrix Gs = [Gij] also has n by n submatrices Gij with the j-th row being the
i-th column vector ofW and all other rows being zeros. More specifically,

Fs =







WT 0 · · · 0
0 WT · · · 0
...

...
. . .

...
0 0 · · · WT





 (8)

Gs =















w11 · · · wm1 · · · · · · 0 · · · 0
...

...
...

...
...

...
...

...
0 · · · 0 · · · · · · w11 · · · wm1

...
...

...
...

w1n · · · wmn · · · · · · 0 · · · 0
...

...
...

...
...

...
...

...
0 · · · 0 · · · · · · w1n · · · wmn















(9)

Then the perturbations on the eigenvalues and eigenvectors ofA subject to small
perturbation onW are:

δλ2
i
� vT

i Hi(Fs +Gs) �δW = DT
λi
�δW,

δvi � V∆iVTHi(Fs +Gs) �δW = Dvi
�δW, (10)

where Dλi is a vector with mn elements and Dvi is a matrix with dimension of
n×mn.

Without any constraints on the statistical structure of the small perturbation,
we get the covariance matrix of vi, i, j = 1, 2, 3, from (10),

Γvi = E{δviδvi
T } = DviΓ �WDvi

T ,

Γvivj = E{δviδvj
T } = DviΓ �WDvj

T , (11)

where E denotes expectation and Γ �W is the covariance matrix of the measure-
ment matrix, and the variances of the squares of the singular values λ2i for
i = 1, 2, 3:

σλ2
i
= E{δλ2

i
δTλ2

i
} � DT

λi
Γ �WDλi

σλ2
i
λ2

j
= E{δλ2

i
δTλ2

j
} � DT

λi
Γ �WDλj (12)

Under the assumption of identical and independent Gaussian perturbation with
zero mean and variance σ2 for all image points and their components, Γ �W =
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σ2Imn, simpler representations are possible:

Γvi = σ
2DviDvi

T ,

Γvivj = σ
2DviDvj

T . (13)

It is well known that the real structure of the errors on 3-D shape and mo-
tion is neither independent nor Gaussian distribution. The covariance matrices
(11) and (13) are just Gaussian approximation of the real structures for small
perturbation. This simplification could lead us to simplified representations and
error measures.

At last, we have the first order perturbation on affine shape Sa = ΛVT sub-
ject to small perturbation on image coordinates, by combining the perturbations
on singular values and eigenvectors ofW:

∆Sa � δSa =




δλ1v

T
1 + λ1δTv1

δλ2v
T
2 + λ2δTv2

δλ3v
T
3 + λ3δTv3



 , (14)

where δλi =
√
λ2i + δλ2

i
− λi �

δ
λ2

i

2λi
(for |

δ
λ2

i

λ2
i

| << 1) are the perturbations on

the singular values of W, and their covariances are σλi = 1
4λ2

i

σλ2
i
and σλiλj =

1
4λiλj

σλ2
i
λ2

j
(see (12)).

Covariance matrix for affine shape ΓSa

ΓSa=E{�δSa
�δT
Sa

}= (15)



σλ1v1v1

T + λ21Γv1 σλ1λ2v1v2
T + λ1λ2Γv1v2 σλ1λ3v1v3

T + λ1λ3Γv1v3

σλ1λ2v2v1
T + λ1λ2Γv2v1 σλ2v2v2

T + λ22Γv2 σλ2λ3v2v3
T + λ2λ3Γv2v3

σλ1λ3v3v1
T + λ1λ3Γv3v1 σλ2λ3v3v2

T + λ2λ3Γv3v2 σλ3v3v3
T + λ23Γv3





then can be derived from (14) after fitting δSa into its vector form �δSa by row
first order, �δSa = [δλ1v

T
1 + λ1δTv1

, δλ2v
T
2 + λ2δTv2

, δλ3v
T
3 + λ3δTv3

]T , with the
assumption that E{δvi} = DviE{�δW} = 0.

The representation of ΓSa in (15) provides us various error measures for
affine shapes, from high level error sensitivity summary for affine shape ‖δSa‖ ≈√
trace{ΓSa} to fine-grained error sensitivity measure for a specific point, say

the k-th point, ‖δSk
a
‖ ≈

√
trace{ΓSk

a
} where covariance matrix ΓSk

a
is an 3 × 3

matrix extracted from rows and columns of k, (n + k), (2n + k) of covariance
matrix ΓSa . ‖δSk

a
‖ gives us relative error measures for the shape points, e.g.

indicating which points are more sensitive to image errors than the others.
It is worth to notice that we are seeking for 3 most significant simple eigen-

values, which are usually distinctive and not close to 0, in the first order per-
turbation analysis. So the inverse terms, e.g. (λ2i − λ21)−1 in matrix ∆i in (3),
are usually quite stable. Recall that the smallest simple eigenvalue (very close
to 0) and corresponding eigenvector are sought in [10] where numeric robustness
is a big concern. As the ground truth ofW is usually unavailable in real appli-
cations, we use the observed Ŵ, λ̂i and V̂ instead to estimate the first order
perturbations.
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2.3 Affine Motion

Follow the error analysis for affine shape, and let

B =WWT = (UΛVT)(UΛVT)T = UΛ2UT (16)

be an m×m symmetric matrix. It can be shown that the perturbations on the
eigenvalues and eigenvectors of B subject to small perturbation onW are:

δλ2
i
� uT

i Ji(Fm +Gm) �δW = DT
λi
�δW,

δui � U∆iUTJi(Fm +Gm) �δW = Dui
�δW, (17)

where Dλi is a vector with mn elements, Dui is a matrix with dimension of m×
mn, ui are the column vectors ofU=[u1, . . . ,um], Ji=[ui1Im, ui2Im, . . . , uimIm]
is an m×m2 matrix with 1 by m submatrices uikIm, k = 1, 2, . . . ,m, each with
m × m elements, ∆i = diag{(λ2i − λ21)−1, . . . , 0, . . . , (λ2i − λ2n)−1} has the i-th
diagonal element as 0, i = 1, 2, 3, matrix Fm = [Fij] has m by n submatrices Fij

with the i-th column being the j-th column vector ofW, and matrix Gm = [Gij]
also has m by n submatrices Gij with Gij = wijIm, i.e.,

Fm =















w11 · · · 0 · · · · · · w1n · · · 0
...

...
...

...
...

...
...

...
wm1 · · · 0 · · · · · · wmn · · · 0

...
...

...
...

0 · · · w11 · · · · · · 0 · · · w1n
...

...
...

...
...

...
...

...
0 · · · wm1 · · · · · · 0 · · · wmn















(18)

Gm =







w11Im w12Im · · · w1nIm
w21Im w22Im · · · w2nIm

...
...

. . .
...

wm1Im wm2Im · · · wmnIm





 (19)

From (17), we get the covariance matrix of ui,

Γui = E{δuiδui
T } = DuiΓ �WDui

T ,

Γuiuj = E{δuiδuj
T } = DuiΓ �WDuj

T . (20)

Again under the assumption of identical and independent Gaussian perturbation
with zero mean and variance σ2 for all image points and their components,
Γ �W = σ2Imn, (20) can be simplified as:

Γui = σ
2DuiDui

T ,

Γuiuj = σ
2DuiDuj

T . (21)

The covariance matrices of (20) and (21) are just Gaussian approximation to the
error structure on motion matrix.
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As affine motion matrixMa = [u1,u2,u3] is composed of three eigenvectors
corresponding to the three most significant eigenvalues of B, the perturbation
on affine motion matrix subject to small perturbations on image coordinates is

δMa = [δu1 , δu2 , δu3 ], (22)

where δui are given by (17). Thus the covariance matrix for affine motion ΓMa

can be derived from (22) after fitting δMa into its vector form �δMa by column
first order, �δMa =

[
δu1

T , δu2
T , δu3

T
]T ,

ΓMa = E{�δMa
�δTMa
} =




Γu1 Γu1u2 Γu1u3

Γu2u1 Γu2 Γu2u3

Γu3u1 Γu3u2 Γu3



 . (23)

Similar to ΓSa in (15), the representation of ΓMa in (23) also provides various
error measures for affine motion, from high level error sensitivity summary for
affine motion ‖δMa‖ ≈

√
trace{ΓMa} to the error measure for a specific frame,

even a specific axis, such as ‖δMk
a
‖ ≈

√
trace{ΓMk

a
} for the k-th frame, where

covariance matrix ΓMk
a
is an 6 × 6 matrix extracted from rows and columns of

2k, (2k + 1), (m + 2k), (m + 2k + 1), (2m + 2k) and (2m + 2k + 1) of ΓMa .
‖δMk

a
‖ tells us which camera frames are more sensitive to image errors than the

other frames. The error measures for the x-axis, y-axis and z-axis are just ‖δu1‖,
‖δu2‖ and ‖δu3‖, respectively.

2.4 Euclidean Shape and Motion

Euclidean motion and shape can be recovered by camera auto-calibration [5,1,4].

An invertible 3× 3 matrix Q̂ is sought, such that
[
m̂i

n̂i

]

corresponds to the real

camera matrix for frame i, where m̂i and n̂i are the (2i)-th and (2i+1)-th row
vectors of the affine motion matrix M̂a, and i = 1, . . . , F . The general metric
constraints for affine cameras are [5]

[
m̂T

i Q̂Q̂
Tm̂i m̂T

i Q̂Q̂
Tn̂i

m̂T
i Q̂Q̂

Tn̂i n̂T
i Q̂Q̂

Tn̂i

]

= AiAT
i , (24)

where Ai is the intrinsic matrix for frame i. Solving matrix Q̂, which can be
done by linear method, yields the solutions of motion and shape matrices in
Euclidean space, i.e

M̂e = M̂aQ̂, Ŝe = Q̂−1Ŝa. (25)

The recovered shape and motion in Euclidean space are still subject to a global
scale factor and rotation to be registered with the reference coordinate system
where the ground truth resides.

When Q and Q−1 are given (which is case when evaluation based on ground-
truth is done), the first order approximation on the Euclidean shape and motion
errors can be simplified as

δMe ≈ δMaQ, δSe ≈ Q−1δSa . (26)
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By rewriting it as vector form

�δMe ≈ DQ�δMa ,
�δSe ≈ DQ−1�δSa , (27)

we have the close form solution for the covariance matrices of Euclidean motion
and shape

ΓMe ≈ DQΓMaD
T
Q,

ΓSe ≈ DQ−1ΓSaD
T
Q−1 . (28)

Under the assumption of Γ �W = σ2Imn, it is further simplified as:

ΓMe ≈ σ2DQDuiD
T
ui
DT

Q,

ΓSe ≈ σ2DQ−1DviD
T
vi
DT

Q−1 . (29)

The interpretation of the error measures for Euclidean shape ‖δSe‖ ≈
≈ √trace{ΓSe}, ‖δSk

e
‖ ≈

√
trace{ΓSk

e
}, k = 1, . . . , P and Euclidean motion

‖δMe‖ ≈
√
trace{ΓMe}, ‖δMk

e
‖ ≈

√
trace{ΓMk

e
}, k = 1, . . . , F are similar to

the affine counterparts addressed in Section 2.2 and 2.3. The only difference is
that they are more constrained and only a rotation ambiguity is left.

3 Discussion

In this section we discuss key issues addressing: 1) better applicability of the
matrix perturbation theory results to factorization analysis over the original
application discussed in [10,11], 2) the use of the error predictions for relative
comparisons of sensitivities of output terms to input perturbations, and 3) the
interpretation of errors in affine shape, meaning of covariances.

The error characterization approach using the first order approximation is a
reasonable approximation to the Jacobian only when the input perturbation is
small. And how small should it be really depends on the scene structure, camera
configuration, and image noise. One of measures could be

ε =
1

λ1 − λ2 +
1

λ2 − λ3 +
1
λ3
, (30)

where λ1 > λ2 > λ3 are the three dominant singular values of the measurement
matrix. When input perturbation is above certain level, the linear approxima-
tion is no longer applicable and the higher order terms will dominate. However,
we are only interested in perturbation on the three most dominant singular val-
ues and the corresponding eigenvectors, which is more robust than seeking the
perturbation on the smallest singular values (usually very close to zero) such as
the situation attacked in [10,11].

It also worths notice that the performance measures derived in (14, 15, 22,
23, 26,28) are subject to a specific eigensystem decided by the scene and camera
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configuration. When the cameras and shape are fixed, the eigensystem of the reg-
istered measurement matrix is also fixed. Due to ”small” perturbation on image
measurement, not big enough to perturb the eigensystem, we have observations
in affine/Euclidean space subject to an unknown but fixed affine/rotation trans-
form. So the local covariance used for relative measures are valid and valuable for
relative comparison purposes. For example, by comparing ‖ΓSi

e
‖, i = 1, . . . , P

and ‖ΓMj
e
‖, j = 1, . . . , F , questions like which 3-D point/frame suffers more

error than the others subject to the specific scene structure, camera configura-
tion and image noise can be answered quantitatively. This information is already
enough to tell us which point/frame has the worst performance in the group and
should be removed first if necessary. Making the same relative comparison also
helps us to include further tracking points and frames into the shape and motion
reconstruction. An iterative process of the comparisons of the error measures are
helpful for picking the right points and frames for performance improvement. We
are safe as long as the structure of the eigensystem is preserved.

Since, the estimated affine shape is only defined up to an affine transform,
one could ask the question whether the above covariance matrix for the errors
�δSa is a meaningful quantity to compute. This matrix would only allow relative
comparisons since all errors have undergone the same affine transform. Another
interesting question that could be asked is on how one could compare various
trials wherein the image perturbations are large enough so that the eigensystems
are perturbed (e.g. the eigenvectors corresponding to the dominant singular val-
ues permute). To answer this question, we use the fact that the same unknown
affine transform is applied to every point in the shape matrix. This means that
relationships such as parallelism and collinearity for tuples of points in the ideal
input Euclidean shape should be preserved after the affine transform. Thus, it
makes sense to characterize the error between the difference in the angles of point
tuples that satisfy the parallelism/collinearity constraints in the original input
shape and estimate the precision parameter for these angle differences. In fact,
if two pairs of lines have the same angle between them in Euclidean space, their
angles in the affine space would remain the same (since they are undergoing the
same unknown affine transform). This fact will be used to characterize errors
in the affine motion estimates as well. In this paper, we concentrate mainly on
relative comparisons that can be made when the perturbations are small enough.

Another possibility is to remove ambiguity by registration of the estimates
for meaningful comparisons. After fixing the affine/rotation ambiguity, the error
measures can be even used for comparison of different shape undergoing same
motion, or same shape undergoing different motion. Suppose two factorization
results are achieved from the same camera configuration and motion, Wα =
MαSα, andWβ =MβSβ . There is a transform T (an affine transform in affine
space and a rotation transform in Euclidean space) between Mα and Mβ , and
can be solved from linear system Mα = MβT. With the transform T fixed,
shapes Sα and T−1Sβ and the corresponding error measures are comparable.
The same approach applies to the situation where shape is fixed. When both
scene structure and camera configuration are changing or the image perturbation
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Fig. 1. VRML model VENUS and ten of its projections.

is too large, the error measures with respect to different eigensystems do not
provide any meaningful insight for shape and motion distortion.

4 Experiment Results

Experiment results are shown in this section to support the above error analysis
and how the results can be used to bring in insights and improve performance.

The first simulation is to prove that the derivations of (14) and (22) based on
perturbation theory are correct and valid for small perturbation. A 3-D model
VENUS with 711 nodes is projected on 10 image frames, and the point correspon-
dences are perturbed by identical and independent Gaussian noise. The observed
3-D shape and motion errors from the factorization approach are compared
against the first order approximations from our error analysis. A close matching
of them would be a proof of the derivations. For this purpose, the VENUS model
is first normalized in the unit cube {x ∈ (−1, 1], y ∈ (−1, 1], z ∈ (−1, 1]}. Ten
orthographic cameras are simulated, all targeting at the origin. Five of them are
distributed uniformly on the unit circle on XZ plane and the other five on the
unit circle on YZ plane. The 3-D model and its 10 projections are shown in Fig. 1.
Identical and independent Gaussian noises are added to the point coordinates in
all frames with size 512× 512, ∆u ∼ N(0, 4.0), ∆v ∼ N(0, 1.0). The 711 points
across 10 frames and the perturbations are fit into the measurement matrix.
Affine shape, affine motion, and the first order perturbation on them are calcu-
lated based on the factorization approach and the above error analysis. The com-
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Fig. 2. Norm of computed error (solid line) versus norm of first order perturbation
(dotted line) for the VENUS model. (a) ‖∆Sa‖ ∼ ‖δSa‖ from (14); (b) ‖∆Ma‖ ∼ ‖δMa‖
from (22).

parisons of the observed shape and motion errors, ‖Ŝa − Sa‖ and ‖M̂a −Ma‖,
against the derived first order perturbations on affine shape and motion, ‖δSa‖
and ‖δMa‖, are shown in Fig. 2 for 25 random trials, where matrix norm is de-
fined as root sum of squares of matrix components, e.g. ‖S‖ =

√∑
i,j s(i, j)2. It

is easy to see the strong correlation between the two curves. Given Q and Q−1,
‖δSe‖ and ‖δMe‖ have similar matches.

Next illustration of errors in affine space is demonstrated to check the par-
allelism relationship. A total of 13 random points are generated in unit cube,
where 4 of them specify 2 parallel lines. They are projected on 5 image planes
(512 × 512) by the orthographic cameras in Table 1. Samples from Gaussian
distribution with zero mean and standard deviation ranging from 0.1 to 1.5
are simulated as image errors. The errors propagate through the factorization
approach and perturb the orientation of the two lines used to be parallel in Eu-
clidean space. The angles in degrees between the two lines are calculated and
repeat for 1000 trials to collect the statistics of angle variance. And the result is
shown in Fig. 3. The relationship of parallelism is serves as an interpretation of
the errors in affine space.

At last, we demonstrate how the shape and motion error measures derived
before can be used for relative comparisons. 11 points in unit cube and 5 or-
thographic cameras are simulated, and details are listed in Table 2 and 1. The
11 points are projected on the 5 image planes (512×512). Small perturbations
are added to the image coordinates of the corresponding points. Assuming the
noise has identical and independent zero mean Gaussian distribution with stan-
dard deviation σ = 0.1, 0.5, 1, the shape and motion error measures in affine
space are shown in Fig. 4 and those in Euclidean space are shown in Fig. 5. By
comparing the error measures of ‖δSi

a
‖, ‖δMj

a
‖, ‖δSi

e
‖ and ‖δMj

e
‖, i = 1, . . . , P ,

j = 1, . . . F , we can draw conclusions such as point 11 is less sensitive to image
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Fig. 3. Estimated standard deviation of the angles between two lines in affine space
subject to the errors on image coordinates.

noise than point 4, and frame 3 is more sensitive to image noise than frame 1.
This kind of information is already enough to identify which point/frame has
the poorest error sensitivity performance, and can be used for integrating fur-
ther points and frames for performance improvement. Furthermore, not only the
3-D shape and motion but also the relative error sensitivity information can be
recovered, and visualized if necessary, given the error perturbation model on the
correspondences.

Table 1. Affine and Euclidean motion errors. Five orthographic cameras are simulated
on Z-X plane targeting at origin point. The 11 points are captured on the five 512×512
image frames. Identical and independent zero mean Gaussian noises are added to image
coordinates of the corresponding points. Given the standard deviation of σ = 0.1, 0.5, 1
on image coordinates, the estimated corresponding affine motion error and Euclidean
motion error are listed in the next 6 columns.

Camera Matrix Affine Error ‖δMj
a
‖ Euclidean Error ‖δMj

e
‖

j σ = 0.1 σ = 0.5 σ = 1.0 σ = 0.1 σ = 0.5 σ = 1.0

1

[
104.1 0 104.1 255
0 −147.2 0 255

]

3.00 6.717 9.499 5.996 13.406 18.959

2

[
136 0 56.3 255
0 −147.2 0 255

]

3.26 7.29 10.309 6.556 14.66 20.732

3

[
147.2 0 0 255
0 −147.2 0 255

]

3.424 7.656 10.828 6.928 15.492 21.909

4

[
136 0 −56.3 255
0 −147.2 0 255

]

3.422 7.651 10.82 6.946 15.532 21.965

5

[
104.1 0 −104.1 255
0 −147.2 0 255

]

3.257 7.282 10.298 6.607 14.774 20.894
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Table 2. Affine and Euclidean shape errors. Eleven points are distributed asymmetri-
cally in the unit cube, 10 on Z-X plane and 8 on Z axis. Identical and independent zero
mean Gaussian noises are added to image coordinates of the corresponding points on
512×512 images. Given the standard deviation of σ = 0.1, 0.5, 1 on image coordinates,
the estimated corresponding affine shape error and Euclidean shape error are listed in
the next 6 columns.

Point (x,y,z) Affine Error ‖δSi
a
‖ Euclidean Error ‖δSi

e
‖

i σ = 0.1 σ = 0.5 σ = 1.0 σ = 0.1 σ = 0.5 σ = 1.0
1 (0,0.28,-1) 1.16314 2.60086 3.67818 0.718179 1.6059 2.27108
2 (-0.28 0 -1) 1.18246 2.64407 3.73928 0.655924 1.46669 2.07421
3 (-0.14 0 -1) 1.04991 2.34766 3.3201 0.605653 1.35428 1.91524
4 (0 0 -0.98) 1.13453 2.53689 3.5877 0.632423 1.41414 1.9999
5 (0 0 -0.84) 1.12433 2.51407 3.55543 0.634903 1.41969 2.00774
6 (0 0 -0.7) 1.11049 2.48312 3.51166 0.632942 1.4153 2.00154
7 (0 0 -0.56) 1.09287 2.44373 3.45596 0.626499 1.4009 1.98117
8 (0 0 -0.42) 1.07129 2.39547 3.38771 0.615433 1.37615 1.94617
9 (0 0 -0.28) 1.0455 2.33781 3.30616 0.599488 1.3405 1.89575
10 (0 0 -0.14) 1.01518 2.27002 3.21029 0.578261 1.29303 1.82862
11 (0 0 0) 0.979918 2.19116 3.09877 0.551142 1.23239 1.74286

5 Conclusion

We have derived the first order perturbation and covariance matrices for affine/
Euclidean shape and motion subject to small perturbation on image coordinates
based on matrix perturbation theory, and used them as a vehicle for error mea-
sures in applications. Step-by-step error analysis and propagation based on ma-
trix perturbation theory and covariance propagation are derived and validated.
Interpretation of the errors in affine space is also addressed. Relative error mea-
sures derived from local covariance matrices are used to identify what output
points/frames are sensitive to image measurement errors.
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Discussion

Last-minute visa problems prevented Zhaohui Sun from attending, so Terry
Boult gave the talk. A response from the authors is also included below.

Kenichi Kanatani: Why do you bother with covariance propagation? If you
do covariance propagation and you do simulations and your analysis agrees with
the experiment, that proves only that your analysis is correct. To me, what is
more important is to analyze the theoretical accuracy bound, based in this case
on the Fischer information. If you compute the Fischer information and do the
simulation and your results agree with the theoretical analysis, then your method
is optimal, otherwise it is not. If you once confirm that the method is optimal
you can use the Fischer information as the potential, or characteristic, of noise
behaviour instead of doing covariance propagation. So to me Fischer information
is more essential than covariance propagation.

Terry Boult: This is not my paper, so I’m not going to put on a hat and
say I believe this or that is the right approach. But I can answer partially,
because we talked about this during visits to Siemens. This paper does covariance
propagation using a first-order approximation to the covariance. That’s good,
but it isn’t as useful as propagating the exact covariances would be. But they
don’t know how to do that yet.

Kenichi Kanatani: The next question is very simple. I think you can do all this
covariance propagation analysis using software, using automatic differentiation
tools. Why bother with these analytical or Taylor expansions?

Terry Boult: Well, for a particular set of data you could simulate for a long
time and say yes, I can do numerical simulation and estimate the covariance by
just taking the inputs and outputs. The advantage of doing it analytically is that
the approximate output covariance can be directly predicted for any particular
set of matrices and cameras.

Kenichi Kanatani: Not numerical simulation. There are software tools avail-
able to automatically differentiate given formula expressions.

Terry Boult: Do those tools automatically give the error on the eigenvectors
of a matrix? – I’m unaware of such tools. If you can give me a reference I’ll pass
it back to the authors.

Rick Szeliski: One of your motivations was to identify points that have a lot
of uncertainty and throw them out. But when you triangulate a point that is far
from you, you typically do have a lot of uncertainty. Yet you don’t usually throw
it away, you simply declare that it was not very reliably measurable in absolute
terms. Could you clarify that?

Terry Boult: Personally, I agree with you. I wouldn’t throw points out just
because they are noisy. But the SFM problem is completely interspersed, shape
and motion come together, so you may be better off temporarily throwing out
any especially troublesome points, computing the stabler ones, then recalculating
the difficult ones by some other technique. But as I said, the importance of a
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feature, just because it is distant or possibly unreliable, is different from its
noisiness.
Joss Knight: Presumably you could use this in robust correspondence tech-
niques. Incorrectly matched points would have a huge covariance error, and you
could just get rid of them and recalculate.
Terry Boult: It’s not clear. If you redid this analysis with some points that were
very incorrectly matched, the eigenstructure would become very different and
the perturbation expansion, at least in theory, would no longer apply. So until
someone has implemented and experimented with it, it is not clear how valuable
this approach would prove. What happens is that as soon as you get some false
correspondences, your fourth eigenvalue increases in value very quickly.

The authors: Note that our paper illustrates how small perturbation analysis
can be applied to SVD based estimation schemes. This is of general interest for
a whole range of vision problems.

Prof. Kanatani’s question is interesting. The Cramér-Rao bound does of
course give the optimal minimum variance unbiased estimator. But in the broader
context of vision systems, accuracy is not the only requirement. The design en-
gineer also has computational constraints to meet, and procedures with sub-
optimal accuracy may be preferred. Covariance propagation makes perfect sense
in this context. To determine how system design choices affect the total system,
we need to study the performance as a function of input data, algorithm and tun-
ing parameters. Our philosophy is that each vision algorithm or module should
be treated as an estimator (linear or non-linear depending on the sub-task) and
characterized in terms of the bias and covariance of its estimates. Suppose SFM
is one module of a vision algorithm chain involving point extraction, tracking,
SFM (e.g. affine shape estimation), and image-based rendering. To predict the
final output (image-based rendering) error, we use covariance propagation on a
bias-covariance characterization of the error of each module in the chain. The
chosen SFM module may satisfy the end-to-end system accuracy and speed re-
quirements without being optimally accurate.

Rick Szeliski and Joss Knight ask the related question of how the covariance
estimates should be used in practice. We have not yet explored the practical
implications of the theoretical results very thoroughly, but feature selection based
on error measures is certainly a possibility. Several issues remain: 1) The error
analysis uses small perturbation assumptions. Large deviations (e.g. incorrectly
matched points) may lead to large changes in the eigensystem, whose effect has
not been analyzed. 2) In principle, Rick’s observation that one has to keep some
points with large variance is correct (as long as there are no matching errors).
The point covariances are functions of the geometry (the depths of the 3D point,
the camera view points). This makes it difficult to tell whether a large variance
was due to insufficient (ill-conditioned) data or outliers (incorrectly matched
points). 3) The uncertainty of the image features is a function of the operators
used to detect and track them and the underlying geometric and illumination
models. Heteroscedasticity is to be expected.
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Abstract. The bootstrap is a numerical technique, with solid theoreti-
cal foundations, to obtain statistical measures about the quality of an es-
timate by using only the available data. Performance assessment through
bootstrap provides the same or better accuracy than the traditional error
propagation approach, most often without requiring complex analytical
derivations. In many computer vision tasks a regression problem in which
the measurement errors are point dependent has to be solved. Such re-
gression problems are called heteroscedastic and appear in the lineariza-
tion of quadratic forms in ellipse fitting and epipolar geometry, in camera
calibration, or in 3D rigid motion estimation. The performance of these
complex vision tasks is difficult to evaluate analytically, therefore we pro-
pose in this paper the use of bootstrap. The technique is illustrated for
3D rigid motion and fundamental matrix estimation. Experiments with
real and synthetic data show the validity of bootstrap as an evaluation
tool and the importance of taking the heteroscedasticity into account.

1 Introduction

No estimation process is complete without reliable information about the accu-
racy of the solution. Standard error, bias, or confidence interval are among the
most often used statistical measures, however, in practice their computation is
difficult especially when there is no information available about the distribution
of the noise process and the ground truth.

The traditional approach to error analysis in computer vision is error propa-
gation [7, pp.125–164][8,20]. For highly nonlinear transfer functions the validity
of error propagation is restricted to a small neighborhood around the estimate.
Analytical computation of the required Jacobians is often very difficult.

In this paper we make extensive use of a new paradigm for error analysis
with solid theoretical foundations, the bootstrap. Being a numerical technique,
the bootstrap can substitute the analytical derivations of the error propagation
with simulations derived exclusively from the data. More importantly, since the
error propagation is only a first order approximation, the bootstrap is more
accurate and has a larger applicability [5, pp.313–315]. Though the bootstrap
principle looks similar to Monte Carlo simulations, the main difference between
them is that the former uses only the corrupted data, while the latter needs
ground truth information.

B. Triggs, A. Zisserman, R. Szeliski (Eds.): Vision Algorithms’99, LNCS 1883, pp. 236–252, 2000.
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The bootstrapping of a regression model, a distinct topic of the bootstrap
methodology, was widely investigated in numerous references, yet most of the
work was focused on ordinary regression where the explanatory variables are
assumed free of measurement errors. The vast majority of regression problems
encountered in computer vision applications do however have errors in the ex-
planatory variables. What complicates further the estimation and evaluation of
these errors-in-variables (EIV) models is the fact that each measurement might
have a different uncertainty about its true value. The linearization of quadratic
or bilinear forms encountered in ellipse fitting, respectively epipolar geometry, or
the 3D rigid motion with the 3D data extracted from stereo, all yield point de-
pendent measurement errors. The EIV regression having point dependent mea-
surement errors is called heteroscedastic (HEIV) regression. By extension the
point dependent errors are called next heteroscedastic noise.

Since the bootstrap requirement of i.i.d. data is not respected by the HEIV
model, the data can not be used directly in the resampling process. In this paper
we propose a versatile technique in which the noise affecting the measurements is
recovered by an estimator taking into account the heteroscedasticity. The noise
process is then transformed to obey the requirements of the bootstrap.

The problem domains chosen to illustrate the bootstrap based error analysis
paradigm are the 3D rigid motion and fundamental matrix estimation. The paper
is organized as follows. In Section 2 the bootstrap paradigm is introduced. The
analysis of rigid motion using bootstrap is presented in Section 3. Bootstrap
based performance assessment of the fundamental matrix estimation is described
in Section 4.

2 Bootstrap

The bootstrap is a resampling method which extracts valid statistical measures
like standard error, bias or confidence intervals in an automatic manner by means
of computer intensive simulations using only the available data. Since its intro-
duction in the late 70’s by Bradley Efron, the bootstrap has evolved into a very
powerful tool supported by numerous theoretical studies. Though the underly-
ing principle is fairly simple, the use of bootstrap in a practical problem should
always be preceded by a careful analysis. When the assumptions (to be spec-
ified below) upon which the bootstrap is based are violated inconsistent and
misleading results may be obtained. A thorough introduction to the bootstrap
methodology is the textbook of Efron and Tibshirani [5], while additional ma-
terial can be found in [4]. A short review is given next.

2.1 Introduction to Bootstrap

A first condition for the validity of the bootstrap procedure is that the available
data points {z1,z2, · · · ,zn} are i.i.d. Their distribution F is assumed unknown.
In the absence of any prior information the empirical distribution F̂ , obtained by
assigning equal probability 1/n on each measurement zi, is used as a representa-
tion of the true distribution F . The data is employed to estimate a p-dimensional
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statistics θ = θ(F ). Let θ̂ = g(z1,z2, · · · ,zn) be such an estimate. If the prob-
ability distribution was known, the computation of the bias or covariance of θ̂
would be immediate and could be achieved by either a theoretical derivation or
Monte Carlo simulations as

µF (θ̂) = EF [θ̂]− θ, covF (θ̂) = EF

[(
θ̂ − EF [θ̂]

)(
θ̂ − EF [θ̂]

)�]
, (1)

where EF [·] is the expectation under the probability distribution F . Since F is
unknown, the bootstrap approximates (1) by resampling the data from the avail-
able F̂ distribution. The value z∗ is drawn with replacement from {z1,z2, · · · ,zn}.
By repeating this resampling n times a bootstrap sample or bootstrap set, denoted
by {z∗

1,z
∗
2, · · · ,z∗

n}, is generated. Let θ̂
∗
= g(z∗

1,z
∗
2, · · · ,z∗

n). The bootstrap ap-
proximation to (1) is

µF̂ (θ̂) = EF̂ [θ̂
∗
]− θ̂, covF̂ (θ̂) = EF̂

[(
θ̂

∗ − EF̂ [θ̂
∗
]
)(

θ̂
∗ − EF̂ [θ̂

∗
]
)�]

. (2)

In practice, the sample moments are used to approximate (2) by generating B
bootstrap sets. Thus,

µF̂ (θ̂) ∼= µ̂θ̂ = θ̄
∗ − θ̂ θ̄

∗ =
1
B

B∑

b=1

θ̂
∗b

, (3)

covF̂ (θ̂) ∼= Ĉ θ̂ =
1

B − 1
B∑

b=1

[
θ̂

∗b − θ̄
∗] [

θ̂
∗b − θ̄

∗]�
. (4)

The bias corrected covariance matrix of θ̂ is

Ω̂θ̂ = Ĉ θ̂ + µθ̂ µ̂�
θ̂

. (5)

The two approximations, the substitution of F̂ for F and the replacement of the
sample moments for the true ones, are the main sources of inaccuracy of the
bootstrap technique. If the number of measurements is too small (say below 20),
the variability of the bootstrap estimates becomes too large for the results to be
reliable.

When the assumption of i.i.d. data is not valid the bootstrap may fail. This
means that the outliers in the data must be removed before the resampling
is performed, i.e. the preprocessing should be robust. Diagnostic methods, like
jackknife after bootstrap [4, pp.113–123], can be employed to evaluate the boot-
strap estimate, however, due to the masking effects these techniques have only
limited sensitivity in the presence of significant contamination.

Most of the theoretical results which validate the bootstrap paradigm are ob-
tained by Edgeworth expansions assuming a smooth estimator. For non-smooth
estimators there are methods which can be used instead, but they do not enjoy
the same accuracy as the bootstrap itself [4, pp.41–44]. The classical exam-
ple where the bootstrap completely fails is the sample median. One should be
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therefore extremely circumspect in using the techniques described above for es-
timators based on the median or other nonlinearities. The bootstrap procedure
should be only applied to the data obtained at the output of high breakdown
point robust estimators like the least median of squares.

The traditional approach based on error propagation approximates cov(θ̂)

Ĉ θ̂ =
n∑

i=1

[
∂g

∂zi

]

Czi

[
∂g

∂zi

]�∣∣
∣
∣
∣
zi=ẑi

, (6)

whereCzi is the covariance of the data zi and
[

∂g
∂zi

]
is the Jacobian of the trans-

formation from zi to θ̂ = g(z1,z2, · · · ,zn). Approximating cov(θ̂) by bootstrap
(4) eliminates the need for analytical derivations in the Jacobian calculation, at
the expense of an increased amount of computer simulations.

The bootstrap can be also used in constructing elliptical confidence regions
for θ̂. They have better coverage compared with the rectangular ones since they
exploit the existing correlation between the components of θ̂ and can be obtained
even when the normality assumption fails [16].

The exact number of bootstrap samples B required to compute the covariance
matrix Ĉ θ̂ or the confidence regions is difficult to prescribe. In practice, especially
when the computation of θ̂ is time consuming, the trade-off is between the
accuracy of the bootstrap solution and the time spent on simulations.

We have found that B = 200 usually suffices for a good covariance estimation.

2.2 Bootstrap for HEIV Regression

The bootstrap method introduced in Section 2.1 cannot be applied directly to
HEIV regression. Assume that the true, unknown measurements zio, i = 1, · · · , n
are additively corrupted with heteroscedastic noise δzi having zero mean and
point dependent covariance Czi . The covariances are known up to a common
multiplicative factor, the noise variance σ2. The true values zio obey the linear
model α+ z�

ioθ = 0.
The covariance, bias and confidence regions of a given estimator {θ̂, α̂} are

obtained by bootstrap using the procedure sketched in Figure 1. An estimator
which takes into account the heteroscedasticity of the data (HEIV block) is em-
ployed to obtain the corrected data ẑi by projecting zi onto hyperplane of the
solution {θ̂, α̂}. In order to satisfy the i.i.d. condition the residuals δẑi = zi− ẑi

are whitened using the corresponding covariances Cδẑi
. See (A.10) for their ex-

pression. The whitened residuals are sampled with replacement and colored with
the corresponding covariances Czi . The bootstrapped data is finally obtained by
adding the resampled noise to the corrected data ẑi. Any estimator can now be
evaluated through bootstrap using (3) and (4).
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(b)

Fig. 1. Bootstrapping in a heteroscedastic environment. (a) Recovery of an i.i.d. noise
process using the HEIV estimator. (b) Generation of bootstrap samples by coloring
the i.i.d. residuals. Any estimator can now be evaluated.

3 Rigid Motion Evaluation

Rigid motion estimation is a basic problem in middle-level computer vision,
thoroughly analyzed in numerous papers. Two of the most popular rigid motion
estimators are based on the SVD decomposition [1,24] and on the quaternion
representation [11]. Both assume i.i.d. data and give exactly the same results [6].
The 3D rigid motion estimation under heteroscedastic noise was investigated by
Pennec and Thirion [20]. They used an extended Kalman filter for finding the
motion parameters and obtained closed-form expressions for the covariance of
the rotation and translation based on error propagation. However, the data was
processed sequentially, and thus not all the available information being taken
into account at each processing stage. The computation of the Jacobians enter-
ing the expressions of the covariance matrices was quite complex. Recently, Ohta
and Kanatani [17] introduced an algorithm for rotation estimation under het-
eroscedastic noise based on an optimization technique called renormalization and
provided a lower bound on the covariance of the rotation. However, the analysis
was restricted to pure rotation and in the presence of a translation component
the estimator was no longer optimal.

The bootstrap methodology introduced in Section 2 is utilized in the sequel
in the analysis of 3D rigid motion. Reliable assessment of the accuracy of the
solution yielded by an arbitrary rigid motion algorithm under heteroscedastic
noise is provided using only the available data.

Let the two sets of matched 3D measurements be U = {u1,u2, · · · ,un} and
V = {v1,v2, · · · ,vn}. Each measurement is a corrupted version of the true value,

(a)
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distinguished by the subscript ‘o’,

ui = uio + δui vi = vio + δvi .

The heteroscedastic noise has zero-mean and data dependent covariance
E[δuiδu

�
i ] = Cui , and E[δviδv

�
i ] = Cvi respectively. Rigid motion estimation

is a multivariate EIV regression problem, since the true values satisfy the 3D
rigid motion constraint

vio = Ruio + t , (7)

where R is the 3× 3 rotation matrix and t is the translation vector.
The quaternion representation of the rotation matrix transforms (7) into an

equivalent multivariate linear regression [16]

α+Moq = 0 , (8)

where Mo is a 3× 4 matrix obtained from the true coordinates, q is the quater-
nion of the rotation and α is the intercept depending on q and t. A solution
of (8) taking into account the heteroscedasticity was presented in [16] and is
summarized in Appendix A.

Let R̂ and t̂ be the rotation and translation given by a consistent rigid motion
estimator, i.e. which reaches the true solution asymptotically. We have used the
HEIV algorithm which satisfies this consistency requirement.

The residuals δv̂i = vi− v̂i and δûi (B.1) are obtained by orthogonal projec-
tion of the measurements vi and ui onto the three dimensional manifold defined
by R̂ and t̂ in R6. as shown in Appendix B t he corrected points v̂i and ûi can
be considered unbiased estimators of the true, unknown measurements v̂io and
ûio when the estimates R̂ and t̂ are close to the true R and t. The residuals are
not i.i.d. having their covariance dependent on the measurement index i. There-
fore, to correctly apply the bootstrap procedure a whiten-color cycle is therefore
necessary (see Section 2.2).

The bootstrap of residuals method required a consistent estimator. Once the
correct noise process is recovered, however, any rigid motion estimator (consis-
tent or not) can be analyzed in the same automatic manner.

Let R̂
∗b
and t̂

∗b
be the rotation and translation yielded by an arbitrary

estimator using the bootstrap sample b. The covariance and bias for translation
can be estimated using (3) and (4), but for the covariance of rotation the fact that
the rotations form a multiplicative group must be taken into account [20]. Let
the three-dimensional vector r be the angle-axis representation of the rotation
matrix R, defined as r = f(R). The rotation error between the estimate R̂ and
R is then δr̂ = f(R̂R�), and the bootstrap for the covariance of the rotation

Ĉ r̂ uses in (4) the δr̂∗b = f(R̂
∗b

R̂
�
).

Though confidence regions can be computed separately for R̂ and t̂, a better
joint coverage is obtained by exploiting the existing correlation between the
rotation and translation estimates. Define the motion estimation error ε̂ as the
six-dimensional vector

ε̂ =
[
(t̂− t)� δr̂� ]� . (9)
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The confidence region in R6 for the rigid motion parameters is constructed using
the error terms ε̂∗b = [ (t̂

∗b − t̂)� δr̂∗b� ]�, see Section 2.

3.1 Experiments with Synthetic Data

The simulated setting used in our experiments consists of a stereo head moved
around a fixed scene. The cameras had zero vergence and focal distance f = 536
yielding a field of view of 50◦ on both x and y axes. The baseline of the stereo
head was 100 and the image planes were 500 × 500, all values being in pixel
units. The n = 50 three-dimensional points were uniformly generated inside a
cube with the side length 800 placed at 1300 in front of the cameras. The 3D
points are projected onto the image planes, corrupted by adding normal noise
with σ = 1 and then allocated to the nearest lattice site. The 3D information
is recovered using Kanatani’s triangulation method [14, pp.171–186]. For this
type of triangulation there are close form expressions for Cvi

and Cui
, however

we preferred the bootstrap computation described in [16] since is more general,
being also applicable to any other triangulation method like those presented in
[10,23].

The bootstrapped covariance matrices Ĉui
inflated to assure an individual

coverage of 0.95 are represented in Figure 2 for ten data points. The equivalent
error is much higher on the depth and depends on the position of the 3D point
in space, thus confirming the theoretical results [2,21].

Fig. 2. The covariance matrices Ĉui extracted by bootstrap for the 3D data points.
Note the heteroscedasticity.

