

Probabilistic
Robotics

Probabilistic

Robotics

Sebastian Thrun

Wolfram Burgard

Dieter Fox

The MIT Press
Cambridge, Massachusetts

London, England

© 2006 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales
promotional use. For information, please email special_sales@mitpress.mit.edu or
write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge,
MA 02142.

Typeset in 10/13 Lucida Bright by the authors using LATEX2ε.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Thrun, Sebastian, 1967–
Probabilistic robotics / Sebastian Thrun, Wolfram Burgard, Dieter Fox.
p. cm. – (Intelligent robotics and autonomous agents series)

Includes bibliographical references and index.
ISBN-13: 978-0-262-20162-9 (alk. paper)

1. Robotics. 2. Probabilities. I. Burgard, Wolfram. II. Fox, Dieter. III. Title. IV. In-
telligent robotics and autonomous agents.

TJ211.T575 2005
629.8’92–dc22

2005043346

10 9 8 7 6 5 6 3

Brief Contents

I Basics 1
1 Introduction 3

2 Recursive State Estimation 13

3 Gaussian Filters 39

4 Nonparametric Filters 85

5 Robot Motion 117

6 Robot Perception 149

II Localization 189
7 Mobile Robot Localization: Markov and Gaussian 191

8 Mobile Robot Localization: Grid And Monte Carlo 237

III Mapping 279
9 Occupancy Grid Mapping 281

10 Simultaneous Localization and Mapping 309

11 The GraphSLAM Algorithm 337

12 The Sparse Extended Information Filter 385

13 The FastSLAM Algorithm 437

IV Planning and Control 485
14 Markov Decision Processes 487

15 Partially Observable Markov Decision Processes 513

vi Brief Contents

16 Approximate POMDP Techniques 547
17 Exploration 569

Contents

Preface xvii

Acknowledgments xix

I Basics 1

1 Introduction 3

1.1 Uncertainty in Robotics 3
1.2 Probabilistic Robotics 4
1.3 Implications 9
1.4 Road Map 10
1.5 Teaching Probabilistic Robotics 11
1.6 Bibliographical Remarks 11

2 Recursive State Estimation 13

2.1 Introduction 13
2.2 Basic Concepts in Probability 14
2.3 Robot Environment Interaction 19

2.3.1 State 20
2.3.2 Environment Interaction 22
2.3.3 Probabilistic Generative Laws 24
2.3.4 Belief Distributions 25

2.4 Bayes Filters 26
2.4.1 The Bayes Filter Algorithm 26
2.4.2 Example 28
2.4.3 Mathematical Derivation of the Bayes Filter 31
2.4.4 The Markov Assumption 33

viii Contents

2.5 Representation and Computation 34
2.6 Summary 35
2.7 Bibliographical Remarks 36
2.8 Exercises 36

3 Gaussian Filters 39

3.1 Introduction 39
3.2 The Kalman Filter 40

3.2.1 Linear Gaussian Systems 40
3.2.2 The Kalman Filter Algorithm 43
3.2.3 Illustration 44
3.2.4 Mathematical Derivation of the KF 45

3.3 The Extended Kalman Filter 54
3.3.1 Why Linearize? 54
3.3.2 Linearization Via Taylor Expansion 56
3.3.3 The EKF Algorithm 59
3.3.4 Mathematical Derivation of the EKF 59
3.3.5 Practical Considerations 61

3.4 The Unscented Kalman Filter 65
3.4.1 Linearization Via the Unscented Transform 65
3.4.2 The UKF Algorithm 67

3.5 The Information Filter 71
3.5.1 Canonical Parameterization 71
3.5.2 The Information Filter Algorithm 73
3.5.3 Mathematical Derivation of the Information Filter 74
3.5.4 The Extended Information Filter Algorithm 75
3.5.5 Mathematical Derivation of the Extended

Information Filter 76
3.5.6 Practical Considerations 77

3.6 Summary 79
3.7 Bibliographical Remarks 81
3.8 Exercises 81

4 Nonparametric Filters 85

4.1 The Histogram Filter 86
4.1.1 The Discrete Bayes Filter Algorithm 86
4.1.2 Continuous State 87
4.1.3 Mathematical Derivation of the Histogram

Approximation 89

Contents ix

4.1.4 Decomposition Techniques 92
4.2 Binary Bayes Filters with Static State 94
4.3 The Particle Filter 96

4.3.1 Basic Algorithm 96
4.3.2 Importance Sampling 100
4.3.3 Mathematical Derivation of the PF 103
4.3.4 Practical Considerations and Properties of Particle

Filters 104
4.4 Summary 113
4.5 Bibliographical Remarks 114
4.6 Exercises 115

5 Robot Motion 117

5.1 Introduction 117
5.2 Preliminaries 118

5.2.1 Kinematic Configuration 118
5.2.2 Probabilistic Kinematics 119

5.3 Velocity Motion Model 121
5.3.1 Closed Form Calculation 121
5.3.2 Sampling Algorithm 122
5.3.3 Mathematical Derivation of the Velocity Motion

Model 125
5.4 Odometry Motion Model 132

5.4.1 Closed Form Calculation 133
5.4.2 Sampling Algorithm 137
5.4.3 Mathematical Derivation of the Odometry Motion

Model 137
5.5 Motion and Maps 140
5.6 Summary 143
5.7 Bibliographical Remarks 145
5.8 Exercises 145

6 Robot Perception 149

6.1 Introduction 149
6.2 Maps 152
6.3 Beam Models of Range Finders 153

6.3.1 The Basic Measurement Algorithm 153
6.3.2 Adjusting the Intrinsic Model Parameters 158
6.3.3 Mathematical Derivation of the Beam Model 162

x Contents

6.3.4 Practical Considerations 167
6.3.5 Limitations of the Beam Model 168

6.4 Likelihood Fields for Range Finders 169
6.4.1 Basic Algorithm 169
6.4.2 Extensions 172

6.5 Correlation-Based Measurement Models 174
6.6 Feature-Based Measurement Models 176

6.6.1 Feature Extraction 176
6.6.2 Landmark Measurements 177
6.6.3 Sensor Model with Known Correspondence 178
6.6.4 Sampling Poses 179
6.6.5 Further Considerations 180

6.7 Practical Considerations 182
6.8 Summary 183
6.9 Bibliographical Remarks 184
6.10 Exercises 185

II Localization 189

7 Mobile Robot Localization: Markov and Gaussian 191

7.1 A Taxonomy of Localization Problems 193
7.2 Markov Localization 197
7.3 Illustration of Markov Localization 200
7.4 EKF Localization 201

7.4.1 Illustration 201
7.4.2 The EKF Localization Algorithm 203
7.4.3 Mathematical Derivation of EKF Localization 205
7.4.4 Physical Implementation 210

7.5 Estimating Correspondences 215
7.5.1 EKF Localization with Unknown

Correspondences 215
7.5.2 Mathematical Derivation of the ML Data

Association 216
7.6 Multi-Hypothesis Tracking 218
7.7 UKF Localization 220

7.7.1 Mathematical Derivation of UKF Localization 220
7.7.2 Illustration 223

7.8 Practical Considerations 229

Contents xi

7.9 Summary 232
7.10 Bibliographical Remarks 233
7.11 Exercises 234

8 Mobile Robot Localization: Grid And Monte Carlo 237

8.1 Introduction 237
8.2 Grid Localization 238

8.2.1 Basic Algorithm 238
8.2.2 Grid Resolutions 239
8.2.3 Computational Considerations 243
8.2.4 Illustration 245

8.3 Monte Carlo Localization 250
8.3.1 Illustration 250
8.3.2 The MCL Algorithm 252
8.3.3 Physical Implementations 253
8.3.4 Properties of MCL 253
8.3.5 Random Particle MCL: Recovery from Failures 256
8.3.6 Modifying the Proposal Distribution 261
8.3.7 KLD-Sampling: Adapting the Size of Sample Sets 263

8.4 Localization in Dynamic Environments 267
8.5 Practical Considerations 273
8.6 Summary 274
8.7 Bibliographical Remarks 275
8.8 Exercises 276

III Mapping 279

9 Occupancy Grid Mapping 281

9.1 Introduction 281
9.2 The Occupancy Grid Mapping Algorithm 284

9.2.1 Multi-Sensor Fusion 293
9.3 Learning Inverse Measurement Models 294

9.3.1 Inverting the Measurement Model 294
9.3.2 Sampling from the Forward Model 295
9.3.3 The Error Function 296
9.3.4 Examples and Further Considerations 298

9.4 Maximum A Posteriori Occupancy Mapping 299
9.4.1 The Case for Maintaining Dependencies 299

xii Contents

9.4.2 Occupancy Grid Mapping with Forward Models 301
9.5 Summary 304
9.6 Bibliographical Remarks 305
9.7 Exercises 307

10 Simultaneous Localization and Mapping 309

10.1 Introduction 309
10.2 SLAM with Extended Kalman Filters 312

10.2.1 Setup and Assumptions 312
10.2.2 SLAM with Known Correspondence 313
10.2.3 Mathematical Derivation of EKF SLAM 317

10.3 EKF SLAM with Unknown Correspondences 323
10.3.1 The General EKF SLAM Algorithm 323
10.3.2 Examples 324
10.3.3 Feature Selection and Map Management 328

10.4 Summary 330
10.5 Bibliographical Remarks 332
10.6 Exercises 334

11 The GraphSLAM Algorithm 337

11.1 Introduction 337
11.2 Intuitive Description 340

11.2.1 Building Up the Graph 340
11.2.2 Inference 343

11.3 The GraphSLAM Algorithm 346
11.4 Mathematical Derivation of GraphSLAM 353

11.4.1 The Full SLAM Posterior 353
11.4.2 The Negative Log Posterior 354
11.4.3 Taylor Expansion 355
11.4.4 Constructing the Information Form 357
11.4.5 Reducing the Information Form 360
11.4.6 Recovering the Path and the Map 361

11.5 Data Association in GraphSLAM 362
11.5.1 The GraphSLAM Algorithm with Unknown

Correspondence 363
11.5.2 Mathematical Derivation of the Correspondence

Test 366
11.6 Efficiency Consideration 368
11.7 Empirical Implementation 370

Contents xiii

11.8 Alternative Optimization Techniques 376
11.9 Summary 379
11.10 Bibliographical Remarks 381
11.11 Exercises 382

12 The Sparse Extended Information Filter 385

12.1 Introduction 385
12.2 Intuitive Description 388
12.3 The SEIF SLAM Algorithm 391
12.4 Mathematical Derivation of the SEIF 395

12.4.1 Motion Update 395
12.4.2 Measurement Updates 398

12.5 Sparsification 398
12.5.1 General Idea 398
12.5.2 Sparsification in SEIFs 400
12.5.3 Mathematical Derivation of the Sparsification 401

12.6 Amortized Approximate Map Recovery 402
12.7 How Sparse Should SEIFs Be? 405
12.8 Incremental Data Association 409

12.8.1 Computing Incremental Data Association
Probabilities 409

12.8.2 Practical Considerations 411
12.9 Branch-and-Bound Data Association 415

12.9.1 Recursive Search 416
12.9.2 Computing Arbitrary Data Association

Probabilities 416
12.9.3 Equivalence Constraints 419

12.10 Practical Considerations 420
12.11 Multi-Robot SLAM 424

12.11.1 Integrating Maps 424
12.11.2 Mathematical Derivation of Map Integration 427
12.11.3 Establishing Correspondence 429
12.11.4 Example 429

12.12 Summary 432
12.13 Bibliographical Remarks 434
12.14 Exercises 435

13 The FastSLAM Algorithm 437

13.1 The Basic Algorithm 439

xiv Contents

13.2 Factoring the SLAM Posterior 439
13.2.1 Mathematical Derivation of the Factored SLAM

Posterior 442
13.3 FastSLAM with Known Data Association 444
13.4 Improving the Proposal Distribution 451

13.4.1 Extending the Path Posterior by Sampling a New
Pose 451

13.4.2 Updating the Observed Feature Estimate 454
13.4.3 Calculating Importance Factors 455

13.5 Unknown Data Association 457
13.6 Map Management 459
13.7 The FastSLAM Algorithms 460
13.8 Efficient Implementation 460
13.9 FastSLAM for Feature-Based Maps 468

13.9.1 Empirical Insights 468
13.9.2 Loop Closure 471

13.10 Grid-based FastSLAM 474
13.10.1 The Algorithm 474
13.10.2 Empirical Insights 475

13.11 Summary 479
13.12 Bibliographical Remarks 481
13.13 Exercises 482

IV Planning and Control 485

14 Markov Decision Processes 487

14.1 Motivation 487
14.2 Uncertainty in Action Selection 490
14.3 Value Iteration 495

14.3.1 Goals and Payoff 495
14.3.2 Finding Optimal Control Policies for the Fully

Observable Case 499
14.3.3 Computing the Value Function 501

14.4 Application to Robot Control 503
14.5 Summary 507
14.6 Bibliographical Remarks 509
14.7 Exercises 510

Contents xv

15 Partially Observable Markov Decision Processes 513

15.1 Motivation 513
15.2 An Illustrative Example 515

15.2.1 Setup 515
15.2.2 Control Choice 516
15.2.3 Sensing 519
15.2.4 Prediction 523
15.2.5 Deep Horizons and Pruning 526

15.3 The Finite World POMDP Algorithm 527
15.4 Mathematical Derivation of POMDPs 531

15.4.1 Value Iteration in Belief Space 531
15.4.2 Value Function Representation 532
15.4.3 Calculating the Value Function 533

15.5 Practical Considerations 536
15.6 Summary 541
15.7 Bibliographical Remarks 542
15.8 Exercises 544

16 Approximate POMDP Techniques 547

16.1 Motivation 547
16.2 QMDPs 549
16.3 Augmented Markov Decision Processes 550

16.3.1 The Augmented State Space 550
16.3.2 The AMDP Algorithm 551
16.3.3 Mathematical Derivation of AMDPs 553
16.3.4 Application to Mobile Robot Navigation 556

16.4 Monte Carlo POMDPs 559
16.4.1 Using Particle Sets 559
16.4.2 The MC-POMDP Algorithm 559
16.4.3 Mathematical Derivation of MC-POMDPs 562
16.4.4 Practical Considerations 563