The analysis of the rigid motion employed B = 200 bootstrap samples gener-
ated as discussed in Section 3. The validity of the bootstrap was verified using a
Monte Carlo analysis based on the true values and the continuous noise process.
Recall that the bootstrap uses only the available quantized data.

For both methods the covariance matrices were estimated using B = 200
samples. Fifty trials, each having the motion parameters randomly generated
(chosen such that the scene remains in the field of view of the cameras) and
different 3D point configurations were performed.

In Figure 3 the translation and rotation error ‖δt‖ = [trace(Ω t̂)]
1
2 , ‖δr‖ =

[trace(Ωr̂)]
1
2 are plotted for the HEIV and quaternion algorithms using the boot-

strap and the Monte Carlo estimates for Ω t̂, Ωr̂ (5).
Note the very good agreement between the bootstrap and Monte Carlo error

estimates and the larger translation and rotation error yielded by the quaternion
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Fig. 3. Comparison between the bootstrap (BT) and Monte Carlo (MC) error estimates
for HEIV and the quaternion method. (a) Translation, (b) Rotation; ‘�’ MC estimate
for HEIV, ‘◦’ BT estimate for HEIV, ‘+’ MC estimate for quaternion, ‘x’ BT estimate
for quaternion.

method compared with the HEIV algorithm. The same approach can be used
to compare the performance of other motion estimators, however, the bootstrap
must use the residuals generated by a consistent estimator like HEIV.

3.2 Experiments with Real Data

The CIL-CMU database consists of four data sets: castle, planar texture, wall
& tower and copper tea kettle. Each set consists of 11 frames for which precise
ground truth information is available. Lack of space prohibits us to present all
the results and we describe only the experiments using the frames 1, 4, 5 and 9
from the planar texture set.

Fig. 4. Frames one and four from the Planar Textures images from CIL-CMU database.

Fig. 5. Uncertainty of the translation estimation for the quaternion (left) and the
HEIV (right), evaluated by bootstrap. The ellipsoids assure a 0.95 coverage for the
true translation. Both plots are at the same scale.



244 B. Matei and P. Meer

Fig. 6. Uncertainty of the rotation estimation for the quaternion (left) and the HEIV
(right) evaluated by bootstrap. The ellipsoids assure a 0.95 coverage for the true rota-
tion. Both plots are at the same scale.

The 3D information was extracted by triangulation from image points ob-
tained by the matching program of Z. Zhang [25]. The estimation used 46 mea-
surements. The true translation was t = [79.957 −0.503 −1.220 ]� and the ro-
tation in angle-axis representation r = 0.001 · [ 0.619 0.193 0.013 ]. The quater-
nion algorithm estimates erroneously the translation and rotation yielding t̂ =
[−159.001 69.867 13.050 ]�, respectively r̂ = [0.035 0.118 −0.013 ]�. On the
other hand the HEIV solution is much closer to the true value, being
t̂ = [56.094 6.492 −1.392 ]� and r̂ = [0.004 0.012 −0.001 ]�.

The bootstrapped covariance matrices of the estimates R̂, t̂ for the quater-
nion and HEIV methods are plotted in Figures 5 and 6. As expected the quater-
nion based algorithm has a much larger variability than the HEIV, since it
assumes i.i.d. data.

4 Bootstrapping the Fundamental Matrix

The geometry of a stereo head is captured by the epipolar geometry. In the case
of uncalibrated cameras the relationship between the two sets of matched points
{xlio}, {xrio} in the right, respectively the left image can be expressed using
the fundamental matrix F as

ϕ(xio, F ) =
[
x�

rio 1
]
F

[
xlio

1

]

= 0, x�
io = [x

�
lio x�

rio ], i = 1, · · · , n (10)

The eight-point algorithm introduced by Longuet-Higgins [19] solves the lin-
earized epipolar constraint

α+Zioθ = 0 (11)

Zio = Z(xio) =
[
x�

io vec
(
xrio x�

lio

)�
]

(12)

α = F (33) θ� = [F (31) F (32) F (13) F (23) F (11) F (21) F (12) F (22)] , (13)

where vec(A) denotes the vectorization of the matrix A. The procedure is equiv-
alent to a Total Least Squares (TLS) solution of a regression model. The sensi-
tivity of the eight-point algorithm to noise affecting the image points is partially
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remedied by normalizing the image points as shown by Hartley [10]. The normal-
ized eight-point algorithm can be subsequently refined using nonlinear criteria
(distance from the noisy image points to the epipolar lines, the Gold Standard,
etc.) and the Levenberg-Marquardt optimization technique. A comprehensive
review of the nonlinear criteria is [26].

The uncertainty of the fundamental matrix computation can be characterized
by the covariance matrix of F and the confidence bands for the epipolar lines [3].
In [3] the covariance of F was computed in two ways: using error propagation
and performing Monte Carlo simulations. The former method had the advan-
tage of yielding closed-form covariance estimates, but the computations involved
were quite involved. In the latter technique, B realizations of the fundamental
matrix were computed by adding normal noise to the noisy image points. The
sample covariance matrix was finally determined from these fundamental matrix
realizations. The ad-hoc choice for the noise standard deviation and the addi-
tion of noise on the image points (already noisy) are the major shortcomings of
this approach. These deficiencies can be solved by the bootstrap methodology
presented below.

The HEIV algorithm can be used to solve (11) and to extract the statistical
information required by the bootstrap [15]. Assuming for simplicity that the
image points xio are corrupted by zero-mean, i.i.d. noise δxi ∼ GI(0, σ2I4),
the carriers Zio are corrupted by heteroscedastic noise

δZi ∼ GI(0, σ2CZi
), CZi

≈
[
∂Zi

∂xi

] [
∂Zi

∂xi

]�
,

with GI(µ,C) standing for general and independent distribution with mean µ
and covariance C. The HEIV estimates the noise variance σ̂2 in (A.9) and the
fundamental matrix F̂ from θ̂ and α̂. It can be shown (the proof is beyond the
scope of the paper) that the HEIV corrected image points x̂i obeying ϕ(x̂i, F̂ ) =
0 are obtained by iteratively solving the equation

x̂i = xi −
[
∂Zi

∂x̂i

]�
Θ̂Σ̂

−
i ϕ(xi, F̂ ) (14)

where Θ̂ and Σ̂i are defined in (A.3). The rank-one covariance of the residuals
δx̂i = xi − x̂i is

Cδx̂i
=
[
∂Zi

∂x̂i

]�
Θ̂Σ̂

−
i Θ̂

�
[
∂Zi

∂x̂i

]

. (15)

With the residuals δx̂i and their covariance matrices (15) available, the bootstrap
can be applied as shown in Section 2.2.

4.1 Experiments with Synthetic Data

A synthetic camera with the geometry depicted in Figure 7 is used in the follow-
ing simulations. The image plane is 500× 500 and the focal distance is f = 117,
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corresponding to a field of view of 130◦, all units being in pixels. The 3D points
are generated in a cube with side equal to 2000 and with the center placed in
front of the cameras at Z = 1500. Normal noise with zero-mean and σ = 3
was added to n = 50 matched image points. To illustrate the potential of the
proposed technique we applied it to a well known method for recovering the
fundamental matrix, the normalized eight-point algorithm.

Statistical measures for the normalized eight-point estimates are extracted
with bootstrap and Monte Carlo simulations for comparison. The HEIV algo-
rithm is used to recover the residuals and their covariance matrices, as described
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Fig. 7. The stereo head used in the simulations and the points in the left image.
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Fig. 8. Histogram of the x (left) and y (right) coordinates of the left epipole estimated
with the normalized eight-point algorithm from data obtained through bootstrap and
Monte Carlo.
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above. In Figure 8 the histograms of B = 400 bootstrap and Monte Carlo sam-
ples of the left epipole estimates are shown. Note the good approximation of the
true distribution (Monte Carlo) obtained through bootstrap, which used only
one set of data points.

Most often the uncertainty in the fundamental matrix estimation is repre-
sented through the confidence bands of the epipolar lines [3]. In Figure 9 such
confidence bands for four epipolar lines in the right image are plotted using the
bootstrap and Monte Carlo estimates for the covariance of F . Note the slight dif-
ference between the two plots. The bootstrap samples are distributed around F̂ ,
the only information available from the image pair. The Monte Carlo simulation,
on the other hand, is distributed around the true F .

5 Conclusion

We have exploited the bootstrap paradigm for the analysis of heteroscedastic
errors-in-variables models. We have shown that through this method valuable
information can be recovered solely from the data, which can be integrated into
the subsequent processing modules.
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A HEIV Regression

A short presentation of the HEIV algorithm applied to multivariate regression
is given next. Assume that the true values z

(k)
io ∈ Rp, i = 1, · · · , n satisfy the

multivariate linear model

α+Zioθ = 0, θ ∈ Rp, α ∈ Rm, Zio =
[
z
(1)
io · · · z(m)io

]�
.

The true values z
(k)
io are corrupted by heteroscedastic noise δz

(k)
i ,

z
(k)
i = z

(k)
io + δz

(k)
i with

E
[
δz
(k)
i

]
= 0, cov

[
δz
(k)
i , δz

(l)
i

]
= C

(kl)
i , k, l = 1, · · · , m .

Define
wio = vec(Z�

io), δwi = vec(δZ�
i ), Ci =

[
C
(kl)
i

]
.

The estimates θ̂, α̂ are determined minimizing

J =
1
2

n∑

i=1

(wi −wio)�C−
i (wi −wio) (A.1)

subject to the constraint α̂+Zioθ̂ = 0.
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In practice z
(k)
io are unavailable. Let ẑ

(k)
i be the corrected measurement cor-

responding to z
(k)
i . Using the Lagrange multipliers ηi ∈ Rm (A.1) becomes

J =
1
2

n∑

i=1

(wi − ŵi)�C−
i (wi − ŵi) +

n∑

i=1

η�
i (Ẑiθ̂ + α̂) . (A.2)

Define the mp×m matrix Θ and the m×m matrix Σ̂i

Θ̂ = Im ⊗ θ̂, Σ̂i = Θ̂
�

CiΘ̂ , (A.3)

where ⊗ is the Kroneker product between two matrices. The estimates θ̂, α̂ and
ẑ
(k)
i are found by solving the system of equations

∇θ̂J = 0, ∇α̂J = 0, ∇
ẑ
(k)
i

= 0 .

After some algebra the estimates θ̂ and α̂ are obtained by iteratively solving a
generalized eigenvalue problem.
1. Compute an initial solution θ̂

(0)
, for example the Total Least Squares (TLS)

estimate obtained assuming i.i.d. noise. A random initial value, however,
sufficed to achieve satisfactory convergence in a large range of problems.

2. Compute the matrices Σ̂i, i = 1, . . . , n using (A.3).
3. Compute the weighted “centroid” matrix Z̃

Z̃ =

[
n∑

i=1

Σ̂
−1
i

]−1 [ n∑

i=1

Σ̂
−1
i Zi

]

. (A.4)

4. Compute the scatter S
[
θ̂
(j)]

relative to Z̃

S
[
θ̂
(j)]

=
n∑

i=1

[
Zi − Z̃

]�
Σ̂

−1
i

(
Zi − Z̃

)
(A.5)

and the weighted covariance matrix

C
[
θ̂
(j)]

=
n∑

i=1

(ηi ⊗ Ip)
�

Ci (ηi ⊗ Ip) (A.6)

where the Lagrange multipliers are ηi = Σ̂
−1
i (Zi − Z̃)θ̂.

From (A.5), (A.6) S
[
θ̂
(j)]

and C
[
θ̂
(j)]

are positive semi-definite.

5. The estimate θ̂
(j+1)

is the eigenvector corresponding to the smallest eigen-
value in the generalized eigenproblem

S
[
θ̂
(j)]

θ̂
(j+1)

= λC
[
θ̂
(j)]

θ̂
(j+1)

. (A.7)
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6. Iterate through Steps 2 to 5 until λ becomes one (up to a tolerance). Con-
vergence is achieved after three, four iterations. Let θ̂ be the final estimate.

7. Compute the intercept α̂ = −Z̃θ̂.
8. Compute the corrected measurements ẑ

(k)
i

ẑ
(k)
i = z

(k)
i −

[
m∑

l=1

ηilC
(kl)
i

]

θ̂ . (A.8)

The matrices Ci need to be known only up to a positive multiplicative constant,
the equivalent noise variance which can now be estimated as

σ̂2 =
θ̂

�
S[θ̂]θ̂

mn− p+ 1
. (A.9)

The a posteriori covariance of ŵi = vec(Ẑi) is

Cŵi
= Ci −Cδŵi

= Ci −CiΘ̂Σ̂
−1
i Θ̂

�
Ci . (A.10)

Note that rank(Cŵi) = rank(Ci)−m.
The estimates θ̂, α̂, ẑ(k)i are consistent, i.e. they converge to the true values as

the number of measurements increases. Using Taylor expansions of eigenvectors
[18] a first order approximation of the covariance of the estimates θ̂, α̂ is

C θ̂ = σ̂2
[
S(θ̂)−C(θ̂)

]−
Cα̂ = Z̃C θ̂Z̃

�
. (A.11)

B Analysis of the Data Correction for 3D Rigid Motion

Given the estimated motion parameters R̂ and t̂ we are interested in finding
the projections v̂i, ûi of vi and ui onto the three dimensional manifold of the
solution in R6 defined by v̂i = R̂ûi + t̂. To simplify the notations in the sequel
the measurement index i is dropped. Let

A =
[
I3 −R̂

]
z =

[
v
u

]

w =
[

v − t̂
u

]

.

Thus the solution ŵ should satisfyAŵ = 0, i.e. must be in the three-dimensional
null space of A. In other words, ŵ must be in the range space of a rank 3 matrix
B, chosen such that AB = 0. A natural choice is B = [ R̂

�
I3 ]

�. Then the
projection of w onto the space spanned by the columns of B under the metric
given by the covariance matrix of w, Cw is [22, p.386]

ŵ = B(B�C−1
w B)−1B�C−1

w w = Pw . (B.1)

The measurements in the two sets of 3D points are uncorrelated, therefore

Cz = Cw =
[

Cv 0
0 Cu

]

.
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The projection matrix P can be expressed after some algebra as P = [P ij ],

P 11 =
[
I3 +CvR̂C−1

u R̂
�]−1

P 22 =
[
I3 +CuR̂

�
C−1

v R̂
]−1

(B.2)

P 12 = R̂P 22 P 21 = R̂
�

P 11 . (B.3)

When the estimates R̂ and t̂ are close to the true values R and t the weighted
least squares projection (B.1) implies that the estimator ẑ of zo can be consid-
ered unbiased, and the residuals δẑ = z − ẑ to have zero mean.

E[ẑ] = zo E[δẑ] = E[z]− E[ẑ] = 0 . (B.4)

Using(B.1) the covariance matrices of ẑ and the residuals δẑ are

C ẑ = PCzP
� Cδẑ = [I6 − P ]Cz [I6 − P ]� . (B.5)

The covariance of the residuals depends only on the rotation and has rank three.
From (B.2– B.3) and (B.5) the covariances for δv̂ and δû are

Cδv̂ = [I3 − P 11]
[
R̂CuR̂

�
+Cv

]
[I3 − P 11]

� (B.6)

Cδû = [I3 − P 22]
[
R̂

�
CvR̂+Cu

]
[I3 − P 22]

�
. (B.7)
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Discussion

Bill Triggs: Two things. One is just a minor grumble. You say in the earlier
part of your talk that optimization, Levenberg-Marquardt, is slow, so you give
another method. But your method does a very similar update calculation to
Levenberg-Marquardt using a slower algorithm — eigendecomposition rather
than linear solution.
Bogdan Matei: The updates are fairly similar. However, the algorithm is de-
signed for errors-in-variables models which are not handled very well by optimiza-
tion techniques like Levenberg-Marquardt. That’s why Levenberg-Marquardt
usually needs more iterations to converge.
Bill Triggs: Secondly, with these bootstrap-type methods you’re very much
a prisoner of the number of samples you have. In statistics, if you try to fit
covariances to a high-dimensional model, they’re often unstable because you
simply don’t have enough data to estimate O(n2) covariance parameters. So
despite its limitations, an analytical approach is in some sense more informative.
Bogdan Matei: Using analytical covariances in performance evaluation would
make us the prisoners of elliptical confidence regions and local approximations.
With sparse data in a high dimensional space, even a theoretical approach to
computing the covariance would experience the same problems in the absence of
ground truth information.
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Abstract. Video as an entertainment or information source in consumer, military,
and broadcast television applications is widespread. Typically however, the video
is simply presented to the viewer, with only minimal manipulation. Examples
include chroma-keying (often used in news and weather broadcasts) where specific
color components are detected and used to control the video source. In the past
few years, the advent of digital video and increases in computational power has
meant that more complex manipulation can be performed. In this paper we present
some highlights of our work in annotating video by aligning features extracted
from the video to a reference set of features.
Video insertion and annotation require manipulation of the video stream to com-
posite synthetic imagery and information with real video imagery. The manip-
ulation may involve only the 2D image space or the 3D scene space. The key
problems to be solved are : (i) indexing and matching to determine the location
of insertion, (ii) stable and jitter-free tracking to compute the time variation of
the camera, and (iii) seamlessly blended insertion for an authentic viewing expe-
rience. We highlight our approach to these problems by showing three example
scenarios: (i) 2D synthetic pattern insertion in live video, (ii) annotation of aerial
imagery through geo-registration with stored reference imagery and annotations,
and (iii) 3D object insertion in a video for a 3D scene.

1 Introduction

The ability to manipulate video in digital form has opened the potential for numerous
applications that may have been difficult to implement with a purely analog representa-
tion of video. With the representation of video in terms of its underlying fundamental
components of geometry, temporal transformation and appearance of patterns, any or all
of these can be manipulated to modify the video stream. Seamless insertion of 2D and
3D objects, and textual and graphical annotations are forms of video manipulation with
wide-ranging applications in the commercial, consumer and government worlds. In this
paper we present some highlights of our work on annotation and insertion of synthetic
objects and information into video and digital imagery.

Video insertion and annotation require manipulation of the video stream to composite
synthetic imagery and information with real video imagery. There are a number of
dimensions of this problem. First, the insertion may either demand 2D representation
of the video and the camera motion, or 3D objects may need to be composited in 3D
scenes with arbitrary camera motion. Second, the insertion and manipulation may rely
on a small and fixed collection of landmarks in the scene or there may be a large database
of stored reference imagery or nothing may be known a priori about the scene.

B. Triggs, A. Zisserman, R. Szeliski (Eds.): Vision Algorithms’99, LNCS 1883, pp. 253–264, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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In the first scenario, we address the problem of inserting 2D patterns into broadcast
video with essentially a fixed but pan/tilt/zoom camera. The technology has matured
into products that are currently being used on a regular basis for insertion of virtual
billboards and game-related synthetic annotations in broadcast sports videos [8], [10].
The second scenario is that of accurately locating current videos of a locale into a stored
reference image database and subsequently visualizing the current video stream and the
annotations in the database as footprints registered with the database imagery. We are
currently building a real-time system for this capability for geo-registration of aerial
videos to a reference database [3]. In this scenario, the transformations that relate the
video to the database may be 2D or 3D. The final scenario is of a 3D scene imaged with
an arbitrarily moving camera and the goal is to be able to insert synthetic 3D objects
into the real imagery. No a priori knowledge of the 3D scene is assumed.

The underyling technical problems that need to be solved for the above scenarios are:
(i) indexing and matching the video to precisely align locate the video frame, (ii) stable
and jitter-free camera pose estimation in 2D and/or 3D, and (iii) seamless insertion of the
synthetic pattern and objects for a visually pleasing experience. In this paper we present
highlights of our solutions to the technical problems and demonstrate the validity of our
approach through visual results.

2 2D Video Insertion

The basic approach for 2D video insertion is in three steps: training, coarse indexing,
and fine alignment [4]. The training steps are performed in non real-time in a set-up
phase, and the coarse indexing and fine alignment steps are performed in real-time using
a hardware system.

In the training step, imagery that will be used as reference for the coarse indexing
and fine alignment steps is captured. The target region can be occluded or can enter or
leave the field of view when insertion is being performed, and therefore the approach
is to record imagery not just of the target region itself, but also of surrounding regions.
The images are then aligned to each other so that the location of the target region can be
inferred from the recovered locations of surrounding regions.

In the coarse indexing step, regions that have been identified in the reference imagery
are located in the current imagery using a hierarchical pattern tree search[2]. The pattern
tree comprises a set of templates from the reference imagery and their relative spatial
transformation in the coordinate system of the reference imagery. Coarse search begins
by correlating the coarsest resolution templates across the current video image. If a
potential match is found, then the next template in the pattern tree is correlated with the
image using the relative spatial transformation in the pattern tree to compute the location
around which correlation should occur. This process is repeated for more templates in
the pattern tree, and the model relating the current image to the pattern tree is refined
as successive potential matches are found. A successful search is declared if a sufficient
number of templates are matched in the pattern tree.

The fine alignment step recovers the precise transformation between the current
image and the reference imagery. The current image is first shifted or warped to the
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Fig. 1. Left: Original image from a sequence. Right: The image after manipulation.

reference imagery using the model provided by the coarse search result. The model
parameters are then refined using an alignment method described in [1].

Once the precise alignment between the reference and current imagery has been
determined, graphics in the coordinate system of the reference imagery can be warped
to the coordinates system of the current imagery and inserted.

Figure 1 shows a simple insertion example. The image on the left shows an original
frame from a sequence, and the image on the right shows a manipulated frame with a
new logo superimposed on top of the left hand box.

3 Geo-registration

Aerial video is rapidly emerging as a low cost, widely used source of imagery for
mapping, surveillance and monitoring applications. The mapping between camera co-
ordinates in the air and the ground coordinates, called geospatial registration, depends
both on the location and orientation of the camera and on the distance and topology of
the ground. Rough geospatial registration can be derived from the ESD (Engineering
Support Data: obtained from the GPS and inertial navigation units etc.) stream pro-
vided by the airborne camera telemetry system and digital terrain map data (from a
database). This form of registration is the best available in fielded systems today but
does not provide the precision needed for many tasks. Higher precision will be achieved
by correlating (and registering) observed video frames to stored references imagery.
Application of precise geospatial registration include the overlay of maps, boundaries
and other graphical features and annotations onto the video imagery.

We present the details and results of some of the key algorithms we have developed
in our laboratory towards implementing the overall system for geo-spatial registration.
This work extends the previous body of work based on still imagery exploitation using
site models [9]. We include more recent work on developing a real-time georegistration
system.

3.1 Our Approach

A frame to frame alignment module first computes the spatial transformation between
successive images in the video stream. These results are used in both the coarse indexing
and fine geo-registration steps as decribed in the following sections.
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The engineering support data (ESD: GPS, camera look angle etc.) supplied with
the video is decoded to define the initial estimate of the camera model (position and
attitude) with respect to the reference database. The camera model is used to apply an
image perspective transformation to reference imagery obtained from the database to
create a set of synthetic reference images from the perspective of the sensor which are
used for coarse search and fine geo-registration.

A coarse indexing module then locates the video imagery more precisely in the
reference image. An individual video frame may not contain sufficient information to
perform robust matching and therefore results are combined across multiple frames using
the results of frame to frame alignment.

A fine geo-registration module then refines this estimate further using the relative
information between frames to constrain the solution.

3.2 Frame to Frame Alignment

Video frames are typically acquired at 30 frames a second and contain a lot of frame-
to-frame overlap. For typical altitudes and speeds of airborne platforms, the overlaps
may range from 4/5 to 49/50th of a single frame. We exploit this overlap by converting
a redundant video stream into a compact image stream comprising key frames and
parametric models that relate the key frames. For instance, typically 30 frames in a
second of standard NTSC resolution (720x480) video containing about 10M pixels
may be reduced to a single mosaic image containing only about 200K to 2M pixels
depending on the overlap between successive frames. The successive video frames are
aligned with low order parametric transformations like translation, affine and projective
transformations [6].

3.3 Coarse Indexing/Matching

We present a solution to the coarse matching problem where geometric changes and
poor matching of features are handled by combining local appearance matching with
global consistency.

In our current real-time implementation, local appearance matching is performed
using normalized correlation of multiple image patches in the image. These individual
correlation surfaces often have multiple peaks. Disambiguation is obtained by impos-
ing global consistency by combining the frame-to-frame motion information with the
correlation surfaces. Specifically, we are looking for a number of potentially poor local
matches that exhibit global consistency as the UAV flies along. This is currently imple-
mented by multiplying the correlation surfaces after they have been warped or shifted
by the frame-to-frame motion parameters. Figure 2 shows an example of this process.
The top row shows three images from UAV video. The middle row shows the results of
correlating regions from the reference imagery to the current imagery. Note that there
is no single clear peak in the correlation surfaces. The bottom image shows the results
of multiplying the correlation surfaces together after warping by a transform computed
from the frame to frame parameters. Note that there is now a single peak in the correlation
surface.
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Fig. 2. Top Row: Original key frames. Middle Row: Results of correlating an image portion with
the reference imagery. Bottom: Results of multiplying the correlation surfaces after warping using
the frame to frame results.

This scheme does not specifically address the occlusion or drastic change of a region,
but this is somewhat mitigated by repeating the process on different patches of the image
and by selecting the best result as the candidate match.

3.4 Fine Geo-registration

The coarse localization is used to initialize the process of fine alignment. We now present
the equations used for fine alignment of video imagery to a co-registered reference
mage and depth image. The formulation used is the plane+parallax model developed
by [7,11,13]. The coordinates of a point in a video image are denoted by (x, y). The
coordinates of the corresponding point in the reference image are given by (Xr, Yr).
Each point is the reference image has a parallax value k. The parallax value is computed
from a digital elevation map (DEM) which is co-registered with the reference image.
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Twelve parameters a1...a12 are used to specify the alignment. The reference image
coordinates (Xr, Yr) are mapped to the ideal video coordinates (XI , YI) by the following
equations:

XI =
a1 ∗ Xr + a2 ∗ Yr + a3 ∗ k(Xr, Yr) + a10

a7 ∗ Xr + a8 ∗ Yr + a9 ∗ k(Xr, Yr) + a12
(1)

YI =
a4 ∗ Xr + a5 ∗ Yr + a6 ∗ k(Xr, Yr) + a11

a7 ∗ Xr + a8 ∗ Yr + a9 ∗ k(Xr, Yr) + a12
(2)

Note, since, the right hand side in the above two equations is a ratio of two expres-
sions, the parameters a1..a12 can only be determined up to a scale factor. We typically
make parameter a12 = 1 and solve for the remaining 11 parameters. In the case of
the reference image being an orthophoto with a corresponding DEM (digital elevation
map), the parallax value k at a location is equal to the DEM value at that location. When
the reference image is a real image taken from a frame camera (where the imaging is
modeled with perspective projection) the parallax value k at any reference location is
calculated from the depth z at that location using the following equation [7,11,13]:

k =
(z − z̄) ∗ z̄

z ∗ σz
(3)

where z̄ and σz are the average and standard deviation of the depth image values.

Parameter Estimation The reference imagery and the current imagery may be signif-
icantly different, and also each individual current image may not contain a significant
number of image features. Therefore it is not particularly robust to solve for the camera
parameters that map the current image to the reference from a single frame. Instead the
approach is to use the results from the frame-to-frame processing to constrain the simul-
taneous solving of several sets of frame to reference parameters. Once a refined set of
parameters have been recovered, local image matches between the current and reference
imagery are recovered. These matches are then used to refine the sets of parameters as
described below.

The output of the coarse search step is an approximate transform between a current
image and the reference imagery. The output of the frame-to-frame processing is the
transform between successive current images. These are fed into a global minimization
algorithm [12] that minimizes the error between virtual points that are created using the
frame-to-frame parameters and the coarse search parameters to recover an estimate of
the transform between each of the current images and the reference imagery.

The next step is to use image matches between the current and reference imagery at
each frame to improve accuracy. This is performed by computing point correspondences
using a hierarchical flow algorithm [1]. This algorithm assumes brightness constancy,
but the images are pre-filtered with Laplacian filters in order to reduce the impact of
illumination changes. The algorithm computes local matches at every image pixel first
at a coarse resolution, then refines them at finer resolutions.

These point matches are then sampled and then together with the frame-to-frame
parameters are fed into the global minimization algorithm once more [12]. The result is
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a set of refined parameters for each frame. These parameters are then used to warp or
shift the reference imagery to each current image. Point matches between the warped
reference imagery and the current imagery can be computed again and used to refine the
model parameters even further.

Figure 3 shows a geo-mosaic consisting of current imagery that has been warped and
overlaid on top of the reference imagery. Note that the features in the overlaid mosaic
line up with features in the reference imagery.

Fig. 3. A geo-mosaic warped and overlaid on the refence imagery.

Figure 4 shows a frame from the output of a real-time geo-registration system that is
being built at Sarnoff that uses a VFE-200 processor for frame to frame alignment and
for coarse search, and an SGI computer for fine alignment. The current imagery is shown
in the center of the figure, and annotations and the reference imagery in the background
have been aligned to it. Remaining misalignments are due to the use of a distortion-free
camera model in the current development phase of the real-time system.

4 3D Match Move

In geo-registration we assumed that reference models and reference imagery existed.
Annotating the video in that case, involved solving for the pose of the video frames with
respect to the reference image. In many applications such as in film production, reference
imagery and models are often not available. The problem here therefore is that given a
video sequence of N frames, we wish to compute the camera poses (the rotations and
translations) without the knowledge of the 3D model and with some rough knowledge
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Fig. 4. A frame from UAV video overlayed on the warped reference imagery with annotations
being displayed

of the internal parameters of the camera. The approach should work with a variety of
different 3D camera motions, especially those in which novel parts of the scene appear
and disappear relatively rapidly. Of course, imaging scenarios in which features remain
fairly persistent, as in fixated motions, are also naturally handled. A sparse collection
of 3D features are also computed in the process of pose computation. In general, the
problems of correspondence over the sequence, camera pose and 3D structure estimation,
and camera calibration estimation are tied together. Solving all the problems in a single
optimization problem is complex and will in general not lead to stable and correct
solutions. Therefore, we adopt a strategy of progressive complexity with feedback in
which earlier stages work on smaller subsequences of the data and generate inputs for the
latter stages which estimate consistent poses over the entire sequence. The advantage of
dividing the problem into subsequence estimates and then combining these is threefold:
(i) better computational efficiency since global bundle block adjustment for all frames is
expensive, (ii) progressively better generation of estimates leading to a global maximum
likelihood estimation, and (iii) limited build up of error due to small scale concatenation
of local pose estimates (akin to [12,14]).

4.1 Pose Estimation for Unmodeled Scenes

We divide the pose estimation problem for unmodeled scenes into the following different
steps:
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1. Feature Tracking: Our method allows for frame-to-frame patch tracking while al-
lowing for new features to emerge and older features to disappear. The first step is
to choose new features in every new frame. Features are chosen on the basis of their
contrast strength and distinctiveness with respect to their local neighborhoods. In
any given frame both new points and points projected from a previous frame are
checked for flow consistency at their locations. Points that are flow consistent are
kept for further tracking. The process of instantiation of new points, projection of
previous points into a new frame and flow consistency checks is repeated over the
whole sequence to obtain multi-frame point tracks.

2. Pairwise estimation of camera poses: Initial estimates for the camera poses are
computed using the fundamental matrix constraint. The fundamental matrix can be
computed by a number of known techniques. We employ Zhang’s [15] algorithm
that combines a linear method for initialization, and then refines it with a method that
employs image based error minimization. Furthermore, outliers are rejected using
a least median squares minimization. The final fundamental matrix is computed
using the image based error measure after outlier rejection. With the knowledge of
the approximately known calibration, the fundamental matrix can be decomposed
into the camera pose matrices using the technique of Hartley [5].

3. Computation of camera poses for sub-sequences: In order to exploit the static rigid
scene constraint, the pairwise camera estimates are used to create consistent camera
pose estimates and the corresponding 3D point locations over short subsequences.
Point tracks that persist for the time period of each subsequence are used to create
the consistent estimates. In order to compute the maximum likelihood estimates for
the camera poses and 3D points for the subsequence, a bundle block adjustment is
applied.

4. Aligning sub-sequences: Subsequence computation is performed with a few frames
overlap between consecutive sub-sequences. The points that are visible in two over-
lapping sub-sequences are used to solve for absolute orientation that relate the co-
ordinate systems of the two sub-sequences. This is used to represent both the sub-
sequences in a common coordinate system, so that they may be stitched together.

5. Refinement of poses over sequence: The stitching of subsequences allows the repre-
sentation of poses and the 3D points in a single coordinate system. However, point
tracks that are common across more than one sub-sequence provide constraints for
further global adjustment of the 3D parameters. In the final step, bundle block ad-
justment is applied to the complete set of frames and 3D points. For computational
efficiency, this adjustment can be applied in small sets of arbitrary frames or can
be applied to the complete set. The interesting aspect of the representation here is
that any combination of internal parameters, pose parameters or 3D points can be
adjusted while maintaining a global representation.

4.2 3D Insertion Using Computed Poses

Accurate and stable pose estimation important for the application of 3D match move in
which synthetic objects are inserted into real images and their viewpoints are mimicked
according to the real camera’s pose and internal parameters. Now we show examples of
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Fig. 5. Three frames of the Garden sequence with synthetic 3D flamingoes inserted. The 3D
placement was done only in one frame, and all others were generated through rendering using the
automatically computed poses.
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3D match move using the pose estimation technique presented in the earlier part of the
paper.

Fig. 5 shows three frames from a garden sequence with synthetic 3D flamingos
inserted. The 3D placement was performed manually only in one frame, and all others
were generated through rendering using the automatically computed poses. It is to be
emphasized that the placement of the synthetics has been done with respect to one
frame only. Therefore, there is minimal interaction demanded of the user. It is also to be
emphasized that both in the still image displays as well as in the videos, no drift or jitter
in the objects in any of the frames is noticeable. This is a qualitative visual validation of
the stability of pose and 3D structure computation of the algorithm developed.
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Discussion

Rick Szeliski: You showed the sequence with the flamingo inserted. How much effort
would it be today, to insert a flamingo behind the fence — with occlusions, and not the
situation you planned for?

Keith Hanna: That’s a good question. Obviously one way to do it would be to recover
or build a 3D model of the scene. But you need to compare how long it takes to make the
3D model with someone going in and delineating the occlusion by hand. In Hollywood,
they do a lot by hand, so if we want to get more into Hollywood, we need to understand
what they do. Here they’d probably do a pose estimation then delineate by hand, maybe
with the help of tracking tools. As computer vision people we’d like to build a 3D model
and then do everything ourselves, but in practice in many applications we’d be wasting
our time actually trying to do that.

Yongduek Seo: The graphics object inserted in the video scene is very stable. Do you
have any special method?

Keith Hanna: Basically all the approaches use iterative refinement. You recover a first
estimate of your poses, and depths, then use those to refine iteratively, to get closer
to registration. The reason for the accuracy is just continual iterative refinement of the
parameters to improve the alignment. Five or six iterations is usually enough.

Yongduek Seo: How large are the images?

Keith Hanna: Just regular sizes, 720× 480 here I think. All the video stuff is standard
768× 480. The movie ones are bigger, about 1k.

Luc Robert: First I’d like to add to your answer to Rick’s question. Hollywood people
are very skilled, but sometimes they simply can’t do it by hand, or it’s too painful like
painting individual pixels. So, 3D maps are something they use a lot. They often build
3D models just to predict binary image maps for compositing. That would be a good
solution for the fence.

I have a question about the example with the baseball player moving in front of the
billboard. You clearly handle the occlusion, but the background is green. Can you also
do it against an arbitrary, non-color-key-able background?

Keith Hanna: When there is a lot of background texture, detecting the difference is
much harder, and any slight misalignment shows up very clearly. Even a tenth of a pixel
is visible if you have a high-contrast edge. There are other constraints you can use, like
motion or spatial continuity, but typically it’s much easier when the background is flat.

Another interesting thing you may have seen is video insertion on the ground in
soccer. There we do a video mixing of about 75% logo and 25% grass background.
There are a couple of reasons for that. One is that the texture of the grass comes through,
so it really looks like the logo is painted on the grass. In soccer it looks great actually,
we were all blown away when we saw that! But the second reason is that it makes the
occlusion analysis a little easier — errors are less noticeable if you do a little mixing.
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Luc Robert described the products being developed at REALViZ and their
application to special effects and post production in the film industry. In par-
ticular the MatchMover product which is a “3-D Camera Tracker” computing
a camera for each frame of the film by tracking 2-D features through an image
sequence. We include below the discussion following his presentation.

Harpreet Sawhney: In the case of 2D tracking it’s easy to figure out when
things start going wrong. But when you go to MatchMoving with camera esti-
mation and so forth, how do you tell a non-expert user what to do when the
computation has gone wrong?

Luc Robert: Well, you write lots of pages of documentation, hoping that the
user won’t have to read them. . . Yes, this is one of the most difficult parts of
MatchMoving, making things clear to the user when they’re sometimes not even
clear to us. You can provide survey tools that inspect image residuals, time
averages, anything that might be useful. But beyond that it’s not clear.

Yongduek Seo: I did some similar work, and in that case, although the results
were very good in parameter space, we still found some trembling and things
like that in the real video. Does this happen with your system? Also, you are
using Euclidean parameters, I wonder if you have considered a calibration-free
approach.

Luc Robert: As far as the first question is concerned, yes, even with our
software, the thing sometimes wiggles and the trajectories are a little shaky.
So you have to provide the user with tools for smoothing out parameters, or
trying to fix things by hand if necessary. One case where it often happens is
when you compute a trajectory with variable zoom. There is a near-ambiguity
between zooming and moving forward, so the estimated camera trajectory can
be very jagged in the z-direction. But you can usually fix that by applying a
smoothing filter to the zoom parameter and recomputing the other parameters.
If the objects you insert in the scene are exactly between the points you track,
it’s usually OK even without smoothing. But when you add ‘noise amplifiers’
— objects which go much further than the points you’ve tracked — you start
seeing vibrations and for this filtering is pretty efficient. I don’t like it because
it means that the algorithm has in some sense failed, but it’s the best solution
we’ve found up till now.
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Fig. 1. A synthetic car inserted in a real scene using the REALViZ software.

As for the second question, unfortunately we have to fit into the standard
production pipeline. So we get images here and we produce camera files there.
The camera files have to be read by animation packages, which do not handle
projective cameras. So we have to do Euclidean stuff. Otherwise no one would
be able to use the results.

Joe Mundy: Given that a person in the loop is essential in most circumstances,
how do you think the computer vision community should be thinking about
algorithms to best take advantage of human interaction?

Luc Robert: I don’t really know. I think that when things are not very clear
to you, you can’t explain them to someone else, and usually the reverse is true.
In MatchMoving, the MatchMovers are usually cameramen, because they un-
derstand best how a synthetic camera is looking at the world.

Joe Mundy: What this suggests to me is that the user-interface needs to be
much more tightly coupled to the computer vision algorithms. Rather than just
pointing, there has to be a deeper interaction with the imagery. It seems to me
that perhaps we should start to look more carefully at what people have done in
human factors research. There’s been a tremendous amount of research for fields
like piloting aircraft, and maybe an invited talk at a computer vision conference
on that material would be useful.
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1 Introduction

This report provides a brief summary of the review of “Direct Methods”, which
was presented by Michal Irani and P. Anandan.

In the present context, we define “Direct Methods” as methods for motion
and/or shape estimation, which recover the unknown parameters directly from
measurable image quantities at each pixel in the image. This is contrast to the
“feature-based methods”, which first extract a sparse set of distinct features
from each image separately, and then recover and analyze their correspondences
in order to determine the motion and shape. Feature-based methods minimize an
error measure that is based on distances between a few corresponding features,
while direct methods minimize an error measure that is based on direct image
information collected from all pixels in the image (such as image brightness, or
brightness-based cross-correlation, etc).

2 The Brightness Constraint

The starting point for most direct methods is the “brightness constancy con-
straint”, namely, given two images J(x, y) and I(x, y),

J(x, y) = I(x+ u(x, y), y + v(x, y)),

where (x, y) are pixel coordinates, and (u, v) denotes the displacement of pixel
(x, y) between the two images. Assuming small (u, v), and linearizing I around
(x, y), we can obtain the following well-established constraint [7]:

Ixu + Iyv + It = 0, (1)

where (Ix, Iy) are the spatial derivatives of the image brightness, and It = I −
J . All the quantities in these equations are functions of image position (x, y),
hence every pixel provides one such equation that constrains the displacement
of that pixel. However, since the displacement of each pixel is defined by two
quantities, u and v, the brightness constraint alone is insufficient to determine
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the displacement of a pixel. A second constraint is provided by a “global motion
model”, namely a model that describes the variation of the image motion across
the entire image. These models can be broadly divided into two classes: Two-
dimensional (2D) motion models and three-dimensional (3D) motion models.
Below we describe how direct methods have been used in connection with these
two classes of models. A more complete description of a hierarchy of different
motion models can be found in [1].

3 2D Global Motion Models

The 2D motion models use a single global 2D parametric transformation to
define the displacement of every pixel contained in their region of support. A
frequently used model is the affine motion model1, which is described by the
equations:

u(x, y) = a1 + a2x+ a3y

v(x, y) = a4 + a5x+ a6y (2)

The affine motion model is a very good approximation for the induced image
motion when the camera is imaging distant scenes, such as in airborne video or
in remote surveillance applications. Other 2D models which have been used by
direct methods include the Quadratic motion model [1,14], which describes the
motion of a planar surface under small camera rotation, and the 2D projective
transformation (a homography) [19], which describes the exact image motion of
an arbitrary planar surface between two discrete uncalibrated perspective views.

The method of employing the global motion constraint is similar, regardless
of the selected 2D global motion model. As an example, we briefly describe here
how this is done for the affine transformation.

We can substitute the affine motion of Equation 2 into the brightness con-
straint in Equation 1 to obtain,

Ix(a1 + a2x+ a3y) + Iy(a4 + a5x+ a6y) + It = 0. (3)

Thus each pixel provides one constraint on the six unknown global parameters
(a1, . . . , a6). Since these parameters are global (i.e., the same parameters are
shared by all the pixels), therefore, theoretically, six independent constraints
from six different pixels are adequate to recover these parameters. In practice,
however, the constraints from all the pixels within the region of analysis (could
be the entire image) are combined to minimize the error:

E(a1, . . . , a6) =
∑

(Ix(a1 + a2x+ a3y) + Iy(a4 + a5x+ a6y) + It)2 (4)

Note that different pixels contribute differently to this error measure. For exam-
ple, a pixel along a horizontal edge in the image will have significant Iy, but zero
1 The affine transformation accurately describes the motion of a an arbitrary planar
surface for a fully rectified pair of cameras - i.e., when the optical axes are parallel
and the baseline is strictly sideways.
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Ix, and hence will only constrain the estimation of the parameters (a4, a5, a6)
and not the others. Likewise a pixel along a vertical edge will only constrain
the estimation of the parameters (a1, a2, a3). On the other hand, at a corner-like
pixel and within a highly textured region, both the components of the gradient
will be large, and hence the pixel will constrain all the parameters of the global
affine transformation. Finally, a pixel in a homogeneous area will contribute little
to the error since the gradient will be very small.