16.5 Summary 565
16.6 Bibliographical Remarks 566
16.7 Exercises 566

17 Exploration 569

17.1 Introduction 569
17.2 Basic Exploration Algorithms 571

17.2.1 Information Gain 571

xvi Contents

17.2.2 Greedy Techniques 572
17.2.3 Monte Carlo Exploration 573
17.2.4 Multi-Step Techniques 575

17.3 Active Localization 575
17.4 Exploration for Learning Occupancy Grid Maps 580

17.4.1 Computing Information Gain 580
17.4.2 Propagating Gain 585
17.4.3 Extension to Multi-Robot Systems 587

17.5 Exploration for SLAM 593
17.5.1 Entropy Decomposition in SLAM 593
17.5.2 Exploration in FastSLAM 594
17.5.3 Empirical Characterization 598

17.6 Summary 600
17.7 Bibliographical Remarks 602
17.8 Exercises 604

Bibliography 607

Index 639

Preface

This book provides a comprehensive introduction into the emerging field
of probabilistic robotics. Probabilistic robotics is a subfield of robotics con-
cerned with perception and control. It relies on statistical techniques for
representing information and making decisions. By doing so, it accommo-
dates the uncertainty that arises in most contemporary robotics applications.
In recent years, probabilistic techniques have become one of the dominant
paradigms for algorithm design in robotics. This monograph provides a first
comprehensive introduction into some of the major techniques in this field.
This book has a strong focus on algorithms. All algorithms in this book
are based on a single overarching mathematical foundation: Bayes rule, and
its temporal extension known as Bayes filters. This unifying mathematical
framework is the core commonality of probabilistic algorithms.
In writing this book, we have tried to be as complete as possible with re-
gards to technical detail. Each chapter describes one or more major algo-
rithms. For each algorithm, we provide the following four things: (1) an ex-
ample implementation in pseudo code; (2) a complete mathematical deriva-
tion from first principles that makes the various assumptions behind each al-
gorithm explicit; (3) empirical results insofar as they further the understand-
ing of the algorithms presented in the book; and (4) a detailed discussion of
the strengths and weaknesses of each algorithm—from a practitioner’s per-
spective. Developing all this for many different algorithms proved to be a
laborious task. The result might at times be a bit difficult to digest for the
casual reader—although skipping the mathematical derivation sections is al-
ways an option! We hope that a careful reader emerges with a much deeper
level of understanding than any superficial, non-mathematical exposition of
this topic would have been able to convey.

xviii Preface

This book is the result of more than a decade of research by us, the authors,
our students, and many of our colleagues in the field. We began writing it
in 1999, hoping that it would take not much more than a few months to
complete this book. Five years have passed, and almost nothing from the
original draft has survived. Through working on this book, we have learned
much more about information and decision theory than we thought we ever
would. We are happy to report that much of what we learned has made it
into this book.
This monograph is written for students, researchers, and practitioners in
robotics. We believe everybody building robots has to develop software.
Hence the material in this book should be relevant to every roboticist. It
should also be of interest to applied statisticians, and people concerned with
real-world sensor data outside the realm of robotics. To serve a wide range
of readers with varying technical backgrounds, we have attempted to make
this book as self-contained as possible. Some prior knowledge of linear alge-
bra and basic probability and statistics will be helpful, but we have included
a primer for the basic laws of probability, and avoided the use of advanced
mathematical techniques throughout this text.
This book is also written for classroom use. Each chapter offers a number
of exercises and suggests hands-on projects. When used in the classroom,
each chapter should be covered in one or two lectures. Chapters should be
skipped or reordered quite arbitrarily; in fact, in our own teachingwe usually
start right in the middle of the book, with Chapter 7. We recommend that the
study of the book be accompanied by practical, hands-on experimentation as
directed by the exercises at the end of each chapter. Nothing more important
in robotics than doing it yourself!
Despite our very best efforts, we believe there will still be techni-
cal errors left in this book. Many of these errors have been corrected
in this third printing of the book. We continue to post corrections on
the book’s Web site, along with other materials relevant to this book:

www.probabilistic-robotics.org
We hope you enjoy this book!

Sebastian Thrun
Wolfram Burgard

Dieter Fox

Acknowledgments

This book would not have been possible without the help and support from
so many friends, family members, students, and colleagues in the field. We
cannot possibly list all of them here.
Much of the material in this book is the result of collaborations with our
current and past students and post-docs. We specifically would like to ac-
knowledge Rahul Biswas, Matthew Deans, Frank Dellaert, James Diebel,
Brian Gerkey, Dirk Hähnel, Johnathan Ko, Cody Kwok, John Langford, Lin
Liao, David Lieb, Benson Limketkai, Michael Littman, Yufeng Liu, Andrew
Lookingbill, Dimitris Margaritis, Michael Montemerlo, Mark Moors, Mark
Paskin, Joelle Pineau, Charles Rosenberg, Nicholas Roy, Aaron Shon, Jamie
Schulte, Dirk Schulz, David Stavens, Cyrill Stachniss, and Chieh-ChihWang,
along with all other past and present members of our labs. Greg Armstrong,
Grinnell More, Tyson Sawyer, and Walter Steiner were instrumental in keep-
ing our robots running over the years.
Much of our research was conducted while we were with Carnegie Mel-
lon University in Pittsburgh, PA, and we thank our former colleagues and
friends at CMU for many inspirational discussions. We also would like to
express our gratitude to Armin Cremers from the University of Bonn who
brought the three of us together in his research group and who set the seed
for our wonderful collaboration.
We are indebted to numerous colleagues whose comments and insights
were instrumental during the course of our research. We would specifi-
cally like to thank Gary Bradski, Howie Choset, Henrik Christensen, Hugh
Durrant-Whyte, Nando de Freitas, Zoubin Gharamani, Geoffrey Gordon,
Steffen Gutmann, Andrew Howards, Leslie Kaelbling, Daphne Koller, Kurt
Konolige Ben Kuipers, John Leonard, TomMitchell, KevinMurphy, Eduardo
Nebot, Paul Newman, Andrew Y. Ng, Reid Simmons, Satinder Singh, Gau-

xx Acknowledgments

rav Sukhatme, Juan Tardós, Ben Wegbreit, and Alex Zelinsky for their feed-
back over the years.
Anita Araneda, Gal Elidan, Udo Frese, Gabe Hoffmann, John Leonard,
Benson Limketkai, Rudolph van der Merwe, Anna Petrovskaya, Bob Wang,
and Stefan Williams gave us extensive comments on earlier drafts of this
book, which we gratefully acknowledge. Chris Manning kindly provided
the Latex macros for this book, and Bob Prior was instrumental in getting
the book published.
A number of agencies and corporations have made this work possible
through generous financial contributions and technical advice. We are par-
ticularly grateful for DARPA’s support under a number of programs (TMR,
MARS, LAGR, SDR,MICA, and CoABS).We also acknowledge funding from
the National Science Foundation, via its CAREER, ITR, and various CISE
grant programs; from the German Research Foundation; and from the Euro-
pean Commission. Generous financial support was also provided by a num-
ber of corporate sponsors and individual donors: Android, Bosch, Daim-
lerChrysler, Intel, Google, Microsoft, Mohr Davidow Ventures, Samsung,
and Volkswagen of America. We specifically thank John Blitch, Doug Gage,
Sharon Heise, James Hendler, Larry Jackel, Alex Krott, Wendell Sykes, and
Ed van Reuth for providing us with ample challenges and guidance through-
out the years. Naturally, the views and conclusions contained in this docu-
ment are those of the authors, and should not be interpreted as necessarily
representing policies or endorsements of any of our sponsors.
We owe our most important acknowledgments to our families, whose love
and dedication carried us through this immense project. We specifically
thank Petra Dierkes-Thrun, Anja Gross-Burgard and Carsten Burgard, and
Luz, Sofia and Karla Fox for their love and support.

P A R T I

Basics

1 Introduction

1.1 Uncertainty in Robotics

Robotics is the science of perceiving and manipulating the physical world
through computer-controlled devices. Examples of successful robotic sys-
tems include mobile platforms for planetary exploration, industrial robotics
arms in assembly lines, cars that travel by themselves, andmanipulators that
assist surgeons. Robotics systems are situated in the physical world, perceive
information on their environments through sensors, andmanipulate through
physical forces.
Whilemuch of robotics is still in its infancy, the idea of “intelligent”manip-
ulating devices has an enormous potential to change society. Wouldn’t it be
great if all our cars were able to safely steer themselves, making car accidents
a notion of the past? Wouldn’t it be great if robots, and not people, would
clean up nuclear disaster sites like Chernobyl? Wouldn’t it be great if our
homes were populated by intelligent assistants that take care of all domestic
repair and maintenance tasks?
To do these tasks, robots have to be able to accommodate the enormous
uncertainty that exists in the physical world. There is a number of factors
that contribute to a robot’s uncertainty.
First and foremost, robot environments are inherently unpredictable. While

the degree of uncertainty in well-structured environments such as assembly
lines is small, environments such as highways and private homes are highly
dynamic and in many ways highly unpredictable. The uncertainty is partic-
ularly high for robots operating in the proximity of people.
Sensors are limited in what they can perceive. Limitations arise from sev-
eral factors. The range and resolution of a sensor is subject to physical limi-
tations. For example, cameras cannot see through walls, and the spatial res-

4 1 Introduction

olution of a camera image is limited. Sensors are also subject to noise, which
perturbs sensor measurements in unpredictable ways and hence limits the
information that can be extracted. And finally, sensors can break. Detecting
a faulty sensor can be extremely difficult.
Robot actuation involves motors that are, at least to some extent, unpre-

dictable. Uncertainty arises from effects like control noise, wear-and-tear,
and mechanical failure. Some actuators, such as heavy-duty industrial robot
arms, are quite accurate and reliable. Others, like low-cost mobile robots, can
be extremely flaky.
Some uncertainty is caused by the robot’s software. All internal models
of the world are approximate. Models are abstractions of the real world.
As such, they only partially model the underlying physical processes of the
robot and its environment. Model errors are a source of uncertainty that has
often been ignored in robotics, despite the fact that most robotic models used
in state-of-the-art robotics systems are rather crude.
Uncertainty is further created through algorithmic approximations. Robots

are real-time systems. This limits the amount of computation that can be
carried out. Many popular algorithms are approximate, achieving timely
response through sacrificing accuracy.
The level of uncertainty depends on the application domain. In some
robotic applications, such as assembly lines, humans can cleverly engineer
the system so that uncertainty is only a marginal factor. In contrast, robots
operating in residential homes or on other planets will have to copewith sub-
stantial uncertainty. Such robots are forced to act even though neither their
sensors, nor their internal models, will provide it with sufficient informa-
tion to make the right decisions with absolute certainty. As robotics is now
moving into the open world, the issue of uncertainty has become a major
stumbling block for the design of capable robot systems. Managing uncer-
tainty is possibly the most important step towards robust real-world robot
systems.
Hence this book.

1.2 Probabilistic Robotics

This book provides a comprehensive overview of probabilistic robotics. Prob-
abilistic robotics is a relatively new approach to robotics that pays tribute to
the uncertainty in robot perception and action. The key idea in probabilistic
robotics is to represent uncertainty explicitly using the calculus of probability

1.2 Probabilistic Robotics 5

theory. Put differently, instead of relying on a single “best guess” as to what
might be the case, probabilistic algorithms represent information by prob-
ability distributions over a whole space of guesses. By doing so, they can
represent ambiguity and degree of belief in a mathematically sound way.
Control choices can be made robust relative the uncertainty that remains,
and probabilistic robotics can even actively chose to reduce their uncertainty
when this appears to be the superior choice. Thus, probabilistic algorithms
degrade gracefully in the face of uncertainty. As a result, they outperform
alternative techniques in many real-world applications.
We shall illustrate probabilistic robotics with two motivating examples:
one pertaining to robot perception, and another to planning and control.
Our first example is mobile robot localization. Robot localization is theMOBILE ROBOT

LOCALIZATION problem of estimating a robot’s coordinates relative to an external reference
frame. The robot is given a map of its environment, but to localize itself rela-
tive to this map it needs to consult its sensor data. Figure 1.1 illustrates such
a situation. The environment is known to possess three indistinguishable
doors. The task of the robot is to find out where it is, through sensing and
motion.
This specific localization problem is known as global localization. In global

localization, a robot is placed somewhere in a known environment and has to
localize itself from scratch. The probabilistic paradigm represents the robot’s
momentary belief by a probability density function over the space of all lo-
cations. This is illustrated in diagram (a) in Figure 1.1. This diagram shows
a uniform distribution over all locations. Now suppose the robot takes a
first sensor measurement and observes that it is next to a door. Probabilis-
tic techniques exploit this information to update the belief. The ‘posterior’
belief is shown in diagram (b) in Figure 1.1. It places an increased proba-
bility at places near doors, and lower probability near walls. Notice that this
distribution possesses three peaks, each corresponding to one of the indistin-
guishable doors in the environment. Thus, by no means does the robot know
where it is. Instead, it now has three, distinct hypotheses which are each
equally plausible given the sensor data. We also note that the robot assigns
positive probability to places not next to a door. This is the natural result
of the inherent uncertainty in sensing: With a small, non-zero probability,
the robot might have erred in its assessment of seeing a door. The ability to
maintain low-probability hypotheses is essential for attaining robustness.
Now suppose the robot moves. Diagram (c) in Figure 1.1 shows the effect
on a robot’s belief. The belief has been shifted in the direction of motion.
It also possesses a larger spread, which reflects the uncertainty that is intro-

6 1 Introduction

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 1.1 The basic idea ofMarkov localization: A mobile robot during global local-
ization. Markov localization techniques will be investigated in Chapters 7 and 8.

1.2 Probabilistic Robotics 7

Start

True Path

Measured Path

Goal

(a)

Start

Measured Path

True Path

Goal

(b)

Figure 1.2 Top image: a robot navigating through open, featureless space may lose
track of where it is. Bottom: This can be avoided by staying near known obstacles.
These figures are results of an algorithm called coastal navigation, which will be dis-
cussed in Chapter 16. Images courtesy of Nicholas Roy, MIT.