In other words, the direct methods use information from all the pixels, weight-
ing the contribution of each pixel according to the underlying image structure
around that pixel. This eliminates the need for explicitly recovering distinct
features. In fact, even images which contains no distinct feature points can be
analyzed, as long as there is sufficient image gradient along different directions
in different parts of the image.

4 Coarse-to-Fine Iterative Estimation

The basic process described above relies on linearizing the image brightness
function (Equation 1). This linearization is a good approximation when (u, v)
are small (e.g., less than one pixel). However, this is rarely satisfied in real
video sequences. The scope of the direct methods has therefore been extended
to handle a significantly larger range of motions via coarse-to-fine processing,
using iterative refinement within a multi-resolution pyramid.

The basic observation behind coarse-to-fine estimation is that given proper
filtering and subsampling, the induced image motion decreases as we go from
full resolution images (fine pyramid levels) to small resolution images (coarse
pyramid levels). The analysis starts at the coarsest resolution level, where the
image motion is very small. The estimated global motion parameters are used to
warp one image toward the other, bringing the two images closer to each other.
The estimation process is then repeated between the warped images. Several it-
erations (typically 4 or 5) of warping and refinement are used to further increase
the search range. After a few iterations, the parameters are propagated to the
next (finer) pyramid level, and the process is repeated there. This iterative-refine
estimation process is repeated and propagated all the way up to the finest reso-
lution level, to yield the final motion parameters. A more complete description
of the coarse-to-fine approach can be found in [1].

With the use of coarse-to-fine refinement, direct methods have been extended
to handle image motions typically upto 10-15 percent of the image size. This
range is more than adequate for handling the type of motions found in real video
sequences. Direct methods are also used for aligning images taken by different
cameras, whose degree of misalignment does not exceed the abovementioned
range. For larger misalignments, an initial estimate is required.
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5 Properties of Direct Methods

In addition to the use of constraints from all the pixels, weighted according to the
information available at each pixel, direct methods have a number of properties
that have made them attractive in practice. Here we note three of these: (i) high
sub-pixel accuracy, and (ii) the “locking property”, and (iii) dense recovery of
shape in the case of 3D estimation. Properties (i) and (ii) are briefly explained
in this section, while property (iii) is referred to in Section 6.

5.1 Sub-pixel Accuracy

Since direct methods use “confidence-weighted” local constraints from every
pixel in the image to estimate a few global motion parameters (typically 6 or 8),
these parameters are usually estimated to very high precision. As a result, the
displacement vector induced at each pixel by the global motion model is precise
upto a fraction of a pixel (misalignment error is usually less than 0.1 pixel).
This has led to its use in a number of practical situations including mosaicing
[11,9,18,17], video enhancement [11,9], and super resolution [12], all of which
require sub pixel alignment of images. Figure 1 shows an example of a mosaic
constructed by aligning a long sequence of video frames using a direct method
with a frame-to-frame affine motion model. Note that the alignment is seamless.
Figure 2 shows an example of video enhancement. Note the improvement in the
fine details in the image, such as the windows of the building. For examples of
Super-Resolution using direct image alignment see [12].

5.2 Locking Property and Outlier Rejection

Direct methods can successfully estimate global motion even in the presence of
multiple motions and/or outliers. Burt, et. al. [3] used a frequency-domain anal-
ysis to show that the coarse-to-fine refinement process allows direct methods to
“lock-on” to a single dominant motion even when multiple motions are present.
While their analysis focuses on the case of global translation, in practice, di-
rect methods have been successful of handling outliers even for affine and other
parametric motions. Irani et. al. [14] achieved further robustness by using an
iterative reweighting approach with an outlier measure that is easy to compute
from image measurements. Black and Anandan [2] used M-estimators to recover
the dominant global motion in the presence of outliers. Figure 3 (from [13])
shows an example of dominant motion selection, in which the second motion (a
person walking across the room) occupies a significant area of the image. Other
examples of dominant motion selection can be found in a number of papers in
the literature (e.g., see [2,14,13]).

6 3D Motion Models

So far, we have focused on using direct methods for estimating global 2D para-
metric motions. In these cases, a small number (typically 6 or 8) parameters
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(a)

(b)

Fig. 1. Panoramic mosaic of an airport video clip. (a) A few represen-
tative frames from a one-minute-long video clip. The video shows an airport
being imaged from the air with a moving camera. (b) The mosaic image built
from all frames of the input video clip. Note that the alignment is seamless.

(a) (b)

Fig. 2. Video enhancement. (a) One out of 20 noisy frames (all frames
are of similar quality). (b) The corresponding enhanced frame in the enhanced
video sequence (all the frames in the enhanced video are of the same quality).
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(a)

(b)

(c)

Fig. 3. Dominant motion selection and outlier rejection. (a) 3
representative frames from the sequence. There are two motions present – that
induced by the panning camera, and that induced by the walking woman.
(b) Outlier pixels detected in those frame are marked in blacks. Those are
pixels found to be moving inconsistently with the detected dominant motion.
Those pixels correspond to the walking woman, to her reflection in the desk,
to the boundaries of the image frames, and to some noisy pixels. (c) Full
reconstructions of the dominant layer (the background) in all frames. The girl,
her reflection, and the noise are removed from the video sequence by filling in
the black regions with gray-level information from other frames according to
the computed dominant background motion.

can describe the motion of every pixel in the region consistent with the global
motion. However, these 2D motion models cannot model frame-to-frame motion
when significant camera translation and non-planar depth variations are present.
These scenarios require 3D motion models. The 3D motion models consist of two
sets of parameters: a set of global parameters, which represent the effects of cam-
era motion, and a set of local parameters (one per pixel), which represents the
3D structure or the “shape”2. Examples of 3D motion models include:
(i) The instantaneous velocity field model:

u = −xyΩX + (1 + x2)ΩY − yΩZ + (TX − TZx)/Z
v = −(1 + y2)ΩX + xyΩY + xΩZ + (TY − TZy)/Z,

where (ΩX , ΩY , ΩZ) and (TX , TY , TZ) denote the camera rotation and transla-
tion parameters, and Z the depth value represents the local shape.
2 These types of 3D models are referred to as “quasi-parametric” models in [1].
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(ii) The discrete 3D motion model, parameterized in terms of a homography and
the epipole:

u =
h1x+ h2y + h3 + γt1
h7x+ h8y + h9 + γt3

− x

v =
h4x+ h5y + h6 + γt2
h7x+ h8y + h9 + γt3

− y

where (h1, . . . , h9) denote the parameters of the homography, (t1, t2, t3) repre-
sents the epipole in homogeneous coordinates, and γ represents the local shape.
(iii) The plane+parallax model:

u = xw − x =
γ

1 + γt3
(t3x− t1)

v = yw − y =
γ

1 + γt3
(t3y − t2)

where (xw, yw) correspond the image locations obtained after warping the image
according to the induced homography (2D projective transformation) of a dom-
inant planar surface (See [15,10] for more details). Direct methods have been
applied in conjunction with 3D motion models to simultaneously recover the
global camera motion parameters and the local shape parameters from image
measurements. For example, [4,5] have used the instantaneous velocity equations
to recover the camera motion and shape from two and multiple images. Szeliski
and Kang [20] directly recovered the homography, the epipole, and the local
shape from image intensity variations, and Kumar et. al. [15] and Irani et. al.
[10] have applied direct methods using the plane+parallax model with two and
multiple frames, respectively.

All of these examples of using direct methods with 3D motion models use
multi-resolution coarse-to-fine estimation to handle large search ranges. The
computational methods are roughly similar to each other and are based on the
approach described in [1] for quasi-parametric model.

Figure 4 shows an example of applying the plane+parallax model to the
“block sequence” [15]. These results were obtained using the multiframe tech-
nique described in [10]. A natural outcome of using the direct approach with
a 3D motion model is the recovery of a dense shape map of the scene, as is
illustrated in Figure 4. Dense recovery is made possible because at every pixel
the Brightness Constancy Equation 1 provides one line constraint, while the
epipolar-constraint provides another line constraint. The intersection of these
two line constraints uniquely defines the displacement of the pixel. Other ex-
amples of using direct methods for dense 3D shape and motion recovery can be
found in the various papers cited above.

7 Handling Changes in Brightness

Since the brightness constancy constraint is central to the direct methods, a
natural question arises concerning the applicability of these techniques when the
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(a) (b)

Fig. 4. Shape recovery using the Plane+Parallax model. (a) One
frame from the sequence. (b) The recovered shape (relative to the carpet
plane). Brighter values correspond to taller points.

brightness of a pixel is not constant over multiple images. There are two ways
of handling such changes. The first approach is to renormalize the image inten-
sities to reduce the effects of such changes in brightness over time. For example,
normalizing the images to remove global changes in mean and contrast often
handles effects of overall lighting changes. More local variations can be handled
by using Laplacian pyramid representations and by applying local contrast nor-
malizations to the Laplacian filtered images (see [6] for a real-time direct affine
estimation algorithm which uses Laplacian pyramid images together with some
local contrast normalization).

A second (and more recent) approach to handling brightness variation is to
generalize the entire approach to use other local match measures besides the
brightness error. This approach is discussed in more detail in Section 8.

8 Other Local Match Measures

Irani and Anandan [8] describe a general approach for extending direct methods
to handle any user defined local match measure. In particular, instead of ap-
plying the linearization and the iterative refinement to brightness surfaces, the
regression in [8] is applied directly to normalized-correlation surfaces, which are
measured at every pixel in the image. A global affine transformation is sought,
which simultaneously maximizes as many local correlation values as possible.
This is done without prior commitment to particular local matches. The choice
of local displacements is constrained on one hand by the global motion model
(could be a 2D affine transformation or a 3D epipolar constraint), and on the
other hand by the local correlation variations.

Irani and Anandan show that with some image pre-filtering, the direct corre-
lation based approach can be applied to even extreme cases of image matching,
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such as multi-sensor image alignment. Figure 5 shows the results of applying
their approach to recovering a global 2D affine transformation needed to align
an infra-red (IR) image with an electro-optic (video) image. More recently, Man-
delbaum, et. al. [16] have extended this approach to simultaneously recover the
3D global camera motion and the dense local shape.

9 Summary

In this paper we have briefly described the class of methods for motion estimation
called direct methods. Direct methods use measurable image information, such
as brightness variations or image cross-correlation measures, which is integrated
from all the pixels to recover 2D or 3D information. This is in contrast to feature-
based methods that rely on the correspondence of a sparse set of highly reliable
image features.

Direct methods have been used to recover 2D global parametric motion mod-
els (e.g., affine transforms, quadratic transforms, or homographies), as well as
3D motion models. In the 3D case, the direct methods recover the dense 3D
structure of the scene simultaneously with the camera motion parameters (or
epipolar geometry). Direct methods have been shown to recover pixel motion
upto high subpixel precision. They have also been applied to real-image se-
quences containing multiple motions and outliers, especially in the case of 2D
motion models. The recent use of cross-correlation measures within direct meth-
ods have extended their applicability to image sequences containing significant
brightness variations over time, as well as to alignment of images obtained by
sensors of different sensing modalities (such as IR and video). Direct methods
are capable of recovering misalignments of up to 10-15 % of the image size. For
larger misalignments, an initial estimate is required.
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a)

b)

c)

d)

Fig. 5. Multi-sensor Alignment. (a) EO (video) image. (b) IR (Infra-
Red) image. (c) Composite (spliced) display before alignment. (d) Composite
(spliced) display after alignment. Note in particular the perfect alignment of
the water-tank at the bottom left of the images, the building with the arched-
doorway at the right, and the roads at the top left of the images.
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1 Introduction

This report is a brief overview of the use of “feature based” methods in structure
and motion computation. A companion paper by Irani and Anandan [16] reviews
“direct” methods.

Direct methods solve two problems simultaneously: the motion of the camera
and the correspondence of every pixel. They effect a global minimization using
all the pixels in the image, the starting point of which is (generally) the image
brightness constraint (as explained in the companion paper).

By contrast we advocate a feature based approach. This involves a strategy
of concentrating computation on areas of the image where it is possible to get
good correspondence, and from these an initial estimate of camera geometry
is made. This geometry is then used to guide correspondence in regions of the
image where there is less information. Our thesis is as follows:

Structure and motion recovery should proceed by first extracting features, and
then using these features to compute the image matching relations. It should not
proceed by simultaneously estimating motion and dense pixel correspondences.

The “image matching relations” referred to here arise from the camera motion
alone, not from the scene structure. These relations are the part of the motion
that can be computed directly from image correspondences. For example, if the
camera translates between two views then the image matching relation is the
epipolar geometry of the view-pair.

The rest of this paper demonstrates that there are cogent theoretical and
practical reasons for advocating this thesis when attempting to recover structure
and motion from images. We illustrate the use of feature based methods on two
examples. First, in section 2, we describe in detail a feature based algorithm for
registering multiple frames to compute a mosaic. The frames are obtained by a
camera rotating about its centre, and the algorithm estimates the point-to-point
homography map relating the views. Second, section 3 discusses the more general
case of structure and motion computation from images obtained by a camera
rotating and translating. Here it is shown how feature matching methods form
the basis for a dense 3D reconstruction of the scene (where depth is obtained for
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every pixel). Section 4 explores the strengths and weaknesses of feature based
and direct methods, and summarises the reasons why feature based methods
perform so well.

2 Mosaic Computation

Within this section the feature based approach to mosaicing is described. Given a
sequence of images acquired by a camera rotating about its centre, the objective
is to fuse together the set of images to produce a single panoramic mosaic im-
age of the scene. For this particular camera motion, corresponding image points
(i.e. projections of the same scene point) are related by a point-to-point planar
homography map which depends only on the camera rotation and internal cali-
bration, and does not depend on the scene structure (depth of the scene points).
This map also applies if the camera “pans and zooms” (changes focal length
whilst rotating).

A planar homography (also known as a plane projective transformation, or
collineation) is specified by eight independent parameters. The homography is
represented as a 3 × 3 matrix that transforms homogeneous image coordinates
as:

x′ = Hx.

We first describe the computation of a homography between an image pair, and
then show how this computation is extended to a set of three or more images.

2.1 Image Pairs

The automatic feature based algorithm for computing a homography between
two images is summarized in table 1, with an example given in figure 1.

The point features used (developed by Harris [12]) are known as interest
points or “corners”. However, as can be seen from figure 1 (c) & (d), the term
corner is misleading as these point features do not just occur at classical corners
(intersection of lines). Thus we prefer the term interest point. Typically there
can be hundreds or thousands of interest points detected in an image.

It is worth noting two things about the algorithm. First, interest points are
not matched purely using geometry – i.e. only using a point’s position. Instead,
the intensity neighbourhood of the interest point is also used to rank possi-
ble matches by computing a normalized cross correlation between the point’s
neighbourhood and the neighbourhood of a possible match. Second, robust es-
timation methods are an essential part of the algorithm: more than 40% of the
putative matches between the interest points (obtained by the best cross cor-
relation score and proximity) are incorrect. It is the RANSAC algorithm that
identifies the correct correspondences.

Given the inlying interest point correspondences: {xi ↔ x′
i}, i = 1 . . . n, the

final estimate of the homography is obtained by minimizing the following cost
function, ∑

i

d(xi, x̂i)2 + d(x′
i, x̂

′
i)
2 (1)



280 P.H.S. Torr and A. Zisserman

a b

c d

e f

g h
Fig. 1. Automatic computation of a homography between two images using
the algorithm of table 1. (a) (b) Images of Keble College, Oxford. The motion
between views is a rotation about the camera centre so the images are exactly related
by a homography. The images are 640 × 480 pixels. (c) (d) Detected point features
superimposed on the images. There are approximately 500 features on each image. The
following results are superimposed on the left image: (e) 268 putative matches shown
by the line linking matched points, note the clear mismatches; (f) RANSAC outliers —
117 of the putative matches; (g) RANSAC inliers — 151 correspondences consistent
with the estimated H; (h) final set of 262 correspondences after guided matching and
MLE. The estimated H is accurate to subpixel resolution.
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Table 1. The main steps in the algorithm to automatically estimate a homography
between two images using RANSAC and features. Further details are given in [14].

Objective Compute the 2D homography between two images.

Algorithm

1. Features: Compute interest point features in each image to sub pixel accuracy
(e.g. Harris corners [12]).

2. Putative correspondences: Compute a set of interest point matches based
on proximity and similarity of their intensity neighbourhood.

3. RANSAC robust estimation: Repeat for N samples
(a) Select a random sample of 4 correspondences and compute the homography

H.
(b) Calculate a geometric image distance error for each putative correspon-

dence.
(c) Compute the number of inliers consistent with H by the number of corre-

spondences for which the distance error is less than a threshold.
Choose the H with the largest number of inliers.

4. Optimal estimation: re-estimate H from all correspondences classified as in-
liers, by minimizing the maximum likelihood cost function (1) using a suitable
numerical minimizer (e.g. the Levenberg-Marquardt algorithm [24]).

5. Guided matching: Further interest point correspondences are now determined
using the estimated H to define a search region about the transferred point
position.

The last two steps can be iterated until the number of correspondences is stable.

where d(x,y) is the geometric distance between the image points x and y. The
cost is minimized over the homography Ĥ and corrected points {x̂i} such that
x̂′

i = Ĥx̂i. This gives the maximum likelihood estimate of the homography
under the assumption of Gaussian measurement noise in the position of the
image points. A fuller discussion of the estimation algorithm is given in [14]
with variations and improvements (the use of MLESAC rather than RANSAC)
given in [34].

2.2 From Image Ppairs to a Mosaic

The two frame homography estimation algorithm can readily be extended to
constructing a mosaic for a sequence as follows:

1. Compute interest point features in each frame.
2. Compute homographies and correspondences between frames using these

point features.
3. Compute a maximum likelihood estimate of the homographies and points

over all frames.
4. Use the estimated homographies to map all frames onto one of the input

frames to form the mosaic.
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In computing the maximum likelihood estimate the homographies are parametriz-
ed to be consistent across frames. So, for example, the homography between the
first and third frame is obtained exactly from the composition of homographies
between the first and second, and second and third as H13 = H23H12. This is
achieved by computing all homographies with respect to a single set of corrected
points x̂i. Details are given in [7].

The application of this algorithm to a 100 frame image sequence is illustrated
in figures 2 and 3. The result is a seamless mosaic obtained to subpixel accuracy.

a

b

Fig. 2. Automatic panoramic mosaic construction. (a) Every 10th frame of a 100
frame sequence acquired by a hand held cam-corder approximately rotating about its
lens centre. Note, each frame has a quite limited field of view, and there is no common
overlap between all frames. (b) The computed mosaic which is seamless, with frames
aligned to subpixel accuracy. The computation method is described in [7].
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a

b

Fig. 3. Details of the mosaic construction of figure 2. (a) 1000 of the 2500
points used in the maximum likelihood estimation, note the density of points across
the mosaic. (b) Every 5th frame (indicated by its outline), note again the lack of frame
overlap. A super-resolution detail of this mosaic is shown in figure 4.
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The mosaic can then form the basis for a number of applications such as video
summary [17], motion removal [19], auto-calibration [13], and super-resolution.
For example, figure 4 shows a super-resolution detail of the computed mosaic.
The method used [8] is based on MAP estimation, which gives a slight improve-
ment over the generally excellent Irani and Peleg algorithm [18].

a b

Fig. 4. Super-resolution detail of the mosaic of figure 2. The super-resolution
image is built from a set 20 images obtained from partially overlapping frames. The
original frames are jpeg compressed. (a) One of the set of images used as input for
the super-resolution computation. The image is 130 × 110 pixels, and has the highest
resolution of the 20 used. (b) The computed double resolution image (260×220 pixels).
Note, the reduction in aliasing (e.g. on the dark bricks surrounding the Gothic arch)
and the improvement in sharpness of the edges of the brick drapery. Details of the
method are given in [8].

To summarize: in this case the “image matching relation” is a homography
which is computed from point feature correspondences. Once the homography
is estimated the correspondence of every pixel is determined.

3 Structure and Motion Computation

This section gives an example of (metric) reconstruction of the scene and cameras
directly from an image sequence. This involves computing the cameras up to a
scaled Euclidean transformation of 3-space (auto-calibration) and a dense model
of the scene. The method proceeds in two overall steps:

1. Compute cameras for all frames of the sequence.
2. Compute a dense scene reconstruction with correspondence aided by the

multiple view geometry.

Unlike in the mosaicing example, in this case the camera centre is moving
and consequently the map between corresponding pixels depends on the depth
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of the scene points, i.e. for general scene structure there is not a simple map
(such as a homography) global to the image.

3.1 Computing Cameras for an Image Sequence

The method follows a similar path to that of computing a mosaic.

1. Features: Compute interest point features in each image.
2. Multiple view point correspondences: Compute two-view interest point

correspondences and simultaneously the fundamental matrix F between pairs
of frames, e.g. using robust estimation on minimal sets of 7 points, as de-
scribed in [32]; Compute three-view interest point correspondences and si-
multaneously the trifocal tensor between image triplets, e.g. using robust
estimation on minimal sets of 6 points, as described in [33]; Weave together
these 2-view and 3-view reconstructions to get an initial estimation of 3D
points and cameras for all frames [10]. This initial reconstruction provides
the basis for bundle adjustment.

3. Optimal estimation: Compute the maximum likelihood estimate of the
3D points and cameras by minimizing reprojection error over all points.
This is bundle adjustment and determines a projective reconstruction. The
cost function is the sum of squared distances between the measured image
points xi

j and the projections of the estimated 3D points using the estimated
cameras:

min
P̂i

,X̂j

∑

ij

d(P̂
i
X̂j ,xi

j)
2 (2)

where P̂
i
is the estimated camera matrix for the ith view, X̂j is the jth

estimated 3D point, and d(x,y) is the geometric image distance between the
homogeneous points x and y.

4. Auto-calibration: Remove the projective ambiguity in the reconstruction
using constraints on the cameras such as constant aspect ratio, see e.g. [23].

Further details of automatic computation of cameras for a sequence are given
in [1,3,4,10,14,22,30,31].

3.2 Computing a Dense Reconstruction

Given the cameras, the multi-view geometry is used to help solve for dense
correspondences. There is a large body of literature concerning methods for
obtaining surface depths given the camera geometry: a classical stereo algorithm
may be used, for example an area based algorithm such as [9,20]; or space carving,
e.g.[21,28]; or surface primitives may be fitted directly, e.g. piecewise planar
models [2] or piecewise generalized cylinders [15]; or optical flow may be used,
constrained by epipolar geometry [36].

Figure 5 shows an example of automatic camera recovery from five images,
followed by automatic dense stereo reconstruction using an area based algorithm.
The method is described in [23].
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a b c

d e

f g

Fig. 5. Automatic generation of a texture mapped 3D model from an image
sequence. The input is a sequence of images acquired by a hand held camera. The
output is a 3D VRML model of the cameras and scene geometry. (a)–(c) three of the
five input images. (d) and (e) two views of a metric reconstruction computed from
interest points matched over the five images. The cameras are represented by pyramids
with apex at the computed camera centre. (f) and (g) two views of the texture mapped
3D model computed from the original images and reconstructed cameras using an area
based stereo algorithm. Figures courtesy of Marc Pollefeys, Reinhard Koch, and Luc
Van Gool [23].
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To summarize: the key point is that features are a convenient intermedi-
ate step from input images to dense 3D reconstruction. In this case the “image
matching relations” are epipolar geometry, trifocal geometry, etc that may be
computed from image interest point correspondences. This is equivalent to re-
covering the cameras up to a common projective transformation of 3-space. After
computing the cameras, the features need not be used at all in the subsequent
dense scene reconstruction.

4 Comparison of the Feature Based and Direct Methods

Within this section the two methods are contrasted. We highlight three aspects
of the structure and motion recovery problem: invariance, optimal estimation,
and the computational efficiency of the methods. Then list the current state of
the art.

4.1 The Importance of Invariance

Features have a wide range of photometric invariance. For example, although thus
far we have only discussed interest points, lines may be detected in an image as an
intensity discontinuity (an “edge”). The invariance arises because a discontinuity
is still detectable even under large changes in illumination conditions between
two images. Features also have a wide range of geometric invariance – lines
are invariant to projective transformations (a line is mapped to a line), and
consequently line features may be detected under any projective transformation
of the image.

In the case of Harris interest points, the feature is detected at the local min-
ima of an autocorrelation function. This minima is also invariant to a wide range
of photometric and geometric image transformations, as has been demonstrated
by Schmid et al [27]. Consequently, the detected interest point across a set of
images corresponds to the same 3D point.

This photometric and geometric invariance is perhaps the primary motivation
for adopting a feature based approach.

In direct approaches it is necessary to provide a photometric map between
corresponding pixels, for example the map might be that the image intensities are
constant (image brightness constraint), or that corresponding pixels are related
by a monotonic function. If this map is incorrect, then erroneous correspondences
between pixels will result. In contrast in feature based methods a photometric
map is used only to guide interest point correspondence.

As an example, consider normalized cross correlation on neighbourhoods.
This measure is used in the algorithms included in this paper to rank matches.
Normalized cross-correlation is invariant to a local affine transformation of in-
tensities (scaling plus offset). If, in a particular imaging situation, the cross-
correlation measure is not invariant to the actual photometric map between the
images, then the ranking of the matches may be erroneous. However, the position
of the interest points is (largely) invariant to this photometric map. Thus with
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the immunity to mismatches provided by robust estimation, the transformation
estimated from the interest points will still be correct. It is for this reason that
the estimated camera geometry is largely unaffected by errors in the model of
(or invariance to) the photometric map.

If normalized cross-correlation is used in a direct method, and is invariant to
the actual photometric map, then in principle the correct pixel correspondence
will be obtained. However, if it is not invariant to the actual photometric map,
then direct methods may systematically degrade but feature based methods will
not.

As a consequence, feature based methods are able to cope with severe view-
ing and photometric distortion, and this has enabled wide base line matching
algorithms to be developed. An example is given in figure 6.

Fig. 6. Wide baseline matching. Three images acquired from very different view-
points with a hand-held camera. The trifocal tensor is estimated automatically from in-
terest point matches and a global homography affinity score. Five of the matched points
are shown together with their corresponding epipolar lines in the second and third im-
ages. The epipolar geometry is determined from the estimated trifocal tensor. Original
images courtesy of RobotVis INRIA Sophia Antipolis. The wide baseline method is
described in [25].

4.2 Optimal Estimation

A significant advantage of the feature based approach is that it readily lends
itself to a bundle adjustment method over a long sequence, and this provides
a maximum likelihood estimate of the estimated quantities (homographies in
the mosaic example, cameras in the structure and motion example). This re-
veals a key difference between the feature based and direct methods: in feature
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based approaches the errors are uncorrelated between features so that statistical
independence is a valid assumption in estimation.

Consider the “least squares” cost functions that are typically used (e.g. (2)).
For this to be a valid maximum likelihood estimation two criteria must be sat-
isfied: first, each of the squares to be summed must be the log likelihood of that
error, and second each must be conditionally independent of any of the other
errors. In the case of feature based methods the sum of squared error that is min-
imized is the distance between the backprojected reconstructed 3D point and its
measured correspondence in each image. There is evidence that these errors are
independent and distributed with zero mean in a Gaussian manner [35]. The
same cannot be said when using the brightness constraint equation to estimate
global motion models [5,11]. Because the quantities involved are image deriva-
tives obtained by smoothing the image there is a large amount of conditional
dependence between the errors. It is not clear what effect this violation of the
conditions for maximum likelihood estimation might be but it is possible that
the results produced may be biased.

To summarize: for direct methods it is not straightforward to write down
a practical likelihood function for all pixels. Modelling of noise and statistics
is much more complicated, and simple assumptions of independence invalid.
Thus attempting a global minimization treating all the errors as if they were
uncorrelated will lead to a biased result.

4.3 Computational Efficiency and Convergence

Consider computing the fundamental matrix from two views. Interest point cor-
respondences yield highly accurate camera locations at little computational cost.
If instead every pixel in the image is used to calculate the epipolar geometry the
computational cost rises dramatically. Furthermore the result could not have
been improved on as only pixels where the correspondence is well established
are used (the point features). Use of every pixels means introducing much noisy
data, as correspondence simply cannot be determined in homogeneous regions
of the image either from the brightness constraint or from cross correlation.
Thus the introduction of such pixels could potentially introduce more outliers,
which in turn may cause incorrect convergence of the minimization. To deter-
mine correspondence in these regions requires additional constraints such as local
smoothness.

To summarize: features can be thought of as a computational device to leap
frog us to a solution using just the good (less noisy) data first, and then incor-
porating the bad (more noisy) data once we are near a global minima.

4.4 Scope and Applications

Finally we list some of the current achievements of feature based structure from
motion schemes and ask how direct methods compare with this. A list of this
sort will of course date, but it is indicative of the implementation ease and
computational success of the two approaches.
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Automatic estimation of the fundamental matrix and trifocal tensor. Point fea-
tures facilitate automatic estimation of the fundamental matrix and trifocal
tensor. There is a wide choice of algorithms available for interest points. These
algorithms are based on robust statistics – this means that they are robust to
effects such as occlusion and small independent motions in an otherwise rigid
scene.

The fundamental matrix cannot be estimated from normal flow alone. The
trifocal tensor can [29], but results comparable to the feature based algorithms
have yet to be demonstrated. Direct methods can include robustness to minor
occlusion and small independent motions. Although pyramid methods can be
deployed to cope with larger disparities direct methods have met with only
limited success with wide base line cases.

Application to image sequences. Features have enabled automatic computation
of cameras for extended video sequences over a very wide range of camera mo-
tions and scenes. This includes auto-calibration of the camera. An example is
shown in figure 7 of camera computation with auto-calibration for hundreds of
frames.

In contrast direct methods have generally been restricted to scenes amenable
to a “plane plus parallax” approach, i.e. where the scene is dominated by a plane
so that homographies may be computed between images.

Features other than points. Although this paper has concentrated on interest
point features, other features such as lines and curves may also be used to com-
pute multi-view relations. For example, figure 8 shows an example of a homogra-
phy computed automatically from an imaged planar outline between two views.

5 Conclusions

It is often said (by the unlearned) that feature based methods only furnish a
sparse representation of the scene. This is missing the point, feature based
methods are a way of initializing camera geometry/image matching relations so
that a dense reconstruction method can follow.

The extraction of features – the seeds of perception [6] – is an intermediate
step, a computational artifice that culls the useless data and affords the use of
powerful statistical techniques such as RANSAC and bundle adjustment.

The purpose of this paper has not been to argue against the use of direct
methods where appropriate (for instance in the mosaicing problem under small
image deformations). Rather it has been to suggest that for more general struc-
ture and motion problems, the currently most successful way to proceed is via
the extraction of photometrically invariant features. The benefit being that just
a few high information features can be used to find the correct ball park of the
solution. Once this is found more information may be introduced, and a “direct”
method can be used to improve the result.
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a

b

Fig. 7. Reconstruction from extended image sequences. (a) Six frames from 120
frames of a helicopter shot. (b) Automatically computed cameras and 3D points. The
cameras are shown for just the start and end frames for clarity, with the path between
them indicated by the black curve. The computation method is described in [10].
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a b c

Fig. 8. Computing homographies using curve features. The homography between
the plane of the spanner in (a) and (b) is computed automatically from segments of the
outline curve. This curve is obtained using a Canny-like edge detector. Note the severe
perspective distortion in (b). The mapped outline is shown in (c). The computation
method is robust to partial occlusion and involves identifying projectively covariant
points on the curve such as bi-tangents and inflections. Details are given in [26].
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Discussion for Direct versus Features Session

This section contains the discussion following the special panel session compar-
ing direct and feature-based methods for motion analysis. The positions of the
panelists are given in the previous two papers, by Irani & Anandan [1], and by
Torr & Zisserman [2].

Discussion

Harpreet Sawhney: I don’t think the issue is really feature based or direct
methods. There are many intermediate situations between these two extremes.
An example is Sarnoff’s VideoBrush. It can align multiple, distorted images with
only 10–20% overlap between them. The initial step uses a direct method to
determine translations which roughly align the images. This is based on a search
over a correlation surface. Then, as in feature based methods, it bundle adjusts
homographies to align all the images, but it does not suffer from the problem of
feature based methods where the cost rises with the number of features.
Andrew Zisserman: There’s certainly room for combining the methods and
VideoBrush is a good example. In general though a direct method is suitable for
estimating a global transformation by a restricted search over a small number
of unknown parameters, such as the translation and rotation in the VideoBrush
application. But if, for example, there is a a very severe projective transformation
where it is necessary to estimate eight parameters, then a feature based method
is really needed.
Shmuel Peleg: As Harpreet Sawhney mentioned, feature based and direct
methods are just two extremes. Take the example that Michal Irani showed,
where a correlation surface is computed for every pixel. This means that each
pixel can be thought of as a feature point. If you throw away the 90% of these
pixels that don’t have a clear correlation maximum, then you have sparse fea-
ture based matching. Or you can keep the entire correlation which is the direct
method.
Rick Szeliski: Regarding Andrew Zisserman’s point that you can’t easily do
something like the fundamental matrix with direct measurements, I’ve always
thought that the fundamental matrix is kind of a strange beast. It’s really only
a way to get the camera matrices. If you formulate the problem as plane plus
parallax then what Michal Irani showed, and what we and the people at Sarnoff
did back in 1994, is that the direct method will pop out the camera matrix fairly
easily. Maybe you have to try a couple of hypotheses for the epipole but after
that gradient descent is enough. I don’t see our inability to solve a two-frame
algebraic problem as a severe impediment to finding all of the cameras and the
structure.

B. Triggs, A. Zisserman, R. Szeliski (Eds.): Vision Algorithms’99, LNCS 1883, pp. 295–297, 2000.
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Andrew Zisserman: I agree that we compute the fundamental matrix in order
to get the cameras and then the scene reconstruction. We would claim that, at
the moment, feature-based methods can deal with much more severe distortions
between the two views than direct methods. The reason is that direct methods
really have to model to some extent the photometric and geometric distortions
(such as the global homography in the plane plus parallax approach). While
feature based methods do not require such an accurate model.

Michal Irani: Why do you say that? I showed the multisensor fusion example,
which doesn’t assume photometric invariance. The claim that direct methods
require the constant brightness assumption is just a red herring.

Philip Torr: To reply to Rick Szeliski’s point, there’s no guarantee that the
direct method will converge, especially when the camera movement is large.
On the other hand a feature based method can be used to get a good initial
approximation to a solution, and then additional image information can be used
after that. The main thesis is just that: initialize with a feature based method,
and refine the results later with a direct one if necessary. Also, features are not
only points: we could use lines or curves as well.

Joss Knight: In both cases, if there are large differences it seems that you need
to have some pre-knowledge to decide what image pre-processing technique is
needed to get alignable images or patches.

Michal Irani: The multi-sensor correlation method that I showed at the end is
actually quite general. You can apply it to any kind of images. Assumptions like
brightness constancy are less expensive, but they are not necessary.

Philip Torr: Just to add to the controversy, I note that Jitendra Malik has
always argued strongly against features, but when he was doing the car moni-
toring project he ended up resorting to feature based methods. I’m interested in
his experience.

Jitendra Malik: From a scientific or aesthetic point of view, I don’t think
there’s any comparison. The world consists of surfaces, and the visual world
consists of the perception of surfaces, with occlusion, non-rigid motion, etc.

For engineering purposes, if it so happens that there’s just a single moving
camera and you can reduce your world to a collection of 20 or 30 points, that’s
fine. But it’s engineering, not fundamental vision. Even then, when I look at
Andrew Zisserman’s or Luc van Gool’s demos I always find a very large number of
windows, doors and such like. That’s fine too, but there’s an empirical question:
Suppose I picked lots of video tapes at random, how often would features give me
a better initialization, and how often would direct be better? – It’s an empirical
question and one should ask it.

P. Anandan: That reminds me that so far, we have been talking as if structure
from motion was the only thing worth doing. But there are a lot of other things
like tracking walking people and motion segmentaion. Michael Black and others
have had a fair bit of success extending models like the rigid affine one to deal
with these situations, applying direct brightness-based methods to compute the
parameters. Video is not like multisensor imagery – simple motion models are
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enough, and even if the brightness varies, simple preprocessing actually does the
trick most of the time.

One of the things which initiated this debate in my mind is that back in
91–93 Keith Hanna published a couple of good papers on direct methods for
doing structure from motion, which I suspect that most of the features people
in the audience have not read.
Philip Torr: On the other hand, Andrew Blake’s person tracking work is feature
based.
P. Anandan: Yes. All I’m saying is that the applicability of direct methods
goes farther than you think.
Harpreet Sawhney: Phil Torr suggested that feature-based methods should be
used to initialize direct ones. Actually, I don’t think that I’ve ever done that. If
you need to compute dense displacement fields between nearby frames, you have
the choice of a purely 2D method, or one that applies 3D rigidity constraints like
Keith Hanna’s. In my experience the 3D methods give you much more accurate
flow fields.
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Abstract. This paper is a survey of the theory and methods of photogrammetric
bundle adjustment, aimed at potential implementors in the computer vision commu-
nity. Bundle adjustment is the problem of refining a visual reconstruction to produce
jointly optimal structure and viewing parameter estimates. Topics covered include:
the choice of cost function and robustness; numerical optimization including sparse
Newton methods, linearly convergent approximations, updating and recursive meth-
ods; gauge (datum) invariance; and quality control. The theory is developed for
general robust cost functions rather than restricting attention to traditional nonlinear
least squares.

Keywords: Bundle Adjustment, Scene Reconstruction, Gauge Freedom, Sparse Ma-
trices, Optimization.

1 Introduction

This paper is a survey of the theory and methods of bundle adjustment aimed at the computer
vision community, and more especially at potential implementors who already know a little
about bundle methods. Most of the results appeared long ago in the photogrammetry and
geodesy literatures, but many seem to be little known in vision, where they are gradually
being reinvented. By providing an accessible modern synthesis, we hope to forestall some
of this duplication of effort, correct some common misconceptions, and speed progress in
visual reconstruction by promoting interaction between the vision and photogrammetry
communities.

Bundle adjustment is the problem of refining a visual reconstruction to produce jointly
optimal 3D structure and viewing parameter (camera pose and/or calibration) estimates.
Optimal means that the parameter estimates are found by minimizing some cost function
that quantifies the model fitting error, and jointly that the solution is simultaneously optimal
with respect to both structure and camera variations. The name refers to the ‘bundles’
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of light rays leaving each 3D feature and converging on each camera centre, which are
‘adjusted’ optimally with respect to both feature and camera positions. Equivalently —
unlike independent model methods, which merge partial reconstructions without updating
their internal structure — all of the structure and camera parameters are adjusted together
‘in one bundle’.

Bundle adjustment is really just a large sparse geometric parameter estimation problem,
the parameters being the combined 3D feature coordinates, camera poses and calibrations.
Almost everything that we will say can be applied to many similar estimation problems in
vision, photogrammetry, industrial metrology, surveying and geodesy. Adjustment com-
putations are a major common theme throughout the measurement sciences, and once the
basic theory and methods are understood, they are easy to adapt to a wide variety of prob-
lems. Adaptation is largely a matter of choosing a numerical optimization scheme that
exploits the problem structure and sparsity. We will consider several such schemes below
for bundle adjustment.

Classically, bundle adjustment and similar adjustment computations are formulated
as nonlinear least squares problems [19, 46, 100, 21, 22, 69, 5, 73, 109]. The cost function
is assumed to be quadratic in the feature reprojection errors, and robustness is provided
by explicit outlier screening. Although it is already very flexible, this model is not really
general enough. Modern systems often use non-quadratic M-estimator-like distributional
models to handle outliers more integrally, and many include additional penalties related to
overfitting, model selection and system performance (priors, MDL). For this reason, we
will not assume a least squares / quadratic cost model. Instead, the cost will be modelled
as a sum of opaque contributions from the independent information sources (individual
observations, prior distributions, overfitting penalties . . . ). The functional forms of these
contributions and their dependence on fixed quantities such as observations will usually be
left implicit. This allows many different types of robust and non-robust cost contributions to
be incorporated, without unduly cluttering the notation or hiding essential model structure.
It fits well with modern sparse optimization methods (cost contributions are usually sparse
functions of the parameters) and object-centred software organization, and it avoids many
tedious displays of chain-rule results. Implementors are assumed to be capable of choosing
appropriate functions and calculating derivatives themselves.

One aim of this paper is to correct a number of misconceptions that seem to be common
in the vision literature:

• “Optimization / bundle adjustment is slow”: Such statements often appear in papers
introducing yet another heuristic Structure from Motion (SFM) iteration. The claimed
slowness is almost always due to the unthinking use of a general-purpose optimiza-
tion routine that completely ignores the problem structure and sparseness. Real bundle
routines are much more efficient than this, and usually considerably more efficient and
flexible than the newly suggested method (§6, 7). That is why bundle adjustment re-
mains the dominant structure refinement technique for real applications, after 40 years
of research.

• “Only linear algebra is required”: This is a recent variant of the above, presumably
meant to imply that the new technique is especially simple. Virtually all iterative refine-
ment techniques use only linear algebra, and bundle adjustment is simpler than many
in that it only solves linear systems: it makes no use of eigen-decomposition or SVD,
which are themselves complex iterative methods.
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• “Any sequence can be used”: Many vision workers seem to be very resistant to the idea
that reconstruction problems should be planned in advance (§11), and results checked
afterwards to verify their reliability (§10). System builders should at least be aware of the
basic techniques for this, even if application constraints make it difficult to use them.
The extraordinary extent to which weak geometry and lack of redundancy can mask
gross errors is too seldom appreciated, c.f . [34, 50, 30, 33].
• “Point P is reconstructed accurately”: In reconstruction, just as there are no absolute

references for position, there are none for uncertainty. The 3D coordinate frame is
itself uncertain, as it can only be located relative to uncertain reconstructed features or
cameras. All other feature and camera uncertainties are expressed relative to the frame
and inherit its uncertainty, so statements about them are meaningless until the frame
and its uncertainty are specified. Covariances can look completely different in different
frames, particularly in object-centred versus camera-centred ones. See §9.

There is a tendency in vision to develop a profusion of ad hoc adjustment iterations. Why
should you use bundle adjustment rather than one of these methods? :
• Flexibility: Bundle adjustment gracefully handles a very wide variety of different 3D

feature and camera types (points, lines, curves, surfaces, exotic cameras), scene types
(including dynamic and articulated models, scene constraints), information sources (2D
features, intensities, 3D information, priors) and error models (including robust ones).
It has no problems with missing data.
• Accuracy: Bundle adjustment gives precise and easily interpreted results because it uses

accurate statistical error models and supports a sound, well-developed quality control
methodology.
• Efficiency: Mature bundle algorithms are comparatively efficient even on very large

problems. They use economical and rapidly convergent numerical methods and make
near-optimal use of problem sparseness.

In general, as computer vision reconstruction technology matures, we expect that bundle
adjustment will predominate over alternative adjustment methods in much the same way as
it has in photogrammetry. We see this as an inevitable consequence of a greater appreciation
of optimization (notably, more effective use of problem structure and sparseness), and of
systems issues such as quality control and network design.

Coverage: We will touch on a good many aspects of bundle methods. We start by consid-
ering the camera projection model and the parametrization of the bundle problem §2, and
the choice of error metric or cost function §3. §4 gives a rapid sketch of the optimization
theory we will use. §5 discusses the network structure (parameter interactions and char-
acteristic sparseness) of the bundle problem. The following three sections consider three
types of implementation strategies for adjustment computations: §6 covers second order
Newton-like methods, which are still the most often used adjustment algorithms; §7 covers
methods with only first order convergence (most of the ad hoc methods are in this class);
and §8 discusses solution updating strategies and recursive filtering bundle methods. §9
returns to the theoretical issue of gauge freedom (datum deficiency), including the theory
of inner constraints. §10 goes into some detail on quality control methods for monitoring
the accuracy and reliability of the parameter estimates. §11 gives some brief hints on net-
work design, i.e. how to place your shots to ensure accurate, reliable reconstruction. §12
completes the body of the paper by summarizing the main conclusions and giving some
provisional recommendations for methods. There are also several appendices. §A gives a
brief historical overview of the development of bundle methods, with literature references.
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§B gives some technical details of matrix factorization, updating and covariance calcula-
tion methods. §C gives some hints on designing bundle software, and pointers to useful
resources on the Internet. The paper ends with a glossary and references.

General references: Cultural differences sometimes make it difficult for vision workers
to read the photogrammetry literature. The collection edited by Atkinson [5] and the
manual by Karara [69] are both relatively accessible introductions to close-range (rather
than aerial) photogrammetry. Other accessible tutorial papers include [46, 21, 22]. Kraus
[73] is probably the most widely used photogrammetry textbook. Brown’s early survey
of bundle methods [19] is well worth reading. The often-cited manual edited by Slama
[100] is now quite dated, although its presentation of bundle adjustment is still relevant.
Wolf & Ghiliani [109] is a text devoted to adjustment computations, with an emphasis
on surveying. Hartley & Zisserman [62] is an excellent recent textbook covering vision
geometry from a computer vision viewpoint. For nonlinear optimization, Fletcher [29]
and Gill et al [42] are the traditional texts, and Nocedal & Wright [93] is a good modern
introduction. For linear least squares, Björck [11] is superlative, and Lawson & Hanson is
a good older text. For more general numerical linear algebra, Golub & Van Loan [44] is
the standard. Duff et al [26] and George & Liu [40] are the standard texts on sparse matrix
techniques. We will not discuss initialization methods for bundle adjustment in detail, but
appropriate reconstruction methods are plentiful and well-known in the vision community.
See, e.g., [62] for references.

Notation: The structure, cameras, etc., being estimated will be parametrized by a single
large state vector x. In general the state belongs to a nonlinear manifold, but we linearize
this locally and work with small linear state displacements denoted δx. Observations (e.g.
measured image features) are denoted z. The corresponding predicted values at parameter
value x are denoted z = z(x), with residual prediction error�z(x) ≡ z−z(x). However,
observations and prediction errors usually only appear implicitly, through their influence
on the cost function f(x) = f(predz(x)). The cost function’s gradient is g ≡ df

dx , and

its Hessian is H ≡ d2f
dx2 . The observation-state Jacobian is J ≡ dz

dx . The dimensions of
δx, δz are nx, nz.

2 Projection Model and Problem Parametrization

2.1 The Projection Model

We begin the development of bundle adjustment by considering the basic image projection
model and the issue of problem parametrization. Visual reconstruction attempts to recover a
model of a 3D scene from multiple images. As part of this, it usually also recovers the poses
(positions and orientations) of the cameras that took the images, and information about their
internal parameters. A simple scene model might be a collection of isolated 3D features,
e.g., points, lines, planes, curves, or surface patches. However, far more complicated scene
models are possible, involving, e.g., complex objects linked by constraints or articulations,
photometry as well as geometry, dynamics, etc. One of the great strengths of adjustment
computations — and one reason for thinking that they have a considerable future in vision
— is their ability to take such complex and heterogeneous models in their stride. Almost
any predictive parametric model can be handled, i.e. any model that predicts the values
of some known measurements or descriptors on the basis of some continuous parametric
representation of the world, which is to be estimated from the measurements.
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Similarly, many possible camera models exist. Perspective projection is the standard,
but the affine and orthographic projections are sometimes useful for distant cameras, and
more exotic models such as push-broom and rational polynomial cameras are needed for
certain applications [56, 63]. In addition to pose (position and orientation), and simple
internal parameters such as focal length and principal point, real cameras also require vari-
ous types of additional parameters to model internal aberrations such as radial distortion
[17–19, 100, 69, 5].

For simplicity, suppose that the scene is modelled by individual static 3D features Xp,
p = 1 . . . n, imaged in m shots with camera pose and internal calibration parameters Pi,
i = 1 . . .m. There may also be further calibration parameters Cc, c = 1 . . . k, constant
across several images (e.g., depending on which of several cameras was used). We are
given uncertain measurements xip of some subset of the possible image features xip (the
true image of feature Xp in image i). For each observation xip, we assume that we have
a predictive model xip = x(Cc,Pi,Xp) based on the parameters, that can be used to
derive a feature prediction error:

�xip(Cc,Pi,Xp) ≡ xip − x(Cc,Pi,Xp) (1)

In the case of image observations the predictive model is image projection, but other
observation types such as 3D measurements can also be included.

To estimate the unknown 3D feature and camera parameters from the observations,
and hence reconstruct the scene, we minimize some measure (discussed in §3) of their total
prediction error. Bundle adjustment is the model refinement part of this, starting from given
initial parameter estimates (e.g., from some approximate reconstruction method). Hence,
it is essentially a matter of optimizing a complicated nonlinear cost function (the total
prediction error) over a large nonlinear parameter space (the scene and camera parameters).

We will not go into the analytical forms of the various possible feature and image
projection models, as these do not affect the general structure of the adjustment network,
and only tend to obscure its central simplicity. We simply stress that the bundle framework
is flexible enough to handle almost any desired model. Indeed, there are so many different
combinations of features, image projections and measurements, that it is best to regard
them as black boxes, capable of giving measurement predictions based on their current
parameters. (For optimization, first, and possibly second, derivatives with respect to the
parameters are also needed).

For much of the paper we will take quite an abstract view of this situation, collecting the
scene and camera parameters to be estimated into a large state vector x, and representing
the cost (total fitting error) as an abstract function f(x). The cost is really a function of
the feature prediction errors�xip = xip− x(Cc,Pi,Xp). But as the observations xip are
constants during an adjustment calculation, we leave the cost’s dependence on them and
on the projection model x(·) implicit, and display only its dependence on the parameters
x actually being adjusted.

2.2 Bundle Parametrization

The bundle adjustment parameter space is generally a high-dimensional nonlinear manifold
— a large Cartesian product of projective 3D feature, 3D rotation, and camera calibration
manifolds, perhaps with nonlinear constraints, etc. The state x is not strictly speaking a
vector, but rather a point in this space. Depending on how the entities that it contains are
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Fig. 1. Vision geometry and its error model are essentially
projective. Affine parametrization introduces an artificial
singularity at projective infinity, which may cause numer-
ical problems for distant features.

represented, x can be subject to various types of complications including singularities,
internal constraints, and unwanted internal degrees of freedom. These arise because geo-
metric entities like rotations, 3D lines and even projective points and planes, do not have
simple global parametrizations. Their local parametrizations are nonlinear, with singular-
ities that prevent them from covering the whole parameter space uniformly (e.g. the many
variants on Euler angles for rotations, the singularity of affine point coordinates at infinity).
And their global parametrizations either have constraints (e.g. quaternions with ‖q‖2 = 1),
or unwanted internal degrees of freedom (e.g. homogeneous projective quantities have a
scale factor freedom, two points defining a line can slide along the line). For more compli-
cated compound entities such as matching tensors and assemblies of 3D features linked by
coincidence, parallelism or orthogonality constraints, parametrization becomes even more
delicate.

Although they are in principle equivalent, different parametrizations often have pro-
foundly different numerical behaviours which greatly affect the speed and reliability of the
adjustment iteration. The most suitable parametrizations for optimization are as uniform,
finite and well-behaved as possible near the current state estimate. Ideally, they should
be locally close to linear in terms of their effect on the chosen error model, so that the
cost function is locally nearly quadratic. Nonlinearity hinders convergence by reducing
the accuracy of the second order cost model used to predict state updates (§6). Excessive
correlations and parametrization singularities cause ill-conditioning and erratic numerical
behaviour. Large or infinite parameter values can only be reached after excessively many
finite adjustment steps.

Any given parametrization will usually only be well-behaved in this sense over a rela-
tively small section of state space. So to guarantee uniformly good performance, however
the state itself may be represented, state updates should be evaluated using a stable local
parametrization based on increments from the current estimate. As examples we consider
3D points and rotations.

3D points: Even for calibrated cameras, vision geometry and visual reconstructions are
intrinsically projective. If a 3D (X Y Z)� parametrization (or equivalently a homogeneous
affine (X Y Z 1)� one) is used for very distant 3D points, large X,Y, Z displacements
are needed to change the image significantly. I.e., in (X Y Z) space the cost function
becomes very flat and steps needed for cost adjustment become very large for distant
points. In comparison, with a homogeneous projective parametrization (X Y Z W )�, the
behaviour near infinity is natural, finite and well-conditioned so long as the normalization
keeps the homogeneous 4-vector finite at infinity (by sending W → 0 there). In fact,
there is no immediate visual distinction between the images of real points near infinity
and virtual ones ‘beyond’ it (all camera geometries admit such virtual points as bona fide
projective constructs). The optimal reconstruction of a real 3D point may even be virtual
in this sense, if image noise happens to push it ‘across infinity’. Also, there is nothing to
stop a reconstructed point wandering beyond infinity and back during the optimization.
This sounds bizarre at first, but it is an inescapable consequence of the fact that the nat-
ural geometry and error model for visual reconstruction is projective rather than affine.
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Projectively, infinity is just like any other place. Affine parametrization (X Y Z 1)� is
acceptable for points near the origin with close-range convergent camera geometries, but
it is disastrous for distant ones because it artificially cuts away half of the natural parameter
space, and hides the fact by sending the resulting edge to infinite parameter values. Instead,
you should use a homogeneous parametrization (X Y Z W )� for distant points, e.g. with
spherical normalization

∑
X2

i = 1.

Rotations: Similarly, experience suggests that quasi-global 3 parameter rotation para-
metrizations such as Euler angles cause numerical problems unless one can be certain to
avoid their singularities and regions of uneven coverage. Rotations should be parametrized
using either quaternions subject to ‖q‖2 = 1, or local perturbations R δR or δR R of
an existing rotation R, where δR can be any well-behaved 3 parameter small rotation
approximation, e.g. δR = (I + [ δr ]×), the Rodriguez formula, local Euler angles, etc.

State updates: Just as state vectors x represent points in some nonlinear space, state
updates x → x + δx represent displacements in this nonlinear space that often can not
be represented exactly by vector addition. Nevertheless, we assume that we can locally
linearize the state manifold, locally resolving any internal constraints and freedoms that
it may be subject to, to produce an unconstrained vector δx parametrizing the possible
local state displacements. We can then, e.g., use Taylor expansion in δx to form a local

cost model f(x + δx) ≈ f(x) + df
dx δx + 1

2δx� d2f
dx2 δx, from which we can estimate the

state update δx that optimizes this model (§4). The displacement δx need not have the
same structure or representation as x — indeed, if a well-behaved local parametrization is
used to represent δx, it generally will not have — but we must at least be able to update
the state with the displacement to produce a new state estimate. We write this operation
as x → x + δx, even though it may involve considerably more than vector addition. For
example, apart from the change of representation, an updated quaternion q→ q + dq will
need to have its normalization ‖q‖2 = 1 corrected, and a small rotation update of the form
R→ R(1 + [ r ]×) will not in general give an exact rotation matrix.

3 Error Modelling

We now turn to the choice of the cost function f(x), which quantifies the total prediction
(image reprojection) error of the model parametrized by the combined scene and camera
parameters x. Our main conclusion will be that robust statistically-based error metrics
based on total (inlier + outlier) log likelihoods should be used, to correctly allow for the
presence of outliers. We will argue this at some length as it seems to be poorly understood.
The traditional treatments of adjustment methods consider only least squares (albeit with
data trimming for robustness), and most discussions of robust statistics give the impression
that the choice of robustifier or M-estimator is wholly a matter of personal whim rather
than data statistics.

Bundle adjustment is essentially a parameter estimation problem. Any parameter es-
timation paradigm could be used, but we will consider only optimal point estimators,
whose output is by definition the single parameter vector that minimizes a predefined cost
function designed to measure how well the model fits the observations and background
knowledge. This framework covers many practical estimators including maximum likeli-
hood (ML) and maximum a posteriori (MAP), but not explicit Bayesian model averaging.
Robustification, regularization and model selection terms are easily incorporated in the
cost.
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A typical ML cost function would be the summed negative log likelihoods of the
prediction errors of all the observed image features. For Gaussian error distributions,
this reduces to the sum of squared covariance-weighted prediction errors (§3.2). A MAP
estimator would typically add cost terms giving certain structure or camera calibration
parameters a bias towards their expected values.

The cost function is also a tool for statistical interpretation. To the extent that lower
costs are uniformly ‘better’, it provides a natural model preference ordering, so that cost
iso-surfaces above the minimum define natural confidence regions. Locally, these regions
are nested ellipsoids centred on the cost minimum, with size and shape characterized by

the dispersion matrix (the inverse of the cost function Hessian H = d2f
dx2 at the minimum).

Also, the residual cost at the minimum can be used as a test statistic for model validity
(§10). E.g., for a negative log likelihood cost model with Gaussian error distributions,
twice the residual is a χ2 variable.

3.1 Desiderata for the Cost Function

In adjustment computations we go to considerable lengths to optimize a large nonlinear cost
model, so it seems reasonable to require that the refinement should actually improve the
estimates in some objective (albeit statistical) sense. Heuristically motivated cost functions
can not usually guarantee this. They almost always lead to biased parameter estimates, and
often severely biased ones. A large body of statistical theory points to maximum likelihood
(ML) and its Bayesian cousin maximum a posteriori (MAP) as the estimators of choice.
ML simply selects the model for which the total probability of the observed data is highest,
or saying the same thing in different words, for which the total posterior probability of the
model given the observations is highest. MAP adds a prior term representing background
information. ML could just as easily have included the prior as an additional ‘observation’:
so far as estimation is concerned, the distinction between ML / MAP and prior / observation
is purely terminological.

Information usually comes from many independent sources. In bundle adjustment
these include: covariance-weighted reprojection errors of individual image features; other
measurements such as 3D positions of control points, GPS or inertial sensor readings;
predictions from uncertain dynamical models (for ‘Kalman filtering’ of dynamic cameras
or scenes); prior knowledge expressed as soft constraints (e.g. on camera calibration or
pose values); and supplementary sources such as overfitting, regularization or description
length penalties. Note the variety. One of the great strengths of adjustment computations is
their ability to combine information from disparate sources. Assuming that the sources are
statistically independent of one another given the model, the total probability for the model
given the combined data is the product of the probabilities from the individual sources. To
get an additive cost function we take logs, so the total log likelihood for the model given
the combined data is the sum of the individual source log likelihoods.

Properties of ML estimators: Apart from their obvious simplicity and intuitive appeal,
ML and MAP estimators have strong statistical properties. Many of the most notable ones
are asymptotic, i.e. they apply in the limit of a large number of independent measurements,
or more precisely in the central limit where the posterior distribution becomes effectively
Gaussian1. In particular:

1 Cost is additive, so as measurements of the same type are added the entire cost surface grows in
direct proportion to the amount of data nz. This means that the relative sizes of the cost and all of
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• Under mild regularity conditions on the observation distributions, the posterior distri-
bution of the ML estimate converges asymptotically in probability to a Gaussian with
covariance equal to the dispersion matrix.
• The ML estimate asymptotically has zero bias and the lowest variance that any unbiased

estimator can have. So in this sense, ML estimation is at least as good as any other
method2.

Non-asymptotically, the dispersion is not necessarily a good approximation for the
covariance of the ML estimator. The asymptotic limit is usually assumed to be a valid
for well-designed highly-redundant photogrammetric measurement networks, but recent
sampling-based empirical studies of posterior likelihood surfaces [35, 80, 68] suggest that
the case is much less clear for small vision geometry problems and weaker networks. More
work is needed on this.

The effect of incorrect error models: It is clear that incorrect modelling of the observation
distributions is likely to disturb the ML estimate. Such mismodelling is to some extent
inevitable because error distributions stand for influences that we can not fully predict or
control. To understand the distortions that unrealistic error models can cause, first realize
that geometric fitting is really a special case of parametric probability density estimation.
For each set of parameter values, the geometric image projection model and the assumed
observation error models combine to predict a probability density for the observations.
Maximizing the likelihood corresponds to fitting this predicted observation density to the
observed data. The geometry and camera model only enter indirectly, via their influence
on the predicted distributions.

Accurate noise modelling is just as critical to successful estimation as accurate ge-
ometric modelling. The most important mismodelling is failure to take account of the
possibility of outliers (aberrant data values, caused e.g., by blunders such as incorrect
feature correspondences). We stress that so long as the assumed error distributions model
the behaviour of all of the data used in the fit (including both inliers and outliers), the
above properties of ML estimation including asymptotic minimum variance remain valid
in the presence of outliers. In other words, ML estimation is naturally robust : there is no

its derivatives — and hence the size r of the region around the minimum over which the second
order Taylor terms dominate all higher order ones — remain roughly constant as nz increases.
Within this region, the total cost is roughly quadratic, so if the cost function was taken to be the
posterior log likelihood, the posterior distribution is roughly Gaussian. However the curvature of
the quadratic (i.e. the inverse dispersion matrix) increases as data is added, so the posterior standard
deviation shrinks as O(

σ/
√
nz − nx

)
, where O(σ) characterizes the average standard deviation

from a single observation. For nz − nx � (σ/r)2, essentially the entire posterior probability
mass lies inside the quadratic region, so the posterior distribution converges asymptotically in
probability to a Gaussian. This happens at any proper isolated cost minimum at which second
order Taylor expansion is locally valid. The approximation gets better with more data (stronger
curvature) and smaller higher order Taylor terms.

2 This result follows from the Cramér-Rao bound (e.g. [23]), which says that the covariance of any
unbiased estimator is bounded below by the Fisher information or mean curvature of the posterior

log likelihood surface 〈(x̂−x)(x̂−x)�〉 � −〈d2 log p
dx2 〉 where p is the posterior probability, x the

parameters being estimated, x̂ the estimate given by any unbiased estimator, x the true underlying
x value, and A � B denotes positive semidefiniteness of A − B. Asymptotically, the posterior
distribution becomes Gaussian and the Fisher information converges to the inverse dispersion (the
curvature of the posterior log likelihood surface at the cost minimum), so the ML estimate attains
the Cramér-Rao bound.
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Fig. 2. Beware of treating any bell-shaped observation distribution as a Gaussian. Despite being
narrower in the peak and broader in the tails, the probability density function of a Cauchy distribution,
p(x) =

(
π(1 + x2)

)−1
, does not look so very different from that of a Gaussian (top left). But their

negative log likelihoods are very different (bottom left), and large deviations (“outliers”) are much
more probable for Cauchy variates than for Gaussian ones (right). In fact, the Cauchy distribution
has infinite covariance.

need to robustify it so long as realistic error distributions were used in the first place. A
distribution that models both inliers and outliers is called a total distribution. There is no
need to separate the two classes, as ML estimation does not care about the distinction. If the
total distribution happens to be an explicit mixture of an inlier and an outlier distribution
(e.g., a Gaussian with a locally uniform background of outliers), outliers can be labeled
after fitting using likelihood ratio tests, but this is in no way essential to the estimation
process.

It is also important to realize the extent to which superficially similar distributions can
differ from a Gaussian, or equivalently, how extraordinarily rapidly the tails of a Gaussian
distribution fall away compared to more realistic models of real observation errors. See
figure 2. In fact, unmodelled outliers typically have very severe effects on the fit. To see this,
suppose that the real observations are drawn from a fixed (but perhaps unknown) underlying
distribution p0(z). The law of large numbers says that their empirical distributions (the ob-
served distribution of each set of samples) converge asymptotically in probability to p0(z).
So for each model, the negative log likelihood cost sum −∑i log pmodel(zi|x) converges
to −nz

∫
p0(z) log(pmodel(z|x)) dz. Up to a model-independent constant, this is nz times

the relative entropy or Kullback-Leibler divergence
∫
p0(z) log(p0(z)/pmodel(z|x))dz

of the model distribution w.r.t. the true one p0(z). Hence, even if the model family does
not include p0, the ML estimate converges asymptotically to the model whose predicted
observation distribution has minimum relative entropy w.r.t. p0. (See, e.g. [96, proposition
2.2]). It follows that ML estimates are typically very sensitive to unmodelled outliers, as
regions which are relatively probable under p0 but highly improbable under the model
make large contributions to the relative entropy. In contrast, allowing for outliers where
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none actually occur causes relatively little distortion, as no region which is probable under
p0 will have large − log pmodel.

In summary, if there is a possibility of outliers, non-robust distribution models such
as Gaussians should be replaced with more realistic long-tailed ones such as: mixtures of
a narrow ‘inlier’ and a wide ‘outlier’ density, Cauchy or α-densities, or densities defined
piecewise with a central peaked ‘inlier’ region surrounded by a constant ‘outlier’ region3.
We emphasize again that poor robustness is due entirely to unrealistic distributional as-
sumptions: the maximum likelihood framework itself is naturally robust provided that the
total observation distribution including both inliers and outliers is modelled. In fact, real
observations can seldom be cleanly divided into inliers and outliers. There is a hard core
of outliers such as feature correspondence errors, but there is also a grey area of features
that for some reason (a specularity, a shadow, poor focus, motion blur . . . ) were not as
accurately located as other features, without clearly being outliers.

3.2 Nonlinear Least Squares

One of the most basic parameter estimation methods is nonlinear least squares. Suppose
that we have vectors of observations zi predicted by a model zi = zi(x), where x is a
vector of model parameters. Then nonlinear least squares takes as estimates the parameter
values that minimize the weighted Sum of Squared Error (SSE) cost function:

f(x) ≡ 1
2

∑

i

�zi(x)� Wi�zi(x) , �zi(x) ≡ zi − zi(x) (2)

Here, �zi(x) is the feature prediction error and Wi is an arbitrary symmetric positive
definite (SPD) weight matrix. Modulo normalization terms independent of x, the weighted
SSE cost function coincides with the negative log likelihood for observations zi perturbed
by Gaussian noise of mean zero and covariance W−1

i . So for least squares to have a useful
statistical interpretation, the Wi should be chosen to approximate the inverse measurement
covariance of zi. Even for non-Gaussian noise with this mean and covariance, the Gauss-
Markov theorem [37, 11] states that if the models zi(x) are linear, least squares gives the
Best Linear Unbiased Estimator (BLUE), where ‘best’ means minimum variance4.

Any weighted least squares model can be converted to an unweighted one (Wi = 1)
by pre-multiplying zi, zi,�zi by any L�

i satisfying Wi = Li L�
i . Such an Li can be cal-

culated efficiently from Wi or W−1
i using Cholesky decomposition (§B.1).�zi = L�

i �zi

is called a standardized residual, and the resulting unweighted least squares problem
minx

1
2

∑
i ‖�zi(x)‖2 is said to be in standard form. One advantage of this is that opti-

mization methods based on linear least squares solvers can be used in place of ones based
on linear (normal) equation solvers, which allows ill-conditioned problems to be handled
more stably (§B.2).

Another peculiarity of the SSE cost function is its indifference to the natural bound-
aries between the observations. If observations zi from any sources are assembled into a

3 The latter case corresponds to a hard inlier / outlier decision rule: for any observation in the ‘outlier’
region, the density is constant so the observation has no influence at all on the fit. Similarly, the
mixture case corresponds to a softer inlier / outlier decision rule.

4 It may be possible (and even useful) to do better with either biased (towards the correct solution),
or nonlinear estimators.
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compound observation vector z ≡ (z�
1, . . . , z

�
k)�, and their weight matrices Wi are assem-

bled into compound block diagonal weight matrix W ≡ diag(W1, . . . ,Wk), the weighted
squared error f(x) ≡ 1

2 �z(x)� W�z(x) is the same as the original SSE cost function,
1
2

∑
i �zi(x)� Wi�zi(x). The general quadratic form of the SSE cost is preserved under

such compounding, and also under arbitrary linear transformations of z that mix compo-
nents from different observations. The only place that the underlying structure is visible
is in the block structure of W. Such invariances do not hold for essentially any other cost
function, but they simplify the formulation of least squares considerably.

3.3 Robustified Least Squares

The main problem with least squares is its high sensitivity to outliers. This happens because
the Gaussian has extremely small tails compared to most real measurement error distribu-
tions. For robust estimates, we must choose a more realistic likelihood model (§3.1). The
exact functional form is less important than the general way in which the expected types
of outliers enter. A single blunder such as a correspondence error may affect one or a few
of the observations, but it will usually leave all of the others unchanged. This locality is
the whole basis of robustification. If we can decide which observations were affected, we
can down-weight or eliminate them and use the remaining observations for the parameter
estimates as usual. If all of the observations had been affected about equally (e.g. as by
an incorrect projection model), we might still know that something was wrong, but not be
able to fix it by simple data cleaning.

We will adopt a ‘single layer’ robustness model, in which the observations are par-
titioned into independent groups zi, each group being irreducible in the sense that it is
accepted, down-weighted or rejected as a whole, independently of all the other groups.
The partitions should reflect the types of blunders that occur. For example, if feature cor-
respondence errors are the most common blunders, the two coordinates of a single image
point would naturally form a group as both would usually be invalidated by such a blunder,
while no other image point would be affected. Even if one of the coordinates appeared to
be correct, if the other were incorrect we would usually want to discard both for safety.
On the other hand, in stereo problems, the four coordinates of each pair of corresponding
image points might be a more natural grouping, as a point in one image is useless without
its correspondent in the other one.

Henceforth, when we say observation we mean irreducible group of observations
treated as a unit by the robustifying model. I.e., our observations need not be scalars, but
they must be units, probabilistically independent of one another irrespective of whether
they are inliers or outliers.

As usual, each independent observation zi contributes an independent term fi(x | zi) to
the total cost function. This could have more or less any form, depending on the expected
total distribution of inliers and outliers for the observation. One very natural family are the
radial distributions, which have negative log likelihoods of the form:

fi(x) ≡ 1
2 ρi(�zi(x)� Wi�zi(x) ) (3)

Here, ρi(s) can be any increasing function with ρi(0) = 0 and d
ds
ρi(0) = 1. (These

guarantee that at�zi = 0, f vanishes and d2fi
dz2

i
= Wi). Weighted SSE has ρi(s) = s, while

more robust variants have sublinear ρi, often tending to a constant at ∞ so that distant
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outliers are entirely ignored. The dispersion matrix W−1
i determines the spatial spread of zi,

and up to scale its covariance (if this is finite). The radial form is preserved under arbitrary
affine transformations of zi, so within a group, all of the observations are on an equal
footing in the same sense as in least squares. However, non-Gaussian radial distributions
are almost never separable: the observations in zi can neither be split into independent
subgroups, nor combined into larger groups, without destroying the radial form. Radial
cost models do not have the remarkable isotropy of non-robust SSE, but this is exactly
what we wanted, as it ensures that all observations in a group will be either left alone, or
down-weighted together.

As an example of this, for image features polluted with occasional large outliers caused
by correspondence errors, we might model the error distribution as a Gaussian central peak
plus a uniform background of outliers. This would give negative log likelihood contribu-
tions of the form f(x) = − log

(
exp(− 1

2χ
2
ip) + ε

)
instead of the non-robust weighted

SSE model f(x) = 1
2χ

2
ip, where χ2

ip = �x�
ip Wip�xip is the squared weighted residual

error (which is a χ2 variable for a correct model and Gaussian error distribution), and ε
parametrizes the frequency of outliers.
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3.4 Intensity-Based Methods

The above models apply not only to geometric image features, but also to intensity-based
matching of image patches. In this case, the observables are image gray-scales or colors
I rather than feature coordinates u, and the error model is based on intensity residuals.
To get from a point projection model u = u(x) to an intensity based one, we simply
compose with the assumed local intensity model I = I(u) (e.g. obtained from an image
template or another image that we are matching against), premultiply point Jacobians by
point-to-intensity Jacobians dI

du , etc. The full range of intensity models can be implemented
within this framework: pure translation, affine, quadratic or homographic patch deforma-
tion models, 3D model based intensity predictions, coupled affine or spline patches for
surface coverage, etc., [1, 52, 55, 9, 110, 94, 53, 97, 76, 104, 102]. The structure of intensity
based bundle problems is very similar to that of feature based ones, so all of the techniques
studied below can be applied.

We will not go into more detail on intensity matching, except to note that it is the
real basis of feature based methods. Feature detectors are optimized for detection not
localization. To localize a detected feature accurately we need to match (some function of)
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the image intensities in its region against either an idealized template or another image of
the feature, using an appropriate geometric deformation model, etc. For example, suppose
that the intensity matching model is f(u) = 1

2

∫∫
ρ(‖δI(u)‖2) where the integration is

over some image patch, δI is the current intensity prediction error, u parametrizes the local
geometry (patch translation & warping), and ρ(·) is some intensity error robustifier. Then

the cost gradient in terms of u is g�
u = df

du =
∫∫

ρ′ δI� dI
du . Similarly, the cost Hessian in

u in a Gauss-Newton approximation is Hu = d2f
du2 ≈

∫∫
ρ′′ ( dI

du )� dI
du . In a feature based

model, we express u = u(x) as a function of the bundle parameters, so if Ju = du
dx we have

a corresponding cost gradient and Hessian contribution g�
x = g�

u Ju and Hx = J�
u Hu Ju.

In other words, the intensity matching model is locally equivalent to a quadratic feature
matching one on the ‘features’ u(x), with effective weight (inverse covariance) matrix
Wu = Hu. All image feature error models in vision are ultimately based on such an
underlying intensity matching model. As feature covariances are a function of intensity
gradients

∫∫
ρ′′ ( dI

du )� dI
du , they can be both highly variable between features (depending

on how much local gradient there is), and highly anisotropic (depending on how directional
the gradients are). E.g., for points along a 1D intensity edge, the uncertainty is large in the
along edge direction and small in the across edge one.

3.5 Implicit Models

Sometimes observations are most naturally expressed in terms of an implicit observation-
constraining model h(x, z) = 0, rather than an explicit observation-predicting one z =
z(x). (The associated image error still has the form f(z − z)). For example, if the model
is a 3D curve and we observe points on it (the noisy images of 3D points that may lie
anywhere along the 3D curve), we can predict the whole image curve, but not the exact
position of each observation along it. We only have the constraint that the noiseless image
of the observed point would lie on the noiseless image of the curve, if we knew these. There
are basically two ways to handle implicit models: nuisance parameters and reduction.
Nuisance parameters: In this approach, the model is made explicit by adding additional
‘nuisance’ parameters representing something equivalent to model-consistent estimates
of the unknown noise free observations, i.e. to z with h(x, z) = 0. The most direct way
to do this is to include the entire parameter vector z as nuisance parameters, so that we
have to solve a constrained optimization problem on the extended parameter space (x, z),
minimizing f(z − z) over (x, z) subject to h(x, z) = 0. This is a sparse constrained
problem, which can be solved efficiently using sparse matrix techniques (§6.3). In fact,
for image observations, the subproblems in z (optimizing f(z − z) over z for fixed z
and x) are small and for typical f rather simple. So in spite of the extra parameters z,
optimizing this model is not significantly more expensive than optimizing an explicit one
z = z(x) [14, 13, 105, 106]. For example, when estimating matching constraints between
image pairs or triplets [60, 62], instead of using an explicit 3D representation, pairs or
triplets of corresponding image points can be used as features zi, subject to the epipolar
or trifocal geometry contained in x [105, 106].

However, if a smaller nuisance parameter vector than z can be found, it is wise to use
it. In the case of a curve, it suffices to include just one nuisance parameter per observation,
saying where along the curve the corresponding noise free observation is predicted to
lie. This model exactly satisfies the constraints, so it converts the implicit model to an
unconstrained explicit one z = z(x,λ), where λ are the along-curve nuisance parameters.
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The advantage of the nuisance parameter approach is that it gives the exact optimal
parameter estimate for x, and jointly, optimal x-consistent estimates for the noise free
observations z.

Reduction: Alternatively, we can regard h(x, z) rather than z as the observation vector,
and hence fit the parameters to the explicit log likelihood model for h(x, z). To do this,
we must transfer the underlying error model / distribution f(�z) on z to one f(h) on
h(x, z). In principle, this should be done by marginalization: the density for h is given
by integrating that for �z over all �z giving the same h. Within the point estimation
framework, it can be approximated by replacing the integration with maximization. Neither
calculation is easy in general, but in the asymptotic limit where first order Taylor expansion
h(x, z) = h(x, z +�z) ≈ 0 + dh

dz �z is valid, the distribution of h is a marginalization or
maximization of that of�z over affine subspaces. This can be evaluated in closed form for
some robust distributions. Also, standard covariance propagation gives (more precisely,
this applies to the h and�z dispersions):

〈h(x, z)〉 ≈ 0 , 〈h(x, z) h(x, z)�〉 ≈ dh
dz 〈�z�z�〉 dh

dz

�
= dh

dz W−1 dh
dz

�
(4)

where W−1 is the covariance of �z. So at least for an outlier-free Gaussian model, the
reduced distribution remains Gaussian (albeit with x-dependent covariance).

4 Basic Numerical Optimization

Having chosen a suitable model quality metric, we must optimize it. This section gives a
very rapid sketch of the basic local optimization methods for differentiable functions. See
[29, 93, 42] for more details. We need to minimize a cost function f(x) over parameters x,
starting from some given initial estimate x of the minimum, presumably supplied by some
approximate visual reconstruction method or prior knowledge of the approximate situation.
As in §2.2, the parameter space may be nonlinear, but we assume that local displacements
can be parametrized by a local coordinate system / vector of free parameters δx. We try
to find a displacement x → x + δx that locally minimizes or at least reduces the cost
function. Real cost functions are too complicated to minimize in closed form, so instead
we minimize an approximate local model for the function, e.g. based on Taylor expansion
or some other approximation at the current point x. Although this does not usually give the
exact minimum, with luck it will improve on the initial parameter estimate and allow us to
iterate to convergence. The art of reliable optimization is largely in the details that make
this happen even without luck: which local model, how to minimize it, how to ensure that
the estimate is improved, and how to decide when convergence has occurred. If you not
are interested in such subjects, use a professionally designed package (§C.2): details are
important here.

4.1 Second Order Methods

The reference for all local models is the quadratic Taylor series one:

f(x + δx) ≈ f(x) + g� δx + 1
2δx� H δx g ≡ df

dx (x) H ≡ d2f
dx2 (x)

quadratic local model gradient vector Hessian matrix
(5)
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For now, assume that the Hessian H is positive definite (but see below and §9). The local
model is then a simple quadratic with a unique global minimum, which can be found
explicitly using linear algebra. Setting df

dx (x + δx) ≈ H δx + g to zero for the stationary
point gives the Newton step:

δx = −H−1g (6)

The estimated new function value is f(x + δx) ≈ f(x) − 1
2δx� H δx = f(x) − 1

2g� H−1g.
Iterating the Newton step gives Newton’s method. This is the canonical optimization
method for smooth cost functions, owing to its exceptionally rapid theoretical and practical
convergence near the minimum. For quadratic functions it converges in one iteration, and
for more general analytic ones its asymptotic convergence is quadratic: as soon as the
estimate gets close enough to the solution for the second order Taylor expansion to be
reasonably accurate, the residual state error is approximately squared at each iteration.
This means that the number of significant digits in the estimate approximately doubles at
each iteration, so starting from any reasonable estimate, at most about log2(16)+1 ≈ 5–6
iterations are needed for full double precision (16 digit) accuracy. Methods that potentially
achieve such rapid asymptotic convergence are called second order methods. This is a
high accolade for a local optimization method, but it can only be achieved if the Newton step
is asymptotically well approximated. Despite their conceptual simplicity and asymptotic
performance, Newton-like methods have some disadvantages:
• To guarantee convergence, a suitable step control policy must be added (§4.2).
• Solving the n× n Newton step equations takes time O(n3

)
for a dense system (§B.1),

which can be prohibitive for large n. Although the cost can often be reduced (very
substantially for bundle adjustment) by exploiting sparseness in H, it remains true that
Newton-like methods tend to have a high cost per iteration, which increases relative to
that of other methods as the problem size increases. For this reason, it is sometimes
worthwhile to consider more approximate first order methods (§7), which are occa-
sionally more efficient, and generally simpler to implement, than sparse Newton-like
methods.
• Calculating second derivatives H is by no means trivial for a complicated cost func-

tion, both computationally, and in terms of implementation effort. The Gauss-Newton
method (§4.3) offers a simple analytic approximation to H for nonlinear least squares
problems. Some other methods build up approximations to H from the way the gradient
g changes during the iteration are in use (see §7.1, Krylov methods).
• The asymptotic convergence of Newton-like methods is sometimes felt to be an expen-

sive luxury when far from the minimum, especially when damping (see below) is active.
However, it must be said that Newton-like methods generally do require significantly
fewer iterations than first order ones, even far from the minimum.

4.2 Step Control

Unfortunately, Newton’s method can fail in several ways. It may converge to a saddle
point rather than a minimum, and for large steps the second order cost prediction may be
inaccurate, so there is no guarantee that the true cost will actually decrease. To guarantee
convergence to a minimum, the step must follow a local descent direction (a direction
with a non-negligible component down the local cost gradient, or if the gradient is zero
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near a saddle point, down a negative curvature direction of the Hessian), and it must make
reasonable progress in this direction (neither so little that the optimization runs slowly
or stalls, nor so much that it greatly overshoots the cost minimum along this direction).
It is also necessary to decide when the iteration has converged, and perhaps to limit any
over-large steps that are requested. Together, these topics form the delicate subject of step
control.

To choose a descent direction, one can take the Newton step direction if this descends
(it may not near a saddle point), or more generally some combination of the Newton and
gradient directions. Damped Newton methods solve a regularized system to find the step:

(H + λW) δx = −g (7)

Here, λ is some weighting factor and W is some positive definite weight matrix (often
the identity, so λ → ∞ becomes gradient descent δx ∝ −g). λ can be chosen to limit
the step to a dynamically chosen maximum size (trust region methods), or manipulated
more heuristically, to shorten the step if the prediction is poor (Levenberg-Marquardt
methods).

Given a descent direction, progress along it is usually assured by a line search method,
of which there are many based on quadratic and cubic 1D cost models. If the suggested
(e.g. Newton) step is δx, line search finds the α that actually minimizes f along the line
x + α δx, rather than simply taking the estimate α = 1.

There is no space for further details on step control here (again, see [29, 93, 42]). How-
ever note that poor step control can make a huge difference in reliability and convergence
rates, especially for ill-conditioned problems. Unless you are familiar with these issues, it
is advisable to use professionally designed methods.

4.3 Gauss-Newton and Least Squares

Consider the nonlinear weighted SSE cost model f(x) ≡ 1
2 �z(x)� W�z(x) (§3.2) with

prediction error�z(x) = z−z(x) and weight matrix W. Differentiation gives the gradient

and Hessian in terms of the Jacobian or design matrix of the predictive model, J ≡ dz
dx :

g ≡ df
dx = �z� W J H ≡ d2f

dx2 = J� W J +
∑

i(�z� W)i
d2zi

dx2 (8)

These formulae could be used directly in a damped Newton method, but the d2zi

dx2 term in H
is likely to be small in comparison to the corresponding components of J� W J if either: (i)

the prediction error�z(x) is small; or (ii) the model is nearly linear, d2zi

dx2 ≈ 0. Dropping
the second term gives the Gauss-Newton approximation to the least squares Hessian,
H ≈ J� W J. With this approximation, the Newton step prediction equations become the
Gauss-Newton or normal equations:

(J� W J) δx = −J� W�z (9)

The Gauss-Newton approximation is extremely common in nonlinear least squares, and
practically all current bundle implementations use it. Its main advantage is simplicity: the
second derivatives of the projection model z(x) are complex and troublesome to implement.
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In fact, the normal equations are just one of many methods of solving the weighted
linear least squares problem5 min δx

1
2 (J δx − �z)� W (J δx − �z). Another notable

method is that based on QR decomposition (§B.2, [11, 44]), which is up to a factor of two
slower than the normal equations, but much less sensitive to ill-conditioning in J 6.

Whichever solution method is used, the main disadvantage of the Gauss-Newton ap-
proximation is that when the discarded terms are not negligible, the convergence rate is
greatly reduced (§7.2). In our experience, such reductions are indeed common in highly
nonlinear problems with (at the current step) large residuals. For example, near a saddle
point the Gauss-Newton approximation is never accurate, as its predicted Hessian is al-
ways at least positive semidefinite. However, for well-parametrized (i.e. locally near linear,
§2.2) bundle problems under an outlier-free least squares cost model evaluated near the cost
minimum, the Gauss-Newton approximation is usually very accurate. Feature extraction
errors and hence�z and W−1 have characteristic scales of at most a few pixels. In contrast,
the nonlinearities of z(x) are caused by nonlinear 3D feature-camera geometry (perspec-
tive effects) and nonlinear image projection (lens distortion). For typical geometries and
lenses, neither effect varies significantly on a scale of a few pixels. So the nonlinear correc-
tions are usually small compared to the leading order linear terms, and bundle adjustment
behaves as a near-linear small residual problem.

However note that this does not extend to robust cost models. Robustification works
by introducing strong nonlinearity into the cost function at the scale of typical feature
reprojection errors. For accurate step prediction, the optimization routine must take account
of this. For radial cost functions (§3.3), a reasonable compromise is to take account of
the exact second order derivatives of the robustifiers ρi(·), while retaining only the first
order Gauss-Newton approximation for the predicted observations zi(x). If ρ′

i and ρ′′ are
respectively the first and second derivatives of ρi at the current evaluation point, we have
a robustified Gauss-Newton approximation:

gi = ρ′
i J�

i Wi�zi Hi ≈ J�
i (ρ′

i Wi + 2 ρ′′
i (Wi�zi) (Wi�zi)

�) Ji (10)

So robustification has two effects: (i) it down-weights the entire observation (both gi and
Hi) by ρ′

i ; and (ii) it makes a rank-one reduction7 of the curvature Hi in the radial (�zi)
direction, to account for the way in which the weight changes with the residual. There
are reweighting-based optimization methods that include only the first effect. They still
find the true cost minimum g = 0 as the gi are evaluated exactly8, but convergence may

5 Here, the dependence of J on x is ignored, which amounts to the same thing as ignoring the d2zi

dx2
term in H.