8 1 Introduction

duced by robot motion. Diagram (d) in Figure 1.1 depicts the belief after
observing another door. This observation leads our algorithm to place most
of the probability mass on a location near one of the doors, and the robot is
now quite confident as to where it is. Finally, Diagram (e) shows a belief as
the robot travels further down the corridor.
This example illustrates many aspects of the probabilistic paradigm.
Stated probabilistically, the robot perception problem is a state estimation
problem, and our localization example uses an algorithm known as BayesBAYES FILTER

filter for posterior estimation over the space of robot locations. The repre-
sentation of information is a probability density function. The update of this
function represents the information gained through sensor measurements,
or the information lost through processes in the world that increase a robot’s
uncertainty.
Our second example brings us into the realm of robotic planning and con-
trol. As just argued, probabilistic algorithms can compute a robot’s momen-
tary uncertainty. But they can also anticipate future uncertainty, and take
such uncertainty into consideration when determining the right choice of
control. One such algorithm is called coastal navigation. An example of coastalCOASTAL NAVIGATION

navigation is shown in Figure 1.2. This figure shows a 2-D map of an actual
building. The top diagram compares an estimated path with an actual path:
The divergence is the result of the uncertainty in robot motion that we just
discussed. The interesting insight is: not all trajectories induce the same level
of uncertainty. The path in Figure 1.2a leads through relatively open space,
deprived of features that could help the robot to remain localized. Figure 1.2b
shows an alternative path. This trajectory seeks a distinct corner, and then
“hugs” the wall so as to stay localized. Not surprisingly, the uncertainty will
be reduced for the latter path, hence chances of arriving at the goal location
are actually higher.
This example illustrates one of the many ways proper consideration of
uncertainty affects the robot’s controls. In our example, the anticipation of
possible uncertainty along one trajectory makes the robot prefer a second,
longer path, just so as to reduce the uncertainty. The new path is better, in
the sense that the robot has a much higher chance of actually being at the
goal when believing that it is. In fact, the second path is an example of active
information gathering. The robot has, through its probabilistic considera-
tion, determined that the best choice of action is to seek information along
its path, in its pursuit to reach a target location. Probabilistic planning tech-
niques anticipate uncertainty and can plan for information gathering, and
probabilistic control techniques realize the results of such plans.

1.3 Implications 9

1.3 Implications

Probabilistic robotics seamlessly integrates models with sensor data, over-
coming the limitations of both at the same time. These ideas are not just a
matter of low-level control. They cut across all levels of robotic software,
from the lowest to the highest.
In contrast with traditional programming techniques in robotics—such
as model-based motion planning techniques or reactive behavior-based
approaches—probabilistic approaches tend to be more robust in the face of
sensor limitations and model limitations. This enables them to scale much
better to complex real-world environments than previous paradigms, where
uncertainty is of even greater importance. In fact, certain probabilistic al-
gorithms are currently the only known working solutions to hard robotic
estimation problems, such as the localization problem discussed a few pages
ago, or the problem of building accurate maps of very large environments.
In comparison to traditional model-based robotic techniques, probabilistic
algorithms have weaker requirements on the accuracy of the robot’s models,
thereby relieving the programmer from the insurmountable burden to come
upwith accurate models. Probabilistic algorithms haveweaker requirements
on the accuracy of robotic sensors than those made by many reactive tech-
niques, whose sole control input is the momentary sensor input. Viewed
probabilistically, the robot learning problem is a long-term estimation problem.
Thus, probabilistic algorithms provide a sound methodology for many fla-
vors of robot learning.
However, these advantages come at a price. The two most frequently cited
limitations of probabilistic algorithms are computational complexity, and a need
to approximate. Probabilistic algorithms are inherently less efficient than their
non-probabilistic counterparts. This is due to the fact that they consider en-
tire probability densities instead of a single guess. The need to approximate
arises from the fact that most robot worlds are continuous. Computing exact
posterior distributions tends to be computationally intractable. Sometimes,
one is fortunate in that the uncertainty can be approximated tightly with a
compact parametric model (e.g., Gaussians). In other cases, such approxima-
tions are too crude to be of use, and more complicated representations must
be employed.
Recent developments in computer hardware has made an unprecedented
number of FLOPS available at bargain prices. This development has cer-
tainly aided the field of probabilistic robotics. Further, recent research has
successfully increased the computational efficiency of probabilistic algo-

10 1 Introduction

rithms, for a range of hard robotics problems—many of which are described
in depth in this book. Nevertheless, computational challenges remain. We
shall revisit this discussion at numerous places, where we investigate the
strengths and weaknesses of specific probabilistic solutions.

1.4 Road Map

This book is organized in four major parts.

• Chapters 2 through 4 introduce the basic mathematical framework that
underlies all of the algorithms described in this book, along with key al-
gorithms. These chapters are the mathematical foundation of this book.

• Chapters 5 and 6 present probabilistic models of mobile robots. In
many ways, these chapters are the probabilistic generalization of classi-
cal robotics models. They form the robotic foundation for the material
that follows.

• The mobile robot localization problem is discussed in Chapters 7 and 8.
These chapters combine the basic estimation algorithms with the proba-
bilistic models discussed in the previous two chapters.

• Chapters 9 through 13 discuss the much richer problem of robotic map-
ping. As before, they are all based on the algorithms discussed in the
foundational chapters, but many of them utilize tricks to accommodate
the enormous complexity of this problem.

• Problems of probabilistic planning and control are discussed in Chap-
ters 14 through 17. Here we begin by introducing a number of fundamen-
tal techniques, and then branch into practical algorithms for controlling a
robot probabilistically. The final chapter, Chapter 17, discusses the prob-
lem of robot exploration from a probabilistic perspective.

The book is best read in order, from the beginning to the end. However, we
have attempted to make each individual chapter self-explanatory. Frequent
sections called “Mathematical Derivation of . . . ” can safely be skipped on first
reading without compromising the coherence of the overall material in this
book.

1.5 Teaching Probabilistic Robotics 11

1.5 Teaching Probabilistic Robotics

When used in the classroom, we do not recommend to teach the chapters
in order—unless the students have an unusually strong appreciation of ab-
stract mathematical concepts. Particle filters are easier to teach thanGaussian
filters, and students tend to get more excited by mobile robot localization
problems than abstract filter algorithms. In our own teachings, we usually
begin with Chapter 2, and move directly to Chapters 7 and 8. While teaching
localization, we go back to the material in Chapters 3 through 6 as needed.
We also teach Chapter 14 early, to expose students to the problems related to
planning and control early on in a course.
As a teacher, feel free to use slides and animations from the book’sWeb site

www.probabilistic-robotics.org
to illustrate the various algorithms in this book. And feel free to send us, the
authors, pointers to your class Web sites and any material that could help
others in teaching Probabilistic Robotics.
The material in this book is best taught with hands-on implementation
assignments. There is nothing more educational in robotics than program-
ming an actual robot. And nobody can explain the pitfalls and challenges in
robotics better than Nature!

1.6 Bibliographical Remarks

The field of robotics has gone through a series of paradigms for software design. The first major
paradigm emerged in the mid-1970s, and is known as the model-based paradigm. The model-MODEL-BASED

PARADIGM based paradigm began with a number of studies showing the hardness of controlling a high-
DOF robotic manipulator in continuous spaces (Reif 1979). It culminated in text like Schwartz
et al.’s (1987) analysis of the complexity of robot motion, a first singly exponential general mo-
tion planning algorithm by Canny (1987), and Latombe’s (1991) seminal introductory text into
the field of model-based motion planning (additional milestone contributions will be discussed
in Chapter 14). This early work largely ignored the problem of uncertainty—even though it
extensively began using randomization as a technique for solving hard motion planning prob-
lems (Kavraki et al. 1996). Instead, the assumption was that a full and accurate model of the
robot and the environment be given, and the robot be deterministic. The model had to be suf-
ficiently accurate that the residual uncertainty was managed by a low-level motion controller.
Most motion planning techniques simply produced a single reference trajectory for the control
of a manipulator, although ideas such as potential fields (Khatib 1986) and navigation functions
(Koditschek 1987) provided mechanisms for reacting to the unforeseen—as long as it could be
sensed. Applications of these early techniques, if any, were confined to environments where
every little bit of uncertainty could be engineered away, or sensed with sufficient accuracy.
The field took a radical shift in the mid-1980s, when the lack of sensory feedback became the

focus of an entire community of researchers within robotics. With strong convictions, the field
of behavior-based robotics rejected the idea of any internal model. Instead, it was the interactionBEHAVIOR-BASED

ROBOTICS

12 1 Introduction

with a physical environment of a situated agent (Kaelbling and Rosenschein 1991) that created
the complexity in robot motion (a phenomena often called emergent behavior (Steels 1991)). Con-
sequently, sensing played a paramount role, and internal models were rejected (Brooks 1990).
The enthusiasm in this field was fueled by some early successes that were far beyond the

reach of traditional model-based motion planning algorithms. One of them was “Genghis,”
a hexapod robot developed by Brooks (1986). A relatively simple finite state automaton was
able to control the gait of this robot even in rugged terrain. The key to success of such tech-
niques lay in sensing: the control was entirely driven by environment interaction, as perceived
through the robot’s sensors. Some of the early work impressed by creating a seemingly complex
robot through clever exploitation of environment feedback (Connell 1990). More recently, the
paradigm enjoyed commercial success through a robotic vacuum cleaning robot (IRobots Inc.
2004), whose software follows the behavior-based paradigm.
Due to the lack of internal models and a focus on simple control mechanism, most robot sys-

tems were confined to relatively simple tasks, where the momentary sensor information was
sufficient to determine the right choice of control. Recognizing this limitation, more recent
work in this field embraced hybrid control architectures (Arkin 1998), in which behavior-based
technique provided low-level control, whereas a model-based planner coordinated the robot’s
actions at a high, abstract level. Such hybrid architectures are commonplace in robotics today.
They are not dissimilar to the seminal work on three-layered architectures by Gat (1998), which
took its origins in “Shakey the Robot” (Nilsson 1984).
Modern probabilistic robotics has emerged since the mid-1990s, although its roots can be

traced back to the invention of the Kalman filter (Kalman 1960). In many ways, probabilistic
robotics falls in between model-based and behavior-based techniques. In probabilistic robotics,
there are models, but they are assumed to be incomplete and insufficient for control. There are
also sensor measurements, but they too are assumed to be incomplete and insufficient for con-
trol. Through the integration of both, models and sensor measurements, a control action can
be devised. Statistics provides the mathematical glue to integrate models and sensor measure-
ments.
Many of the key advances in the field of probabilistic robotics will be discussed in future

chapters. Some of the cornerstones in this field include the advent of Kalman filter techniques
for high-dimensional perception problems by Smith and Cheeseman (1986), the invention of
occupancy grid maps by (Elfes 1987; Moravec 1988), and the re-introduction of partially observ-
able planning techniques due to Kaelbling et al. (1998). The past decade has seen an explosion
of techniques: Particle filters have become vastly popular (Dellaert et al. 1999), and researchers
have developed new programming methodologies focused on Bayesian information processing
(Thrun 2000b; Lebeltel et al. 2004; Park et al. 2005). This development went hand in hand with
the deployment of physical robot systems driven by probabilistic algorithms, such as industrial
machines for cargo handling by Durrant-Whyte (1996), entertainment robots in museums (Bur-
gard et al. 1999a; Thrun et al. 2000a; Siegwart et al. 2003), and robots in nursing and health care
(Pineau et al. 2003d). An open-source software package for mobile robot control that heavily
utilizes probabilistic techniques is described in Montemerlo et al. (2003a).
The field of commercial robotics is also at a turning point. In its annual World Robotics Sur-

vey, theUnited Nations and the International Federation of Robotics 2004 finds a 19% annual increase
in the size of the robotic market worldwide. Even more spectacular is the change of market seg-
ments, which indicates a solid transition from industrial applications to service robotics and
consumer products.

2 Recursive State Estimation

2.1 Introduction

At the core of probabilistic robotics is the idea of estimating state from sen-
sor data. State estimation addresses the problem of estimating quantities
from sensor data that are not directly observable, but that can be inferred.
In most robotic applications, determining what to do is relatively easy if one
only knew certain quantities. For example, moving a mobile robot is rel-
atively easy if the exact location of the robot and all nearby obstacles are
known. Unfortunately, these variables are not directly measurable. Instead,
a robot has to rely on its sensors to gather this information. Sensors carry
only partial information about those quantities, and their measurements are
corrupted by noise. State estimation seeks to recover state variables from the
data. Probabilistic state estimation algorithms compute belief distributions
over possible world states. An example of probabilistic state estimation was
already encountered in the introduction to this book: mobile robot localiza-
tion.
The goal of this chapter is to introduce the basic vocabulary and mathe-
matical tools for estimating state from sensor data.

• Chapter 2.2 introduces basic probabilistic concepts used throughout the
book.

• Chapter 2.3 describes our formal model of robot environment interaction,
setting forth some of the key terminology used throughout the book.

• Chapter 2.4 introduces Bayes filters, the recursive algorithm for state esti-
mation that forms the basis of virtually every technique presented in this
book.

14 2 Recursive State Estimation

• Chapter 2.5 discusses representational and computational issues that arise
when implementing Bayes filters.