6 The QR method gives the solution to a relative error of about O(Cε), as compared to O(
C2ε

)
for the normal equations, where C is the condition number (the ratio of the largest to the smallest
singular value) of J, and ε is the machine precision (10−16 for double precision floating point).

7 The useful robustifiers ρi are sublinear, with ρ′
i < 1 and ρ′′

i < 0 in the outlier region.
8 Reweighting is also sometimes used in vision to handle projective homogeneous scale factors

rather than error weighting. E.g., suppose that image points (u/w, v/w)� are generated by a
homogeneous projection equation (u, v, w)� = P (X,Y, Z, 1)�, where P is the 3 × 4 homoge-
neous image projection matrix. A scale factor reweighting scheme might take derivatives w.r.t.
u, v while treating the inverse weight w as a constant within each iteration. Minimizing the re-
sulting globally bilinear linear least squares error model over P and (X,Y, Z)� does not give
the true cost minimum: it zeros the gradient-ignoring-w-variations, not the true cost gradient.
Such schemes should not be used for precise work as the bias can be substantial, especially for
wide-angle lenses and close geometries.
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be slowed owing to inaccuracy of H, especially for the mainly radial deviations produced
by non-robust initializers containing outliers. Hi has a direction of negative curvature if
ρ′′

i �z�
i Wi�zi < − 1

2ρ
′
i, but if not we can even reduce the robustified Gauss-Newton

model to a local unweighted SSE one for which linear least squares methods can be used.
For simplicity suppose that Wi has already reduced to 1 by premultiplying zi and Ji by L�

i

where Li L�
i = Wi. Then minimizing the effective squared error 1

2‖δzi − Ji δx‖2 gives
the correct second order robust state update, whereα ≡ RootOf( 1

2α
2−α−ρ′′

i /ρ
′
i ‖�zi‖2)

and:

δzi ≡
√
ρ′

i

1− α
�zi(x) Ji ≡

√
ρ′

i

(

1− α
�zi�z�

i

‖�zi‖2
)

Ji (11)

In practice, if ρ′′
i ‖�zi‖2 � − 1

2ρ
′
i, we can use the same formulae but limit α ≤ 1− ε for

some small ε. However, the full curvature correction is not applied in this case.

4.4 Constrained Problems

More generally, we may want to minimize a function f(x) subject to a set of constraints
c(x) = 0 on x. These might be scene constraints, internal consistency constraints on the
parametrization (§2.2), or constraints arising from an implicit observation model (§3.5).
Given an initial estimate x of the solution, we try to improve this by optimizing the
quadratic local model for f subject to a linear local model of the constraints c. This linearly
constrained quadratic problem has an exact solution in linear algebra. Let g,H be the
gradient and Hessian of f as before, and let the first order expansion of the constraints be
c(x+δx) ≈ c(x)+C δx where C ≡ dc

dx . Introduce a vector of Lagrange multipliers λ for c.

We seek the x+δx that optimizes f+c� λ subject to c = 0, i.e. 0 = d
dx (f+c� λ)(x+δx) ≈

g+H δx+C� λ and 0 = c(x+δx) ≈ c(x)+C δx. Combining these gives the Sequential
Quadratic Programming (SQP) step:
(

H C�

C 0

)(
δx
λ

)

= −
(

g
c

)

, f(x + δx) ≈ f(x)− 1
2

(
g� c�)

(
H C�

C 0

)−1(
g
c

)

(12)

(
H C�

C 0

)−1

=
(

H−1− H−1C� D−1C H−1 H−1C� D−1

D−1C H−1 −D−1

)

, D ≡ C H−1C� (13)

At the optimum δx and c vanish, but C� λ = −g, which is generally non-zero.
An alternative constrained approach uses the linearized constraints to eliminate some

of the variables, then optimizes over the rest. Suppose that we can order the variables
to give partitions x = (x1 x2)� and C = (C1 C2), where C1 is square and invertible.
Then using C1 x1 + C2 x2 = C x = −c, we can solve for x1 in terms of x2 and c:
x1 = −C−1

1 (C2x2 + c). Substituting this into the quadratic cost model has the effect of
eliminating x1, leaving a smaller unconstrained reduced problem H22 x2 = −g2, where:

H22 ≡ H22 − H21 C−1
1 C2 − C�

2 C−�
1 H12 + C�

2 C−�
1 H11 C−1

1 C2 (14)

g2 ≡ g2 − C�
2 C−�

1 g1 − (H21 − C�
2 C−�

1 H11) C−1
1 c (15)

(These matrices can be evaluated efficiently using simple matrix factorization schemes
[11]). This method is stable provided that the chosen C1 is well-conditioned. It works well
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for dense problems, but is not always suitable for sparse ones because if C is dense, the
reduced Hessian H22 becomes dense too.

For least squares cost models, constraints can also be handled within the linear least
squares framework, e.g. see [11].

4.5 General Implementation Issues

Before going into details, we mention a few points of good numerical practice for large-
scale optimization problems such as bundle adjustment:

Exploit the problem structure: Large-scale problems are almost always highly structured
and bundle adjustment is no exception. In professional cartography and photogrammetric
site-modelling, bundle problems with thousands of images and many tens of thousands
of features are regularly solved. Such problems would simply be infeasible without a
thorough exploitation of the natural structure and sparsity of the bundle problem. We will
have much to say about sparsity below.

Use factorization effectively: Many of above formulae contain matrix inverses. This is
a convenient short-hand for theoretical calculations, but numerically, matrix inversion is
almost never used. Instead, the matrix is decomposed into its Cholesky, LU, QR, etc.,
factors and these are used directly, e.g. linear systems are solved using forwards and
backwards substitution. This is much faster and numerically more accurate than explicit
use of the inverse, particularly for sparse matrices such as the bundle Hessian, whose
factors are still quite sparse, but whose inverse is always dense. Explicit inversion is
required only occasionally, e.g. for covariance estimates, and even then only a few of
the entries may be needed (e.g. diagonal blocks of the covariance). Factorization is the
heart of the optimization iteration, where most of the time is spent and where most can be
done to improve efficiency (by exploiting sparsity, symmetry and other problem structure)
and numerical stability (by pivoting and scaling). Similarly, certain matrices (subspace
projectors, Householder matrices) have (diagonal)+(low rank) forms which should not be
explicitly evaluated as they can be applied more efficiently in pieces.

Use stable local parametrizations: As discussed in §2.2, the parametrization used for
step prediction need not coincide with the global one used to store the state estimate. It is
more important that it should be finite, uniform and locally as nearly linear as possible.
If the global parametrization is in some way complex, highly nonlinear, or potentially
ill-conditioned, it is usually preferable to use a stable local parametrization based on
perturbations of the current state for step prediction.

Scaling and preconditioning: Another parametrization issue that has a profound and too-
rarely recognized influence on numerical performance is variable scaling (the choice of
‘units’ or reference scale to use for each parameter), and more generally preconditioning
(the choice of which linear combinations of parameters to use). These represent the linear
part of the general parametrization problem. The performance of gradient descent and most
other linearly convergent optimization methods is critically dependent on preconditioning,
to the extent that for large problems, they are seldom practically useful without it.

One of the great advantages of the Newton-like methods is their theoretical indepen-
dence of such scaling issues9. But even for these, scaling makes itself felt indirectly in

9 Under a linear change of coordinates x → Tx we have g → T−� g and H → T−� H T−1, so the
Newton step δx = −H−1g varies correctly as δx → T δx, whereas the gradient one δx ∼ g
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Fig. 3. The network graph, parameter connection graph, Jacobian structure and Hessian structure for
a toy bundle problem with five 3D features A–E, four images 1–4 and two camera calibrationsK1

(shared by images 1,2) andK2 (shared by images 3,4). Feature A is seen in images 1,2; B in 1,2,4;
C in 1,3; D in 2–4; and E in 3,4.

several ways: (i) Step control strategies including convergence tests, maximum step size
limitations, and damping strategies (trust region, Levenberg-Marquardt) are usually all
based on some implicit norm ‖δx‖2, and hence change under linear transformations of x
(e.g., damping makes the step more like the non-invariant gradient descent one). (ii) Piv-
oting strategies for factoring H are highly dependent on variable scaling, as they choose
‘large’ elements on which to pivot. Here, ‘large’ should mean ‘in which little numerical
cancellation has occurred’ but with uneven scaling it becomes ‘with the largest scale’. (iii)
The choice of gauge (datum, §9) may depend on variable scaling, and this can significantly
influence convergence [82, 81].

For all of these reasons, it is important to choose variable scalings that relate mean-
ingfully to the problem structure. This involves a judicious comparison of the relative
influence of, e.g., a unit of error on a nearby point, a unit of error on a very distant one,
a camera rotation error, a radial distortion error, etc. For this, it is advisable to use an
‘ideal’ Hessian or weight matrix rather than the observed one, otherwise the scaling might
break down if the Hessian happens to become ill-conditioned or non-positive during a few
iterations before settling down.

5 Network Structure

Adjustment networks have a rich structure, illustrated in figure 3 for a toy bundle problem.
The free parameters subdivide naturally into blocks corresponding to: 3D feature coor-
dinates A, . . . , E; camera poses and unshared (single image) calibration parameters 1,
. . . , 4; and calibration parameters shared across several images K1,K2. Parameter blocks

varies incorrectly as δx → T−� δx. The Newton and gradient descent steps agree only when
T� T = H.
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interact only via their joint influence on image features and other observations, i.e. via their
joint appearance in cost function contributions. The abstract structure of the measurement
network can be characterized graphically by the network graph (top left), which shows
which features are seen in which images, and the parameter connection graph (top right)
which details the sparse structure by showing which parameter blocks have direct interac-
tions. Blocks are linked if and only if they jointly influence at least one observation. The
cost function Jacobian (bottom left) and Hessian (bottom right) reflect this sparse structure.
The shaded boxes correspond to non-zero blocks of matrix entries. Each block of rows in
the Jacobian corresponds to an observed image feature and contains contributions from
each of the parameter blocks that influenced this observation. The Hessian contains an
off-diagonal block for each edge of the parameter connection graph, i.e. for each pair of
parameters that couple to at least one common feature / appear in at least one common
cost contribution10.

Two layers of structure are visible in the Hessian. The primary structure consists of
the subdivision into structure (A–E) and camera (1–4, K1–K2) submatrices. Note that the
structure submatrix is block diagonal: 3D features couple only to cameras, not to other
features. (This would no longer hold if inter-feature measurements such as distances or
angles between points were present). The camera submatrix is often also block diagonal,
but in this example the sharing of unknown calibration parameters produces off-diagonal
blocks. The secondary structure is the internal sparsity pattern of the structure-camera
Hessian submatrix. This is dense for small problems where all features are seen in all
images, but in larger problems it often becomes quite sparse because each image only sees
a fraction of the features.

All worthwhile bundle methods exploit at least the primary structure of the Hessian,
and advanced methods exploit the secondary structure as well. The secondary structure is
particularly sparse and regular in surface coverage problems such grids of photographs in
aerial cartography. Such problems can be handled using a fixed ‘nested dissection’ variable
reordering (§6.3). But for the more irregular connectivities of close range problems, general
sparse factorization methods may be required to handle secondary structure.

Bundle problems are by no means limited to the above structures. For example, for
more complex scene models with moving or articulated objects, there will be additional
connections to object pose or joint angle nodes, with linkages reflecting the kinematic
chain structure of the scene. It is often also necessary to add constraints to the adjustment,
e.g. coplanarity of certain points. One of the greatest advantages of the bundle technique is
its ability to adapt to almost arbitrarily complex scene, observation and constraint models.

10 The Jacobian structure can be described more directly by a bipartite graph whose nodes correspond
on one side to the observations, and on the other to the parameter blocks that influence them. The
parameter connection graph is then obtained by deleting each observation node and linking each
pair of parameter nodes that it connects to. This is an example of elimination graph processing
(see below).
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6 Implementation Strategy 1: Second Order Adjustment Methods

The next three sections cover implementation strategies for optimizing the bundle adjust-
ment cost function f(x) over the complete set of unknown structure and camera parameters
x. This section is devoted to second-order Newton-style approaches, which are the basis
of the great majority of current implementations. Their most notable characteristics are
rapid (second order) asymptotic convergence but relatively high cost per iteration, with

an emphasis on exploiting the network structure (the sparsity of the Hessian H = d2f
dx2 )

for efficiency. In fact, the optimization aspects are more or less standard (§4, [29, 93, 42]),
so we will concentrate entirely on efficient methods for solving the linearized Newton
step prediction equations δx = −H−1g, (6). For now, we will assume that the Hessian
H is non-singular. This will be amended in §9 on gauge freedom, without changing the
conclusions reached here.

6.1 The Schur Complement and the Reduced Bundle System

Schur complement: Consider the following block triangular matrix factorization:

M =
(

A B
C D

)

=
(

1 0
C A−1 1

)(
A 0
0 D

)(
1 A−1B
0 1

)

, D ≡ D− C A−1B (16)

( A B
C D )−1

=
(

1 −A−1B
0 1

)(
A−1 0
0 D

−1

)(
1 0

−C A−1 1

)
=
(

A−1+A−1B D
−1

C A−1 −A−1B D
−1

−D
−1

C A−1 D
−1

)

(17)

Here A must be square and invertible, and for (17), the whole matrix must also be square
and invertible. D is called the Schur complement of A in M. If both A and D are invertible,
complementing on D rather than A gives

( A B
C D )−1

=
(

A
−1 −A

−1
B D−1

−D C A
−1

D−1+D−1C A
−1

B D−1

)
, A = A − B D−1C

Equating upper left blocks gives the Woodbury formula:

(A ± B D−1C)−1 = A−1∓ A−1B (D± C A−1B)−1 C A−1 (18)

This is the usual method of updating the inverse of a nonsingular matrix A after an update
(especially a low rank one) A→ A ± B D−1C . (See §8.1).

Reduction: Now consider the linear system ( A B
C D )( x1

x2 ) =
(

b1
b2

)
. Pre-multiplying by

(
1 0

−C A−1 1

)
gives

(
A B
0 D

)
( x1

x2 ) =
(

b1

b2

)
where b2 ≡ b2 − C A−1b1. Hence we can use

Schur complement and forward substitution to find a reduced system D x2 = b2, solve
this for x2, then back-substitute and solve to find x1 :

D ≡ D− C A−1B
b2 ≡ b2 − C A−1b1

Schur complement +
forward substitution

D x2 = b2 A x1 = b1 − B x2

reduced system back-substitution
(19)
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Note that the reduced system entirely subsumes the contribution of the x1 rows and columns
to the network. Once we have reduced, we can pretend that the problem does not involve
x1 at all — it can be found later by back-substitution if needed, or ignored if not. This is
the basis of all recursive filtering methods. In bundle adjustment, if we use the primary
subdivision into feature and camera variables and subsume the structure ones, we get the
reduced camera system HCC xC = gC , where:

HCC ≡ HCC − HCS H−1
SS HSC = HCC −

∑
pHCp H−1

pp HpC

gC ≡ gC − HCS H−1
SS gS = gC −

∑
pHCp H−1

pp gp

(20)

Here, ‘S’ selects the structure block and ‘C’ the camera one. HSS is block diagonal,
so the reduction can be calculated rapidly by a sum of contributions from the individual
3D features ‘p’ in S. Brown’s original 1958 method for bundle adjustment [16, 19, 100]
was based on finding the reduced camera system as above, and solving it using Gaussian
elimination. Profile Cholesky decomposition (§B.3) offers a more streamlined method of
achieving this.

Occasionally, long image sequences have more camera parameters than structure ones.
In this case it is more efficient to reduce the camera parameters, leaving a reduced structure
system.

6.2 Triangular Decompositions

If D in (16) is further subdivided into blocks, the factorization process can be contin-
ued recursively. In fact, there is a family of block (lower triangular)*(diagonal)*(upper
triangular) factorizations A = L D U:

(
A11 A12 ··· A1n
A21 A22 ··· A2n...

...
. . .

...
Am1 Am2 ··· Amn

)

=






L11
L21 L22...

...
. . .

...
...

...
Lm1 Lm2 ··· Lmr






(
D1

D2 . . .
Dr

)(
U11 U12 ··· ··· U1n

U22 ··· ··· U2n. . .
...

··· Urn

)

(21)

See §B.1 for computational details. The main advantage of triangular factorizations is that
they make linear algebra computations with the matrix much easier. In particular, if the
input matrix A is square and nonsingular, linear equations A x = b can be solved by a
sequence of three recursions that implicitly implement multiplication by A−1 = U−1D−1L−1:

L c = b ci ← L−1
ii

(
bi −

∑
j<i Lij cj

)
forward substitution (22)

D d = c di ← D−1
i ci diagonal solution (23)

U x = d xi ← U−1
ii

(
di −

∑
j>i Uij xj

)
back-substitution (24)

Forward substitution corrects for the influence of earlier variables on later ones, diagonal
solution solves the transformed system, and back-substitution propagates corrections due
to later variables back to earlier ones. In practice, this is usual method of solving linear
equations such as the Newton step prediction equations. It is stabler and much faster than
explicitly inverting A and multiplying by A−1.
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The diagonal blocks Lii,Di,Uii can be set arbitrarily provided that the product Lii Di Uii

remains constant. This gives a number of well-known factorizations, each optimized for a
different class of matrices. Pivoting (row and/or column exchanges designed to improve
the conditioning of L and/or U, §B.1) is also necessary in most cases, to ensure stability.
Choosing Lii = Dii = 1 gives the (block) LU decomposition A = L U, the matrix repre-
sentation of (block) Gaussian elimination. Pivoted by rows, this is the standard method for
non-symmetric matrices. For symmetric A, roughly half of the work of factorization can
be saved by using a symmetry-preserving LDL� factorization, for which D is symmetric
and U = L�. The pivoting strategy must also preserve symmetry in this case, so it has to
permute columns in the same way as the corresponding rows. If A is symmetric positive
definite we can further set D = 1 to get the Cholesky decomposition A = L L�. This is
stable even without pivoting, and hence extremely simple to implement. It is the standard
decomposition method for almost all unconstrained optimization problems including bun-
dle adjustment, as the Hessian is positive definite near a non-degenerate cost minimum
(and in the Gauss-Newton approximation, almost everywhere else, too). If A is symmetric
but only positive semidefinite, diagonally pivoted Cholesky decomposition can be used.
This is the case, e.g. in subset selection methods of gauge fixing (§9.5). Finally, if A is
symmetric but indefinite, it is not possible to reduce D stably to 1. Instead, the Bunch-
Kaufman method is used. This is a diagonally pivoted LDL� method, where D has a
mixture of 1× 1 and 2× 2 diagonal blocks. The augmented Hessian

(
H C

C� 0

)
of the La-

grange multiplier method for constrained optimization problems (12) is always symmetric
indefinite, so Bunch-Kaufman is the recommended method for solving constrained bundle
problems. (It is something like 40% faster than Gaussian elimination, and about equally
stable).

Another use of factorization is matrix inversion. Inverses can be calculated by factoring,
inverting each triangular factor by forwards or backwards substitution (52), and multiplying
out: A−1 = U−1D−1L−1. However, explicit inverses are rarely used in numerical analysis,
it being both stabler and much faster in almost all cases to leave them implicit and work
by forward/backward substitution w.r.t. a factorization, rather than multiplication by the
inverse. One place where inversion is needed in its own right, is to calculate the dispersion
matrix (inverse Hessian, which asymptotically gives the posterior covariance) as a measure
of the likely variability of parameter estimates. The dispersion can be calculated by explicit
inversion of the factored Hessian, but often only a few of its entries are needed, e.g. the
diagonal blocks and a few key off-diagonal parameter covariances. In this case (53) can be
used, which efficiently calculates the covariance entries corresponding to just the nonzero
elements of L,D,U.

6.3 Sparse Factorization

To apply the above decompositions to sparse matrices, we must obviously avoid storing
and manipulating the zero blocks. But there is more to the subject than this. As a sparse
matrix is decomposed, zero positions tend to rapidly fill in (become non-zero), essentially
because decomposition is based on repeated linear combination of matrix rows, which
is generically non-zero wherever any one of its inputs is. Fill-in depends strongly on the
order in which variables are eliminated, so efficient sparse factorization routines attempt
to minimize either operation counts or fill-in by re-ordering the variables. (The Schur
process is fixed in advance, so this is the only available freedom). Globally minimizing
either operations or fill-in is NP complete, but reasonably good heuristics exist (see below).
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Variable order affects stability (pivoting) as well as speed, and these two goals conflict to
some extent. Finding heuristics that work well on both counts is still a research problem.

Algorithmically, fill-in is characterized by an elimination graph derived from the pa-
rameter coupling / Hessian graph [40, 26, 11]. To create this, nodes (blocks of parameters)
are visited in the given elimination ordering, at each step linking together all unvisited
nodes that are currently linked to the current node. The coupling of block i to block j via
visited block k corresponds to a non-zero Schur contribution Lik D−1

k Ukj , and at each stage
the subgraph on the currently unvisited nodes is the coupling graph of the current reduced
Hessian. The amount of fill-in is the number of new graph edges created in this process.

Pattern Matrices We seek variable orderings that approximately minimize the total
operation count or fill-in over the whole elimination chain. For many problems a suitable
ordering can be fixed in advance, typically giving one of a few standard pattern matrices
such as band or arrowhead matrices, perhaps with such structure at several levels.



















bundle Hessian arrowhead matrix block tridiagonal matrix

(25)

The most prominent pattern structure in bundle adjustment is the primary subdivision of
the Hessian into structure and camera blocks. To get the reduced camera system (19),
we treat the Hessian as an arrowhead matrix with a broad final column containing all of
the camera parameters. Arrowhead matrices are trivial to factor or reduce by block 2× 2
Schur complementation, c.f . (16, 19). For bundle problems with many independent images
and only a few features, one can also complement on the image parameter block to get a
reduced structure system.

Another very common pattern structure is the block tridiagonal one which characterizes
all singly coupled chains (sequences of images with only pairwise overlap, Kalman filtering
and other time recursions, simple kinematic chains). Tridiagonal matrices are factored or
reduced by recursive block 2 × 2 Schur complementation starting from one end. The L
and U factors are also block tridiagonal, but the inverse is generally dense.

Pattern orderings are often very natural but it is unwise to think of them as immutable:
structure often occurs at several levels and deeper structure or simply changes in the relative
sizes of the various parameter classes may make alternative orderings preferable. For more
difficult problems there are two basic classes of on-line ordering strategies. Bottom-up
methods try to minimize fill-in locally and greedily at each step, at the risk of global short-
sightedness. Top-down methods take a divide-and-conquer approach, recursively splitting
the problem into smaller sub-problems which are solved quasi-independently and later
merged.

Top-Down Ordering Methods The most common top-down method is called nested dis-
section or recursive partitioning [64, 57, 19, 38, 40, 11]. The basic idea is to recursively
split the factorization problem into smaller sub-problems, solve these independently, and
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Hessian Natural Cholesky

Minimum Degree Reverse Cuthill-McKee

Fig. 4. A bundle Hessian for an irregular coverage problem with only local connections, and its
Cholesky factor in natural (structure-then-camera), minimum degree, and reverse Cuthill-McKee
ordering.

then glue the solutions together along their common boundaries. Splitting involves choos-
ing a separating set of variables, whose deletion will separate the remaining variables into
two or more independent subsets. This corresponds to finding a (vertex) graph cut of the
elimination graph, i.e. a set of vertices whose deletion will split it into two or more discon-
nected components. Given such a partitioning, the variables are reordered into connected
components, with the separating set ones last. This produces an ‘arrowhead’ matrix, e.g. :



A11 A12

A21 A22 A23

A32 A33




−→




A11 A12

A33 A32

A21 A23 A22




(26)

The arrowhead matrix is factored by blocks, as in reduction or profile Cholesky, tak-
ing account of any internal sparsity in the diagonal blocks and the borders. Any suitable
factorization method can be used for the diagonal blocks, including further recursive par-
titionings.
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Nested dissection is most useful when comparatively small separating sets can be found.
A trivial example is the primary structure of the bundle problem: the camera variables
separate the 3D structure into independent features, giving the standard arrowhead form of
the bundle Hessian. More interestingly, networks with good geometric or temporal locality
(surface- and site-covering networks, video sequences) tend to have small separating sets
based on spatial or temporal subdivision. The classic examples are geodesic and aerial
cartography networks with their local 2D connections — spatial bisection gives simple
and very efficient recursive decompositions for these [64, 57, 19].

For sparse problems with less regular structure, one can use graph partitioning algo-
rithms to find small separating sets. Finding a globally minimal partition sequence is NP
complete but several effective heuristics exist. This is currently an active research field.
One promising family are multilevel schemes [70, 71, 65, 4] which decimate (subsample)
the graph, partition using e.g. a spectral method, then refine the result to the original graph.
(These algorithms should also be very well-suited to graph based visual segmentation and
matching).

Bottom-Up Ordering Methods Many bottom-up variable ordering heuristics exist. Prob-
ably the most widespread and effective is minimum degree ordering. At each step, this
eliminates the variable coupled to the fewest remaining ones (i.e. the elimination graph
node with the fewest unvisited neighbours), so it minimizes the number O(n2

neighbours) of
changed matrix elements and hence FLOPs for the step. The minimum degree ordering
can also be computed quite rapidly without explicit graph chasing. A related ordering,
minimum deficiency, minimizes the fill-in (newly created edges) at each step, but this is
considerably slower to calculate and not usually so effective.

Fill-in or operation minimizing strategies tend to produce somewhat fragmentary ma-
trices that require pointer- or index-based sparse matrix implementations (see fig. 4). This
increases complexity and tends to reduce cache locality and pipeline-ability. An alternative
is to use profile matrices which (for lower triangles) store all elements in each row between
the first non-zero one and the diagonal in a contiguous block. This is easy to implement
(see §B.3), and practically efficient so long as about 30% or more of the stored elements are
actually non-zero. Orderings for this case aim to minimize the sum of the profile lengths
rather than the number of non-zero elements. Profiling enforces a multiply-linked chain
structure on the variables, so it is especially successful for linear / chain-like / one dimen-
sional problems, e.g. space or time sequences. The simplest profiling strategy is reverse
Cuthill-McKee which chooses some initial variable (very preferably one from one ‘end’
of the chain), adds all variables coupled to that, then all variables coupled to those, etc.,
then reverses the ordering (otherwise, any highly-coupled variables get eliminated early
on, which causes disastrous fill-in). More sophisticated are the so-called banker’s strate-
gies, which maintain an active set of all the variables coupled to the already-eliminated
ones, and choose the next variable — from the active set (King [72]), it and its neighbours
(Snay [101]) or all uneliminated variables (Levy [75]) — to minimize the new size of the
active set at each step. In particular, Snay’s banker’s algorithm is reported to perform
well on geodesy and aerial cartography problems [101, 24].

For all of these automatic ordering methods, it often pays to do some of the initial work
by hand, e.g. it might be appropriate to enforce the structure / camera division beforehand
and only order the reduced camera system. If there are nodes of particularly high degree
such as inner gauge constraints, the ordering calculation will usually run faster and the
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quality may also be improved by removing these from the graph and placing them last by
hand.

The above ordering methods apply to both Cholesky / LDL� decomposition of the
Hessian and QR decomposition of the least squares Jacobian. Sparse QR methods can be
implemented either with Givens rotations or (more efficiently) with sparse Householder
transformations. Row ordering is important for the Givens methods [39]. For Householder
ones (and some Givens ones too) the multifrontal organization is now usual [41, 11], as
it captures the natural parallelism of the problem.

7 Implementation Strategy 2: First Order Adjustment Methods

We have seen that for large problems, factoring the Hessian H to compute the Newton
step can be both expensive and (if done efficiently) rather complex. In this section we
consider alternative methods that avoid the cost of exact factorization. As the Newton step
can not be calculated, such methods generally only achieve first order (linear) asymptotic
convergence: when close to the final state estimate, the error is asymptotically reduced by a
constant (and in practice often depressingly small) factor at each step, whereas quadratically
convergent Newton methods roughly double the number of significant digits at each step.
So first order methods require more iterations than second order ones, but each iteration
is usually much cheaper. The relative efficiency depends on the relative sizes of these
two effects, both of which can be substantial. For large problems, the reduction in work
per iteration is usually at least O(n), where n is the problem size. But whereas Newton
methods converge from O(1) to O(10−16

)
in about 1 + log2 16 = 5 iterations, linearly

convergent ones take respectively log 10−16/ log(1 − γ) = 16, 350, 3700 iterations for
reduction γ = 0.9, 0.1, 0.01 per iteration. Unfortunately, reductions of only 1% or less are
by no means unusual in practice (§7.2), and the reduction tends to decrease as n increases.

7.1 First Order Iterations

We first consider a number of common first order methods, before returning to the question
of why they are often slow.

Gradient descent: The simplest first order method is gradient descent, which “slides
down the gradient” by taking δx ∼ g or Ha = 1. Line search is needed, to find an appro-
priate scale for the step. For most problems, gradient descent is spectacularly inefficient
unless the Hessian actually happens to be very close to a multiple of 1. This can be arranged
by preconditioning with a linear transform L, x → L x, g → L−� g and H → L−� H L−1,
where L L� ∼ H is an approximate Cholesky factor (or other left square root) of H, so that
H → L−� H L−1 ∼ 1. In this very special case, preconditioned gradient descent approxi-
mates the Newton method. Strictly speaking, gradient descent is a cheat: the gradient is a
covector (linear form on vectors) not a vector, so it does not actually define a direction in
the search space. Gradient descent’s sensitivity to the coordinate system is one symptom
of this.

Alternation: Another simple approach is alternation: partition the variables into groups
and cycle through the groups optimizing over each in turn, with the other groups held
fixed. This is most appropriate when the subproblems are significantly easier to optimize
than the full one. A natural and often-rediscovered alternation for the bundle problem is
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resection-intersection, which interleaves steps of resection (finding the camera poses and
if necessary calibrations from fixed 3D features) and intersection (finding the 3D features
from fixed camera poses and calibrations). The subproblems for individual features and
cameras are independent, so only the diagonal blocks of H are required.

Alternation can be used in several ways. One extreme is to optimize (or perhaps only
perform one step of optimization) over each group in turn, with a state update and re-
evaluation of (the relevant components of) g,H after each group. Alternatively, some of
the re-evaluations can be simulated by evaluating the linearized effects of the parameter
group update on the other groups. E.g., for resection-intersection with structure update
δxS = −HSS gS(xS , xC) (where ‘S’ selects the structure variables and ‘C’ the camera
ones), the updated camera gradient is exactly the gradient of the reduced camera system,
gC(xS + δxS , xC) ≈ gC(xS , xC) + HCSδxS = gC − HCS H−1

SS gC . So the total update

for the cycle is
(

δxS
δxC

)
= −

(
H−1

SS 0

−H−1
CC HCS H−1

SS H−1
CC

)( gS
gC

)
=
( HSS 0

HCS HCC

)−1( gS
gC

)
. In

general, this correction propagation amounts to solving the system as if the above-diagonal
triangle of H were zero. Once we have cycled through the variables, we can update the
full state and relinearize. This is the nonlinear Gauss-Seidel method. Alternatively, we
can split the above-diagonal triangle of H off as a correction (back-propagation) term

and continue iterating
( HSS 0

HCS HCC

)(
δxS
δxC

)
(k)

= −
( gS

gC

)
−
(

0 HSC
0 0

)(
δxS
δxC

)
(k−1)

until

(hopefully)
(

δxS
δxC

)
converges to the full Newton step δx = −H−1g. This is the linear

Gauss-Seidel method applied to solving the Newton step prediction equations. Finally,
alternation methods always tend to underestimate the size of the Newton step because
they fail to account for the cost-reducing effects of including the back-substitution terms.
Successive Over-Relaxation (SOR) methods improve the convergence rate by artificially
lengthening the update steps by a heuristic factor 1 < γ < 2.

Most if not all of the above alternations have been applied to both the bundle problem
and the independent model one many times, e.g. [19, 95, 2, 108, 91, 20]. Brown considered
the relatively sophisticated SOR method for aerial cartography problems as early as 1964,
before developing his recursive decomposition method [19]. None of these alternations are
very effective for traditional large-scale problems, although §7.4 below shows that they
can sometimes compete for smaller highly connected ones.

Krylov subspace methods: Another large family of iterative techniques are the Krylov
subspace methods, based on the remarkable properties of the power subspaces
Span({Ak b|k = 0 . . . n}) for fixed A,b as n increases. Krylov iterations predominate
in many large-scale linear algebra applications, including linear equation solving.

The earliest and greatest Krylov method is the conjugate gradient iteration for solving
a positive definite linear system or optimizing a quadratic cost function. By augmenting the
gradient descent step with a carefully chosen multiple of the previous step, this manages
to minimize the quadratic model function over the entire kth Krylov subspace at the kth

iteration, and hence (in exact arithmetic) over the whole space at the nth
x one. This no

longer holds when there is round-off error, butO(nx) iterations usually still suffice to find
the Newton step. Each iteration is O(n2

x

)
so this is not in itself a large gain over explicit

factorization. However convergence is significantly faster if the eigenvalues of H are tightly
clustered away from zero: if the eigenvalues are covered by intervals [ai, bi]i=1...k, conver-

gence occurs in O
(∑k

i=1

√
bi/ai

)
iterations [99, 47, 48]11. Preconditioning (see below)

11 For other eigenvalue based based analyses of the bundle adjustment covariance, see [103, 92].
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Fig. 5. An example of the typical behaviour of first and second order convergent methods near the
minimum. This is a 2D projection of a small but ill-conditioned bundle problem along the two
most variable directions. The second order methods converge quite rapidly, whether they use exact
(Gauss-Newton) or iterative (diagonally preconditioned conjugate gradient) linear solver for the
Newton equations. In contrast, first order methods such as resection-intersection converge slowly
near the minimum owing to their inaccurate model of the Hessian. The effects of mismodelling can
be reduced to some extent by adding a line search.

aims at achieving such clustering. As with alternation methods, there is a range of possible
update / re-linearization choices, ranging from a fully nonlinear method that relinearizes
after each step, to solving the Newton equations exactly using many linear iterations. One
major advantage of conjugate gradient is its simplicity: there is no factorization, all that is
needed is multiplication by H. For the full nonlinear method, H is not even needed — one
simply makes a line search to find the cost minimum along the direction defined by g and
the previous step.

One disadvantage of nonlinear conjugate gradient is its high sensitivity to the accuracy
of the line search. Achieving the required accuracy may waste several function evaluations
at each step. One way to avoid this is to make the information obtained by the conjugation
process more explicit by building up an explicit approximation to H or H−1. Quasi-Newton
methods such as the BFGS method do this, and hence need less accurate line searches.
The quasi-Newton approximation to H or H−1 is dense and hence expensive to store and
manipulate, but Limited Memory Quasi-Newton (LMQN) methods often get much of
the desired effect by maintaining only a low-rank approximation.

There are variants of all of these methods for least squares (Jacobian rather than Hessian
based) and for constrained problems (non-positive definite matrices).

7.2 Why Are First Order Methods Slow?

To understand why first order methods often have slow convergence, consider the effect of
approximating the Hessian in Newton’s method. Suppose that in some local parametriza-
tion x centred at a cost minimum x = 0, the cost function is well approximated by a
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quadratic near 0: f(x) ≈ 1
2x� H x and hence g(x) ≡ H x, where H is the true Hessian.

For most first order methods, the predicted step is linear in the gradient g. If we adopt a
Newton-like state update δx = −H−1

a g(x) based on some approximation Ha to H, we get
an iteration:

xk+1 = xk − H−1
a g(xk) ≈ (1− H−1

a H) xk ≈ (1− H−1
a H)k+1 x0 (27)

The numerical behaviour is determined by projecting x0 along the eigenvectors of 1−H−1
a H.

The components corresponding to large-modulus eigenvalues decay slowly and hence
asymptotically dominate the residual error. For generic x0, the method converges ‘linearly’
(i.e. exponentially) at rate ‖1−H−1

a H‖2, or diverges if this is greater than one. (Of course,
the exact Newton step δx = −H−1g converges in a single iteration, as Ha = H). Along
eigen-directions corresponding to positive eigenvalues (for which Ha overestimates H),
the iteration is over-damped and convergence is slow but monotonic. Conversely, along
directions corresponding to negative eigenvalues (for which Ha underestimates H), the
iteration is under-damped and zigzags towards the solution. If H is underestimated by a
factor greater than two along any direction, there is divergence. Figure 5 shows an example
of the typical asymptotic behaviour of first and second order methods in a small bundle
problem.

Ignoring the camera-feature coupling: As an example, many approximate bundle meth-
ods ignore or approximate the off-diagonal feature-camera blocks of the Hessian. This
amounts to ignoring the fact that the cost of a feature displacement can be partially offset
by a compensatory camera displacement and vice versa. It therefore significantly over-
estimates the total ‘stiffness’ of the network, particularly for large, loosely connected
networks. The fact that off-diagonal blocks are not negligible compared to the diagonal
ones can be seen in several ways:
• Looking forward to §9, before the gauge is fixed, the full Hessian is singular owing to

gauge freedom. The diagonal blocks by themselves are well-conditioned, but including
the off-diagonal ones entirely cancels this along the gauge orbit directions. Although
gauge fixing removes the resulting singularity, it can not change the fact that the off-
diagonal blocks have enough weight to counteract the diagonal ones.
• In bundle adjustment, certain well-known ambiguities (poorly-controlled parameter

combinations) often dominate the uncertainty. Camera distance and focal length es-
timates, and structure depth and camera baseline ones (bas-relief), are both strongly
correlated whenever the perspective is weak and become strict ambiguities in the affine
limit. The well-conditioned diagonal blocks of the Hessian give no hint of these ambi-
guities: when both features and cameras are free, the overall network is much less rigid
than it appears to be when each treats the other as fixed.
• During bundle adjustment, local structure refinements cause ‘ripples’ that must be prop-

agated throughout the network. The camera-feature coupling information carried in the
off-diagonal blocks is essential to this. In the diagonal-only model, ripples can propa-
gate at most one feature-camera-feature step per iteration, so it takes many iterations
for them to cross and re-cross a sparsely coupled network.

These arguments suggest that any approximation Ha to the bundle Hessian H that sup-
presses or significantly alters the off-diagonal terms is likely to have large ‖1 − H−1

a H‖
and hence slow convergence. This is exactly what we have observed in practice for all
such methods that we have tested: near the minimum, convergence is linear and for large
problems often extremely slow, with ‖1 − H−1

a H‖2 very close to 1. The iteration may
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either zigzag or converge slowly and monotonically, depending on the exact method and
parameter values.

Line search: The above behaviour can often be improved significantly by adding a line
search to the method. In principle, the resulting method converges for any positive definite
Ha. However, accurate modelling of H is still highly desirable. Even with no rounding
errors, an exactly quadratic (but otherwise unknown) cost function and exact line searches
(i.e. the minimum along the line is found exactly), the most efficient generic line search
based methods such as conjugate gradient or quasi-Newton require at leastO(nx) iterations
to converge. For large bundle problems with thousands of parameters, this can already be
prohibitive. However, if knowledge about H is incorporated via a suitable preconditioner,
the number of iterations can often be reduced substantially.

7.3 Preconditioning

Gradient descent and Krylov methods are sensitive to the coordinate system and their
practical success depends critically on good preconditioning. The aim is to find a linear
transformation x → T x and hence g → T−� g and H → T−� H T for which the trans-
formed H is near 1, or at least has only a few clusters of eigenvalues well separated from
the origin. Ideally, T should be an accurate, low-cost approximation to the left Cholesky
factor of H. (Exactly evaluating this would give the expensive Newton method again). In
the experiments below, we tried conjugate gradient with preconditioners based on the di-
agonal blocks of H, and on partial Cholesky decomposition, dropping either all filled-in
elements, or all that are smaller than a preset size when performing Cholesky decomposi-
tion. These methods were not competitive with the exact Gauss-Newton ones in the ‘strip’
experiments below, but for large enough problems it is likely that a preconditioned Krylov
method would predominate, especially if more effective preconditioners could be found.

An exact Cholesky factor of H from a previous iteration is often a quite effective
preconditioner. This gives hybrid methods in which H is only evaluated and factored every
few iterations, with the Newton step at these iterations and well-preconditioned gradient
descent or conjugate gradient at the others.

7.4 Experiments

Figure 6 shows the relative performance of several methods on two synthetic projective
bundle adjustment problems. In both cases, the number of 3D points increases in proportion
to the number of images, so the dense factorization time is O(n3

)
where n is the number

of points or images. The following methods are shown: ‘Sparse Gauss-Newton’ — sparse
Cholesky decomposition with variables ordered naturally (features then cameras); ‘Dense
Gauss-Newton’ — the same, but (inefficiently) ignoring all sparsity of the Hessian; ‘Diag.
Conj. Gradient’ — the Newton step is found by an iterative conjugate gradient linear
system solver, preconditioned using the Cholesky factors of the diagonal blocks of the
Hessian; ‘Resect-Intersect’ — the state is optimized by alternate steps of resection and
intersection, with relinearization after each. In the ‘spherical cloud’ problem, the points
are uniformly distributed within a spherical cloud, all points are visible in all images,
and the camera geometry is strongly convergent. These are ideal conditions, giving a low
diameter network graph and a well-conditioned, nearly diagonal-dominant Hessian. All
of the methods converge quite rapidly. Resection-intersection is a competitive method for
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Fig. 6. Relative speeds of various bundle optimization methods for strong ‘spherical cloud’ and weak
‘strip’ geometries.

larger problems owing to its low cost per iteration. Unfortunately, although this geometry
is often used for testing computer vision algorithms, it is atypical for large-scale bundle
problems. The ‘strip’ experiment has a more representative geometry. The images are
arranged in a long strip, with each feature seen in about 3 overlapping images. The strip’s
long thin weakly-connected network structure gives it large scale low stiffness ‘flexing’
modes, with correspondingly poor Hessian conditioning. The off-diagonal terms are critical
here, so the approximate methods perform very poorly. Resection-intersection is slower
even than dense Cholesky decomposition ignoring all sparsity. For 16 or more images
it fails to converge even after 3000 iterations. The sparse Cholesky methods continue to
perform reasonably well, with the natural, minimum degree and reverse Cuthill-McKee
orderings all giving very similar run times in this case. For all of the methods that we
tested, including resection-intersection with its linear per-iteration cost, the total run time
for long chain-like geometries scaled roughly as O(n3

)
.
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8 Implementation Strategy 3: Updating and Recursion

8.1 Updating Rules

It is often convenient to be able to update a state estimate to reflect various types of
changes, e.g. to incorporate new observations or to delete erroneous ones (‘downdating’).
Parameters may have to be added or deleted too. Updating rules are often used recursively,
to incorporate a series of observations one-by-one rather than solving a single batch system.
This is useful in on-line applications where a rapid response is needed, and also to provide
preliminary predictions, e.g. for correspondence searches. Much of the early development
of updating methods was aimed at on-line data editing in aerial cartography workstations.

The main challenge in adding or deleting observations is efficiently updating either a
factorization of the Hessian H, or the covariance H−1. Given either of these, the state update
δx is easily found by solving the Newton step equations H δx = −g, where (assuming
that we started at an un-updated optimum g = 0) the gradient g depends only on the newly
added terms. The Hessian update H → H ± B W B� needs to have relatively low rank,
otherwise nothing is saved over recomputing the batch solution. In least squares the rank is
the number of independent observations added or deleted, but even without this the rank is
often low in bundle problems because relatively few parameters are affected by any given
observation.

One limitation of updating is that it is seldom as accurate as a batch solution owing to
build-up of round-off error. Updating (adding observations) itself is numerically stable, but
downdating (deleting observations) is potentially ill-conditioned as it reduces the positivity
of the Hessian, and may cause previously good pivot choices to become arbitrarily bad.
This is particularly a problem if all observations relating to a parameter are deleted, or
if there are repeated insertion-deletion cycles as in time window filtering. Factorization
updating methods are stabler than Woodbury formula / covariance updating ones.

Consider first the case where no parameters need be added nor deleted, e.g. adding or
deleting an observation of an existing point in an existing image. Several methods have been
suggested [54, 66]. Mikhail & Helmering [88] use the Woodbury formula (18) to update
the covariance H−1. This simple approach becomes inefficient for problems with many
features because the sparse structure is not exploited: the full covariance matrix is dense
and we would normally avoid calculating it in its entirety. Grün [51, 54] avoids this problem
by maintaining a running copy of the reduced camera system (20), using an incremental
Schur complement / forward substitution (16) to fold each new observation into this, and
then re-factorizing and solving as usual after each update. This is effective when there are
many features in a few images, but for larger numbers of images it becomes inefficient
owing to the re-factorization step. Factorization updating methods such as (55, 56) are
currently the recommended update methods for most applications: they allow the existing
factorization to be exploited, they handle any number of images and features and arbitrary
problem structure efficiently, and they are numerically more accurate than Woodbury
formula methods. The Givens rotation method [12, 54], which is equivalent to the rank
1 Cholesky update (56), is probably the most common such method. The other updating
methods are confusingly named in the literature. Mikhail & Helmering’s method [88]
is sometimes called ‘Kalman filtering’, even though no dynamics and hence no actual
filtering is involved. Grün’s reduced camera system method [51] is called ‘triangular factor
update (TFU)’, even though it actually updates the (square) reduced Hessian rather than
its triangular factors.
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For updates involving a previously unseen 3D feature or image, new variables must
also be added to the system. This is easy. We simply choose where to put the variables in
the elimination sequence, and extend H and its L,D,U factors with the corresponding rows
and columns, setting all of the newly created positions to zero (except for the unit diagonals
of LDL�’s and LU’s L factor). The factorization can then be updated as usual, presumably
adding enough cost terms to make the extended Hessian nonsingular and couple the new
parameters into the old network. If a direct covariance update is needed, the Woodbury
formula (18) can be used on the old part of the matrix, then (17) to fill in the new blocks
(equivalently, invert (54), with D1 ← A representing the old blocks and D2 ← 0 the new
ones).

Conversely, it may be necessary to delete parameters, e.g. if an image or 3D feature
has lost most or all of its support. The corresponding rows and columns of the Hessian
H (and rows of g, columns of J) must be deleted, and all cost contributions involving the
deleted parameters must also be removed using the usual factorization downdates (55, 56).
To delete the rows and columns of block b in a matrix A, we first delete the b rows and
columns of L,D,U. This maintains triangularity and gives the correct trimmed A, except
that the blocks in the lower right corner Aij =

∑
k≤min(i,j) Lik Dk Ukj , i, j > b are

missing a term Lib Db Ubj from the deleted column b of L / row b of U. This is added using
an update +L∗b Db Ub∗, ∗ > b. To update A−1 when rows and columns of A are deleted,
permute the deleted rows and columns to the end and use (17) backwards: (A11)−1 =
(A−1)11 − (A−1)12 (A−1)−1

22 (A−1)21.
It is also possible to freeze some live parameters at fixed (current or default) values,

or to add extra parameters / unfreeze some previously frozen ones, c.f . (48, 49) below. In
this case, rows and columns corresponding to the frozen parameters must be deleted or
added, but no other change to the cost function is required. Deletion is as above. To insert
rows and columns Ab∗,A∗b at block b of matrix A, we open space in row and column b of
L,D,U and fill these positions with the usual recursively defined values (51). For i, j > b,
the sum (51) will now have a contribution Lib Db Ubj that it should not have, so to correct
this we downdate the lower right submatrix ∗ > b with a cost cancelling contribution
−L∗b Db Ub∗.

8.2 Recursive Methods and Reduction

Each update computation is roughly quadratic in the size of the state vector, so if new
features and images are continually added the situation will eventually become unman-
ageable. We must limit what we compute. In principle parameter refinement never stops:
each observation update affects all components of the state estimate and its covariance.
However, the refinements are in a sense trivial for parameters that are not directly coupled
to the observation. If these parameters are eliminated using reduction (19), the observa-
tion update can be applied directly to the reduced Hessian and gradient12. The eliminated
parameters can then be updated by simple back-substitution (19) and their covariances by
(17). In particular, if we cease to receive new information relating to a block of parameters
(an image that has been fully treated, a 3D feature that has become invisible), they and
all the observations relating to them can be subsumed once-and-for-all in a reduced Hes-
sian and gradient on the remaining parameters. If required, we can later re-estimate the
12 In (19), only D and b2 are affected by the observation as it is independent of the subsumed

components A,B,C, b1. So applying the update to D, b2 has the same effect as applying it to
D, b2.
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eliminated parameters by back-substitution. Otherwise, we do not need to consider them
further.

This elimination process has some limitations. Only ‘dead’ parameters can be elim-
inated: to merge a new observation into the problem, we need the current Hessian or
factorization entries for all parameter blocks relating to it. Reduction also commits us to
a linearized / quadratic cost approximation for the eliminated variables at their current
estimates, although to the extent that this model is correct, the remaining variables can still
be treated nonlinearly. It is perhaps best to view reduction as the first half-iteration of a full
nonlinear optimization: by (19), the Newton method for the full model can be implemented
by repeated cycles of reduction, solving the reduced system, and back-substitution, with
relinearization after each cycle, whereas for eliminated variables we stop after solving the
first reduced system. Equivalently, reduction evaluates just the reduced components of the
full Newton step and the full covariance, leaving us the option of computing the remaining
eliminated ones later if we wish.

Reduction can be used to refine estimates of relative camera poses (or fundamental
matrices, etc.) for a fixed set of images, by reducing a sequence of feature correspondences
to their camera coordinates. Or conversely, to refine 3D structure estimates for a fixed set
of features in many images, by reducing onto the feature coordinates.

Reduction is also the basis of recursive (Kalman) filtering. In this case, one has a (e.g.
time) series of system state vectors linked by some probabilistic transition rule (‘dynamical
model’), for which we also have some observations (‘observation model’). The parameter
space consists of the combined state vectors for all times, i.e. it represents a path through
the states. Both the dynamical and the observation models provide “observations” in the
sense of probabilistic constraints on the full state parameters, and we seek a maximum like-
lihood (or similar) parameter estimate / path through the states. The full Hessian is block
tridiagonal: the observations couple only to the current state and give the diagonal blocks,
and dynamics couples only to the previous and next ones and gives the off-diagonal blocks
(differential observations can also be included in the dynamics likelihood). So the model
is large (if there are many time steps) but very sparse. As always with a tridiagonal matrix,
the Hessian can be decomposed by recursive steps of reduction, at each step Schur comple-
menting to get the current reduced block Ht from the previous one Ht−1, the off-diagonal
(dynamical) coupling Ht t−1 and the current unreduced block (observation Hessian) Ht :
Ht = Ht − Ht t−1 H

−1

t−1 H�
t t−1. Similarly, for the gradient gt = gt − Ht t−1 H

−1

t−1 gt−1,

and as usual the reduced state update is δxt = −H
−1

t gt.
This forwards reduction process is called filtering. At each time step it finds the optimal

(linearized) current state estimate given all of the previous observations and dynamics. The
corresponding unwinding of the recursion by back-substitution, smoothing, finds the opti-
mal state estimate at each time given both past and future observations and dynamics. The
usual equations of Kalman filtering and smoothing are easily derived from this recursion,
but we will not do this here. We emphasize that filtering is merely the first half-iteration of
a nonlinear optimization procedure: even for nonlinear dynamics and observation models,
we can find the exact maximum likelihood state path by cyclic passes of filtering and
smoothing, with relinearization after each.

For long or unbounded sequences it may not be feasible to run the full iteration, but
it can still be very helpful to run short sections of it, e.g. smoothing back over the last
3–4 state estimates then filtering forwards again, to verify previous correspondences and
anneal the effects of nonlinearities. (The traditional extended Kalman filter optimizes
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Fig. 7. The residual state estimation error of the VSDF sequential bundle algorithm for progressively
increasing sizes of rolling time window. The residual error at image t = 16 is shown for rolling
windows of 1–5 previous images, and also for a ‘batch’ method (all previous images) and a ‘simple’
one (reconstruction / intersection is performed independently of camera location / resection). To
simulate the effects of decreasing amounts of image data, 0%, 15% and 70% of the image measure-
ments are randomly deleted to make runs with 100%, 85% and only 30% of the supplied image data.
The main conclusion is that window size has little effect for strong data, but becomes increasingly
important as the data becomes weaker.

nonlinearly over just the current state, assuming all previous ones to be linearized). The
effects of variable window size on the Variable State Dimension Filter (VSDF) sequential
bundle algorithm [85, 86, 83, 84] are shown in figure 7.

9 Gauge Freedom

Coordinates are a very convenient device for reducing geometry to algebra, but they come
at the price of some arbitrariness. The coordinate system can be changed at any time,
without affecting the underlying geometry. This is very familiar, but it leaves us with two
problems: (i) algorithmically, we need some concrete way of deciding which particular
coordinate system to use at each moment, and hence breaking the arbitrariness; (ii) we
need to allow for the fact that the results may look quite different under different choices,
even though they represent the same underlying geometry.

Consider the choice of 3D coordinates in visual reconstruction. The only objects in the
3D space are the reconstructed cameras and features, so we have to decide where to place
the coordinate system relative to these . . . Or in coordinate-centred language, where to
place the reconstruction relative to the coordinate system. Moreover, bundle adjustment
updates and uncertainties can perturb the reconstructed structure almost arbitrarily, so
we must specify coordinate systems not just for the current structure, but also for every
possible nearby one. Ultimately, this comes down to constraining the coordinate values
of certain aspects of the reconstructed structure — features, cameras or combinations of
these — whatever the rest of the structure might be. Saying this more intrinsically, the
coordinate frame is specified and held fixed with respect to the chosen reference elements,
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and the rest of the geometry is then expressed in this frame as usual. In measurement
science such a set of coordinate system specifying rules is called a datum, but we will
follow the wider mathematics and physics usage and call it a gauge13. The freedom in the
choice of coordinate fixing rules is called gauge freedom.

As a gauge anchors the coordinate system rigidly to its chosen reference elements, per-
turbing the reference elements has no effect on their own coordinates. Instead, it changes
the coordinate system itself and hence systematically changes the coordinates of all the
other features, while leaving the reference coordinates fixed. Similarly, uncertainties in
the reference elements do not affect their own coordinates, but appear as highly correlated
uncertainties in all of the other reconstructed features. The moral is that structural pertur-
bations and uncertainties are highly relative. Their form depends profoundly on the gauge,
and especially on how this changes as the state varies (i.e. which elements it holds fixed).
The effects of disturbances are not restricted to the coordinates of the features actually
disturbed, but may appear almost anywhere depending on the gauge.

In visual reconstruction, the differences between object-centred and camera-centred
gauges are often particularly marked. In object-centred gauges, object points appear to be
relatively certain while cameras appear to have large and highly correlated uncertainties.
In camera-centred gauges, it is the camera that appears to be precise and the object points
that appear to have large correlated uncertainties. One often sees statements like “the
reconstructed depths are very uncertain”. This may be true in the camera frame, yet the
object may be very well reconstructed in its own frame — it all depends on what fraction
of the total depth fluctuations are simply due to global uncertainty in the camera location,
and hence identical for all object points.

Besides 3D coordinates, many other types of geometric parametrization in vision in-
volve arbitrary choices, and hence are subject to gauge freedoms [106]. These include the
choice of: homogeneous scale factors in homogeneous-projective representations; sup-
porting points in supporting-point based representations of lines and planes; reference
plane in plane + parallax representations; and homographies in homography-epipole rep-
resentations of matching tensors. In each case the symptoms and the remedies are the
same.

9.1 General Formulation

The general set up is as follows: We take as our state vector x the set of all of the 3D feature
coordinates, camera poses and calibrations, etc., that enter the problem. This state space
has internal symmetries related to the arbitrary choices of 3D coordinates, homogeneous
scale factors, etc., that are embedded in x. Any two state vectors that differ only by such
choices represent the same underlying 3D geometry, and hence have exactly the same image
projections and other intrinsic properties. So under change-of-coordinates equivalence, the
state space is partitioned into classes of intrinsically equivalent state vectors, each class
representing exactly one underlying 3D geometry. These classes are called gauge orbits.
Formally, they are the group orbits of the state space action of the relevant gauge group
(coordinate transformation group), but we will not need the group structure below. A state
space function represents an intrinsic function of the underlying geometry if and only if
it is constant along each gauge orbit (i.e. coordinate system independent). Such quantities

13 Here, gauge just means reference frame. The sense is that of a reference against which something
is judged (O.Fr. jauger, gauger). Pronounce gēidj.
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are called gauge invariants. We want the bundle adjustment cost function to quantify
‘intrinsic merit’, so it must be chosen to be gauge invariant.

In visual reconstruction, the principal gauge groups are the 3 + 3 + 1 = 7 dimen-
sional group of 3D similarity (scaled Euclidean) transformations for Euclidean recon-
struction, and the 15 dimensional group of projective 3D coordinate transformations for
projective reconstruction. But other gauge freedoms are also present. Examples include:
(i) The arbitrary scale factors of homogeneous projective feature representations, with
their 1D rescaling gauge groups. (ii) The arbitrary positions of the points in ‘two point’
line parametrizations, with their two 1D motion-along-line groups. (iii) The underspecified
3×3 homographies used for ‘homography + epipole’ parametrizations of matching tensors
[77, 62, 106]. For example, the fundamental matrix can be parametrized as F = [ e ]× H
where e is its left epipole and H is the inter-image homography induced by any 3D plane.
The choice of plane gives a freedom H → H + e a� where a is an arbitrary 3-vector, and
hence a 3D linear gauge group.

Now consider how to specify a gauge, i.e. a rule saying how each possible underlying
geometry near the current one should be expressed in coordinates. Coordinatizations are
represented by state space points, so this is a matter of choosing exactly one point (structure
coordinatization) from each gauge orbit (underlying geometry). Mathematically, the gauge
orbits foliate (fill without crossing) the state space, and a gauge is a local transversal
‘cross-section’ G through this foliation. See fig. 8. Different gauges represent different but
geometrically equivalent coordinatization rules. Results can be mapped between gauges
by pushing them along gauge orbits, i.e. by applying local coordinate transformations that
vary depending on the particular structure involved. Such transformations are called S-
transforms (‘similarity’ transforms) [6, 107, 22, 25]. Different gauges through the same
central state represent coordinatization rules that agree for the central geometry but differ
for perturbed ones — the S-transform is the identity at the centre but not elsewhere.

Given a gauge, only state perturbations that lie within the gauge cross-section are autho-
rized. This is what we want, as such state perturbations are in one-to-one correspondence
with perturbations of the underlying geometry. Indeed, any state perturbation is equivalent
to some on-gauge one under the gauge group (i.e. under a small coordinate transformation
that pushes the perturbed state along its gauge orbit until it meets the gauge cross-section).
State perturbations along the gauge orbits are uninteresting, because they do not change
the underlying geometry at all.
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Covariances are averages of squared perturbations and must also be based on on-gauge
perturbations (they would be infinite if we permitted perturbations along the gauge orbits,
as there is no limit to these — they do not change the cost at all). So covariance matrices
are gauge-dependent and in fact represent ellipsoids tangent to the gauge cross-section at
the cost minimum. They can look very different for different gauges. But, as with states, S-
transforms map them between gauges by projecting along gauge orbits / state equivalence
classes.

Note that there is no intrinsic notion of orthogonality on state space, so it is meaningless
to ask which state-space directions are ‘orthogonal’ to the gauge orbits. This would in-
volve deciding when two different structures have been “expressed in the same coordinate
system”, so every gauge believes its own cross section to be orthogonal and all others to
be skewed.

9.2 Gauge Constraints

We will work near some point x of state space, perhaps a cost minimum or a running state
estimate. Let nx be the dimension of x and ng the dimension of the gauge orbits. Let f,g,H
be the cost function and its gradient and Hessian, and G be any nx × ng matrix whose
columns span the local gauge orbit directions at x 14. By the exact gauge invariance of f,
its gradient and Hessian vanish along orbit directions: g� G = 0 and H G = 0. Note that
the gauged Hessian H is singular with (at least) rank deficiency ng and null space G. This
is called gauge deficiency. Many numerical optimization routines assume nonsingular H,
and must be modified to work in gauge invariant problems. The singularity is an expression
of indifference: when we come to calculate state updates, any two updates ending on the
same gauge orbit are equivalent, both in terms of cost and in terms of the change in the
underlying geometry. All that we need is a method of telling the routine which particular
update to choose.

Gauge constraints are the most direct means of doing this. A gauge cross-section G
can be specified in two ways: (i) constrained form: specify ng local constraints d(x)
with d(x) = 0 for points on G ; (ii) parametric form: specify a function x(y) of nx − ng

independent local parameters y, with x = x(y) being the points of G. For example, a
trivial gauge is one that simply freezes the values of ng of the parameters in x (usually
feature or camera coordinates). In this case we can take d(x) to be the parameter freezing
constraints and y to be the remaining unfrozen parameters. Note that once the gauge is
fixed the problem is no longer gauge invariant — the whole purpose of d(x), x(y) is to
break the underlying gauge invariance.

Examples of trivial gauges include: (i) using several visible 3D points as a ‘projective
basis’ for reconstruction (i.e. fixing their projective 3D coordinates to simple values, as
in [27]); and (ii) fixing the components of one projective 3 × 4 camera matrix as (I 0),
as in [61] (this only partially fixes the 3D projective gauge — 3 projective 3D degrees of
freedom remain unfixed).

14 A suitable G is easily calculated from the infinitesimal action of the gauge group on x. For
example, for spatial similarities the columns of G would be the ng = 3+3+1 = 7 state velocity
vectors describing the effects of infinitesimal translations, rotations and changes of spatial scale
on x.
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Linearized gauge: Let the local linearizations of the gauge functions be:

d(x + δx) ≈ d(x) + D δx D ≡ dd
dx (28)

x(y + δy) ≈ x(y) + Y δy Y ≡ dx
dy (29)

Compatibility between the two gauge specification methods requires d(x(y)) = 0 for all
y, and hence D Y = 0. Also, since G must be transversal to the gauge orbits, D G must
have full rank ng and (Y G) must have full rank nx. Assuming that x itself is on G, a
perturbation x + δxG is on G to first order iff D δxG = 0 or δxG = Y δy for some δy.

Two nx × nx rank nx − ng matrices characterize G. The gauge projection matrix PG
implements linearized projection of state displacement vectors δx along their gauge orbits
onto the local gauge cross-section: δx → δxG = PG δx. (The projection is usually non-
orthogonal: P�

G �= PG). The gauged covariance matrix VG plays the role of the inverse
Hessian. It gives the cost-minimizing Newton step within G, δxG = −VG g, and also
the asymptotic covariance of δxG . PG and VG have many special properties and equivalent
forms. For convenience, we display some of these now15 — let V ≡ (H + D� B D)−1 where
B is any nonsingular symmetric ng × ng matrix, and let G′ be any other gauge:

VG ≡ Y (Y� H Y)−1 Y� = V H V = V−G (D G)−1B−1 (D G)−� G� (30)

= PG V = PG VG = PG VG′ P�
G (31)

PG ≡ 1−G (D G)−1 D = Y (Y� H Y)−1Y� H = V H = VG H = PG PG′ (32)

PG G = 0 , PG Y = Y , D PG = D VG = 0 (33)

g� PG = g� , H PG = H , VG g = V g (34)

These relations can be summarized by saying that VG is theG-supported generalized inverse
of H and that PG : (i) projects along gauge orbits (PG G = 0); (ii) projects onto the gauge
cross-section G (D PG = 0, PG Y = Y, PGδx = δxG and VG = PG VG′ P�

G); and (iii)
preserves gauge invariants (e.g. f(x + PG δx) = f(x + δx), g� PG = g� and H PG = H).
Both VG and H have rank nx−ng. Their null spaces D� and G are transversal but otherwise
unrelated. PG has left null space D and right null space G.

State updates: It is straightforward to add gauge fixing to the bundle update equations.
First consider the constrained form. Enforcing the gauge constraints d(x +δxG) = 0 with
Lagrange multipliers λ gives an SQP step:
(

H D�

D 0

)(
δxG
λ

)

= −
(

g
d

)

,

(
H D�

D 0

)−1

=
(

VG G (D G)−1

(D G)−� G� 0

)

(35)

so δxG = − (VG g + G (D G)−1d) , λ = 0 (36)

This is a rather atypical constrained problem. For typical cost functions the gradient has a
component pointing away from the constraint surface, so g �= 0 at the constrained minimum
15 These results are most easily proved by inserting strategic factors of (Y G) (Y G)−1 and

using H G = 0, D Y = 0 and (Y G)−1 =
(

(Y� H Y)−1Y� H
(D G)−1D

)
. For any ng × ng B in-

cluding 0,
(

Y�
G�
) (

H + D� B D
)

(Y G) =
(

Y� H Y 0
0 (D G)� B (D G)

)
. If B is nonsingular,

V =
(
H + D� B D

)−1 = Y (Y� H Y)−1Y� + G (D G)−1B−1 (D G)−� G�.
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and a non-vanishing force λ �= 0 is required to hold the solution on the constraints. Here,
the cost function and its derivatives are entirely indifferent to motions along the orbits.
Nothing actively forces the state to move off the gauge, so the constraint force λ vanishes
everywhere, g vanishes at the optimum, and the constrained minimum value of f is identical
to the unconstrained minimum. The only effect of the constraints is to correct any gradual
drift away from G that happens to occur, via the d term in δxG .

A simpler way to get the same effect is to add a gauge-invariance breaking term such
as 1

2d(x)� B d(x) to the cost function, where B is some positive ng × ng weight matrix.
Note that 1

2d(x)� B d(x) has a unique minimum of 0 on each orbit at the point d(x) = 0,
i.e. for x on G. As f is constant along gauge orbits, optimization of f(x) + 1

2d(x)� B d(x)
along each orbit enforces G and hence returns the orbit’s f value, so global optimization
will find the global constrained minimum of f. The cost function f(x) + 1

2d(x)� B d(x)
is nonsingular with Newton step δxG = V (g + D� B d) where V = (H + D� B D)−1 is
the new inverse Hessian. By (34, 30), this is identical to the SQP step (36), so the SQP
and cost-modifying methods are equivalent. This strategy works only because no force is
required to keep the state on-gauge — if this were not the case, the weight B would have
to be infinite. Also, for dense D this form is not practically useful because H + D� B D is
dense and hence slow to factorize, although updating formulae can be used.

Finally, consider the parametric form x = x(y) of G. Suppose that we already have a
current reduced state estimate y. We can approximate f(x(y+δy)) to get a reduced system
for δy, solve this, and find δxG afterwards if necessary:

(Y� H Y) δy = −Y� g , δxG = Y δy = −VG g (37)

The (nx−ng)×(nx−ng) matrix Y� H Y is generically nonsingular despite the singularity
of H. In the case of a trivial gauge, Y simply selects the submatrices of g,H corresponding
to the unfrozen parameters, and solves for these. For less trivial gauges, both Y and D are
often dense and there is a risk that substantial fill-in will occur in all of the above methods.

Gauged covariance: By (30) and standard covariance propagation in (37), the covariance
of the on-gauge fluctuations δxG is E

[
δxG δx�

G
]

= Y (Y� H Y)−1 Y� = VG . δxG never
moves off G, so VG represents a rank nx − ng covariance ellipsoid ‘flattened onto G’. In a
trivial gauge, VG is the covariance (Y� H Y)−1 of the free variables, padded with zeros for
the fixed ones.

Given VG , the linearized gauged covariance of a function h(x) is dh
dx VG

dh
dx

�
as usual.

If h(x) is gauge invariant (constant along gauge orbits) this is just its ordinary covariance.

Intuitively, VG and dh
dx VG

dh
dx

�
depend on the gauge because they measure not absolute

uncertainty, but uncertainty relative to the reference features on which the gauge is based.
Just as there are no absolute reference frames, there are no absolute uncertainties. The best
we can do is relative ones.

Gauge transforms: We can change the gauge at will during a computation, e.g. to improve
sparseness or numerical conditioning or re-express results in some standard gauge. This
is simply a matter of an S-transform [6], i.e. pushing all gauged quantities along their
gauge orbits onto the new gauge cross-section G. We will assume that the base point x
is unchanged. If not, a fixed (structure independent) change of coordinates achieves this.
Locally, an S-transform then linearizes into a linear projection along the orbits spanned by
G onto the new gauge constraints given by D or Y. This is implemented by the nx×nx rank
nx−ng non-orthogonal projection matrix PG defined in (32). The projection preserves all
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gauge invariants — e.g. f(x+PG δx) = f(x+δx) — and it cancels the effects of projection
onto any other gauge: PG PG′ = PG .

9.3 Inner Constraints

Given the wide range of gauges and the significant impact that they have on the appearance
of the state updates and covariance matrix, it is useful to ask which gauges give the
“smallest” or “best behaved” updates and covariances. This is useful for interpreting and
comparing results, and it also gives beneficial numerical properties. Basically it is a matter
of deciding which features or cameras we care most about and tying the gauge to some
stable average of them, so that gauge-induced correlations in them are as small as possible.
For object reconstruction the resulting gauge will usually be object-centred, for vehicle
navigation camera-centred. We stress that such choices are only a matter of superficial
appearance: in principle, all gauges are equivalent and give identical values and covariances
for all gauge invariants.

Another way to say this is that it is only for gauge invariants that we can find meaningful
(coordinate system independent) values and covariances. But one of the most fruitful ways
to create invariants is to locate features w.r.t. a basis of reference features, i.e. w.r.t. the
gauge based on them. The choice of inner constraints is thus a choice of a stable basis
of compound features w.r.t. which invariants can be measured. By including an average
of many features in the compound, we reduce the invariants’ dependence on the basis
features.

As a performance criterion we can minimize some sort of weighted average size, either
of the state update or of the covariance. Let W be annx×nx information-like weight matrix
encoding the relative importance of the various error components, and L be any left square
root for it, L L� = W. The local gauge at x that minimizes the weighted size of the state
update δx�

G W δxG , the weighted covariance sum Trace(W VG) = Trace(L� VG L), and the
L2 or Frobenius norm of L� VG L, is given by the inner constraints [87, 89, 6, 22, 25]16 :

D δx = 0 where D ≡ G� W (38)

The corresponding covariance VG is given by (30) with D = G� W, and the state update is
δxG = −VG g as usual. Also, if W is nonsingular, VG is given by the weighted rank nx−ng

pseudo-inverse L−� (L−1H L−�)† L−1, where W = L L� is the Cholesky decomposition of
W and (·)† is the Moore-Penrose pseudo-inverse.
16 Sketch proof : For W = 1 (whence L = 1) and diagonal H = ( Λ 0

0 0 ), we have G = ( 0
1 )

and g =
(

g′
0

)
as g� G = 0. Any gauge G transversal to G has the form D = (−B C) with

nonsingular C. Premultiplying by C
−1

reduces D to the form D = (−B 1) for someng×(nx −ng)
matrix B. It follows that PG = ( 1 0

B 0 ) and VG = ( 1
B )Λ−1 (1 B�), whence δx�

G W δxG =
g� VG W VG g = g′� Λ−1

(
1 + B� B

)
Λ−1g′ and Trace(VG) = Trace(Λ−1) + Trace

(
B Λ−1B�)

.
Both criteria are clearly minimized by taking B = 0, so D = (0 1) = G� W as claimed. For
nonsingular W = L L�, scaling the coordinates by x → L x reduces us to W → 1, g� → g�L−1

and H → L−1H L−�. Eigen-decomposition then reduces us to diagonal H. Neither transformation
affects δx�

G W δxG or Trace(W VG), and back substituting gives the general result. For singular
W, use a limiting argument on D = G� W. Similarly, using VG as above, B → 0, and hence the
inner constraint, minimizes the L2 and Frobenius norms of L� VG L. Indeed, by the interlacing
property of eigenvalues [44, §8.1], B → 0 minimizes any strictly non-decreasing rotationally
invariant function of L� VG L (i.e. any strictly non-decreasing function of its eigenvalues). �
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The inner constraints are covariant under global transformations x → t(x) provided
that W is transformed in the usual information matrix / Hessian way W→ T−� W T−1where
T = dt

dx
17. However, such transformations seldom preserve the form of W (diagonality,

W = 1, etc.). If W represents an isotropic weighted sum over 3D points18, its form is
preserved under global 3D Euclidean transformations, and rescaled under scalings. But
this extends neither to points under projective transformations, nor to camera poses, 3D
planes and other non-point-like features even under Euclidean ones. (The choice of origin
has a significant influence For poses, planes, etc. : changes of origin propagate rotational
uncertainties into translational ones).

Inner constraints were originally introduced in geodesy in the case W = 1 [87]. The
meaning of this is entirely dependent on the chosen 3D coordinates and variable scaling.
In bundle adjustment there is little to recommend W = 1 unless the coordinate origin has
been carefully chosen and the variables carefully pre-scaled as above, i.e. x → L� x and
hence H→ L−1H L−�, where W ∼ L L� is a fixed weight matrix that takes account of the
fact that the covariances of features, camera translations and rotations, focal lengths, aspect
ratios and lens distortions, all have entirely different units, scales and relative importances.
For W = 1, the gauge projection PG becomes orthogonal and symmetric.

9.4 Free Networks

Gauges can be divided roughly into outer gauges, which are locked to predefined external
reference features giving a fixed network adjustment, and inner gauges, which are locked
only to the recovered structure giving a free network adjustment. (If their weight W is
concentrated on the external reference, the inner constraints give an outer gauge). As
above, well-chosen inner gauges do not distort the intrinsic covariance structure so much
as most outer ones, so they tend to have better numerical conditioning and give a more
representative idea of the true accuracy of the network. It is also useful to make another,
slightly different fixed / free distinction. In order to control the gauge deficiency, any
gauge fixing method must at least specify which motions are locally possible at each
iteration. However, it is not indispensable for these local decisions to cohere to enforce
a global gauge. A method is globally fixed if it does enforce a global gauge (whether
inner or outer), and globally free if not. For example, the standard photogrammetric inner
constraints [87, 89, 22, 25] give a globally free inner gauge. They require that the cloud of
reconstructed points should not be translated, rotated or rescaled under perturbations (i.e.
the centroid and average directions and distances from the centroid remain unchanged).
However, they do not specify where the cloud actually is and how it is oriented and scaled,
and they do not attempt to correct for any gradual drift in the position that may occur during
the optimization iterations, e.g. owing to accumulation of truncation errors. In contrast,
McLauchlan globally fixes the inner gauge by locking it to the reconstructed centroid
and scatter matrix [82, 81]. This seems to give good numerical properties (although more
testing is required to determine whether there is much improvement over a globally free

17 G → T G implies that D → D T−1, whence VG → T VG T�, PG → T PG T−1, and δxG → T δxG .
So δx�

G W δxG and Trace(W VG) are preserved.
18 This means that it vanishes identically for all non-point features, camera parameters, etc., and is

a weighted identity matrix Wi = wi I3×3 for each 3D point, or more generally it has the form
W ⊗ I3×3 on the block of 3D point coordinates, where W is some npoints × npoints inter-point
weighting matrix.
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inner gauge), and it has the advantage of actually fixing the coordinate system so that
direct comparisons of solutions, covariances, etc., are possible. Numerically, a globally
fixed gauge can be implemented either by including the ‘d’ term in (36), or simply by
applying a rectifying gauge transformation to the estimate, at each step or when it drifts
too far from the chosen gauge.

9.5 Implementation of Gauge Constraints

Given that all gauges are in principle equivalent, it does not seem worthwhile to pay a
high computational cost for gauge fixing during step prediction, so methods requiring
large dense factorizations or (pseudo-)inverses should not be used directly. Instead, the
main computation can be done in any convenient, low cost gauge, and the results later
transformed into the desired gauge using the gauge projector19 PG = 1 − G (D G)−1D.
It is probably easiest to use a trivial gauge for the computation. This is simply a matter
of deleting the rows and columns of g,H corresponding to ng preselected parameters,
which should be chosen to give a reasonably well-conditioned gauge. The choice can be
made automatically by a subset selection method (c.f ., e.g. [11]). H is left intact and
factored as usual, except that the final dense (owing to fill-in) submatrix is factored using a
stable pivoted method, and the factorization is stopped ng columns before completion. The
remaining ng×ng block (and the corresponding block of the forward-substituted gradient
g) should be zero owing to gauge deficiency. The corresponding rows of the state update
are set to zero (or anything else that is wanted) and back-substitution gives the remaining
update components as usual. This method effectively finds the ng parameters that are least
well constrained by the data, and chooses the gauge constraints that freeze these by setting
the corresponding δxG components to zero.

10 Quality Control

This section discusses quality control methods for bundle adjustment, giving diagnostic
tests that can be used to detect outliers and characterize the overall accuracy and reliability
of the parameter estimates. These techniques are not well known in vision so we will go
into some detail. Skip the technical details if you are not interested in them.

Quality control is a serious issue in measurement science, and it is perhaps here that
the philosophical differences between photogrammetrists and vision workers are greatest:
the photogrammetrist insists on good equipment, careful project planning, exploitation
of prior knowledge and thorough error analyses, while the vision researcher advocates a
more casual, flexible ‘point-and-shoot’ approach with minimal prior assumptions. Many
applications demand a judicious compromise between these virtues.

A basic maxim is “quality = accuracy + reliability”20. The absolute accuracy of the
system depends on the imaging geometry, number of measurements, etc. But theoretical
19 The projector PG itself is never calculated. Instead, it is applied in pieces, multiplying by D, etc.

The gauged Newton step δxG is easily found like this, and selected blocks of the covariance
VG = PG VG′ P�

G can also be found in this way, expanding PG and using (53) for the leading term,
and for the remaining ones finding L−1D�, etc., by forwards substitution.

20 ‘Accuracy’ is sometimes called ‘precision’ in photogrammetry, but we have preferred to retain
the familiar meanings from numerical analysis: ‘precision’ means numerical error / number of
working digits and ‘accuracy’ means statistical error / number of significant digits.
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precision by itself is not enough: the system must also be reliable in the face of out-
liers, small modelling errors, and so forth. The key to reliability is the intelligent use of
redundancy: the results should represent an internally self-consistent consensus among
many independent observations, no aspect of them should rely excessively on just a few
observations.

The photogrammetric literature on quality control deserves to be better known in vision,
especially among researchers working on statistical issues. Förstner [33, 34] and Grün
[49, 50] give introductions with some sobering examples of the effects of poor design.
See also [7, 8, 21, 22]. All of these papers use least squares cost functions and scalar
measurements. Our treatment generalizes this to allow robust cost functions and vector
measurements, and is also slightly more self-consistent than the traditional approach. The
techniques considered are useful for data analysis and reporting, and also to check whether
design requirements are realistically attainable during project planning. Several properties
should be verified. Internal reliability is the ability to detect and remove large aberrant
observations using internal self-consistency checks. This is provided by traditional outlier
detection and/or robust estimation procedures. External reliability is the extent to which
any remaining undetected outliers can affect the estimates. Sensitivity analysis gives
useful criteria for the quality of a design. Finally, model selection tests attempt to decide
which of several possible models is most appropriate and whether certain parameters can
be eliminated.

10.1 Cost Perturbations

We start by analyzing the approximate effects of adding or deleting an observation, which
changes the cost function and hence the solution. We will use second order Taylor expansion
to characterize the effects of this. Let f−(x) and f+(x) ≡ f−(x) + δf(x) be respectively
the total cost functions without and with the observation included, where δf(x) is the cost
contribution of the observation itself. Let g±, δg be the gradients and H±, δH the Hessians
of f±, δf. Let x0 be the unknown true underlying state and x± be the minima of f±(x) (i.e.
the optimal state estimates with and without the observation included). Residuals at x0
are the most meaningful quantities for outlier decisions, but x0 is unknown so we will be
forced to use residuals at x± instead. Unfortunately, as we will see below, these are biased.
The bias is small for strong geometries but it can become large for weaker ones, so to
produce uniformly reliable statistical tests we will have to correct for it. The fundamental
result is: For any sufficiently well behaved cost function, the difference in fitted residuals
f+(x+)− f−(x−) is asymptotically an unbiased and accurate estimate of δf(x0) 21 :

δf(x0) ≈ f+(x+)− f−(x−) + ν, ν ∼ O(‖δg‖/√nz − nx
)
, 〈ν〉 ∼ 0 (39)

21 Sketch proof : From the Newton steps δx± ≡ x± − x0 ≈ −H−1
± g±(x0) at x0, we find

that f±(x±) − f±(x0) ≈ − 1
2δx�

± H± δx± and hence ν ≡ f+(x+) − f−(x−) − δf(x0) ≈
1
2

(
δx�

− H− δx− − δx�
+ H+ δx+

)
. ν is unbiased to relatively high order: by the central limit

property of ML estimators, the asymptotic distributions of δx± are Gaussian N (0,H−1
±), so the

expectation of both δx�
± H± δx± is asymptotically the number of free model parameters nx.

Expanding δx± and using g+ = g− + δg, the leading term is ν ≈ −δg(x0)� x−, which
asymptotically has normal distribution ν ∼ N (0, δg(x0)� H−1

− δg(x0)) with standard deviation
of order O(‖δg‖/√nz − nx

)
, as x− ∼ N (0,H−1

−) and ‖H−‖ ∼ O(nz − nx). �
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Note that by combining values at two known evaluation points x±, we simulate a value at
a third unknown one x0. The estimate is not perfect, but it is the best that we can do in the
circumstances.

There are usually many observations to test, so to avoid having to refit the model many
times we approximate the effects of adding or removing observations. Working at x± and
using the fact that g±(x±) = 0, the Newton step δx ≡ x+ − x− ≈ −H−1

∓ δg(x±) implies
a change in fitted residual of:

f+(x+)− f−(x−) ≈ δf(x±)± 1
2δx� H∓ δx

= δf(x±)± 1
2δg(x±)� H−1

∓ δg(x±)
(40)

So δf(x+) systematically underestimates f+(x+) − f−(x−) and hence δf(x0) by about
1
2δx� H− δx, and δf(x−) overestimates it by about 1

2δx� H+ δx. These biases are of order
O(1/(nz − nx)) and hence negligible when there is plenty of data, but they become large
at low redundancies. Intuitively, including δf improves the estimate on average, bringing
about a ‘good’ reduction of δf, but it also overfits δf slightly, bringing about a further ‘bad’
reduction. Alternatively, the reduction in δf on moving from x− to x+ is bought at the cost
of a slight increase in f− (since x− was already the minimum of f−), which should morally
also be ‘charged’ to δf.

When deleting observations, we will usually have already evaluated H−1
+ (or a corre-

sponding factorization of H+) to find the Newton step near x+, whereas (40) requires H−1
−.

And vice versa for addition. Provided that δH � H, it is usually sufficient to use H−1
± in

place of H−1
∓ in the simple tests below. However if the observation couples to relatively few

state variables, it is possible to calculate the relevant components of H−1
∓ fairly economi-

cally. If ‘∗’ means ‘select the k variables on which δH, δg are non-zero’, then δg� H−1δg =

(δg∗)�(H−1)∗δg∗ and22 (H−1
∓)∗ =

((
(H−1

±)∗)−1∓ δH∗
)−1

≈ (H−1
±)∗ ± (H−1

±)∗ δH∗ (H−1
±)∗.

Even without the approximation, this involves at most a k × k factorization or inverse.
Indeed, for least squares δH is usually of even lower rank (= the number of independent
observations in δf), so the Woodbury formula (18) can be used to calculate the inverse even
more efficiently.

10.2 Inner Reliability and Outlier Detection

In robust cost models nothing special needs to be done with outliers — they are just
normal measurements that happen be downweighted owing to their large deviations. But
in non-robust models such as least squares, explicit outlier detection and removal are
essential for inner reliability. An effective diagnostic is to estimate δf(x0) using (39, 40),
and significance-test it against its distribution under the null hypothesis that the observation
is an inlier. For the least squares cost model, the null distribution of 2 δf(x0) is χ2

k where
k is the number of independent observations contributing to δf. So if α is a suitable χ2

k

significance threshold, the typical one-sided significance test is:

α
?≤ 2 (f(x+)− f(x−)) ≈ 2 δf(x±) ± δg(x±)� H−1

∓ δg(x±) (41)

≈ �zi(x±)� (Wi ±Wi J�
i H−1

∓ Ji Wi

) �zi(x±) (42)

22 C.f . the lower right corner of (17), where the ‘∗’ components correspond to block 2, so that(
(H−1

±)∗)−1
is ‘D2’, the Schur complement of the remaining variables in H±. Adding δH∗ changes

the ‘D’ term but not the Schur complement correction.
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As usual we approximate H−1
∓ ≈ H−1

± and use x− results for additions and x+ ones for
deletions. These tests require the fitted covariance matrix H−1

± (or, if relatively few tests
will be run, an equivalent factorization of H±), but given this they are usually fairly
economical owing to the sparseness of the observation gradients δg(x±). Equation (42)
is for the nonlinear least squares model with residual error �zi(x) ≡ zi − zi(x), cost
1
2�zi(x)� Wi�zi(x) and Jacobian Ji = dzi

dx . Note that even though zi induces a change in
all components of the observation residual�z via its influence on δx, only the immediately
involved components �zi are required in (42). The bias-correction-induced change of
weight matrix Wi → Wi ±Wi J�

i H−1
∓ Ji Wi accounts for the others. For non-quadratic

cost functions, the above framework still applies but the cost function’s native distribution
of negative log likelihood values must be used instead of the Gaussian’s 1

2 χ
2.