2.2 Basic Concepts in Probability

This section familiarizes the reader with the basic notation and probabilistic
facts used throughout the book. In probabilistic robotics, quantities such as
sensor measurements, controls, and the states of a robot and its environment
are all modeled as random variables. Random variables can take on multipleRANDOM VARIABLE

values, and they do so according to specific probabilistic laws. Probabilistic
inference is the process of calculating these laws for random variables that
are derived from other random variables and the observed data.
LetX denote a random variable and x denote a specific value thatX might
assume. A standard example of a random variable is a coin flip, whereX can
take on the values heads or tails. If the space of all values that X can take on
is discrete, as is the case ifX is the outcome of a coin flip, we write

p(X = x)(2.1)

to denote the probability that the random variableX has value x. For exam-
ple, a fair coin is characterized by p(X = head) = p(X = tail) = 1

2 . Discrete
probabilities sum to one, that is,∑

x

p(X = x) = 1(2.2)

Probabilities are always non-negative, that is, p(X = x) ≥ 0.
To simplify the notation, we will usually omit explicit mention of the ran-
dom variable whenever possible, and instead use the common abbreviation
p(x) instead of writing p(X = x).
Most techniques in this book address estimation and decision making in
continuous spaces. Continuous spaces are characterized by random vari-
ables that can take on a continuum of values. Unless explicitly stated, we
assume that all continuous random variables possess probability density func-PROBABILITY DENSITY

FUNCTION tions (PDFs). A common density function is that of the one-dimensional
normal distributionwith mean μ and variance σ2. The PDF of a normal distri-NORMAL DISTRIBUTION

bution is given by the following Gaussian function:GAUSSIAN

p(x) =
(
2πσ2

)−1
2 exp

{
− 1

2

(x− μ)2

σ2

}
(2.3)

2.2 Basic Concepts in Probability 15

Normal distributions play a major role in this book. We will frequently ab-
breviate them as N (x;μ, σ2), which specifies the random variable, its mean,
and its variance.
The Normal distribution (2.3) assumes that x is a scalar value. Often, xwill
be a multi-dimensional vector. Normal distributions over vectors are called
multivariate. Multivariate normal distributions are characterized by densityMULTIVARIATE

DISTRIBUTION functions of the following form:

p(x) = det (2πΣ)
− 1

2 exp
{−1

2 (x− μ)T Σ−1(x− μ)
}

(2.4)

Here μ is the mean vector. Σ a positive semidefinite and symmetricmatrix called
the covariance matrix. The superscript T marks the transpose of a vector. TheCOVARIANCE MATRIX

argument in the exponent in this PDF is quadratic in x, and the parameters
of this quadratic function are μ and Σ.
The reader should take a moment to realize that Equation (2.4) is a strict
generalization of Equation (2.3); both definitions are equivalent if x is a scalar
value and Σ = σ2.
Equations (2.3) and (2.4) are examples of PDFs. Just as discrete probability
distribution always sums up to 1, a PDF always integrates to 1:∫

p(x) dx = 1(2.5)

However, unlike a discrete probability, the value of a PDF is not upper-
bounded by 1. Throughout this book, we will use the terms probability, proba-
bility density, and probability density function interchangeably. We will silently
assume that all continuous random variables are measurable, and we also
assume that all continuous distributions actually possess densities.
The joint distribution of two random variablesX and Y is given byJOINT DISTRIBUTION

p(x, y) = p(X = x and Y = y)(2.6)

This expression describes the probability of the event that the random vari-
able X takes on the value x and that Y takes on the value y. If X and Y are
independent, we haveINDEPENDENCE

p(x, y) = p(x) p(y)(2.7)

Often, random variables carry information about other random variables.
Suppose we already know that Y ’s value is y, and we would like to know the
probability that X’s value is x conditioned on that fact. Such a probability
will be denoted

p(x | y) = p(X = x | Y = y)(2.8)

16 2 Recursive State Estimation

and is called conditional probability. If p(y) > 0, then the conditional probabil-CONDITIONAL

PROBABILITY ity is defined as

p(x | y) =
p(x, y)

p(y)
(2.9)

If X and Y are independent, we have

p(x | y) =
p(x) p(y)

p(y)
= p(x)(2.10)

In other words, if X and Y are independent, Y tells us nothing about the
value of X . There is no advantage of knowing the value of Y if we are in-
terested in X . Independence, and its generalization known as conditional
independence, plays a major role throughout this book.
An interesting fact, which follows from the definition of conditional prob-
ability and the axioms of probability measures, is often referred to as TheoremTHEOREM OF TOTAL

PROBABILITY of total probability:

p(x) =
∑

y

p(x | y) p(y) (discrete case)(2.11)

p(x) =

∫
p(x | y) p(y) dy (continuous case)(2.12)

If p(x | y) or p(y) are zero, we define the product p(x | y) p(y) to be zero,
regardless of the value of the remaining factor.
Equally important is Bayes rule, which relates a conditional of the type p(x |BAYES RULE

y) to its “inverse,” p(y | x). The rule, as stated here, requires p(y) > 0:

p(x | y) =
p(y | x) p(x)

p(y)
=

p(y | x) p(x)∑
x′ p(y | x′) p(x′)

(discrete)(2.13)

p(x | y) =
p(y | x) p(x)

p(y)
=

p(y | x) p(x)∫
p(y | x′) p(x′) dx′ (continuous)(2.14)

Bayes rule plays a predominant role in probabilistic robotics (and probabilis-
tic inference in general). If x is a quantity that we would like to infer from y,
the probability p(x) will be referred to as prior probability distribution, and yPRIOR PROBABILITY

is called the data (e.g., a sensor measurement). The distribution p(x) summa-
rizes the knowledge we have regarding X prior to incorporating the data y.
The probability p(x | y) is called the posterior probability distribution over X .POSTERIOR

PROBABILITY As (2.14) suggests, Bayes rule provides a convenient way to compute a pos-
terior p(x | y) using the “inverse” conditional probability p(y | x) along with
the prior probability p(x). In other words, if we are interested in inferring

2.2 Basic Concepts in Probability 17

a quantity x from sensor data y, Bayes rule allows us to do so through the
inverse probability, which specifies the probability of data y assuming that
x was the case. In robotics, the probability p(y | x) is often coined generativeGENERATIVE MODEL

model, since it describes at some level of abstraction how state variables X

cause sensor measurements Y .
An important observation is that the denominator of Bayes rule, p(y), does
not depend on x. Thus, the factor p(y)−1 in Equations (2.13) and (2.14) will
be the same for any value x in the posterior p(x | y). For this reason, p(y)−1

is often written as a normalizer in Bayes rule variable, and generically denoted
η:

p(x | y) = η p(y | x) p(x)(2.15)

The advantage of this notation lies in its brevity. Instead of explicitly provid-
ing the exact formula for a normalization constant—which can grow large
very quickly in some of the mathematical derivations—we simply will use
the normalization symbol η to indicate that the final result has to be normal-
ized to 1. Throughout this book, normalizers of this type will be denoted η

(or η′, η′′, . . .). Important:Wewill freely use the same η in different equations
to denote normalizers, even if their actual values differ.
We notice that it is perfectly fine to condition any of the rules discussed
so far on arbitrary random variables, such as the variable Z. For example,
conditioning Bayes rule on Z = z gives us:

p(x | y, z) =
p(y | x, z) p(x | z)

p(y | z)
(2.16)

as long as p(y | z) > 0.
Similarly, we can condition the rule for combining probabilities of inde-
pendent random variables (2.7) on other variables z:

p(x, y | z) = p(x | z) p(y | z)(2.17)

Such a relation is known as conditional independence. As the reader easilyCONDITIONAL

INDEPENDENCE verifies, (2.17) is equivalent to

p(x | z) = p(x | z, y)(2.18)

p(y | z) = p(y | z, x)(2.19)

Conditional independence plays an important role in probabilistic robotics.
It applies whenever a variable y carries no information about a variable x

if another variable’s value z is known. Conditional independence does not

18 2 Recursive State Estimation

imply (absolute) independence, that is,

p(x, y | z) = p(x | z) p(y | z) �⇒ p(x, y) = p(x) p(y)(2.20)

The converse is also in general untrue: absolute independence does not im-
ply conditional independence:

p(x, y) = p(x) p(y) �⇒ p(x, y | z) = p(x | z) p(y | z)(2.21)

In special cases, however, conditional and absolute independence may coin-
cide.
A number of probabilistic algorithms require us to compute features, or
statistics, of probability distributions. The expectation of a random variableEXPECTATION OF A RV

X is given by

E[X] =
∑

x

x p(x) (discrete)(2.22)

E[X] =

∫
x p(x) dx (continuous)(2.23)

Not all random variables possess finite expectations; however, those that do
not are of no relevance to the material presented in this book.
The expectation is a linear function of a random variable. In particular, we
have

E[aX + b] = aE[X] + b(2.24)

for arbitrary numerical values a and b. The covariance of X is obtained as
follows

Cov[X] = E[X − E[X]]2 = E[X2]− E[X]2(2.25)

The covariance measures the squared expected deviation from the mean. As
stated above, the mean of a multivariate normal distribution N (x;μ,Σ) is μ,
and its covariance is Σ.
A final concept of importance in this book is entropy. The entropy of aENTROPY

probability distribution is given by the following expression:

Hp(x) = E[− log2 p(x)](2.26)

which resolves to

Hp(x) = −
∑

x

p(x) log2 p(x) (discrete)(2.27)

Hp(x) = −
∫

p(x) log2 p(x) dx (continuous)(2.28)

2.3 Robot Environment Interaction 19

Control system

Environment, state

Perceptual/action data

Actions

World model, belief

Figure 2.1 Robot environment interaction.

The concept of entropy originates in information theory. The entropy is
the expected information that the value of x carries. In the discrete case,
− log2 p(x) is the number of bits required to encode x using an optimal en-
coding, assuming that p(x) is the probability of observing x. In this book,
entropy will be used in robotic information gathering, so as to express the
information a robot may receive upon executing specific actions.

2.3 Robot Environment Interaction

Figure 2.1 illustrates the interaction of a robot with its environment. The
environment, or world, is a dynamical system that possesses internal state.ROBOT ENVIRONMENT

The robot can acquire information about its environment using its sensors.
However, sensors are noisy, and there are usually many things that cannot
be sensed directly. As a consequence, the robot maintains an internal belief
with regards to the state of its environment, depicted on the left in this figure.
The robot can also influence its environment through its actuators. The
effect of doing so is often somewhat unpredictable. Hence, each control ac-
tion affects both the environment state, and the robot’s internal belief with
regards to this state.
This interaction will now be described more formally.

20 2 Recursive State Estimation

2.3.1 State

Environments are characterized by state. For the material presented in thisSTATE

book, it will be convenient to think of the state as the collection of all aspects
of the robot and its environment that can impact the future. Certain state
variables tend to change over time, such as the whereabouts of people in the
vicinity of a robot. Others tend to remain static, such as the location of walls
in (most) buildings. State that changes will be called dynamic state, which dis-
tinguishes it from static state, or non-changing state. The state also includes
variables regarding the robot itself, such as its pose, velocity, whether or not
its sensors are functioning correctly, and so on.
Throughout this book, state will be denoted x; although the specific vari-
ables included in x will depend on the context. The state at time t will be
denoted xt. Typical state variables used throughout this book are:

• The robot pose, which comprises its location and orientation relative to aPOSE

global coordinate frame. Rigid mobile robots possess six such state vari-
ables, three for their Cartesian coordinates, and three for their angular
orientation (pitch, roll, and yaw). For rigid mobile robots confined to pla-
nar environments, the pose is usually given by three variables, its two
location coordinates in the plane and its heading direction (yaw).

• In robot manipulation, the pose includes variables for the configuration of
the robot’s actuators. For example, they might include the joint angles of
revolute joints. Each degree of freedom in a robot arm is characterized by
a one-dimensional configuration at any point in time, which is part of the
kinematic state of the robot. The robot configuration is often referred to
as kinematic state.

• The robot velocity and the velocities of its joints are commonly referred to as
dynamic state. A rigid robot moving through space is characterized by up
to six velocity variables, one for each pose variables. Dynamic state will
play only a minor role in this book.

• The location and features of surrounding objects in the environment are also
state variables. An object may be a tree, a wall, or a pixel within a larger
surface. Features of such objects may be their visual appearance (color,
texture). Depending on the granularity of the state that is being modeled,
robot environments possess between a few dozen and up to hundreds of
billions of state variables (and more). Just imagine how many bits it will
take to accurately describe your physical environment! For many of the

2.3 Robot Environment Interaction 21

problems studied in this book, the location of objects in the environment
will be static. In some problems, objects will assume the form of land-LANDMARK

marks, which are distinct, stationary features of the environment that can
be recognized reliably.

• The location and velocities of moving objects and people are also potential state
variables. Often, the robot is not the onlymoving actor in its environment.
Other moving entities possess their own kinematic and dynamic state.

• There are many other state variables that may impact a robot’s operation.
For example, whether or not a sensor is broken can be a state variable, as
can be the level of battery charge for a battery-powered robot. The list of
potential state variables is endless!

A state xtwill be called complete if it is the best predictor of the future. Put dif-COMPLETE STATE

ferently, completeness entails that knowledge of past states, measurements,
or controls carry no additional information that would help us predict the
future more accurately. It is important to notice that our definition of com-
pleteness does not require the future to be a deterministic function of the state.
The future may be stochastic, but no variables prior to xt may influence
the stochastic evolution of future states, unless this dependence is mediated
through the state xt. Temporal processes that meet these conditions are com-
monly known asMarkov chains.MARKOV CHAIN

The notion of state completeness is mostly of theoretical importance. In
practice, it is impossible to specify a complete state for any realistic robot
system. A complete state includes not just all aspects of the environment
that may have an impact on the future, but also the robot itself, the content
of its computer memory, the brain dumps of surrounding people, etc. Some
of those are hard to obtain. Practical implementations therefore single out a
small subset of all state variables, such as the ones listed above. Such a state
is called incomplete state.INCOMPLETE STATE

In most robotics applications, the state is continuous, meaning that xt is
defined over a continuum. A good example of a continuous state space is
that of a robot pose, that is, its location and orientation relative to an external
coordinate system. Sometimes, the state is discrete. An example of a discrete
state space is the (binary) state variable that models whether or not a sensor
is broken. State spaces that contain both continuous and discrete variables
are called hybrid state spaces.
In most cases of interesting robotics problems, state changes over time.
Time, throughout this book, will be discrete, that is, all interesting events will

22 2 Recursive State Estimation

take place at discrete time steps t = 0, 1, 2 If the robot starts its operation
at a distinct point in time, we will denote this time as t = 0.

2.3.2 Environment Interaction

There are two fundamental types of interactions between a robot and its en-
vironment: The robot can influence the state of its environment through its
actuators, and it can gather information about the state through its sensors.
Both types of interactions may co-occur, but for didactic reasons we will sep-
arate them throughout this book. The interaction is illustrated in Figure 2.1.

• Environment sensor measurements. Perception is the process by which
the robot uses its sensors to obtain information about the state of its envi-
ronment. For example, a robot might take a camera image, a range scan,
or query its tactile sensors to receive information about the state of the
environment. The result of such a perceptual interaction will be called
a measurement, although we will sometimes also call it observation or per-MEASUREMENT

cept. Typically, sensor measurements arrive with some delay. Hence they
provide information about the state a few moments ago.

• Control actions change the state of the world. They do so by actively
asserting forces on the robot’s environment. Examples of control actionsCONTROL ACTION

include robot motion and the manipulation of objects. Even if the robot
does not perform any action itself, state usually changes. Thus, for consis-
tency, we will assume that the robot always executes a control action, even
if it chooses not to move any of its motors. In practice, the robot continu-
ously executes controls and measurements are made concurrently.

Hypothetically, a robot may keep a record of all past sensor measurements
and control actions. We will refer to such a collection as the data (regardless
of whether they are being memorized or not). In accordance with the two
types of environment interactions, the robot has access to two different data
streams.

• Environment measurement data provides information about a momen-
tary state of the environment. Examples of measurement data include
camera images, range scans, and so on. For most parts, we will simply
ignore small timing effects (e.g., most laser sensors scan environments
sequentially at very high speeds, but we will simply assume the measure-
ment corresponds to a specific point in time). The measurement data at
time twill be denoted zt.

2.3 Robot Environment Interaction 23

Throughout most of this book, we simply assume that the robot takes ex-
actly one measurement at a time. This assumption is mostly for notational
convenience, as nearly all algorithms in this book can easily be extended
to robots that can acquire variable numbers of measurements within a
single time step. The notation

zt1:t2 = zt1 , zt1+1, zt1+2, . . . , zt2(2.29)

denotes the set of all measurements acquired from time t1 to time t2, for
t1 ≤ t2.

• Control data carry information about the change of state in the environ-
ment. In mobile robotics, a typical example of control data is the velocity
of a robot. Setting the velocity to 10 cm per second for the duration of
five seconds suggests that the robot’s pose, after executing this motion
command, is approximately 50 cm ahead of its pose before command ex-
ecution. Thus, control conveys information regarding the change of state.

An alternative source of control data are odometers. Odometers are sensorsODOMETER

that measure the revolution of a robot’s wheels. As such they convey in-
formation about the change of state. Even though odometers are sensors,
we will treat odometry as control data, since they measure the effect of a
control action.

Control data will be denoted ut. The variable ut will always correspond to
the change of state in the time interval (t− 1; t]. As before, we will denote
sequences of control data by ut1:t2 , for t1 ≤ t2:

ut1:t2 = ut1 , ut1+1, ut1+2, . . . , ut2(2.30)

Since the environment may change even if a robot does not execute a
specific control action, the fact that time passed by constitutes, techni-
cally speaking, control information. We therefore assume that there is
exactly one control data item per time step t, and include as legal action
“do-nothing”.

The distinction between measurement and control is a crucial one, as both
types of data play fundamentally different roles in the material yet to
come. Environment perception provides information about the environ-
ment’s state, hence it tends to increase the robot’s knowledge. Motion, on
the other hand, tends to induce a loss of knowledge due to the inherent noise

24 2 Recursive State Estimation

in robot actuation and the stochasticity of robot environments. By no means
is our distinction intended to suggest that actions and perceptions are sepa-
rated in time. Rather, perception and control takes place concurrently. Our
separation is strictly for convenience.

2.3.3 Probabilistic Generative Laws

The evolution of state and measurements is governed by probabilistic laws.
In general, the state xt is generated stochastically from the state xt−1. Thus,
it makes sense to specify the probability distribution from which xt is gener-
ated. At first glance, the emergence of state xt might be conditioned on all
past states, measurements, and controls. Hence, the probabilistic law char-
acterizing the evolution of state might be given by a probability distribution
of the following form: p(xt | x0:t−1, z1:t−1, u1:t). Notice that through no par-
ticular motivation we assume here that the robot executes a control action u1

first, and then takes a measurement z1.
An important insight is the following: If the state x is complete then it is a
sufficient summary of all that happened in previous time steps. In particular,
xt−1 is a sufficient statistic of all previous controls and measurements up to
this point in time, that is, u1:t−1 and z1:t−1. From all the variables in the
expression above, only the control ut matters if we know the state xt−1.
In probabilistic terms, this insight is expressed by the following equality:

p(xt | x0:t−1, z1:t−1, u1:t) = p(xt | xt−1, ut)(2.31)

The property expressed by this equality is an example of conditional indepen-
dence. It states that certain variables are independent of others if one knows
the values of a third group of variables, the conditioning variables. Con-
ditional independence will be exploited pervasively in this book. It is the
primary reason why many of the algorithms presented in the book are com-
putationally tractable.
One might also want to model the process by which measurements are
being generated. Again, if xt is complete, we have an important conditional
independence:

p(zt | x0:t, z1:t−1, u1:t) = p(zt | xt)(2.32)

In other words, the state xt is sufficient to predict the (potentially noisy) mea-
surement zt. Knowledge of any other variable, such as past measurements,
controls, or even past states, is irrelevant if xt is complete.

2.3 Robot Environment Interaction 25

t+1ut−1u tu

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,
states, and measurements.

This discussion leaves open as to what the two resulting conditional prob-
abilities are: p(xt | xt−1, ut) and p(zt | xt). The probability p(xt | xt−1, ut)

is the state transition probability. It specifies how environmental state evolvesSTATE TRANSITION

PROBABILITY over time as a function of robot controls ut. Robot environments are sto-
chastic, which is reflected by the fact that p(xt | xt−1, ut) is a probability
distribution, not a deterministic function. Sometimes the state transition dis-
tribution does not depend on the time index t, in which case we may write it
as p(x′ | u, x), where x′ is the successor and x the predecessor state.
The probability p(zt | xt) is called the measurement probability. It also mayMEASUREMENT

PROBABILITY not depend on the time index t, in which case it shall be written as p(z |
x). The measurement probability specifies the probabilistic law according
to which measurements z are generated from the environment state x. It is
appropriate to think of measurements as noisy projections of the state.
The state transition probability and the measurement probability together
describe the dynamical stochastic system of the robot and its environment.
Figure 2.2 illustrates the evolution of states and measurements, defined
through those probabilities. The state at time t is stochastically dependent
on the state at time t − 1 and the control ut. The measurement zt depends
stochastically on the state at time t. Such a temporal generative model is also
known as hidden Markov model (HMM) or dynamic Bayes network (DBN).

2.3.4 Belief Distributions

Another key concept in probabilistic robotics is that of a belief. A belief re-BELIEF

flects the robot’s internal knowledge about the state of the environment. We
already discussed that state cannot be measured directly. For example, a
robot’s pose might be xt = 〈14.12, 12.7, 45◦〉 in some global coordinate sys-

26 2 Recursive State Estimation

tem, but it usually cannot know its pose, since poses are not measurable
directly (not even with GPS!). Instead, the robot must infer its pose from
data. We therefore distinguish the true state from its internal belief with re-
gards to that state. Synonyms for belief in the literature are the terms state
of knowledge and information state (not to be confused with the informationINFORMATION STATE

vector and information matrix discussed below).
Probabilistic robotics represents beliefs through conditional probability
distributions. A belief distribution assigns a probability (or density value) to
each possible hypothesis with regards to the true state. Belief distributions
are posterior probabilities over state variables conditioned on the available
data. We will denote belief over a state variable xt by bel(xt), which is an
abbreviation for the posterior

bel(xt) = p(xt | z1:t, u1:t)(2.33)

This posterior is the probability distribution over the state xt at time t, con-
ditioned on all past measurements z1:t and all past controls u1:t.
The reader may notice that we silently assume that the belief is taken after
incorporating the measurement zt. Occasionally, it will prove useful to cal-
culate a posterior before incorporating zt, just after executing the control ut.
Such a posterior will be denoted as follows:

bel(xt) = p(xt | z1:t−1, u1:t)(2.34)

This probability distribution is often referred to as prediction in the context ofPREDICTION

probabilistic filtering. This terminology reflects the fact that bel(xt) predicts
the state at time t based on the previous state posterior, before incorporating
the measurement at time t. Calculating bel(xt) from bel(xt) is called correction
or the measurement update.

2.4 Bayes Filters

2.4.1 The Bayes Filter Algorithm

The most general algorithm for calculating beliefs is given by the Bayes filterBAYES FILTER

algorithm. This algorithm calculates the belief distribution bel frommeasure-
ment and control data. We will first state the basic algorithm and then will
elucidate it with a numerical example. After that, we will derive it mathe-
matically from the assumptions made so far.
Table 2.1 depicts the basic Bayes filter in pseudo-algorithmic form. The
Bayes filter is recursive, that is, the belief bel(xt) at time t is calculated from

2.4 Bayes Filters 27

1: Algorithm Bayes_filter(bel(xt−1), ut, zt):
2: for all xt do
3: bel(xt) =

∫
p(xt | ut, xt−1) bel(xt−1) dxt−1

4: bel(xt) = η p(zt | xt) bel(xt)

5: endfor
6: return bel(xt)

Table 2.1 The general algorithm for Bayes filtering.

the belief bel(xt−1) at time t − 1. Its input is the belief bel at time t − 1,
alongwith themost recent control ut and themost recent measurement zt. Its
output is the belief bel(xt) at time t. Table 2.1 only depicts a single iteration
of the Bayes Filter algorithm: the update rule. This update rule is appliedUPDATE RULE OF A

BAYES FILTER recursively, to calculate the belief bel(xt) from the belief bel(xt−1), calculated
previously.
The Bayes filter algorithm possesses two essential steps. In line 3, it pro-
cesses the control ut. It does so by calculating a belief over the state xt based
on the prior belief over state xt−1 and the control ut. In particular, the belief
bel(xt) that the robot assigns to state xt is obtained by the integral (sum) of
the product of two distributions: the prior assigned to xt−1, and the proba-
bility that control ut induces a transition from xt−1 to xt. The reader may rec-
ognize the similarity of this update step to Equation (2.12). As noted above,
this update step is called the control update, or prediction.
The second step of the Bayes filter is called the measurement update. In line
4, the Bayes filter algorithm multiplies the belief bel(xt) by the probability
that the measurement zt may have been observed. It does so for each hy-
pothetical posterior state xt. As will become apparent further below when
actually deriving the basic filter equations, the resulting product is generally
not a probability. It may not integrate to 1. Hence, the result is normalized,
by virtue of the normalization constant η. This leads to the final belief bel(xt),
which is returned in line 6 of the algorithm.
To compute the posterior belief recursively, the algorithm requires an ini-
tial belief bel(x0) at time t = 0 as boundary condition. If one knows the
value of x0 with certainty, bel(x0) should be initialized with a point mass
distribution that centers all probability mass on the correct value of x0, and

28 2 Recursive State Estimation

Figure 2.3 A mobile robot estimating the state of a door.

assigns zero probability anywhere else. If one is entirely ignorant about the
initial value x0, bel(x0) may be initialized using a uniform distribution over
the domain of x0 (or a related distribution from the Dirichlet family of dis-
tributions). Partial knowledge of the initial value x0 can be expressed by
non-uniform distributions; however, the two cases of full knowledge and
full ignorance are the most common ones in practice.
The algorithm Bayes filter can only be implemented in the form stated here
for very simple estimation problems. In particular, we either need to be able
to carry out the integration in line 3 and the multiplication in line 4 in closed
form, or we need to restrict ourselves to finite state spaces, so that the integral
in line 3 becomes a (finite) sum.

2.4.2 Example

Our illustration of the Bayes filter algorithm is based on the scenario in Fig-
ure 2.3, which shows a robot estimating the state of a door using its camera.
To make this problem simple, let us assume that the door can be in one of
two possible states, open or closed, and that only the robot can change the
state of the door. Let us furthermore assume that the robot does not know
the state of the door initially. Instead, it assigns equal prior probability to the
two possible door states:

bel(X0 = open) = 0.5

bel(X0 = closed) = 0.5

Let us now assume the robot’s sensors are noisy. The noise is characterized
by the following conditional probabilities:

p(Zt = sense_open | Xt = is_open) = 0.6

2.4 Bayes Filters 29

p(Zt = sense_closed | Xt = is_open) = 0.4

and

p(Zt = sense_open | Xt = is_closed) = 0.2

p(Zt = sense_closed | Xt = is_closed) = 0.8

These probabilities suggest that the robot’s sensors are relatively reliable in
detecting a closed door, in that the error probability is 0.2. However, when
the door is open, it has a 0.4 probability of an erroneous measurement.
Finally, let us assume the robot uses its manipulator to push the door open.
If the door is already open, it will remain open. If it is closed, the robot has a
0.8 chance that it will be open afterwards:

p(Xt = is_open | Ut = push, Xt_1 = is_open) = 1

p(Xt = is_closed | Ut = push, Xt_1 = is_open) = 0

p(Xt = is_open | Ut = push, Xt_1 = is_closed) = 0.8

p(Xt = is_closed | Ut = push, Xt_1 = is_closed) = 0.2

It can also choose not to use its manipulator, in which case the state of the
world does not change. This is stated by the following conditional probabil-
ities:

p(Xt = is_open | Ut = do_nothing, Xt_1 = is_open) = 1

p(Xt = is_closed | Ut = do_nothing, Xt_1 = is_open) = 0

p(Xt = is_open | Ut = do_nothing, Xt_1 = is_closed) = 0

p(Xt = is_closed | Ut = do_nothing, Xt_1 = is_closed) = 1

Suppose at time t = 1, the robot takes no control action but it senses an open
door. The resulting posterior belief is calculated by the Bayes filter using
the prior belief bel(X0), the control u1 = do_nothing, and the measurement
sense_open as input. Since the state space is finite, the integral in line 3 turns
into a finite sum:

bel(x1)

=

∫
p(x1 | u1, x0) bel(x0) dx0

=
∑
x0

p(x1 | u1, x0) bel(x0)

= p(x1 | U1 = do_nothing, X0 = is_open) bel(X0 = is_open)

+ p(x1 | U1 = do_nothing, X0 = is_closed) bel(X0 = is_closed)

30 2 Recursive State Estimation

We can now substitute the two possible values for the state variable X1. For
the hypothesis X1 = is_open, we obtain

bel(X1 = is_open)

= p(X1 = is_open | U1 = do_nothing, X0 = is_open)

bel(X0 = is_open)

+ p(X1 = is_open | U1 = do_nothing, X0 = is_closed)

bel(X0 = is_closed)

= 1 · 0.5 + 0 · 0.5 = 0.5

Likewise, for X1 = is_closed we get

bel(X1 = is_closed)

= p(X1 = is_closed | U1 = do_nothing, X0 = is_open)

bel(X0 = is_open)

+ p(X1 = is_closed | U1 = do_nothing, X0 = is_closed)

bel(X0 = is_closed)

= 0 · 0.5 + 1 · 0.5 = 0.5

The fact that the belief bel(x1) equals our prior belief bel(x0) should not sur-
prise, as the action do_nothing does not affect the state of the world; neither
does the world change over time by itself in our example.
Incorporating the measurement, however, changes the belief. Line 4 of the
Bayes filter algorithm implies

bel(x1) = η p(Z1 = sense_open | x1) bel(x1)

For the two possible cases,X1 = is_open and X1 = is_closed, we get

bel(X1 = is_open)

= η p(Z1 = sense_open | X1 = is_open) bel(X1 = is_open)

= η 0.6 · 0.5 = η 0.3

and

bel(X1 = is_closed)

= η p(Z1 = sense_open | X1 = is_closed) bel(X1 = is_closed)

= η 0.2 · 0.5 = η 0.1

The normalizer η is now easily calculated:

η = (0.3 + 0.1)−1 = 2.5

2.4 Bayes Filters 31

Hence, we have

bel(X1 = is_open) = 0.75

bel(X1 = is_closed) = 0.25

This calculation is now easily iterated for the next time step. As the reader
easily verifies, for u2 = push and z2 = sense_open we get

bel(X2 = is_open) = 1 · 0.75 + 0.8 · 0.25 = 0.95

bel(X2 = is_closed) = 0 · 0.75 + 0.2 · 0.25 = 0.05

and

bel(X2 = is_open) = η 0.6 · 0.95 ≈ 0.983

bel(X2 = is_closed) = η 0.2 · 0.05 ≈ 0.017

At this point, the robot believes that with 0.983 probability the door is open.
At first glance, this probabilitymay appear to be sufficiently high to simply
accept this hypothesis as the world state and act accordingly. However, such
an approach may result in unnecessarily high costs. If mistaking a closed
door for an open one incurs costs (e.g., the robot crashes into a door), con-
sidering both hypotheses in the decision making process will be essential, as
unlikely as one of them may be. Just imagine flying an aircraft on auto pilot
with a perceived chance of 0.983 for not crashing!