In principle, the above analysis is only valid when at most one outlier causes a relatively
small perturbation δx. In practice, the observations are repeatedly scanned for outliers, at
each stage removing any discovered outliers (and perhaps reinstating previously discarded
observations that have become inliers) and refitting. The net result is a form of M-estimator
routine with an abruptly vanishing weight function: outlier deletion is just a roundabout
way of simulating a robust cost function. (Hard inlier/outlier rules correspond to total
likelihood functions that become strictly constant in the outlier region).

The tests (41, 42) give what is needed for outlier decisions based on fitted state estimates
x±, but for planning purposes it is also useful to know how large a gross error must typically
be w.r.t. the true state x0 before it is detected. Outlier detection is based on the uncertain
fitted state estimates, so we can only give an average case result. No adjustment for x± is
needed in this case, so the average minimum detectable gross error is simply:

α
?≤ 2 δf(x0) ≈ �z(x0)� W�z(x0) (43)

10.3 Outer Reliability

Ideally, the state estimate should be as insensitive as possible to any remaining errors in
the observations. To estimate how much a particular observation influences the final state
estimate, we can directly monitor the displacement δx ≡ x+ − x− ≈ H−1

∓ δg±(x±).
For example, we might define an importance weighting on the state parameters with a
criterion matrix U and monitor absolute displacements ‖U δx‖ ≈ ‖U H−1

∓ δg(x±)‖, or
compare the displacement δx to the covariance H−1

± of x± by monitoring δx� H∓ δx ≈
δg±(x±)� H−1

∓ δg±(x±). A bound on δg(x±) of the form23 δg δg� � V for some positive
semidefinite V implies a bound δx δx� � H−1

∓ V H−1
∓ on δx and hence a bound ‖U δx‖2 ≤

N (U H−1
∓ V H−1

∓ U�) where N (·) can be L2 norm, trace or Frobenius norm. For a robust

23 This is a convenient intermediate form for deriving bounds. For positive semidefinite matri-
ces A,B, we say that B dominates A, B � A, if B − A is positive semidefinite. It follows
that N (U A U�) ≤ N (U B U�) for any matrix U and any matrix function N (·) that is non-
decreasing under positive additions. Rotationally invariant non-decreasing functions N (·) include
all non-decreasing functions of the eigenvalues, e.g.L2 norm maxλi, trace

∑
λi, Frobenius norm√∑

λ2
i . For a vector a and positive B, a�B a ≤ k if and only if a a� � k B−1. (Proof: Conju-

gate by B1/2 and then by a (B1/2 a)-reducing Householder rotation to reduce the question to the
equivalence of 0 � Diag

(
k − u2, k, . . . , k

)
and u2 ≤ k, where u2 = ‖B1/2 a‖2). Bounds of

the form ‖U a‖2 ≤ kN (U B−1U�) follow for any U and any N (·) for which N (v v�) = ‖v‖2,
e.g. L2 norm, trace, Frobenius norm.
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cost model in which δg is globally bounded, this already gives asymptotic bounds of
order O(‖H−1‖‖δg‖) ∼ O(‖δg‖/√nz − nx) for the state perturbation, regardless of
whether an outlier occurred. For non-robust cost models we have to use an inlier criterion
to limit δg. For the least squares observation model with rejection test (42), �z�z� �
α
(
Wi ±Wi J�

i H−1
∓ Ji Wi

)−1
and hence the maximum state perturbation due to a declared-

inlying observation zi is:

δx δx� � αH−1
∓ Ji Wi

(
Wi ±Wi J�

i H−1
∓ Ji Wi

)−1
Wi J�

i H−1
∓

= α
(
H−1

− − H−1
+
)

(44)

≈ αH−1
± Ji W−1

i J�
i H−1

± (45)

so, e.g., δx� H± δx ≤ αTrace
(
Ji H−1

± J�
i W−1

i

)
and ‖U δx‖2 ≤ αTrace

Ji H−1
± U� U H−1

± J�
i W−1

i , where W−1
i is the nominal covariance of zi. Note that these bounds

are based on changes in the estimated state x±. They do not directly control perturbations
w.r.t. the true one x0. The combined influence of several (k � nz − nx) observations is
given by summing their δg’s.

10.4 Sensitivity Analysis

This section gives some simple figures of merit that can be used to quantify network
redundancy and hence reliability. First, in δf(x0) ≈ δf(x+) + 1

2 δg(x+)� H−1
− δg(x+),

each cost contribution δf(x0) is split into two parts: the visible residual δf(x+) at the fitted
state x+ ; and 1

2 δx� H− δx, the change in the base cost f−(x) due to the state perturbation
δx = H−1

− δg(x+) induced by the observation. Ideally, we would like the state perturbation
to be small (for stability) and the residual to be large (for outlier detectability). In other
words, we would like the following masking factor to be small (mi � 1) for each
observation:

mi ≡
δg(x+)� H−1

− δg(x+)
2 δf(x+) + δg(x+)� H−1

− δg(x+)
(46)

=
�zi(x+)� Wi Ji H−1

− J�
i Wi�zi(x+)

�zi(x+)�
(
Wi + Wi Ji H−1

− J�
i Wi

)�zi(x+)
(47)

(Here, δf should be normalized to have minimum value 0 for an exact fit). If mi is known,
the outlier test becomes δf(x+)/(1 −mi) ≥ α. The masking mi depends on the relative
size of δg and δf, which in general depends on the functional form of δf and the specific
deviation involved. For robust cost models, a bound on δg may be enough to bound mi

for outliers. However, for least squares case (�z form), and more generally for quadratic
cost models (such as robust models near the origin), mi depends only on the direction of
�zi, not on its size, and we have a global L2 matrix norm based bound mi ≤ ν

1+ν where
ν = ‖L� Ji H−1

− J�
i L‖2 ≤ Trace

(
Ji H−1

− J�
i W
)

and L L� = Wi is a Cholesky decomposition
of Wi. (These bounds become equalities for scalar observations).

The stability of the state estimate is determined by the total cost Hessian (information
matrix) H. A large H implies a small state estimate covariance H−1 and also small responses
δx ≈ −H−1δg to cost perturbations δg. The sensitivity numbers si ≡ Trace

(
H−1

+δHi

)

are a useful measure of the relative amount of information contributed to H+ by each
observation. They sum to the model dimension —

∑
i si = nx because

∑
i δHi = H+
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— so they count “how many parameters worth” of the total information the observation
contributes. Some authors prefer to quote redundancy numbers ri ≡ ni − si, where
ni is the effective number of independent observations contained in zi. The redundancy
numbers sum to nz − nx, the total redundancy of the system. In the least squares case,
si = Trace

(
Ji H−1

+ J�
i W

)
and mi = si for scalar observations, so the scalar outlier test

becomes δf(x+)/ri ≥ α. Sensitivity numbers can also be defined for subgroups of the
parameters in the form Trace(U H−1δH), where U is an orthogonal projection matrix that
selects the parameters of interest. Ideally, the sensitivities of each subgroup should be
spread evenly across the observations: a large si indicates a heavily weighted observation,
whose incorrectness might significantly compromise the estimate.

10.5 Model Selection

It is often necessary to chose between several alternative models of the cameras or scene,
e.g. additional parameters for lens distortion, camera calibrations that may or may not have
changed between images, coplanarity or non-coplanarity of certain features. Over-special
models give biased results, while over-general ones tend to be noisy and unstable. We
will consider only nested models, for which a more general model is specialized to a
more specific one by freezing some of its parameters at default values (e.g. zero skew or
lens distortion, equal calibrations, zero deviation from a plane). Let: x be the parameter
vector of the more general model; f(x) be its cost function; c(x) = 0 be the parameter
freezing constraints enforcing the specialization; k be the number of parameters frozen; x0
be the true underlying state; xg be the optimal state estimate for the general model (i.e. the
unconstrained minimum of f(x)); and xs be the optimal state estimate for the specialized
one (i.e. the minimum of f(x) subject to the constraints c(x) = 0). Then, under the
null hypothesis that the specialized model is correct, c(x0) = 0, and in the asymptotic
limit in which xg − x0 and xs − x0 become Gaussian and the constraints become locally
approximately linear across the width of this Gaussian, the difference in fitted residuals
2 (f(xs)− f(xg)) has a χ2

k distribution24. So if 2 (f(xs)− f(xg)) is less than some suitable
χ2

k decision threshold α, we can accept the hypothesis that the additional parameters take
their default values, and use the specialized model rather than the more general one25.

As before, we can avoid fitting one of the models by using a linearized analysis. First
suppose that we start with a fit of the more general model xg . Let the linearized constraints

at xg be c(xg + δx) ≈ c(xg) + C δx, where C ≡ dc
dx . A straightforward Lagrange

multiplier calculation gives:

2 (f(xs)− f(xg)) ≈ c(xg)� (C H−1C�)−1 c(xg)

xs ≈ xg − H−1C� (C H−1C�)−1 c(xg)
(48)

Conversely, starting from a fit of the more specialized model, the unconstrained minimum is
given by the Newton step: xg ≈ xs−H−1g(xs), and 2 (f(xs)− f(xg)) ≈ g(xs)� H−1g(xs),
where g(xs) is the residual cost gradient at xs. This requires the general-model covariance
24 This happens irrespective of the observation distributions because — unlike the case of adding

an observation — the same observations and cost function are used for both fits.
25 In practice, small models are preferable as they have greater stability and predictive power and

less computational cost. So the threshold α is usually chosen to be comparatively large, to ensure
that the more general model will not be chosen unless there is strong evidence for it.
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H−1 (or an equivalent factorization of H), which may not have been worked out. Suppose
that the additional parameters were simply appended to the model, x→ (x, y) where x is
now the reduced parameter vector of the specialized model and y contains the additional
parameters. Let the general-model cost gradient at (xs, ys) be ( 0

h ) where h = df
dy , and

its Hessian be
(

H A�
A B

)
. A straightforward calculation shows that:

2 (f(xs, ys)− f(xg, yg)) ≈ h� (B− A H−1A�)−1 h
( xg

yg

)
≈ ( xs

ys ) +
(

H−1A�
−1

)
(B− A H−1A�)−1 h

(49)

Given H−1 or an equivalent factorization of H, these tests are relatively inexpensive for
small k. They amount respectively to one step of Sequential Quadratic Programming and
one Newton step, so the results will only be accurate when these methods converge rapidly.

Another, softer, way to handle nested models is to apply a prior δfprior(x) peaked at the
zero of the specialization constraints c(x). If this is weak the data will override it when
necessary, but the constraints may not be very accurately enforced. If it is stronger, we
can either apply an ‘outlier’ test (39, 41) to remove it if it appears to be incorrect, or use
a sticky prior — a prior similar to a robust distribution, with a concentrated central peak
and wide flat tails, that will hold the estimate near the constraint surface for weak data, but
allow it to ‘unstick’ if the data becomes stronger.

Finally, more heuristic rules are often used for model selection in photogrammetry,
for example deleting any additional parameters that are excessively correlated (correlation
coefficient greater than ∼ 0.9) with other parameters, or whose introduction appears to
cause an excessive increase in the covariance of other parameters [49, 50].

11 Network Design

Network design is the problem of planning camera placements and numbers of images
before a measurement project, to ensure that sufficiently accurate and reliable estimates
of everything that needs to be measured are found. We will not say much about design,
merely outlining the basic considerations and giving a few useful rules of thumb. See [5,
chapter 6], [79, 78], [73, Vol.2 §4] for more information.

Factors to be considered in network design include: scene coverage, occlusion / vis-
ibility and feature viewing angle; field of view, depth of field, resolution and workspace
constraints; and geometric strength, accuracy and redundancy. The basic quantitative aids
to design are covariance estimation in a suitably chosen gauge (see §9) and the quality
control tests from §10. Expert systems have been developed [79], but in practice most
designs are still based on personal experience and rules of thumb.

In general, geometric stability is best for ‘convergent’ (close-in, wide baseline, high
perspective) geometries, using wide angle lenses to cover as much of the object as possible,
and large film or CCD formats to maximize measurement precision. The wide coverage
maximizes the overlap between different sub-networks and hence overall network rigidity,
while the wide baselines maximize the sub-network stabilities. The practical limitations
on closeness are workspace, field of view, depth of field, resolution and feature viewing
angle constraints.

Maximizing the overlap between sub-networks is very important. For objects with
several faces such as buildings, images should be taken from corner positions to tie the
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face sub-networks together. For large projects, large scale overview images can be used to
tie together close-in densifying ones. When covering individual faces or surfaces, overlap
and hence stability are improved by taking images with a range of viewing angles rather than
strictly fronto-parallel ones (e.g., for the same number of images, pan-move-pan-move or
interleaved left-looking and right-looking images are stabler than a simple fronto-parallel
track). Similarly, for buildings or turntable sequences, using a mixture of low and high
viewpoints helps stability.

For reliability, one usually plans to see each feature point in at least four images.
Although two images in principle suffice for reconstruction, they offer little redundancy
and no resistance against feature extraction failures. Even with three images, the internal
reliability is still poor: isolated outliers can usually be detected, but it may be difficult to
say which of the three images they occurred in. Moreover, 3–4 image geometries with
widely spaced (i.e. non-aligned) centres usually give much more isotropic feature error
distributions than two image ones.

If the bundle adjustment will include self-calibration, it is important to include a range
of viewing angles. For example for a flat, compact object, views might be taken at regularly
spaced points along a 30–45◦ half-angle cone centred on the object, with 90◦ optical axis
rotations between views.

12 Summary and Recommendations

This survey was written in the hope of making photogrammetric know-how about bundle
adjustment — the simultaneous optimization of structure and camera parameters in visual
reconstruction — more accessible to potential implementors in the computer vision com-
munity. Perhaps the main lessons are the extraordinary versatility of adjustment methods,
the critical importance of exploiting the problem structure, and the continued dominance
of second order (Newton) algorithms, in spite of all efforts to make the simpler first order
methods converge more rapidly.

We will finish by giving a series of recommendations for methods. At present, these
must be regarded as very provisional, and subject to revision after further testing.

Parametrization: (§2.2, 4.5) During step prediction, avoid parameter singularities, infini-
ties, strong nonlinearities and ill-conditioning. Use well-conditioned local (current value
+ offset) parametrizations of nonlinear elements when necessary to achieve this: the local
step prediction parametrization can be different from the global state representation one.
The ideal is to make the parameter space error function as isotropic and as near-quadratic
as possible. Residual rotation or quaternion parametrizations are advisable for rotations,
and projective homogeneous parametrizations for distant points, lines and planes (i.e. 3D
features near the singularity of their affine parametrizations, affine infinity).

Cost function: (§3) The cost should be a realistic approximation to the negative log
likelihood of the total (inlier + outlier) error distribution. The exact functional form of the
distribution is not too critical, however: (i) Undue weight should not be given to outliers
by making the tails of the distribution (the predicted probability of outliers) unrealistically
small. (NB: Compared to most real-world measurement distributions, the tails of a Gaussian
are unrealistically small). (ii) The dispersion matrix or inlier covariance should be a realistic
estimate of the actual inlier measurement dispersion, so that the transition between inliers
and outliers is in about the right place, and the inlier errors are correctly weighted during
fitting.
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Optimization method: (§4, 6, 7) For batch problems use a second order Gauss-Newton
method with sparse factorization (see below) of the Hessian, unless:
• The problem is so large that exact sparse factorization is impractical. In this case consider

either iterative linear system solvers such as Conjugate Gradient for the Newton step,
or related nonlinear iterations such as Conjugate Gradient, or preferably Limited Mem-
ory Quasi-Newton or (if memory permits) full Quasi-Newton (§7, [29, 93, 42]). (None
of these methods require the Hessian). If you are in this case, it would pay to investi-
gate professional large-scale optimization codes such as MINPACK-2, LANCELOT, or
commercial methods from NAG or IMSL (see §C.2).
• If the problem is medium or large but dense (which is unusual), and if it has strong

geometry, alternation of resection and intersection may be preferable to a second order
method. However, in this case Successive Over-Relaxation (SOR) would be even better,
and Conjugate Gradient is likely to be better yet.
• In all of the above cases, good preconditioning is critical (§7.3).
For on-line problems (rather than batch ones), use factorization updating rather than
matrix inverse updating or re-factorization (§B.5). In time-series problems, investigate the
effect of changing the time window (§8.2, [83, 84]), and remember that Kalman filtering
is only the first half-iteration of a full nonlinear method.
Factorization method: (§6.2, B.1) For speed, preserve the symmetry of the Hessian dur-
ing factorization by using: Cholesky decomposition for positive definite Hessians (e.g.
unconstrained problems in a trivial gauge); pivoted Cholesky decomposition for positive
semi-definite Hessians (e.g. unconstrained problems with gauge fixing by subset selec-
tion §9.5); and Bunch-Kauffman decomposition (§B.1) for indefinite Hessians (e.g. the
augmented Hessians of constrained problems, §4.4). Gaussian elimination is stable but a
factor of two slower than these.
Variable ordering: (§6.3) The variables can usually be ordered by hand for regular net-
works, but for more irregular ones (e.g. close range site-modelling) some experimentation
may be needed to find the most efficient overall ordering method. If reasonably compact
profiles can be found, profile representations (§6.3, B.3) are simpler to implement and
faster than general sparse ones (§6.3).
• For dense networks use a profile representation and a “natural” variable ordering: either

features then cameras, or cameras then features, with whichever has the fewest param-
eters last. An explicit reduced system based implementation such as Brown’s method
[19] can also be used in this case (§6.1, A).
• If the problem has some sort of 1D temporal or spatial structure (e.g. image streams,

turntable problems), try a profile representation with natural (simple connectivity) or
Snay’s banker’s (more complex connectivity) orderings (§6.3, [101, 24]). A recursive
on-line updating method might also be useful in this case.
• If the problem has 2D structure (e.g. cartography and other surface coverage problems)

try nested dissection, with hand ordering for regular problems (cartographic blocks),
and a multilevel scheme for more complex ones (§6.3). A profile representation may or
may not be suitable.
• For less regular sparse networks, the choice is not clear. Try minimum degree ordering

with a general sparse representation, Snay’s Banker’s with a profile representation, or
multilevel nested dissection.

For all of the automatic variable ordering methods, try to order any especially highly
connected variables last by hand, before invoking the method.
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Gauge fixing: (§9) For efficiency, use either a trivial gauge or a subset selection method as
a working gauge for calculations, and project the results into whatever gauge you want later
by applying a suitable gauge projector PG (32). Unless you have a strong reason to use an
external reference system, the output gauge should probably be an inner gauge centred on
the network elements you care most about, i.e. the observed features for a reconstruction
problem, and the cameras for a navigation one.

Quality control and network design: (§10) A robust cost function helps, but for overall
system reliability you still need to plan your measurements in advance (until you have
developed a good intuition for this), and check the results afterwards for outlier sensitivity
and over-modelling, using a suitable quality control procedure. Do not underestimate the
extent to which either low redundancy, or weak geometry, or over-general models can
make gross errors undetectable.

A Historical Overview

This appendix gives a brief history of the main developments in bundle adjustment, in-
cluding literature references.

Least squares: The theory of combining measurements by minimizing the sum of their
squared residuals was developed independently by Gauss and Legendre around 1795–1820
[37, 74], [36, Vol.IV, 1–93], about 40 years after robust L1 estimation [15]. Least squares
was motivated by estimation problems in astronomy and geodesy and extensively applied
to both fields by Gauss, whose remarkable 1823 monograph [37, 36] already contains
almost the complete modern theory of least squares including elements of the theory of
probability distributions, the definition and properties of the Gaussian distribution, and a
discussion of bias and the “Gauss-Markov” theorem, which states that least squares gives
the Best Linear Unbiased Estimator (BLUE) [37, 11]. It also introduces the LDL� form of
symmetric Gaussian elimination and the Gauss-Newton iteration for nonlinear problems,
essentially in their modern forms although without explicitly using matrices. The 1828
supplement on geodesy introduced the Gauss-Seidel iteration for solving large nonlinear
systems. The economic and military importance of surveying lead to extensive use of least
squares and several further developments: Helmert’s nested dissection [64] — probably the
first systematic sparse matrix method — in the 1880’s, Cholesky decomposition around
1915, Baarda’s theory of reliability of measurement networks in the 1960’s [7, 8], and
Meissl [87, 89] and Baarda’s [6] theories of uncertain coordinate frames and free networks
[22, 25]. We will return to these topics below.

Second order bundle algorithms: Electronic computers capable of solving reasonably
large least squares problems first became available in the late 1950’s. The basic photogram-
metric bundle method was developed for the U.S. Air Force by Duane C. Brown and his
co-workers in 1957–9 [16, 19]. The initial focus was aerial cartography, but by the late
1960’s bundle methods were also being used for close-range measurements26. The links
with geodesic least squares and the possibility of combining geodesic and other types
of measurements with the photogrammetric ones were clear right from the start. Initially

26 Close range means essentially that the object has significant depth relative to the camera distance,
i.e. that there is significant perspective distortion. For aerial images the scene is usually shallow
compared to the viewing height, so focal length variations are very difficult to disentangle from
depth variations.
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Fig. 9. A schematic history of bundle adjustment.

the cameras were assumed to be calibrated27, so the optimization was over object points
and camera poses only. Self calibration (the estimation of internal camera parameters
during bundle adjustment) was first discussed around 1964 and implemented by 1968
[19]. Camera models were greatly refined in the early 1970’s, with the investigation of
many alternative sets of additional (distortion) parameters [17–19]. Even with stable
and carefully calibrated aerial photogrammetry cameras, self calibration significantly im-
proved accuracies (by factors of around 2–10). This lead to rapid improvements in camera
design as previously unmeasurable defects like film platten non-flatness were found and
corrected. Much of this development was lead by Brown and his collaborators. See [19]
for more of the history and references.

Brown’s initial 1958 bundle method [16, 19] uses block matrix techniques to elimi-
nate the structure parameters from the normal equations, leaving only the camera pose
parameters. The resulting reduced camera subsystem is then solved by dense Gaussian
elimination, and back-substitution gives the structure. For self-calibration, a second reduc-
tion from pose to calibration parameters can be added in the same way. Brown’s method is
probably what most vision researchers think of as ‘bundle adjustment’, following descrip-
tions by Slama [100] and Hartley [58, 59]. It is still a reasonable choice for small dense
networks28, but it rapidly becomes inefficient for the large sparse ones that arise in aerial
cartography and large-scale site modelling.

For larger problems, more of the natural sparsity has to be exploited. In aerial cartog-
raphy, the regular structure makes this relatively straightforward. The images are arranged
in blocks — rectangular or irregular grids designed for uniform ground coverage, formed
from parallel 1D strips of images with about 50–70% forward overlap giving adjacent
stereo pairs or triplets, about 10–20% side overlap, and a few known ground control points

27 Calibration always denotes internal camera parameters (“interior orientation”) in photogram-
metric terminology. External calibration is called pose or (exterior) orientation.

28 A photogrammetric network is dense if most of the 3D features are visible in most of the images,
and sparse if most features appear in only a few images. This corresponds directly to the density
or sparsity of the off-diagonal block (feature-camera coupling matrix) of the bundle Hessian.
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sprinkled sparsely throughout the block. Features are shared only between neighbouring
images, and images couple in the reduced camera subsystem only if they share common
features. So if the images are arranged in strip or cross-strip ordering, the reduced cam-
era system has a triply-banded block structure (the upper and lower bands representing,
e.g., right and left neighbours, and the central band forward and backward ones). Several
efficient numerical schemes exist for such matrices. The first was Gyer & Brown’s 1967 re-
cursive partitioning method [57, 19], which is closely related to Helmert’s 1880 geodesic
method [64]. (Generalizations of these have become one of the major families of modern
sparse matrix methods [40, 26, 11]). The basic idea is to split the rectangle into two halves,
recursively solving each half and gluing the two solutions together along their common
boundary. Algebraically, the variables are reordered into left-half-only, right-half-only and
boundary variables, with the latter (representing the only coupling between the two halves)
eliminated last. The technique is extremely effective for aerial blocks and similar problems
where small separating sets of variables can be found. Brown mentions adjusting a block
of 162 photos on a machine with only 8k words of memory, and 1000 photo blocks were
already feasible by mid-1967 [19]. For less regular networks such as site modelling ones
it may not be feasible to choose an appropriate variable ordering beforehand, but efficient
on-line ordering methods exist [40, 26, 11] (see §6.3).

Independent model methods: These approximate bundle adjustment by calculating a
number of partial reconstructions independently and merging them by pairwise 3D align-
ment. Even when the individual models and alignments are separately optimal, the result
is suboptimal because the the stresses produced by alignment are not propagated back
into the individual models. (Doing so would amount to completing one full iteration of
an optimal recursive decomposition style bundle method — see §8.2). Independent model
methods were at one time the standard in aerial photogrammetry [95, 2, 100, 73], where
they were used to merge individual stereo pair reconstructions within aerial strips into
a global reconstruction of the whole block. They are always less accurate than bundle
methods, although in some cases the accuracy can be comparable.

First order & approximate bundle algorithms: Another recurrent theme is the use of
approximations or iterative methods to avoid solving the full Newton update equations.
Most of the plausible approximations have been rediscovered several times, especially
variants of alternate steps of resection (finding the camera poses from known 3D points) and
intersection (finding the 3D points from known camera poses), and the linearized version of
this, the block Gauss-Seidel iteration. Brown’s group had already experimented with Block
Successive Over-Relaxation (BSOR — an accelerated variant of Gauss-Seidel) by 1964
[19], before they developed their recursive decomposition method. Both Gauss-Seidel and
BSOR were also applied to the independent model problem around this time [95, 2]. These
methods are mainly of historical interest. For large sparse problems such as aerial blocks,
they can not compete with efficiently organized second order methods. Because some
of the inter-variable couplings are ignored, corrections propagate very slowly across the
network (typically one step per iteration), and many iterations are required for convergence
(see §7).

Quality control: In parallel with this algorithmic development, two important theoretical
developments took place. Firstly, the Dutch geodesist W. Baarda led a long-running work-
ing group that formulated a theory of statistical reliability for least squares estimation [7,
8]. This greatly clarified the conditions (essentially redundancy) needed to ensure that
outliers could be detected from their residuals (inner reliability), and that any remaining
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undetected outliers had only a limited effect on the final results (outer reliability). A. Grün
[49, 50] and W. Förstner [30, 33, 34] adapted this theory to photogrammetry around 1980,
and also gave some early correlation and covariance based model selection heuristics de-
signed to control over-fitting problems caused by over-elaborate camera models in self
calibration.

Datum / gauge freedom: Secondly, as problem size and sophistication increased, it
became increasingly difficult to establish sufficiently accurate control points for large
geodesic and photogrammetric networks. Traditionally, the network had been viewed as
a means of ‘densifying’ a fixed control coordinate system — propagating control-system
coordinates from a few known control points to many unknown ones. But this viewpoint
is suboptimal when the network is intrinsically more accurate than the control, because
most of the apparent uncertainty is simply due to the uncertain definition of the control
coordinate system itself. In the early 1960’s, Meissl studied this problem and developed the
first free network approach, in which the reference coordinate system floated freely rather
than being locked to any given control points [87, 89]. More precisely, the coordinates
are pinned to a sort of average structure defined by so-called inner constraints. Owing
to the removal of control-related uncertainties, the nominal structure covariances become
smaller and easier to interpret, and the numerical bundle iteration also converges more
rapidly. Later, Baarda introduced another approach to this theory based on S-transforms
— coordinate transforms between uncertain frames [6, 21, 22, 25].

Least squares matching: All of the above developments originally used manually ex-
tracted image points. Automated image processing was clearly desirable, but it only grad-
ually became feasible owing to the sheer size and detail of photogrammetric images. Both
feature based, e.g. [31, 32], and direct (region based) [1, 52, 55, 110] methods were studied,
the latter especially for matching low-contrast natural terrain in cartographic applications.
Both rely on some form of least squares matching (as image correlation is called in pho-
togrammetry). Correlation based matching techniques remain the most accurate methods
of extracting precise translations from images, both for high contrast photogrammetric
targets and for low contrast natural terrain. Starting from around 1985, Grün and his co-
workers combined region based least squares matching with various geometric constraints.
Multi-photo geometrically constrained matching optimizes the match over multiple im-
ages simultaneously, subject to the inter-image matching geometry [52, 55, 9]. For each
surface patch there is a single search over patch depth and possibly slant, which simulta-
neously moves it along epipolar lines in the other images. Initial versions assumed known
camera matrices, but a full patch-based bundle method was later investigated [9]. Related
methods in computer vision include [94, 98, 67]. Globally enforced least squares match-
ing [53, 97, 76] further stabilizes the solution in low-signal regions by enforcing continuity
constraints between adjacent patches. Patches are arranged in a grid and matched using
local affine or projective deformations, with additional terms to penalize mismatching at
patch boundaries. Related work in vision includes [104, 102]. The inter-patch constraints
give a sparsely-coupled structure to the least squares matching equations, which can again
be handled efficiently by recursive decomposition.
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B Matrix Factorization

This appendix covers some standard material on matrix factorization, including the tech-
nical details of factorization, factorization updating, and covariance calculation methods.
See [44, 11] for more details.

Terminology: Depending on the factorization, ‘L’ stands for lower triangular, ‘U’ or ‘R’
for upper triangular, ‘D’ or ‘S’ for diagonal, ‘Q’ or ‘U’,‘V’ for orthogonal factors.

B.1 Triangular Decompositions

Any matrix A has a family of block (lower triangular)*(diagonal)*(upper triangular) fac-
torizations A = L D U:

A = L D U

(
A11 A12 ··· A1n
A21 A22 ··· A2n...

...
. . .

...
Am1 Am2 ··· Amn

)

=






L11
L21 L22...

...
. . .

...
...

...
Lm1 Lm2 ··· Lmr






(
D1

D2 . . .
Dr

)(
U11 U12 ··· ··· U1n

U22 ··· ··· U2n. . .
...

··· Urn

)

(50)

Lii Di Uii = Aii , i = j

Lij ≡ Aij U−1
jj D−1

j , i > j

Uij ≡ D−1
i L−1

ii Aij , i < j






Aij ≡ Aij −
∑

k<min(i,j) Lik Dk Ukj

= Aij −
∑

k<min(i,j) Aik A
−1

kk Akj

(51)

Here, the diagonal blocks D1 . . .Dr−1 must be chosen to be square and invertible, and r
is determined by the rank of A. The recursion (51) follows immediately from the product
Aij = (L D U)ij =

∑
k≤min(i,j) Lik Dk Ukj . Given such a factorization, linear equations

can be solved by forwards and backwards substitution as in (22–24).
The diagonal blocks of L,D,U can be chosen freely subject to Lii Dii Uii = Aii,

but once this is done the factorization is uniquely defined. Choosing Lii = Dii = 1 so
that Uii = Aii gives the (block) LU decomposition A = L U, the matrix representation
of (block) Gaussian elimination. Choosing Lii = Uii = 1 so that Di = Aii gives the
LDU decomposition. If A is symmetric, the LDU decomposition preserves the symmetry
and becomes the LDL� decomposition A = L D L� where U = L� and D = D�. If A
is symmetric positive definite we can set D = 1 to get the Cholesky decomposition
A = L L�, where Lii L�

ii = Aii (recursively) defines the Cholesky factor Lii of the positive
definite matrix Aii. (For a scalar, Chol(a) =

√
a). If all of the blocks are chosen to be

1×1, we get the conventional scalar forms of these decompositions. These decompositions
are obviously equivalent, but for speed and simplicity it is usual to use the most specific
one that applies: LU for general matrices, LDL� for symmetric ones, and Cholesky for
symmetric positive definite ones. For symmetric matrices such as the bundle Hessian,
LDL� / Cholesky are 1.5–2 times faster than LDU / LU. We will use the general form (50)
below as it is trivial to specialize to any of the others.

Loop ordering: From (51), the ij block of the decomposition depends only on the the
upper left (m− 1)× (m− 1) submatrix and the first m elements of row i and column j of
A, where m = min(i, j). This allows considerable freedom in the ordering of operations
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during decomposition, which can be exploited to enhance parallelism and improve memory
cache locality.

Fill in: If A is sparse, its L and U factors tend to become ever denser as the decomposition
progresses. Recursively expanding Aik and Akj in (51) gives contributions of the form
±Aik A

−1

kk Akl · · ·Apq A
−1

qq Aqj for k, l . . . p, q < min(i, j). So even if Aij is zero, if there
is any path of the form i → k → l → . . . → p → q → j via non-zero Akl with
k, l . . . p, q < min(i, j), the ij block of the decomposition will generically fill-in (become
non-zero). The amount of fill-in is strongly dependent on the ordering of the variables
(i.e. of the rows and columns of A). Sparse factorization methods (§6.3) manipulate this
ordering to minimize either fill-in or total operation counts.

Pivoting: For positive definite matrices, the above factorizations are very stable because
the pivots Aii must themselves remain positive definite. More generally, the pivots may
become ill-conditioned causing the decomposition to break down. To deal with this, it is
usual to search the undecomposed part of the matrix for a large pivot at each step, and
permute this into the leading position before proceeding. The stablest policy is full pivoting
which searches the whole submatrix, but usually a less costly partial pivoting search
over just the current column (column pivoting) or row (row pivoting) suffices. Pivoting
ensures that L and/or U are relatively well-conditioned and postpones ill-conditioning in
D for as long as possible, but it can not ultimately make D any better conditioned than A is.
Column pivoting is usual for the LU decomposition, but if applied to a symmetric matrix
it destroys the symmetry and hence doubles the workload. Diagonal pivoting preserves
symmetry by searching for the largest remaining diagonal element and permuting both
its row and its column to the front. This suffices for positive semidefinite matrices (e.g.
gauge deficient Hessians). For general symmetric indefinite matrices (e.g. the augmented
Hessians

(
H C

C� 0

)
of constrained problems (12)), off-diagonal pivots can not be avoided29,

but there are fast, stable, symmetry-preserving pivoted LDL� decompositions with block
diagonal D having 1 × 1 and 2 × 2 blocks. Full pivoting is possible (Bunch-Parlett
decomposition), but Bunch-Kaufman decomposition which searches the diagonal and
only one or at most two columns usually suffices. This method is nearly as fast as pivoted
Cholesky decomposition (to which it reduces for positive matrices), and as stable LU
decomposition with partial pivoting. Åsen’s method has similar speed and stability but
produces a tridiagonal D. The constrained Hessian

(
H C

C� 0

)
has further special properties

owing to its zero block, but we will not consider these here — see [44, §4.4.6 Equilibrium
Systems].

B.2 Orthogonal Decompositions

For least squares problems, there is an alternative family of decompositions based on
orthogonal reduction of the Jacobian J = dz

dx . Given any rectangular matrix A, it can be
decomposed as A = Q R where R is upper triangular and Q is orthogonal (i.e., its columns
are orthonormal unit vectors). This is called the QR decomposition of A. R is identical
to the right Cholesky factor of A� A = (R� Q�)(Q R) = R� R. The solution of the linear
29 The archetypical failure is the unstable LDL� decomposition of the well-conditioned symmetric

indefinite matrix ( ε 1
1 0 ) =

( 1 0
1/ε 1

)(
ε 0
0 −1/ε

)(
1 1/ε
0 1

)
, for ε → 0. Fortunately, for small

diagonal elements, permuting the dominant off-diagonal element next to the diagonal and leaving
the resulting 2 × 2 block undecomposed in D suffices for stability.
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least squares problem minx ‖A x−b‖2 is x = R−1Q� b, and R−1Q� is the Moore-Penrose
pseduo-inverse of A. The QR decomposition is calculated by finding a series of simple
rotations that successively zero below diagonal elements of A to form R, and accumulating
the rotations in Q, Q� A = R. Various types of rotations can be used. Givens rotations
are the fine-grained extreme: one-parameter 2× 2 rotations that zero a single element of
A and affect only two of its rows. Householder reflections are coarser-grained reflections
in hyperplanes 1 − 2 v v�

‖v‖2 , designed to zero an entire below-diagonal column of A and
affecting all elements of A in or below the diagonal row of that column. Intermediate
sizes of Householder reflections can also be used, the 2 × 2 case being computationally
equivalent, and equal up to a sign, to the corresponding Givens rotation. This is useful for
sparse QR decompositions, e.g. multifrontal methods (see §6.3 and [11]). The Householder
method is the most common one for general use, owing to its speed and simplicity. Both
the Givens and Householder methods calculate R explicitly, but Q is not calculated directly
unless it is explicitly needed. Instead, it is stored in factorized form (as a series of 2 × 2
rotations or Householder vectors), and applied piecewise when needed. In particular, Q� b
is needed to solve the least squares system, but it can be calculated progressively as part of
the decomposition process. As for Cholesky decomposition, QR decomposition is stable
without pivoting so long as A has full column rank and is not too ill-conditioned. For
degenerate A, Householder QR decomposition with column exchange pivoting can be
used. See [11] for more information about QR decomposition.

Both QR decomposition of A and Cholesky decomposition of the normal matrix A� A
can be used to calculate the Cholesky / QR factor R and to solve least squares problems
with design matrix / Jacobian A. The QR method runs about as fast as the normal / Cholesky
one for square A, but becomes twice as slow for long thin A (i.e. many observations in
relatively few parameters). However, the QR is numerically much stabler than the normal /
Cholesky one in the following sense: if A has condition number (ratio of largest to smallest
singular value) c and the machine precision is ε, the QR solution has relative error O(cε),
whereas the normal matrix A� A has condition number c2 and its solution has relative error
O(c2ε). This matters only if c2ε approaches the relative accuracy to which the solution
is required. For example, even in accurate bundle adjustments, we do not need relative
accuracies greater than about 1 : 106. As ε ∼ 10−16 for double precision floating point,
we can safely use the normal equation method for c(J) � 105, whereas the QR method is
safe up to c(J) � 1010, where J is the bundle Jacobian. In practice, the Gauss-Newton /
normal equation approach is used in most bundle implementations.

Individual Householder reflections are also useful for projecting parametrizations of
geometric entities orthogonal to some constraint vector. For example, for quaternions
or homogeneous projective vectors X, we often want to enforce spherical normalization
‖X‖2 = 1. To first order, only displacements δX orthogonal toX are allowed,X� δX = 0.
To parametrize the directions we can move in, we need a basis for the vectors orthogonal
to X. A Householder reflection Q based on X converts X to (1 0 . . . 0)� and hence the
orthogonal directions to vectors of the form (0 ∗ . . . ∗)�. So if U contains rows 2–n of Q,

we can reduce Jacobians d
dX to the n − 1 independent parameters δu of the orthogonal

subspace by post-multiplying by U�, and once we have solved for δu, we can recover
the orthogonal δX ≈ U δu by premultiplying by U. Multiple constraints can be enforced
by successive Householder reductions of this form. This corresponds exactly to the LQ
method for solving constrained least squares problems [11].
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L = profile cholesky decomp(A)
for i = 1 to n do

for j = first(i) to i do

a = Aij −
j−1∑

k=max(first(i),first(j))

Lik Ljk

Lij = (j < i) ? a / Ljj :
√
a

x = profile cholesky forward subs(A, b)
for i = first(b) to n do

xi =
(

bi −
i−1∑

k=max(first(i),first(b))

Lik xk

)
/ Lii

y = profile cholesky back subs(A, x)
y = x
for i = last(b) to 1 step −1 do

for k = max(first(i), first(y)) to i do
yk = yk − yi Lik

yi = yi / Lii

Fig. 10. A complete implementation of profile Cholesky decomposition.

B.3 Profile Cholesky Decomposition

One of the simplest sparse methods suitable for bundle problems is profile Cholesky
decomposition. With natural (features then cameras) variable ordering, it is as efficient
as any method for dense networks (i.e. most features visible in most images, giving dense
camera-feature coupling blocks in the Hessian). With suitable variable ordering30, it is also
efficient for some types of sparse problems, particularly ones with chain-like connectivity.

Figure 10 shows the complete implementation of profile Cholesky, including decom-
position L L� = A, forward substitution x = L−1b, and back substitution y = L−� x.
first(b), last(b) are the indices of the first and last nonzero entries of b, and first(i) is the
index of the first nonzero entry in row i of A and hence L. If desired, L, x, y can overwrite
A,b, x during decomposition to save storage. As always with factorizations, the loops can
be reordered in several ways. These have the same operation counts but different access
patterns and hence memory cache localities, which on modern machines can lead to sig-
nificant performance differences for large problems. Here we store and access A and L
consistently by rows.

B.4 Matrix Inversion and Covariances

When solving linear equations, forward-backward substitutions (22, 24) are much faster
than explicitly calculating and multiplying by A−1, and numerically stabler too. Explicit
inverses are only rarely needed, e.g. to evaluate the dispersion (“covariance”) matrix H−1.
Covariance calculation is expensive for bundle adjustment: no matter how sparse H may be,
H−1 is always dense. Given a triangular decomposition A = L D U, the most obvious way
to calculate A−1 is via the product A−1 = U−1D−1L−1, where L−1 (which is lower triangular)
is found using a recurrence based on either L−1L = 1 or L L−1 = 1 as follows (and similarly
but transposed for U):

(L−1)ii = (Lii)−1, (L−1)ji = −L−1
jj

(
j−1∑

k=i

Ljk (L−1)ki

)

= −
(

j∑

k=i+1

(L−1)jk Lki

)

L−1
ii

i=1...n , j=i+1...n i=n...1 , j=n...i+1

(52)
30 Snay’s Banker’s strategy (§6.3, [101, 24]) seems to be one of the most effective ordering strategies.
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Alternatively [45, 11], the diagonal and the (zero) upper triangle of the linear system
U A−1 = D−1L−1 can be combined with the (zero) lower triangle of A−1L = U−1D−1 to give
the direct recursion (i = n . . . 1 and j = n . . . i + 1):

(A−1)ji = −
(

n∑

k=i+1

(A−1)jk Lki

)

L−1
ii , (A−1)ij = −U−1

ii

(
n∑

k=i+1

Uik (A−1)kj

)

(A−1)ii = U−1
ii

(

D−1
i L−1

ii −
n∑

k=i+1

Uik (A−1)ki

)

=

(

U−1
ii D−1

i −
n∑

k=i+1

(A−1)ik Lki

)

L−1
ii

(53)

In the symmetric case (A−1)ji = (A−1)ij so we can avoid roughly half of the work. If only a
few blocks of A−1 are required (e.g. the diagonal ones), this recursion has the property that
the blocks of A−1 associated with the filled positions of L and U can be calculated without
calculating any blocks associated with unfilled positions. More precisely, to calculate
(A−1)ij for which Lji (j > i) or Uji (j < i) is non-zero, we do not need any block
(A−1)kl for which Llk = 0 (l > k) or Ulk = 0 (l < k) 31. This is a significant saving if
L,U are sparse, as in bundle problems. In particular, given the covariance of the reduced
camera system, the 3D feature variances and feature-camera covariances can be calculated
efficiently using (53) (or equivalently (17), where A ← Hss is the block diagonal feature
Hessian and D2 is the reduced camera one).