2.4.3 Mathematical Derivation of the Bayes Filter

The correctness of the Bayes filter algorithm is shown by induction. To
do so, we need to show that it correctly calculates the posterior distribu-
tion p(xt | z1:t, u1:t) from the corresponding posterior one time step earlier,
p(xt−1 | z1:t−1, u1:t−1). The correctness follows then by induction under the
assumption that we correctly initialized the prior belief bel(x0) at time t = 0.
Our derivation requires that the state xt is complete, as defined in Chap-

ter 2.3.1, and it requires that controls are chosen at random. The first step
of our derivation involves the application of Bayes rule (2.16) to the target
posterior:

p(xt | z1:t, u1:t) =
p(zt | xt, z1:t−1, u1:t) p(xt | z1:t−1, u1:t)

p(zt | z1:t−1, u1:t)
(2.35)

= η p(zt | xt, z1:t−1, u1:t) p(xt | z1:t−1, u1:t)

We now exploit the assumption that our state is complete. In Chapter 2.3.1,
we defined a state xt to be complete if no variables prior to xt may influence

32 2 Recursive State Estimation

the stochastic evolution of future states. In particular, if we (hypothetically)
knew the state xt and were interested in predicting the measurement zt, no
past measurement or control would provide us additional information. In
mathematical terms, this is expressed by the following conditional indepen-
dence:

p(zt | xt, z1:t−1, u1:t) = p(zt | xt)(2.36)

Such a statement is another example of conditional independence. It allows us
to simplify (2.35) as follows:

p(xt | z1:t, u1:t) = η p(zt | xt) p(xt | z1:t−1, u1:t)(2.37)

and hence

bel(xt) = η p(zt | xt) bel(xt)(2.38)

This equation is implemented in line 4 of the Bayes filter algorithm in Ta-
ble 2.1.
Next, we expand the term bel(xt), using (2.12):

bel(xt) = p(xt | z1:t−1, u1:t)(2.39)

=

∫
p(xt | xt−1, z1:t−1, u1:t) p(xt−1 | z1:t−1, u1:t) dxt−1

Once again, we exploit the assumption that our state is complete. This im-
plies if we know xt−1, past measurements and controls convey no informa-
tion regarding the state xt. This gives us

p(xt | xt−1, z1:t−1, u1:t) = p(xt | xt−1, ut)(2.40)

Here we retain the control variable ut, since it does not predate the state xt−1.
In fact, the reader should quickly convince herself that p(xt | xt−1, ut) �=
p(xt | xt−1).
Finally, we note that the control ut can safely be omitted from the set of
conditioning variables in p(xt−1 | z1:t−1, u1:t) for randomly chosen controls.
This gives us the recursive update equation

bel(xt) =

∫
p(xt | xt−1, ut) p(xt−1 | z1:t−1, u1:t−1) dxt−1(2.41)

As the reader easily verifies, this equation is implemented by line 3 of the
Bayes filter algorithm in Table 2.1.
To summarize, the Bayes filter algorithm calculates the posterior over the
state xt conditioned on the measurement and control data up to time t. The
derivation assumes that the world is Markov, that is, the state is complete.

2.4 Bayes Filters 33

Any concrete implementation of this algorithm requires three probability
distributions: The initial belief p(x0), the measurement probability p(zt | xt),
and the state transition probability p(xt | ut, xt−1). We have not yet specified
these densities for actual robot systems. But we will soon: Chapter 5 is en-
tirely dedicated to p(xt | ut, xt−1) and Chapter 6 to p(zt | xt). We also need
a representation for the belief bel(xt), which will be discussed in Chapters 3
and 4.

2.4.4 The Markov Assumption

A word is in order on theMarkov assumption, or the complete state assumption,MARKOV ASSUMPTION

since it plays such a fundamental role in the material presented in this book.
The Markov assumption postulates that past and future data are indepen-
dent if one knows the current state xt. To see how severe an assumption this
is, let us consider our example of mobile robot localization. In mobile robot
localization, xt is the robot’s pose, and Bayes filters are applied to estimate
the pose relative to a fixed map. The following factors may have a syste-
matic effect on sensor readings. Thus, they induce violations of the Markov
assumption:

• Unmodeled dynamics in the environment not included in xt (e.g., mov-
ing people and their effects on sensor measurements in our localization
example),

• inaccuracies in the probabilistic models p(zt | xt) and p(xt | ut, xt−1) (e.g.,
an error in the map for a localizing robot),

• approximation errors when using approximate representations of belief
functions (e.g., grids or Gaussians, which will be discussed below), and

• software variables in the robot control software that influence multiple
controls (e.g., the variable “target location” typically influences an entire
sequence of control commands).

In principle, many of these variables can be included in state representations.
However, incomplete state representations are often preferable to more com-
plete ones to reduce the computational complexity of the Bayes filter algo-
rithm. In practice, Bayes filters have been found to be surprisingly robust
to such violations. As a general rule of thumb, however, one should exer-
cise care when defining the state xt, so that the effect of unmodeled state
variables has close-to-random effects.

34 2 Recursive State Estimation

2.5 Representation and Computation

In probabilistic robotics, Bayes filters are implemented in several different
ways. As we will see in the next two chapters, there exist quite a variety of
techniques and algorithms that are all derived from the Bayes filter. Each
such technique relies on different assumptions regarding the measurement
and state transition probabilities and the initial belief. These assumptions
then give rise to different types of posterior distributions, and the algorithms
for computing them have different computational characteristics. As a gen-
eral rule of thumb, exact techniques for calculating beliefs exist only for
highly specialized cases; in general robotics problems, beliefs have to be ap-
proximated. The nature of the approximation has important ramifications on
the complexity of the algorithm. Finding a suitable approximation is usually
a challenging problem, with no unique best answer for all robotics problems.
When choosing an approximation, one has to trade off a range of proper-
ties:

1. Computational efficiency. Some approximations, such as linear Gaus-
sian approximations that will be discussed further below, make it possi-
ble to calculate beliefs in time polynomial in the dimension of the state
space. Others may require exponential time. Particle-based techniques,
discussed further below, have an any-time characteristic, enabling them to
trade off accuracy with computational efficiency.

2. Accuracy of the approximation. Some approximations can approximate a
wider range of distributions more tightly than others. For example, linear
Gaussian approximations are limited to unimodal distributions, whereas
histogram representations can approximate multi-modal distributions, al-
beit with limited accuracy. Particle representations can approximate a
wide array of distributions, but the number of particles needed to attain a
desired accuracy can be large.

3. Ease of implementation. The difficulty of implementing probabilistic al-
gorithms depends on a variety of factors, such as the form of the mea-
surement probability p(zt | xt) and the state transition probability p(xt |
ut, xt−1). Particle representations often yield surprisingly simple imple-
mentations for complex nonlinear systems—one of the reasons for their
recent popularity.

The next two chapters will introduce concrete implementable algorithms,
which fare quite differently relative to the criteria described above.

2.6 Summary 35

2.6 Summary

In this section, we introduced the basic idea of Bayes filters in robotics, as a
means to estimate the state of an environment and the robot.

• The interaction of a robot and its environment is modeled as a coupled
dynamical system, in which the robot manipulates its environment by
choosing controls, and in which it can perceive the environment through
its sensors.

• In probabilistic robotics, the dynamics of the robot and its environment
are characterized in the form of two probabilistic laws: the state transition
distribution, and the measurement distribution. The state transition dis-
tribution characterizes how state changes over time, possibly as the effect
of robot controls. The measurement distribution characterizes how mea-
surements are governed by states. Both laws are probabilistic, accounting
for the inherent uncertainty in state evolution and sensing.

• The belief of a robot is the posterior distribution over the state of the en-
vironment (including the robot state) given all past sensor measurements
and all past controls. The Bayes filter is the principal algorithm for calcu-
lating the belief in robotics. The Bayes filter is recursive; the belief at time
t is calculated from the belief at time t− 1.

• The Bayes filter makes a Markov assumption according to which the state
is a complete summary of the past. This assumption implies the belief is
sufficient to represent the past history of the robot. In robotics, theMarkov
assumption is usually only an approximation. We identified conditions
under which it is violated.

• Since the Bayes filter is not a practical algorithm, in that it cannot be im-
plemented on a digital computer, probabilistic algorithms use tractable
approximations. Such approximations may be evaluated according to dif-
ferent criteria, relating to their accuracy, efficiency, and ease of implemen-
tation.

The next two chapters discuss two popular families of recursive state estima-
tion techniques that are both derived from the Bayes filter.

36 2 Recursive State Estimation

2.7 Bibliographical Remarks

The basic statistical material in this chapter is covered in most introductory textbooks to prob-
ability and statistics. Some early classical texts by DeGroot (1975), Subrahmaniam (1979), and
Thorp (1966) provide highly accessible introductions into this material. More advanced treat-
ments can be found in (Feller 1968; Casella and Berger 1990; Tanner 1996), and in (Devroye et al.
1996; Duda et al. 2000). The robot environment interaction paradigm is common in robotics. It
is discussed from the AI perspective by Russell and Norvig (2002).

2.8 Exercises

1. A robot uses a range sensor that can measure ranges from 0m and 3m. For
simplicity, assume that actual ranges are distributed uniformly in this in-
terval. Unfortunately, the sensor can be faulty. When the sensor is faulty,
it constantly outputs a range below 1m, regardless of the actual range in
the sensor’s measurement cone. We know that the prior probability for a
sensor to be faulty is p = 0.01.

Suppose the robot queried its sensor N times, and every single time the
measurement value is below 1m. What is the posterior probability of a
sensor fault, for N = 1, 2, . . . , 10. Formulate the corresponding proba-
bilistic model.

2. Suppose we live at a place where days are either sunny, cloudy, or rainy.
Theweather transition function is aMarkov chainwith the following tran-
sition table:

tomorrow will be. . .
sunny cloudy rainy

sunny .8 .2 0
today it’s. . . cloudy .4 .4 .2

rainy .2 .6 .2

(a) Suppose Day 1 is a sunny day. What is the probability of the following
sequence of days: Day2 = cloudy, Day3 = cloudy, Day4 = rainy?

(b) Write a simulator that can randomly generate sequences of “weathers”
from this state transition function.

(c) Use your simulator to determine the stationary distribution of this
Markov chain. The stationary distribution measures the probability
that a random day will be sunny, cloudy, or rainy.

(d) Can you devise a closed-form solution to calculating the stationary dis-
tribution based on the state transition matrix above?

2.8 Exercises 37

(e) What is the entropy of the stationary distribution?

(f) Using Bayes rule, compute the probability table of yesterday’s weather
given today’s weather. (It is okay to provide the probabilities numer-
ically, and it is also okay to rely on results from previous questions in
this exercise.)

(g) Suppose we added seasons to our model. The state transition function
above would only apply to the Summer, whereas different ones would
apply to Winter, Spring, and Fall. Would this violate the Markov prop-
erty of this process? Explain your answer.

3. Suppose that we cannot observe the weather directly, but instead rely on
a sensor. The problem is that our sensor is noisy. Its measurements are
governed by the following measurement model:

our sensor tells us. . .
sunny cloudy rainy

sunny .6 .4 0
the actual weather is. . . cloudy .3 .7 0

rainy 0 0 1

(a) Suppose Day 1 is sunny (this is known for a fact), and in the subsequent
four days our sensor observes cloudy, cloudy, rainy, sunny. What is the
probability that Day 5 is indeed sunny as predicted by our sensor?

(b) Once again, suppose Day 1 is known to be sunny. At Days 2 through 4,
the sensor measures sunny, sunny, rainy. For each of the Days 2 through
4, what is the most likely weather on that day? Answer the question
in two ways: one in which only the data available to the day in ques-
tion is used, and one in hindsight, where data from future days is also
available.

(c) Consider the same situation (Day 1 is sunny, the measurements for
Days 2, 3, and 4 are sunny, sunny, rainy). What is the most likely se-
quence of weather for Days 2 through 4? What is the probability of
this most likely sequence?

4. In this exercise we will apply Bayes rule to Gaussians. Suppose we are a
mobile robot who lives on a long straight road. Our location xwill simply
be the position along this road. Now suppose that initially, we believe to
be at location xinit = 1, 000m, but we happen to know that this estimate

38 2 Recursive State Estimation

is uncertain. Based on this uncertainty, we model our initial belief by a
Gaussian with variance σ2

init = 900m2.

To find out more about our location, we query a GPS receiver. The GPS
tells us our location is zGPS = 1, 100m. This GPS receiver is known to
have an error variance of σ2

init = 100m2.

(a) Write the probability density functions of the prior p(x) and the mea-
surement p(z | x).

(b) Using Bayes rule, what is the posterior p(x | z)? Can you prove it to be
Gaussian?

(c) How likely was the measurement xGPS = 1, 100m given our prior, and
knowledge of the error probability of our GPS receiver?

Hint: This is an exercise in manipulating quadratic expressions.

5. Derive Equations (2.18) and (2.19) from (2.17) and the laws of probability
stated in the text.

6. Prove Equation (2.25). What are the implications of this equality?

3 Gaussian Filters

3.1 Introduction

This chapter describes an important family of recursive state estimators, col-
lectively called Gaussian filters. Historically, Gaussian filters constitute the
earliest tractable implementations of the Bayes filter for continuous spaces.
They are also by far the most popular family of techniques to date—despite
a number of shortcomings.
Gaussian techniques all share the basic idea that beliefs are represented by
multivariate normal distributions. We already encountered a definition of
the multivariate normal distribution in Equation (2.4), which is restated here
for convenience:

p(x) = det (2πΣ)
− 1

2 exp
{−1

2 (x− μ)T Σ−1(x− μ)
}

(3.1)

This density over the variable x is characterized by two sets of parameters:
The mean μ and the covariance Σ. The mean μ is a vector that possesses the
same dimensionality as the state x. The covariance is a quadratic matrix that
is symmetric and positive-semidefinite. Its dimension is the dimensionality
of the state x squared. Thus, the number of elements in the covariance matrix
depends quadratically on the number of elements in the state vector.
The commitment to represent the posterior by a Gaussian has important
ramifications. Most importantly, Gaussians are unimodal; they possess a sin-
gle maximum. Such a posterior is characteristic of many tracking problems
in robotics, in which the posterior is focused around the true state with a
small margin of uncertainty. Gaussian posteriors are a poor match for many
global estimation problems in which many distinct hypotheses exist, each of
which forms its own mode in the posterior.
The parameterization of a Gaussian by its mean and covariance is called

40 3 Gaussian Filters

themoments parameterization. This is because themean and covariance are theMOMENTS

PARAMETERIZATION first and secondmoments of a probability distribution; all other moments are
zero for normal distributions. In this chapter, we will also discuss an alter-
native parameterization, called canonical parameterization, or sometimes natu-CANONICAL

PARAMETERIZATION ral parameterization. Both parameterizations, the moments and the canonical
parameterizations, are functionally equivalent in that a bijective mapping
exists that transforms one into the other. However, they lead to filter algo-
rithms with somewhat different computational characteristics. As we shall
see, the canonical and the natural parameterizations are best thought of as
duals: what appears to be computationally easy in one parameterization is
involved in the other, and vice versa.
This chapter introduces the two basic Gaussian filter algorithms.

• Chapter 3.2 describes the Kalman filter, which implements the Bayes fil-
ter using the moments parameterization for a restricted class of problems
with linear dynamics and measurement functions.

• The Kalman filter is extended to nonlinear problems in Chapter 3.3, which
describes the extended Kalman filter.

• Chapter 3.4 describes a different nonlinear Kalman filter, known as un-
scented Kalman filter.

• Chapter 3.5 describes the information filter, which is the dual of the
Kalman filter using the canonical parameterization of Gaussians.

3.2 The Kalman Filter

3.2.1 Linear Gaussian Systems

Probably the best studied technique for implementing Bayes filters is the
Kalman filter, or (KF). The Kalman filter was invented by Swerling (1958) and
Kalman (1960) as a technique for filtering and prediction in linear Gaussian
systems, which will be defined in a moment. The Kalman filter implements
belief computation for continuous states. It is not applicable to discrete or
hybrid state spaces.
The Kalman filter represents beliefs by the moments parameterization: At
time t, the belief is represented by the the mean μt and the covariance Σt.
Posteriors are Gaussian if the following three properties hold, in addition toGAUSSIAN POSTERIOR

the Markov assumptions of the Bayes filter.

3.2 The Kalman Filter 41

1. The state transition probability p(xt | ut, xt−1) must be a linear function
in its arguments with added Gaussian noise. This is expressed by the
following equation:

xt = Atxt−1 + Btut + εt(3.2)

Here xt and xt−1 are state vectors, and ut is the control vector at time t.
In our notation, both of these vectors are vertical vectors. They are of the
form

xt =

⎛
⎜⎜⎜⎝

x1,t

x2,t

...
xn,t

⎞
⎟⎟⎟⎠ and ut =

⎛
⎜⎜⎜⎝

u1,t

u2,t

...
um,t

⎞
⎟⎟⎟⎠(3.3)

At and Bt are matrices. At is a square matrix of size n × n, where n is
the dimension of the state vector xt. Bt is of size n×m, withm being the
dimension of the control vector ut. By multiplying the state and control
vector with the matrices At and Bt, respectively, the state transition func-
tion becomes linear in its arguments. Thus, Kalman filters assume linear
system dynamics.

The random variable εt in (3.2) is a Gaussian random vector that mod-
els the uncertainty introduced by the state transition. It is of the same
dimension as the state vector. Its mean is zero, and its covariance will
be denoted Rt. A state transition probability of the form (3.2) is called a
linear Gaussian, to reflect the fact that it is linear in its arguments with addi-
tive Gaussian noise. Technically, one may also include a constant additive
term in (3.2), which is here omitted since it plays no role in the material to
come.

Equation (3.2) defines the state transition probability p(xt | ut, xt−1). This
probability is obtained by plugging Equation (3.2) into the definition of
the multivariate normal distribution (3.1). The mean of the posterior state
is given by Atxt−1 + Btut and the covariance by Rt:

p(xt | ut, xt−1) = det (2πRt)
− 1

2(3.4)

exp
{− 1

2 (xt −Atxt−1 −Btut)
T R−1

t (xt −Atxt−1 −Btut)
}

42 3 Gaussian Filters

1: Algorithm Kalman_filter(μt−1,Σt−1, ut, zt):

2: μ̄t = At μt−1 + Bt ut

3: Σ̄t = At Σt−1 AT
t + Rt

4: Kt = Σ̄t CT
t (Ct Σ̄t CT

t + Qt)
−1

5: μt = μ̄t + Kt(zt − Ct μ̄t)

6: Σt = (I −Kt Ct) Σ̄t

7: return μt,Σt

Table 3.1 The Kalman filter algorithm for linear Gaussian state transitions and mea-
surements.

2. The measurement probability p(zt | xt) must also be linear in its argu-
ments, with added Gaussian noise:

zt = Ctxt + δt(3.5)

Here Ct is a matrix of size k×n, where k is the dimension of the measure-
ment vector zt. The vector δt describes the measurement noise. The distri-
bution of δt is a multivariate Gaussian with zero mean and covarianceQt.
The measurement probability is thus given by the following multivariate
normal distribution:

p(zt | xt) = det (2πQt)
−1

2 exp
{−1

2 (zt − Ct xt)
T Q−1

t (zt − Ct xt)
}

(3.6)

3. Finally, the initial belief bel(x0) must be normally distributed. We will
denote the mean of this belief by μ0 and the covariance by Σ0:

bel(x0) = p(x0) = det (2πΣ0)
− 1

2 exp
{−1

2 (x0 − μ0)
T Σ−1

0 (x0 − μ0)
}

(3.7)

These three assumptions are sufficient to ensure that the posterior bel(xt)

is always a Gaussian, for any point in time t. The proof of this non-trivial
result can be found below, in the mathematical derivation of the Kalman
filter (Chapter 3.2.4).

3.2 The Kalman Filter 43

3.2.2 The Kalman Filter Algorithm

The Kalman filter algorithm is depicted in Table 3.1. Kalman filters represent
the belief bel(xt) at time t by the mean μt and the covariance Σt. The input
of the Kalman filter is the belief at time t− 1, represented by μt−1 and Σt−1.
To update these parameters, Kalman filters require the control ut and the
measurement zt. The output is the belief at time t, represented by μt and Σt.
In lines 2 and 3, the predicted belief μ̄ and Σ̄ is calculated representing
the belief bel(xt) one time step later, but before incorporating the measure-
ment zt. This belief is obtained by incorporating the control ut. The mean
is updated using the deterministic version of the state transition function
(3.2), with the mean μt−1 substituted for the state xt−1. The update of the co-
variance considers the fact that states depend on previous states through the
linear matrix At. This matrix is multiplied twice into the covariance, since
the covariance is a quadratic matrix.
The belief bel(xt) is subsequently transformed into the desired belief

bel(xt) in lines 4 through 6, by incorporating the measurement zt. The vari-
able Kt, computed in line 4 is called Kalman gain. It specifies the degreeKALMAN GAIN

to which the measurement is incorporated into the new state estimate, in a
way that will become clearer in Chapter 3.2.4. Line 5 manipulates the mean,
by adjusting it in proportion to the Kalman gain Kt and the deviation of
the actual measurement, zt, and the measurement predicted according to the
measurement probability (3.5). The key concept here is the innovation, whichINNOVATION

is the difference between the actual measurement zt and the expected mea-
surement Ct μ̄t in line 5. Finally, the new covariance of the posterior belief
is calculated in line 6, adjusting for the information gain resulting from the
measurement.
The Kalman filter is computationally quite efficient. For today’s best algo-
rithms, the complexity of matrix inversion is approximatelyO(d2.4) for a ma-
trix of size d×d. Each iteration of the Kalman filter algorithm, as stated here,
is lower bounded by (approximately)O(k2.4), where k is the dimension of the
measurement vector zt. This (approximate) cubic complexity stems from the
matrix inversion in line 4. Even for certain sparse updates discussed in fu-
ture chapters, it is also at least inO(n2), where n is the dimension of the state
space, due to the multiplication in line 6 (the matrix KtCt may be sparse).
In many applications—such as the robot mapping applications discussed in
later chapters—-the measurement space is much lower dimensional than the
state space, and the update is dominated by the O(n2) operations.

44 3 Gaussian Filters

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(a)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(b)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(c)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(d)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(e)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(f)

Figure 3.2 Illustration of Kalman filters: (a) initial belief, (b) ameasurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the
belief using the Kalman filter algorithm, (d) belief after motion to the right (which
introduces uncertainty), (e) a new measurement with associated uncertainty, and (f)
the resulting belief.

3.2.3 Illustration

Figure 3.2 illustrates the Kalman filter algorithm for a simplistic one-
dimensional localization scenario. Suppose the robot moves along the hori-
zontal axis in each diagram in Figure 3.2. Let the prior over the robot location
be given by the normal distribution shown in Figure 3.2a. The robot queries
its sensors on its location (e.g., a GPS system), and those return a measure-
ment that is centered at the peak of the bold Gaussian in Figure 3.2b. This
bold Gaussian illustrates this measurement: Its peak is the value predicted

3.2 The Kalman Filter 45

by the sensors, and its width (variance) corresponds to the uncertainty in
the measurement. Combining the prior with the measurement, via lines 4
through 6 of the Kalman filter algorithm in Table 3.1, yields the bold Gaus-
sian in Figure 3.2c. This belief’s mean lies between the two original means,
and its uncertainty radius is smaller than both contributing Gaussians. The
fact that the residual uncertainty is smaller than the contributing Gaussians
may appear counter-intuitive, but it is a general characteristic of information
integration in Kalman filters.
Next, assume the robot moves towards the right. Its uncertainty grows
due to the fact that the state transition is stochastic. Lines 2 and 3 of the
Kalman filter provide us with the Gaussian shown in bold in Figure 3.2d.
This Gaussian is shifted by the amount the robot moved, and it is also wider
for the reasons just explained. The robot receives a second measurement
illustrated by the bold Gaussian in Figure 3.2e, which leads to the posterior
shown in bold in Figure 3.2f.
As this example illustrates, the Kalman filter alternates a measurement up-
date step (lines 5-7), in which sensor data is integrated into the present belief,
with a prediction step (or control update step), which modifies the belief in
accordance to an action. The update step decreases and the prediction step
increases uncertainty in the robot’s belief.

3.2.4 Mathematical Derivation of the KF

This section derives the Kalman filter algorithm in Table 3.1. The section can
safely be skipped at first reading; it is only included for completeness.
Up front, the derivation of the KF is largely an exercise in manipulating
quadratic expressions. When multiplying two Gaussians, for example, the
exponents add. Since both original exponents are quadratic, so is the result-
ing sum. The remaining exercise is then to come upwith a factorization of the
result into a form that makes it possible to read off the desired parameters.

Part 1: Prediction

Our derivation begins with lines 2 and 3 of the algorithm, in which the belief
bel(xt) is calculated from the belief one time step earlier, bel(xt−1). Lines 2
and 3 implement the update step described in Equation (2.41), restated here

46 3 Gaussian Filters

for the reader’s convenience:

bel(xt) =

∫
p(xt | xt−1, ut)︸ ︷︷ ︸

∼N (xt;Atxt−1+Btut,Rt)

bel(xt−1)︸ ︷︷ ︸
∼N (xt−1;μt−1,Σt−1)

dxt−1(3.8)

The belief bel(xt−1) is represented by the mean μt−1 and the covarianceΣt−1.
The state transition probability p(xt | xt−1, ut)was given in (3.4) as a normal
distribution over xt with mean Atxt−1 + Btut and covariance Rt. As we
shall show now, the outcome of (3.8) is again a Gaussian with mean μ̄t and
covariance Σ̄t as stated in Table 3.1.
We begin by writing (3.8) in its Gaussian form:

bel(xt)(3.9)

= η

∫
exp

{−1
2 (xt −At xt−1 −Bt ut)

T R−1
t (xt −At xt−1 −Bt ut)

}
exp

{− 1
2 (xt−1 − μt−1)

T Σ−1
t−1(xt−1 − μt−1)

}
dxt−1

In short, we have

bel(xt) = η

∫
exp {−Lt} dxt−1(3.10)

with

Lt = 1
2 (xt −At xt−1 −Bt ut)

T R−1
t (xt −At xt−1 −Bt ut)(3.11)

+ 1
2 (xt−1 − μt−1)

T Σ−1
t−1 (xt−1 − μt−1)

Notice that Lt is quadratic in xt−1; it is also quadratic in xt.
Expression (3.10) contains an integral. Solving this integral requires us to
reorder the terms in this interval, in a way that might appear counterintuitive
at first. In particular, we will decompose Lt into two functions, Lt(xt−1, xt)

and Lt(xt):

Lt = Lt(xt−1, xt) + Lt(xt)(3.12)

This decomposition will simply be the result of reordering the terms in Lt.
A key goal of this decomposition step shall be that the variables in Lt are
partitioned into two sets, of which only one will depend on the variable xt−1.
The other, Lt(xt), will not depend on xt−1. As a result, we will be able to
move the latter variables out of the integral over the variable xt−1.
This is illustrated by the following transformation:

bel(xt) = η

∫
exp {−Lt} dxt−1(3.13)

3.2 The Kalman Filter 47

= η

∫
exp {−Lt(xt−1, xt)− Lt(xt)} dxt−1

= η exp {−Lt(xt)}
∫

exp {−Lt(xt−1, xt)} dxt−1

Of course, there exist many ways to decompose Lt into two sets that would
meet this criterion. The key insight is that we will choose Lt(xt−1, xt) such
that the value of the integral in (3.13) does not depend on xt. If we succeed
in defining such a function Lt(xt−1, xt), the entire integral over Lt(xt−1, xt)

will simply become a constant relative to the problem of estimating the be-
lief distribution over xt. Constants are usually captured in the normalization
constant η, so under our decomposition we will be able to subsume this con-
stant into η (now for a different actual value of η as above):

bel(xt) = η exp {−Lt(xt)}(3.14)