B.5 Factorization Updating

For on-line applications (§8.2), it is useful to be able to update the decomposition A =
L D U to account for a (usually low-rank) change A → A ≡ A ± B W C. Let B ≡ L−1B
and C ≡ C U−1 so that L−1A U−1 = D ± B W C. This low-rank update of D can be LDU
decomposed efficiently. Separating the first block of D from the others we have:

(
D1

D2

)
±
(

B1

B2

)
W ( C1 C2 ) =

(
1

±B2 W C1 D
−1
1 1

)(
D1

D2

)(
1 ±D

−1
1 B1 W C2

1

)

D1 ≡ D1 ± B1 W C1 D2 ≡ D2 ± B2

(
W ∓W C1 D

−1

1 B1 W
)

C2

(54)

D2 is a low-rank update of D2 with the same C2 and B2 but a different W. Evaluating
this recursively and merging the resulting L and U factors into L and U gives the updated

31 This holds because of the way fill-in occurs in the LDU decomposition. Suppose that we want to
find (A−1)ij , where j > i and Lji �= 0. For this we need (A−1)kj for all non-zero Uik, k > i. But
for these Ajk = Lji Di Uik + . . .+ Ajk �= 0, so (A−1)kj is associated with a filled position and
will already have been evaluated.
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decomposition32 A = L D U :

W(1) ← ±W ; B(1) ← B ; C(1) ← C ;
for i = 1 to n do

Bi ← B(i)
i ; Ci ← C(i)

i ; Di ← Di + Bi W(i) Ci ;

W(i+1) ← W(i) −W(i) Ci D
−1

i Bi W(i) =
(
(W(i))−1 + Ci D−1

i Bi

)−1

;

for j = i + 1 to n do

B(i+1)
j ← B(i)

j − Lji Bi ; Lji ← Lji + B(i+1)
j W(i+1) Ci D−1

i ;
C(i+1)

j ← C(i)
j − Ci Uij ; Uij ← Uij + D−1

i Bi W(i+1) C(i+1)
j ;

(55)

The W−1 form of the W update is numerically stabler for additions (‘+’ sign in A±B W C
with positive W), but is not usable unless W(i) is invertible. In either case, the update
takes time O((k2 + b2)N2

)
where A is N×N , W is k×k and the Di are b×b. So other

things being equal, k should be kept as small as possible (e.g. by splitting the update into
independent rows using an initial factorization of W, and updating for each row in turn).
The scalar Cholesky form of this method for a rank one update A→ A + w b b� is:

w(1) ← w ; b(1) ← b ;
for i = 1 to n do

bi ← b(i)
i /Lii ; di ← 1 + w(i) b

2
i ; Lii ← Lii

√
di ;

w(i+1) ← w(i)/di ;
for j = i + 1 to n do

b(i+1)
j ← b(i)

j − Lji bi ; Lji ←
(

Lji + b(i+1)
j w(i+1) bi

)√
di ;

(56)

This takes O(n2
)

operations. The same recursion rule (and several equivalent forms) can
be derived by reducing (L b)� to an upper triangular matrix using Givens rotations or
Householder transformations [43, 11].

C Software

C.1 Software Organization

For a general purpose bundle adjustment code, an extensible object-based organization is
natural. The measurement network can be modelled as a network of objects, representing
measurements and their error models and the different types of 3D features and camera
models that they depend on. It is obviously useful to allow the measurement, feature and
camera types to be open-ended. Measurements may be 2D or 3D, implicit or explicit, and
many different robust error models are possible. Features may range from points through
curves and homographies to entire 3D object models. Many types of camera and lens

32 Here, B(i)
j = Bj − ∑i−1

k=1 Ljk Bk =
∑j

k=i Ljk Bk and C(i)
j = Cj − ∑i−1

k=1 Ck Lkj =∑j
k=i Ck Ukj accumulate L−1B and C U−1. For the L,U updates one can also use W(i+1) Ci D−1

i =
W(i) Ci D

−1
i and D−1

i Bi W(i+1) = D
−1
i Bi W(i).
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distortion models exist. If the scene is dynamic or articulated, additional nodes representing
3D transformations (kinematic chains or relative motions) may also be needed.

The main purpose of the network structure is to predict observations and their Jacobians
w.r.t. the free parameters, and then to integrate the resulting first order parameter updates
back into the internal 3D feature and camera state representations. Prediction is essentially
a matter of systematically propagating values through the network, with heavy use of the
chain rule for derivative propagation. The network representation must interface with a
numerical linear algebra one that supports appropriate methods for forming and solving the
sparse, damped Gauss-Newton (or other) step prediction equations. A fixed-order sparse
factorization may suffice for simple networks, while automatic variable ordering is needed
for more complicated networks and iterative solution methods for large ones.

Several extensible bundle codes exist, but as far as we are aware, none of them are
currently available as freeware. Our own implementations include:
• Carmen [59] is a program for camera modelling and scene reconstruction using itera-

tive nonlinear least squares. It has a modular design that allows many different feature,
measurement and camera types to be incorporated (including some quite exotic ones
[56, 63]). It uses sparse matrix techniques similar to Brown’s reduced camera system
method [19] to make the bundle adjustment iteration efficient.

• Horatio (http://www.ee.surrey.ac.uk/Personal/P.McLauchlan/horatio/html, [85], [86],
[83], [84]) is a C library supporting the development of efficient computer vision ap-
plications. It contains support for image processing, linear algebra and visualization,
and will soon be made publicly available. The bundle adjustment methods in Horatio,
which are based on the Variable State Dimension Filter (VSDF) [83, 84], are being
commercialized. These algorithms support sparse block matrix operations, arbitrary
gauge constraints, global and local parametrizations, multiple feature types and camera
models, as well as batch and sequential operation.

• vxl: This modular C++ vision environment is a new, lightweight version of the Tar-
getJr/IUE environment, which is being developed mainly by the Universities of Oxford
and Leuven, and General Electric CRD. The initial public release on
http://www.robots.ox.ac.uk/∼vxl will include an OpenGL user interface and classes
for multiple view geometry and numerics (the latter being mainly C++ wrappers to well
established routines from Netlib — see below). A bundle adjustment code exists for it
but is not currently planned for release [28, 62].

C.2 Software Resources

A great deal of useful numerical linear algebra and optimization software is available on
the Internet, although more commonly in Fortran than in C/C++. The main reposi-
tory is Netlib at http://www.netlib.org/. Other useful sites include: the ‘Guide to Avail-
able Mathematical Software’ GAMS at http://gams.nist.gov; the NEOS guide http://www-
fp.mcs.anl.gov/otc/Guide/, which is based in part on Moré & Wright’s guide book [90]; and
the Object Oriented Numerics page http://oonumerics.org. For large-scale dense linear al-
gebra, LAPACK (http://www.netlib.org/lapack, [3]) is the best package available. However
it is optimized for relatively large problems (matrices of size 100 or more), so if you are solv-
ing many small ones (size less than 20 or so) it may be faster to use the older LINPACK and
EISPACK routines. These libraries all use the BLAS (Basic Linear Algebra Subroutines)
interface for low level matrix manipulations, optimized versions of which are available from
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most processor vendors. They are all Fortran based, but C/C++ versions and interfaces
exist (CLAPACK,
http://www.netlib.org/clapack; LAPACK++, http://math.nist.gov/lapack++). For sparse
matrices there is a bewildering array of packages. One good one is Boeing’s SPOOLES
(http://www.netlib.org/linalg/spooles/spooles.2.2.html) which implements sparse Bunch-
Kaufman decomposition in C with several ordering methods. For iterative linear system
solvers implementation is seldom difficult, but there are again many methods and imple-
mentations. The ‘Templates’ book [10] contains potted code. For nonlinear optimization
there are various older codes such as MINPACK, and more recent codes designed mainly
for very large problems such as MINPACK-2 (ftp://info.mcs.anl.gov/pub/MINPACK-2)
and LANCELOT (http://www.cse.clrc.ac.uk/Activity/LANCELOT). (Both of these latter
codes have good reputations for other large scale problems, but as far as we are aware they
have not yet been tested on bundle adjustment). All of the above packages are freely avail-
able. Commercial vendors such as NAG (ttp://www.nag.co.uk) and IMSL (www.imsl.com)
have their own optimization codes.

Glossary

This glossary includes a few common terms from vision, photogrammetry, numerical optimization
and statistics, with their translations.

Additional parameters: Parameters added to the basic perspective model to represent lens distor-
tion and similar small image deformations.

α-distribution: A family of wide tailed probability distributions, including the Cauchy distribu-
tion (α = 1) and the Gaussian (α = 2).

Alternation: A family of simplistic and largely outdated strategies for nonlinear optimization (and
also iterative solution of linear equations). Cycles through variables or groups of variables, opti-
mizing over each in turn while holding all the others fixed. Nonlinear alternation methods usually
relinearize the equations after each group, while Gauss-Seidel methods propagate first order cor-
rections forwards and relinearize only at the end of the cycle (the results are the same to first
order). Successive over-relaxation adds momentum terms to speed convergence. See separa-
ble problem. Alternation of resection and intersection is a naı̈ve and often-rediscovered bundle
method.

Asymptotic limit: In statistics, the limit as the number of independent measurements is increased
to infinity, or as the second order moments dominate all higher order ones so that the posterior
distribution becomes approximately Gaussian.

Asymptotic convergence: In optimization, the limit of small deviations from the solution, i.e. as
the solution is reached. Second order or quadratically convergent methods such as Newton’s
method square the norm of the residual at each step, while first order or linearly convergent
methods such as gradient descent and alternation only reduce the error by a constant factor at
each step.

Banker’s strategy: See fill in, §6.3.

Block: A (possibly irregular) grid of overlapping photos in aerial cartography.

Bunch-Kauffman: A numerically efficient factorization method for symmetric indefinite matrices,
A = L D L� where L is lower triangular and D is block diagonal with 1 × 1 and 2 × 2 blocks
(§6.2, B.1).

Bundle adjustment: Any refinement method for visual reconstructions that aims to produce jointly
optimal structure and camera estimates.
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Calibration: In photogrammetry, this always means internal calibration of the cameras. See inner
orientation.

Central limit theorem: States that maximum likelihood and similar estimators asymptotically have
Gaussian distributions. The basis of most of our perturbation expansions.

Cholesky decomposition: A numerically efficient factorization method for symmetric positive def-
inite matrices, A = L L� where L is lower triangular.

Close Range: Any photogrammetric problem where the scene is relatively close to the camera,
so that it has significant depth compared to the camera distance. Terrestrial photogrammetry as
opposed to aerial cartography.

Conjugate gradient: A cleverly accelerated first order iteration for solving positive definite linear
systems or minimizing a nonlinear cost function. See Krylov subspace.

Cost function: The function quantifying the total residual error that is minimized in an adjustment
computation.

Cramér-Rao bound: See Fisher information.

Criterion matrix: In network design, an ideal or desired form for a covariance matrix.

Damped Newton method: Newton’s method with a stabilizing step control policy added. See
Levenberg-Marquardt.

Data snooping: Elimination of outliers based on examination of their residual errors.

Datum: A reference coordinate system, against which other coordinates and uncertainties are mea-
sured. Our principle example of a gauge.

Dense: A matrix or system of equations with so few known-zero elements that it may as well be
treated as having none. The opposite of sparse. For photogrammetric networks, dense means that
the off-diagonal structure-camera block of the Hessian is dense, i.e. most features are seen in most
images.

Descent direction: In optimization, any search direction with a downhill component, i.e. that locally
reduces the cost.

Design: The process of defining a measurement network (placement of cameras, number of images,
etc.) to satisfy given accuracy and quality criteria.

Design matrix: The observation-state Jacobian J = dz
dx .

Direct method: Dense correspondence or reconstruction methods based directly on cross-correlat-
ing photometric intensities or related descriptor images, without extracting geometric features.
See least squares matching, feature based method.

Dispersion matrix: The inverse of the cost function Hessian, a measure of distribution spread. In
the asymptotic limit, the covariance is given by the dispersion.

Downdating: On-the-fly removal of observations, without recalculating everything from scratch.
The inverse of updating.

Elimination graph: A graph derived from the network graph, describing the progress of fill in
during sparse matrix factorization.

Empirical distribution: A set of samples from some probability distribution, viewed as an sum-
of-delta-function approximation to the distribution itself. The law of large numbers asserts that
the approximation asymptotically converges to the true distribution in probability.

Fill-in: The tendency of zero positions to become nonzero as sparse matrix factorization progresses.
Variable ordering strategies seek to minimize fill-in by permuting the variables before factor-
ization. Methods include minimum degree, reverse Cuthill-McKee, Banker’s strategies, and
nested dissection. See §6.3.

Fisher information: In parameter estimation, the mean curvature of the posterior log likelihood
function, regarded as a measure of the certainty of an estimate. The Cramér-Rao bound says that
any unbiased estimator has covariance ≥ the inverse of the Fisher information.
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Free gauge / free network: A gauge or datum that is defined internally to the measurement net-
work, rather than being based on predefined reference features like a fixed gauge.

Feature based: Sparse correspondence / reconstruction methods based on geometric image features
(points, lines, homographies . . . ) rather than direct photometry. See direct method.

Filtering: In sequential problems such as time series, the estimation of a current value using all
of the previous measurements. Smoothing can correct this afterwards, by integrating also the
information from future measurements.

First order method / convergence: See asymptotic convergence.

Gauge: An internal or external reference coordinate system defined for the current state and (at least)
small variations of it, against which other quantities and their uncertainties can be measured. The
3D coordinate gauge is also called the datum. A gauge constraint is any constraint fixing a
specific gauge, e.g. for the current state and arbitrary (small) displacements of it. The fact that
the gauge can be chosen arbitrarily without changing the underlying structure is called gauge
freedom or gauge invariance. The rank-deficiency that this transformation-invariance of the cost
function induces on the Hessian is called gauge deficiency. Displacements that violate the gauge
constraints can be corrected by applying an S-transform, whose linear form is a gauge projection
matrix PG .

Gauss-Markov theorem: This says that for a linear system, least squares weighted by the true
measurement covariances gives the Best (minimum variance) Linear Unbiased Estimator or BLUE.

Gauss-Newton method: A Newton-like method for nonlinear least squares problems, in which the
Hessian is approximated by the Gauss-Newton one H ≈ J� W J where J is the design matrix
and W is a weight matrix. The normal equations are the resulting Gauss-Newton step prediction
equations (J� W J) δx = −(J W �z).

Gauss-Seidel method: See alternation.

Givens rotation: A 2 × 2 rotation used to as part of orthogonal reduction of a matrix, e.g. QR,
SVD. See Householder reflection.

Gradient: The derivative of the cost function w.r.t. the parameters g = df
dx .

Gradient descent: Naı̈ve optimization method which consists of steepest descent (in some given
coordinate system) down the gradient of the cost function.

Hessian: The second derivative matrix of the cost function H = d2f
dx2 . Symmetric and positive (semi-

)definite at a cost minimum. Measures how ‘stiff’ the state estimate is against perturbations. Its
inverse is the dispersion matrix.

Householder reflection: A matrix representing reflection in a hyperplane, used as a tool for or-
thogonal reduction of a matrix, e.g. QR, SVD. See Givens rotation.

Independent model method: A suboptimal approximation to bundle adjustment developed for
aerial cartography. Small local 3D models are reconstructed, each from a few images, and then
glued together via tie features at their common boundaries, without a subsequent adjustment to
relax the internal stresses so caused.

Inner: Internal or intrinsic.

Inner constraints: Gauge constraints linking the gauge to some weighted average of the recon-
structed features and cameras (rather than to an externally supplied reference system).

Inner orientation: Internal camera calibration, including lens distortion, etc.

Inner reliability: The ability to either resist outliers, or detect and reject them based on their residual
errors.

Intersection: (of optical rays). Solving for 3D feature positions given the corresponding image
features and known 3D camera poses and calibrations. See resection, alternation.

Jacobian: See design matrix.



366 B. Triggs et al.

Krylov subspace: The linear subspace spanned by the iterated products {Ak b|k = 0 . . . n} of
some square matrix A with some vector b, used as a tool for generating linear algebra and nonlinear
optimization iterations. Conjugate gradient is the most famous Krylov method.

Kullback-Leibler divergence: See relative entropy.

Least squares matching: Image matching based on photometric intensities. See direct method.

Levenberg-Marquardt: A common damping (step control) method for nonlinear least squares
problems, consisting of adding a multiple λD of some positive definite weight matrix D to the
Gauss-Newton Hessian before solving for the step. Levenberg-Marquardt uses a simple rescaling
based heuristic for setting λ, while trust region methods use a more sophisticated step-length
based one. Such methods are called damped Newton methods in general optimization.

Local model: In optimization, a local approximation to the function being optimized, which is easy
enough to optimize that an iterative optimizer for the original function can be based on it. The
second order Taylor series model gives Newton’s method.

Local parametrization: A parametrization of a nonlinear space based on offsets from some current
point. Used during an optimization step to give better local numerical conditioning than a more
global parametrization would.

LU decomposition: The usual matrix factorization form of Gaussian elimination.

Minimum degree ordering: One of the most widely used automatic variable ordering methods for
sparse matrix factorization.

Minimum detectable gross error: The smallest outlier that can be detected on average by an outlier
detection method.

Nested dissection: A top-down divide-and-conquer variable ordering method for sparse matrix
factorization. Recursively splits the problem into disconnected halves, dealing with the separating
set of connecting variables last. Particularly suitable for surface coverage problems. Also called
recursive partitioning.

Nested models: Pairs of models, of which one is a specialization of the other obtained by freezing
certain parameters(s) at prespecified values.

Network: The interconnection structure of the 3D features, the cameras, and the measurements that
are made of them (image points, etc.). Usually encoded as a graph structure.

Newton method: The basic iterative second order optimization method. The Newton step state
update δx = −H−1g minimizes a local quadratic Taylor approximation to the cost function at
each iteration.

Normal equations: See Gauss-Newton method.

Nuisance parameter: Any parameter that had to be estimated as part of a nonlinear parameter
estimation problem, but whose value was not really wanted.

Outer: External. See inner.

Outer orientation: Camera pose (position and angular orientation).

Outer reliability: The influence of unremoved outliers on the final parameter estimates, i.e. the
extent to which they are reliable even though some (presumably small or lowly-weighted) outliers
may remain undetected.

Outlier: An observation that deviates significantly from its predicted position. More generally,
any observation that does not fit some preconceived notion of how the observations should be
distributed, and which must therefore be removed to avoid disturbing the parameter estimates.
See total distribution.

Pivoting: Row and/or column exchanges designed to promote stability during matrix factorization.

Point estimator: Any estimator that returns a single “best” parameter estimate, e.g. maximum
likelihood, maximum a posteriori.

Pose: 3D position and orientation (angle), e.g. of a camera.
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Preconditioner: A linear change of variables designed to improve the accuracy or convergence rate
of a numerical method, e.g. a first order optimization iteration. Variable scaling is the diagonal
part of preconditioning.

Primary structure: The main decomposition of the bundle adjustment variables into structure and
camera ones.

Profile matrix: A storage scheme for sparse matrices in which all elements between the first and
the last nonzero one in each row are stored, even if they are zero. Its simplicity makes it efficient
even if there are quite a few zeros.

Quality control: The monitoring of an estimation process to ensure that accuracy requirements
were met, that outliers were removed or down-weighted, and that appropriate models were used,
e.g. for additional parameters.

Radial distribution: An observation error distribution which retains the Gaussian dependence on
a squared residual error r = x� W x, but which replaces the exponential e−r/2 form with a more
robust long-tailed one.

Recursive: Used of filtering-based reconstruction methods that handle sequences of images or
measurements by successive updating steps.

Recursive partitioning: See nested dissection.

Reduced problem: Any problem where some of the variables have already been eliminated by
partial factorization, leaving only the others. The reduced camera system (20) is the result of
reducing the bundle problem to only the camera variables. (§6.1, 8.2, 4.4).

Redundancy: The extent to which any one observation has only a small influence on the results,
so that it could be incorrect or missing without causing problems. Redundant consenses are the
basis of reliability. Redundancy numbers r are a heuristic measure of the amount of redundancy
in an estimate.

Relative entropy: An information-theoretic measure of how badly a model probability density p1
fits an actual one p0 : the mean (w.r.t. p0) log likelihood contrast of p0 to p1, 〈log(p0/p1)〉p0 .

Resection: (of optical rays). Solving for 3D camera poses and possibly calibrations, given image
features and the corresponding 3D feature positions. See intersection.

Resection-intersection: See alternation.

Residual: The error �z in a predicted observation, or its cost function value.

S-transformation: A transformation between two gauges, implemented locally by a gauge pro-
jection matrix PG .

Scaling: See preconditioner.

Schur complement: Of A in ( A B
C D ) is D − C A−1B. See §6.1.

Second order method / convergence: See asymptotic convergence.

Secondary structure: Internal structure or sparsity of the off-diagonal feature-camera coupling
block of the bundle Hessian. See primary structure.

Self calibration: Recovery of camera (internal) calibration during bundle adjustment.

Sensitivity number: A heuristic number s measuring the sensitivity of an estimate to a given
observation.

Separable problem: Any optimization problem in which the variables can be separated into two
or more subsets, for which optimization over each subset given all of the others is significantly
easier than simultaneous optimization over all variables. Bundle adjustment is separable into 3D
structure and cameras. Alternation (successive optimization over each subset) is a naı̈ve approach
to separable problems.

Separating set: See nested dissection.
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Sequential Quadratic Programming (SQP): An iteration for constrained optimization problems,
the constrained analogue of Newton’s method. At each step optimizes a local model based on a
quadratic model function with linearized constraints.

Sparse: “Any matrix with enough zeros that it pays to take advantage of them” (Wilkinson).

State: The bundle adjustment parameter vector, including all scene and camera parameters to be
estimated.

Sticky prior: A robust prior with a central peak but wide tails, designed to let the estimate ‘unstick’
from the peak if there is strong evidence against it.

Subset selection: The selection of a stable subset of ‘live’ variables on-line during pivoted factor-
ization. E.g., used as a method for selecting variables to constrain with trivial gauge constraints
(§9.5).

Successive Over-Relaxation (SOR): See alternation.

Sum of Squared Errors (SSE): The nonlinear least squares cost function. The (possibly weighted)
sum of squares of all of the residual feature projection errors.

Total distribution: The error distribution expected for all observations of a given type, including
both inliers and outliers. I.e. the distribution that should be used in maximum likelihood estimation.

Trivial gauge: A gauge that fixes a small set of predefined reference features or cameras at given
coordinates, irrespective of the values of the other features.

Trust region: See Levenberg-Marquardt.
Updating: Incorporation of additional observations without recalculating everything from scratch.

Variable ordering strategy: See fill-in.

Weight matrix: An information (inverse covariance) like matrix matrix W, designed to put the
correct relative statistical weights on a set of measurements.

Woodbury formula: The matrix inverse updating formula (18).

References

[1] F. Ackermann. Digital image correlation: Performance and potential applications in pho-
togrammetry. Photogrammetric Record, 11(64):429–439, 1984.

[2] F. Amer. Digital block adjustment. Photogrammetric Record, 4:34–47, 1962.
[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide, Third Edition. SIAM Press, Philadelphia, 1999. LAPACK home page:
http://www.netlib.org/lapack.

[4] C. Ashcraft and J. W.-H. Liu. Robust ordering of sparse matrices using multisection. SIAM
J. Matrix Anal. Appl., 19:816–832, 1998.

[5] K. B. Atkinson, editor. Close Range Photogrammetry and Machine Vision. Whittles Publish-
ing, Roseleigh House, Latheronwheel, Caithness, Scotland, 1996.

[6] W. Baarda. S-transformations and criterion matrices. Netherlands Geodetic Commission,
Publications on Geodesy, New Series, Vol.5, No.1 (168 pages), 1967.

[7] W. Baarda. Statistical concepts in geodesy. Netherlands Geodetic Commission Publications
on Geodesy, New Series, Vol.2, No.4 (74 pages), 1967.

[8] W. Baarda. A testing procedure for use in geodetic networks. Netherlands Geodetic Com-
mission Publications on Geodesy, New Series, Vol.2, No.5 (97 pages), 1968.

[9] E. P. Baltsavias. Multiphoto Geometrically Constrained Matching. PhD thesis, ETH-Zurich,
1992.

[10] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM Press, Philadelphia, 1993.



Bundle Adjustment — A Modern Synthesis 369
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Discussion for Session on Bundle Adjustment

This section contains the discussion that followed the special panel session on
bundle adjustment.

Discussion

Kenichi Kanatani: This is a question related to Richard’s talk. You have obser-
vations and a camera model, you derive some error function and you minimize
over all possible parameter values. But shouldn’t you also be optimizing over
different camera models?
Richard Hartley: That sounds a bit like a loaded question. You’re getting into
the area of model selection for the cameras, which I know you’ve done some work
on yourself. My point of view here is that usually you know what sort of camera
you have, a perspective or push-broom camera or whatever. You may want to
choose between an affine approximation and a full projective camera, or how
many radial distortion parameters to include, but that’s beyond the scope of
what I would normally call bundle adjustment. You often need to initialize and
bundle adjust several times with different models, so that you can compare them
and choose the best. I do that in my program, for example to decide whether
points are coplanar or not. You can use scientific methods like AIC for it if you
want.
Bill Triggs: The place in photogrammetry where this really comes up is “addi-
tional parameters” modelling things like lens distortion, non-flatness of film, etc,
where there is no single best model. Such parameters improve the fit significantly,
but if you add too many, yes, you overfit, and the results get worse. The usual
decision criteria in photogrammetry are based on predicted covariance matrices.
If you add a parameter and the estimated covariance of the something that you
want to measure (3D points or whatever) jumps, or if there is more than say
95% correlation between some pairs of parameters, you declare overfitting and
back off.

The other point is that in many cases, a little regularization — adding a
small prior covariance — is enough to stabilize parameter combinations that are
sometimes poorly controlled, without biasing the results too much in cases when
they are better controlled by the measurements. So within limits, you can often
just take a general model with lots of parameters and fit that, letting the prior
smooth things out if necessary.
P. Anandan: My question is also about model selection. With bundle-adjust-
ment, if you have impoverished data — planar scene, narrow field of view, noisy
points and maybe some outliers, things like that — the question is how stable is
bundle-adjustment under these conditions. Assuming that you’ve got a decent
initial estimate, is it likely that you’ll actually get the correct solution, or will
this kind of error cause you to fail. Is there any wisdom on this?

B. Triggs, A. Zisserman, R. Szeliski (Eds.): Vision Algorithms’99, LNCS 1883, pp. 373–375, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



374 Discussion for Session on Bundle Adjustment

Richard Hartley: My practical experience is that when these situations occur,
data that’s too planar say, it’s best if you can find some sort of additional
constraint to include. Maybe you don’t know the focal length, but you think
it’s surely 1000± 500; or the points may not be coplanar, but they’re probably
coplanar with some large deviation of ten-thousand feet say. That stabilizes your
solution by putting soft constraints on it.
Andrew Fitzgibbon: I agree, and this is also what Bill was talking about. If
you’re viewing a planar scene you’re going to see large correlations in your focal
lengths and motion parameters. If you damp some of the camera parameters
when you discover these correlations, you’ll get a more reliable motion estimate
from your planar scene.
Richard Hartley: You can estimate the camera from a planar scene provided
you start with constraints on the cameras, like known principal point.
Bill Triggs: I think our responses so far have missed an important point. What
is bundle adjustment? – It’s just minimization of your best guess at the true
statistical error for the problem, over all the parameters that you think are im-
portant for the problem. If bundle adjustment is unstable, that’s really another
way of saying that you just don’t have enough information to stably estimate
things in the situation you think you’re in. If some other method — say a lin-
earized one — appears to give you stabler results, its lying. Either it’s biased,
or it’s estimating a different error model or parameters.
P. Anandan: Maybe I’m misunderstanding. Isn’t there also the approach of
minimizing taking a local descent type of approach, so it’s not just the opti-
mization function that could be wrong?
Bill Triggs: Bundle adjustment is a local descent approach. Of course, you
might have convergence to the wrong local minimum.
P. Anandan: Yes, that’s what I’m talking about. . .
Bill Triggs: If bundle adjustment gives you a wrong local minimum, that min-
imum is a feature of the true statistical error surface. So it’s likely that other
methods which attempt to approximate this surface will have similar behaviour
from a similar initialization.
Harry Shum: First a comment: who cares about bundle adjustment if you
have a wrong model? Secondly, I want to ask Richard about camera models.
You mentioned quite a few, and there were at least two that I wasn’t aware of
— the 2D camera and the polynomial cameras.
Richard Hartley: The 2D camera is just my name for the cases where you
have a homography between the world and the images (no translation or planar
scene), or where the camera is a mapping from a plane in 3D onto a line. That
includes the linear push-broom sensors used in sensing satellites, and some X-ray
sensors that image a point source of X-rays on a linear sensor.

The rational polynomial camera is a general model used in the US intelligence
community. It approximately fits a large number of different sensors: ordinary
cameras, SAR, push-broom and push-sweep cameras, and lots of others that I’m
unaware of. Basically, whereas an ordinary perspective camera maps a point in
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space to the quotient of two linear polynomials in the 3D point coordinates, the
rational polynomial camera uses a quotient of two higher degree polynomials. I
have a paper on it in a DARPA IU workshop proceedings if you want the details.



Summary of the Panel Session

P. Anandan1, O. Faugeras2, R. Hartley3, J. Malik4, and J. Mundy3

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
anandan@microsoft.com

2 INRIA, 2004 route des Lucioles, B.P. 93, 06902 Sophia-Antipolis, France
Olivier.Faugeras@sophia.inria.fr

3 General Electric CRD, Schenectady, NY, 12301
hartley@crd.ge.com

4 Dept. of EECS, University of California, Berkeley, CA 94720, USA
malik@cs.berkeley.edu

1 Introduction

The workshop ended with a 75 minute panel session, with Richard Hartley, P.
Anandan, Jitendra Malik, Joe Mundy and Olivier Faugeras as panelists. Each
panelist selected a topic related to the workshop theme that he felt was important
and gave a short position statement on it, followed by questions and discussion.

2 Richard Hartley

Richard Hartley discussed error modelling and self-calibration, arguing that we
should be willing to accept practical compromises rather than leaning too heavily
towards theoretical ideals.

As far as error modelling is concerned, he argued that the precise details
of the assumed error model do not usually seem to be very important in prac-
tice. So given that we seldom know what the true underlying error model is,
it does not seem worthwhile to go to great lengths to get the last few percent
of precision. On the other hand, when combining grossly different error models
it is important to compensate at least approximately, for example by applying
normalizing transformations to the data. Rather than relying too much on the-
oretical optima, you should choose a realistic performance metric (for example
epipolar line distances in fundamental matrix estimation) and monitor how well
you have done.

On calibration vs. self-calibration, he argued that it was usually unwise to
pretend that you know nothing at all about the cameras, as self-calibration from
minimal data (such as only vanishing skew) is often very unstable. It is often
more accurate in practice, e.g. to assume a known principal point at the centre of
the image, rather than hoping that a completely unknown one will be estimated
accurately enough. This sort of information can be included as a prior under
maximum a posteriori (MAP) estimation.
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3 P. Anandan

P. Anandan focused on the limited domain of applicability of current 3D recon-
struction algorithms, and of our reconstruction paradigm in general. He observed
that for limited classes of scenes we can already do many things:

1. Our geometric reconstruction algorithms are nearly optimal. Given a suitable
set of initial correspondences (even with some outliers), we can recover multi-
camera geometry and do ‘point-cloud’ 3D reconstruction nearly as well as
the data will support. And for at least some classes of scene, suitable initial
correspondences can also be recovered.

2. Our techniques for 3D surface representation are also very advanced. We
can do multi-base line stereo to get good quality dense 2.5-D maps, put the
results into surface fitting techniques to get recover 3D shapes, etc.

However, the domain of applicability of all this is limited. Today’s algorithms
work fine for sparse 3D scenes with only a few objects, simple photometry and
few or no inter-object occlusions. But they cannot handle:

– Scenes with significant 3D clutter — your desk, shutters, tree branches
through which the background is seen, etc.

– Scenes with complex photometry, reflections from one surface onto another,
translucency. Almost any scene with glass windows or shiny objects that
reflect others cannot currently be processed.

– Scenes with almost any nontrivial dynamics — moving people, etc.

The point is that if you casually shoot a video in an ordinary everyday envi-
ronment, it will almost certainly not be processable by current reconstruction
algorithms.

To make progress, grouping and segmentation need to be more tightly inte-
grated with reconstruction. One good way to do this is layered representations
built using mixture models and Bayesian estimation. Layers have relatively sim-
ple geometry, are capable of handling occlusions and transparency, and provide
a natural model for both local continuity and global occlusion coherence.

4 Jitendra Malik

Jitendra Malik argued that “the vision community should return to vision from
photogrammetry”:

1. We should declare victory on the reconstruction of 3D geometry. The mathe-
matics of SFM, shape-from-texture, reconstruction from monocular views of
constrained classes such as symmetric objects and SOR’s, etc, is now worked
out, or is at the 95% point. Even though we do not yet have reliable fully
automatic reconstruction software, the hurdles lie elsewhere.

2. The correspondence problem, particularly dense correspondence as needed
for surfaces, is far from being solved. This problem cannot be solved robustly
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and accurately by treating it as a pure, modularized matching problem in
isolation from other visual processing. Variations on themes of maximizing
image cross-correlation can only go so far. Regions without texture and dis-
continuities will be the bane of all such algorithms. Coupling correspondence
with structure recovery helps but that too is only part of the solution.

3. The era where SFM (and other geometrically posed problems) could be
profitably studied in isolation is over. Problems like correspondence are in-
timately linked to grouping and perceptual organization, perhaps even to
recognition. Many apparent difficulties in correspondence simply vanish in
such an integrated view. E.g. we can match untextured regions on a group
to group basis, aligning sharply at discontinuities using the monocular in-
formation.

Several of these issues have the tinge of the bad old days of AI-inspired vision,
with lots of talk but no real, solid results. But there is an ongoing revival, based
on powerful new techniques from probabilistic modeling, graph theory, learning
theory etc. Some (biased) samples: his own group’s work on image segmentation;
Andrew Blake’s group’s work on tracking; Forsyth’s and Zhu’s use of MCMC
techniques for recognition. He ended by encouraging more people to “join the
good fight”. . .

Discussion

The reaction from the audience in the discussion that followed Jitendra Malik’s
presentation was generally supportive:

Jean Ponce: I completely agree with Jitendra, but I think that the problem is
not with geometry alone. People have also looked at photometry, illumination
etc, and all of these fail because of poor segmentation. Looking at inference
systems like probabilities is a good idea, but it’s still going to be very scary. So
long as we don’t know how to solve segmentation, vision is going to remain a
very dirty problem. I find this a little discouraging, but I think that it’s the good
fight, and that we should all be working on it.

Rick Szeliski: I want to thank Jitendra for a very stimulating position. I think
that a positive example of the potential of learning techniques is the tremendous
advances made in face recognition and matching. For example Thomas Vetter’s
and Chris Taylor’s groups have both been able to build 3D models from single
images. If we’re willing to consider constrained sub-problems, and if we have
enough training data to learn from, then working systems can be built that do
not necessarily have any sort of geometric interpretation, but that are able to
learn to do the right thing by example.

5 Joe Mundy

Joe Mundy discussed systems issues. It now takes man years of effort to develop
a competent 3-D vision system. These difficulties cut across various subject areas
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and levels of representation, and they present a formidable barrier to the next
generation of applications.

Code is currently developed essentially one thesis at a time. There is little
representational unity. Cross-fertilization between (or even within) labs is lim-
ited, so a great deal of time is wasted reinventing things that have already been
done. For example it cost GE 1-2 man years of effort to start working on video.
Also, graduate students are not usually experienced software designers, and rel-
atively little of their code is stable and well-organized enough to be reused.

He then gave a brief history of the TargetJr C++ vision environment, and
suggested that it was a reasonable success: it has been used in a number of
projects, it supplies a unified environment for student training, and code sharing
across labs has actually occurred. However the current version is not perfect: it
is a big system (100k lines of code) requiring a heavy infra-structure, and C++
is not easy (tests showed that only 1 in 10 C++ programmers really know the
language). It is likely that TargetJr will evolve to a more open, modular, client-
server architecture with a lightweight Java GUI, a Corba or DCOM backplane,
and specialist modules for the various vision and graphics tasks.

He finished by advocating the Linux/Open Source software model as the
most suitable way to sustain such large, collaborative software efforts. Any re-
strictions on distribution or commercial use prevent potential collaborators from
contributing. (An example is the ‘pay for commercial use’ licence of the Esprit
CGAL computational geometry library, http://www.cs.uu.nl/CGAL, which ex-
cluded it from consideration for TargetJr).

In the discussion, Richard Szeliski suggested that standardization was diffi-
cult when there was disagreement over representations, which algorithms to use,
and details like border effects. Joe Mundy replied that in some areas such as
spatial indexing and Hough voting, there was enough agreement to standardize
many representations and algorithms, and in more difficult ones such as edge
detection at least the input and output representation could be standardized, as
in TargetJr which supports a number of different edge detectors.

6 Olivier Faugeras

Olivier Faugeras made a number of points in support of the geometric approach
to vision:

1. If we believe Popper’s definition of scientific knowledge based on the falsifia-
bility of theories, we have to accept that like physics, chemistry, biology and
computer science, vision geometry — structure from motion and so forth —
is a science. The objects of study are well defined. Quantitative theories exist
and can be tested and criticized by independent observers. But the softer
areas of computer vision (correspondence, perceptual organization . . . ) are
not currently sciences. What phenomena are they trying to study and make
quantitative theories of? What experimental procedures can be used to in-
validate these theories?
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2. Far from being irrelevant to ‘real’ vision, the geometric theories developed
over the last 10 years to model structure from motion, self-calibration, strat-
ified vision, etc, are highly pertinent. They both deepen our understanding
of what is going on when we point cameras at the world, and help to make
practical applications easier to solve. Also, representations of knowledge are
and should be application dependent. Geometry often turns out to be the
most appropriate representation.

3. On the future of vision geometry, he suggested that geometric theorem prov-
ing may prove to be an effective tool for many problems, then argued that
the old AI vision problems need to be seriously reexamined from the stand-
point of both biological vision and mathematics, e.g. by asking what it really
means to segment a set of images.

Discussion

Michal Irani: I must say I’m a little puzzled by your definition of science.
According to you, something becomes science only after it has been solved and
you have the theory for it. So when Galileo had the hypothesis that the earth
is round, he was dealing with religion not science, and he was probably being
naive. That’s my interpretation of your definition.

Olivier Faugeras: I guess my statement was unclear. What I’m saying is that
theories live and die. Science is the way you build and refute them, so the problem
has not been solved just because you have a theory. The Copernican theory of
gravitational attraction was shown to be wrong by Newton, for example. The
important thing is that theories must be criticized, and this doesn’t happen
enough in our field. People come up with theories for structure from motion, but
they’re not being criticized enough.

P. Anandan: I think that it’s unnecessary to worry about whether vision is a
science or not. It’s a field of study that has scientific components, but also other
components. Also, I wanted say that Olivier made an important point in iden-
tifying vision and AI as having the same sort of difficulties. Ultimately, AI and
vision are about trying to develop a theory of reasoning. I think that reasoning
is the only phenomenon that we could actually identify as being studied at a
theoretical level. All the other things with geometry and optics are important,
but the problem that I think eludes us, and will continue to elude us is a theory
of reasoning.

Jitendra Malik: I think that we should be very clear about what vision is.
Vision is not a science, and structure from motion is not a science. Vision is
a sort of a hybrid field with several components: mathematics, science, and
engineering.

First, the mathematical component. This has a precise formulation such as
“given k points in n views can I recover X”. Most of the basic results in structure
from motion are mathematical theorems, and for a theorem you have a simple
test: is it valid or not? Mathematics is a good thing, but it’s not a science.
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Secondly there’s science, which is fundamentally about empirical phenomena.
Biological vision is a science, but I’m not sure whether computer vision is. If you
have phenomena, you can construct models for them, compare with empirical
results, and see how they fit. I think that the view of science being primarily
driven by Popper’s falsifiability is a bit naive. We have to think of it more in terms
of Kuhn’s paradigm shifts. It is an evolutionary process. It’s true that in the end,
scientific papers get written in a falsifiable sense, with some experiment, control,
and so forth. But the way things actually happen is that there is some collection
of facts, vaguely understood, then some model of them, then somebody else
comes along with some inconvenient facts. Models stick around, or get replaced
finally by new ones. That’s the way it works, it doesn’t get falsified with a single
fact.

Finally, there is the engineering aspect of computer vision. For this we have
very clear criteria. Ultimately, in engineering there are specific tasks with specific
performance criteria. You want to recover depth? – Well, measure the depth, say
what your computer vision algorithm does, compute a percentage error. It’s very
simple.

But since we are in a field that has all of these things mixed together, what
we have to do is just keep trying to do good stuff. It’s more important to do
good stuff than to worry about whether it is maths, science, or engineering.

7 General Discussion

The discussion and questions after the presentations was rather diverse and can
only be summarized briefly here. The point that came out most clearly was that
people had never forgotten about segmentation, perceptual organization and so
forth. But for a time there was a feeling that new ideas were needed before we
could start making progress on these problems, whereas vision geometry was
developing very rapidly. However the tide appears to be turning: there seemed
to be a remarkably strong consensus (at least among the vocal minority!) that
we will make significant advances on these difficult mid- and high-level vision
problems in the near future, notably:

1. By exploiting domain constraints, using purpose built parametric models
and optimization/learning over a suitable training set (e.g. for face repre-
sentation, medical applications, as in work by Thomas Vetter, Chris Taylor,
Andrew Blake).

2. By applying ‘new wave Bayesian’ methods — probabilistic networks, HMM’s
and MRF’s for knowledge representation, sampling (MCMC, Condensation)
for calculations, parameter and structure learning algorithms.

Nobody (vocally) disagreed either that significant advances would be made, or
that these rather mathematical tools were the appropriate ones. Even the sugges-
tion that Bayesian networks might prove to be an effective model of some aspects
of human cognition went unchallenged. This consensus was perhaps surprising
given the geometric orientation of the workshop. Certainly, we would not have
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expected to find it a few years ago. But large-scale statistics and optimization
seem now to have become main stream tools.

Comfortingly, there was also a consensus that whether computer vision counts
as mathematics, science, or engineering, it is a domain worth studying.
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