Thus, our decomposition would make it possible to eliminate the integral
from the belief (3.10). The result is just a normalized exponential over a
quadratic function, which turns out to be a Gaussian.
Let us now perform this decomposition. We are seeking a function

Lt(xt−1, xt) quadratic in xt−1. (This function will also depend on xt, but
that shall not concern us at this point.) To determine the coefficients of this
quadratic, we calculate the first two derivatives of Lt:

∂Lt

∂xt−1
= −AT

t R−1
t (xt −At xt−1 −Bt ut) + Σ−1

t−1 (xt−1 − μt−1)(3.15)

∂2Lt

∂x2
t−1

= AT
t R−1

t At + Σ−1
t−1 =: Ψ−1

t(3.16)

Ψt defines the curvature of Lt(xt−1, xt). Setting the first derivative of Lt to 0
gives us the mean:

AT
t R−1

t (xt −At xt−1 −Bt ut) = Σ−1
t−1 (xt−1 − μt−1)(3.17)

This expression is now solved for xt−1

⇐⇒ AT
t R−1

t (xt −Bt ut)−AT
t R−1

t At xt−1 = Σ−1
t−1 xt−1 − Σ−1

t−1 μt−1(3.18)

⇐⇒ AT
t R−1

t At xt−1 + Σ−1
t−1 xt−1 = AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1

⇐⇒ (AT
t R−1

t At + Σ−1
t−1) xt−1 = AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1

⇐⇒ Ψ−1
t xt−1 = AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1

⇐⇒ xt−1 = Ψt [AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 μt−1]

48 3 Gaussian Filters

Thus, we now have a quadratic function Lt(xt−1, xt), defined as follows:

Lt(xt−1, xt) = 1
2 (xt−1 −Ψt [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1])
T Ψ−1(3.19)

(xt−1 −Ψt [AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 μt−1])

Clearly, this is not the only quadratic function satisfying our decomposition
in (3.12). However, Lt(xt−1, xt) is of the common quadratic form of the neg-
ative exponent of a normal distribution. In fact the function

det(2πΨ)−
1
2 exp{−Lt(xt−1, xt)}(3.20)

is a valid probability density function (PDF) for the variable xt−1. As the
reader easily verifies, this function is of the form defined in (3.1). We know
from (2.5) that PDFs integrate to 1. Thus, we have∫

det(2πΨ)−
1
2 exp{−Lt(xt−1, xt)} dxt−1 = 1(3.21)

From this it follows that∫
exp{−Lt(xt−1, xt)} dxt−1 = det(2πΨ)

1
2(3.22)

The important thing to notice is that the value of this integral is independent
of xt, our target variable. Thus, for our problem of calculating a distribution
over xt, this integral is constant. Subsuming this constant into the normalizer
η, we get the following expression for Equation (3.13):

bel(xt) = η exp {−Lt(xt)}
∫

exp {−Lt(xt−1, xt)} dxt−1(3.23)

= η exp {−Lt(xt)}
This decomposition establishes the correctness of (3.14). Notice once again
that the normalizers η are not the same in both lines.
It remains to determine the function Lt(xt), which is the difference of Lt,
defined in (3.11), and Lt(xt−1, xt), defined in (3.19):

Lt(xt) = Lt − Lt(xt−1, xt)(3.24)

= 1
2 (xt −At xt−1 −Bt ut)

T R−1
t (xt −At xt−1 −Bt ut)

+ 1
2 (xt−1 − μt−1)

T Σ−1
t−1 (xt−1 − μt−1)

− 1
2 (xt−1 −Ψt [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1])
T Ψ−1

(xt−1 −Ψt [AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 μt−1])

Let us quickly verify that Lt(xt) indeed does not depend on xt−1. To do so,
we substitute back Ψt = (AT

t R−1
t At + Σ−1

t−1)
−1, and multiply out the terms

3.2 The Kalman Filter 49

above. For the reader’s convenience, terms that contain xt−1 are underlined
(doubly if they are quadratic in xt−1).

Lt(xt) = 1
2 xT

t−1A
T
t R−1

t At xt−1 − xT
t−1A

T
t R−1

t (xt −Bt ut)(3.25)

+ 1
2 (xt −Bt ut)

T R−1
t (xt −Bt ut)

+ 1
2 xT

t−1 Σ−1
t−1 xt−1 − xT

t−1 Σ−1
t−1 μt−1 + 1

2 μT
t−1 Σ−1

t−1 μt−1

− 1
2 xT

t−1 (AT
t R−1

t At + Σ−1
t−1) xt−1

+xT
t−1 [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1]

− 1
2 [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1]
T (AT

t R−1
t At + Σ−1

t−1)
−1

[AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 μt−1]

It is now easily seen that all terms that contain xt−1 cancel out. This
should come at no surprise, since it is a consequence of our construction
of Lt(xt−1, xt).

Lt(xt) = + 1
2 (xt −Bt ut)

T R−1
t (xt −Bt ut) + 1

2 μT
t−1 Σ−1

t−1 μt−1(3.26)

− 1
2 [AT

t R−1
t (xt −Bt ut) + Σ−1

t−1 μt−1]
T (AT

t R−1
t At + Σ−1

t−1)
−1

[AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 μt−1]

Furthermore, Lt(xt) is quadratic in xt. This observation means that bel(xt) is
indeed normal distributed. The mean and covariance of this distribution are
of course the minimum and curvature of Lt(xt), which we now easily obtain
by computing the first and second derivatives of Lt(xt)with respect to xt:

∂Lt(xt)

∂xt

= R−1
t (xt −Bt ut) −R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1(3.27)

[AT
t R−1

t (xt −Bt ut) + Σ−1
t−1 μt−1]

= [R−1
t −R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1AT
t R−1

t] (xt −Bt ut)

− R−1
t At (AT

t R−1
t At + Σ−1

t−1)
−1 Σ−1

t−1 μt−1

The inversion lemma stated (and shown) in Table 3.2 allows us to express the
first factor as follows:

R−1
t −R−1

t At (AT
t R−1

t At + Σ−1
t−1)

−1AT
t R−1

t = (Rt + At Σt−1 AT
t)−1(3.28)

Hence the desired derivative is given by the following expression:

∂Lt(xt)

∂xt

= (Rt + At Σt−1 AT
t)−1 (xt −Bt ut)(3.29)

−R−1
t At (AT

t R−1
t At + Σ−1

t−1)
−1 Σ−1

t−1 μt−1

50 3 Gaussian Filters

Inversion Lemma. For any invertible quadratic matrices R and Q and any
matrix P with appropriate dimensions, the following holds true

(R + P Q PT)−1 = R−1 −R−1 P (Q−1 + PT R−1 P)−1 PT R−1

assuming that all above matrices can be inverted as stated.

Proof. Define Ψ = (Q−1 + PT R−1 P)−1. It suffices to show that

(R−1 −R−1 P Ψ PT R−1) (R + P Q PT) = I

This is shown through a series of transformations:

= R−1 R︸ ︷︷ ︸
= I

+ R−1 P Q PT − R−1 P Ψ PT R−1 R︸ ︷︷ ︸
= I

− R−1 P Ψ PT R−1 P Q PT

= I + R−1 P Q PT − R−1 P Ψ PT − R−1 P Ψ PT R−1 P Q PT

= I + R−1 P [Q PT − Ψ PT − Ψ PT R−1 P Q PT]

= I + R−1 P [Q PT − Ψ Q−1 Q︸ ︷︷ ︸
= I

PT − Ψ PT R−1 P Q PT]

= I + R−1 P [Q PT − Ψ Ψ−1︸ ︷︷ ︸
= I

Q PT]

= I + R−1 P [Q PT − Q PT︸ ︷︷ ︸
= 0

] = I

Table 3.2 The (specialized) inversion lemma, sometimes called the Sher-
man/Morrison formula.

The minimum of Lt(xt) is attained when the first derivative is zero.

(Rt + At Σt−1 AT
t)−1 (xt −Bt ut)(3.30)

= R−1
t At (AT

t R−1
t At + Σ−1

t−1)
−1 Σ−1

t−1 μt−1

Solving this for the target variable xt gives us the surprisingly compact result

xt = Bt ut + (Rt + At Σt−1 AT
t)R−1

t At︸ ︷︷ ︸
At+At Σt−1 AT

t R−1
t At

(AT
t R−1

t At + Σ−1
t−1)

−1 Σ−1
t−1︸ ︷︷ ︸

(Σt−1AT
t R−1

t At+I)−1

μt−1(3.31)

= Bt ut + At (I + Σt−1 AT
t R−1

t At) (Σt−1A
T
t R−1

t At + I)−1︸ ︷︷ ︸
= I

μt−1

3.2 The Kalman Filter 51

= Bt ut + At μt−1

Thus, the mean of the belief bel(xt) after incorporating the motion command
ut isBt ut +At μt−1. This proves the correctness of line 2 of the Kalman filter
algorithm in Table 3.1.
Line 3 is now obtained by calculating the second derivative of Lt(xt):

∂2Lt(xt)

∂x2
t

= (At Σt−1 AT
t + Rt)

−1(3.32)

This is the curvature of the quadratic function Lt(xt), whose inverse is the
covariance of the belief bel(xt).
To summarize, we showed that the prediction steps in lines 2 and 3 of the
Kalman filter algorithm indeed implement the Bayes filter prediction step.
To do so, we first decomposed the exponent of the belief bel(xt) into two
functions, Lt(xt−1, xt) and Lt(xt). Then we showed thatLt(xt−1, xt) changes
the predicted belief bel(xt) only by a constant factor, which can be subsumed
into the normalizing constant η. Finally, we determined the function Lt(xt)

and showed that it results in the mean μ̄t and covariance Σ̄t of the Kalman
filter prediction bel(xt).

Part 2: Measurement Update

Wewill now derive the measurement update in lines 4, 5, and 6 (Table 3.1) of
our Kalman filter algorithm. We begin with the general Bayes filter mecha-
nism for incorporating measurements, stated in Equation (2.38) and restated
here in annotated form:

bel(xt) = η p(zt | xt)︸ ︷︷ ︸
∼N (zt;Ctxt,Qt)

bel(xt)︸ ︷︷ ︸
∼N (xt;μ̄t,Σ̄t)

(3.33)

The mean and covariance of bel(xt) are obviously given by μ̄t and Σ̄t. The
measurement probability p(zt | xt) was defined in (3.6) to be normal as well,
with mean Ct xt and covariance Qt. Thus, the product is given by an expo-
nential

bel(xt) = η exp {−Jt}(3.34)

with

Jt = 1
2 (zt − Ctxt)

T Q−1
t (zt − Ctxt) + 1

2 (xt − μ̄t)
T Σ̄−1

t (xt − μ̄t)(3.35)

52 3 Gaussian Filters

This function is quadratic in xt, hence bel(xt) is a Gaussian. To calculate
its parameters, we once again calculate the first two derivatives of Jt with
respect to xt:

∂J

∂xt

= −CT
t Q−1

t (zt − Ctxt) + Σ̄−1
t (xt − μ̄t)(3.36)

∂2J

∂x2
t

= CT
t Q−1

t Ct + Σ̄−1
t(3.37)

The second term is the inverse of the covariance of bel(xt):

Σt = (CT
t Q−1

t Ct + Σ̄−1
t)−1(3.38)

The mean of bel(xt) is the minimum of this quadratic function, which we
now calculate by setting the first derivative of Jt to zero (and substituting μt

for xt):

CT
t Q−1

t (zt − Ctμt) = Σ̄−1
t (μt − μ̄t)(3.39)

The expression on the left of the equal sign can be transformed as follows:

CT
t Q−1

t (zt − Ctμt)(3.40)

= CT
t Q−1

t (zt − Ct μt + Ct μ̄t − Ct μ̄t)

= CT
t Q−1

t (zt − Ctμ̄t)− CT
t Q−1

t Ct (μt − μ̄t)

Substituting this back into (3.39) gives us

CT
t Q−1

t (zt − Ctμ̄t) = (CT
t Q−1

t Ct + Σ̄−1
t)︸ ︷︷ ︸

= Σ−1
t

(μt − μ̄t)(3.41)

and hence we have

Σt CT
t Q−1

t (zt − Ct μ̄t) = μt − μ̄t(3.42)

We now define the Kalman gain as

Kt = Σt CT
t Q−1

t(3.43)

and obtain

μt = μ̄t + Kt (zt − Ct μ̄t)(3.44)

This proves the correctness of line 5 in the Kalman filter algorithm in Ta-
ble 3.1.

3.2 The Kalman Filter 53

The Kalman gain, as defined in (3.43), is a function of Σt. This is at odds
with the fact that we utilize Kt to calculate Σt in line 6 of the algorithm. The
following transformation shows us how to expressKt in terms of covariances
other than Σt. It begins with the definition ofKt in (3.43):

Kt = Σt CT
t Q−1

t(3.45)

= Σt CT
t Q−1

t (Ct Σ̄t CT
t + Qt) (Ct Σ̄t CT

t + Qt)
−1︸ ︷︷ ︸

= I

= Σt (CT
t Q−1

t Ct Σ̄t CT
t + CT

t Q−1
t Qt︸ ︷︷ ︸
= I

) (Ct Σ̄t CT
t + Qt)

−1

= Σt (CT
t Q−1

t Ct Σ̄t CT
t + CT

t) (Ct Σ̄t CT
t + Qt)

−1

= Σt (CT
t Q−1

t Ct Σ̄t CT
t + Σ̄−1

t Σ̄t︸ ︷︷ ︸
= I

CT
t) (Ct Σ̄t CT

t + Qt)
−1

= Σt (CT
t Q−1

t Ct + Σ̄−1
t)︸ ︷︷ ︸

= Σ−1
t

Σ̄t CT
t (Ct Σ̄t CT

t + Qt)
−1

= Σt Σ−1
t︸ ︷︷ ︸

= I

Σ̄t CT
t (Ct Σ̄t CT

t + Qt)
−1

= Σ̄t CT
t (Ct Σ̄t CT

t + Qt)
−1

This expression proves the correctness of line 4 of our Kalman filter algo-
rithm.
Line 6 is obtained by expressing the covariance using the Kalman gainKt.
The advantage of the calculation in Table 3.1 over the definition in Equation
(3.38) lies in the fact that we can avoid inverting the state covariance matrix.
This is essential for applications of Kalman filters to high-dimensional state
spaces.
Our transformation is once again carried out using the inversion lemma,

which was already stated in Table 3.2. Here we restate it using the notation
of Equation (3.38):

(Σ̄−1
t + CT

t Q−1
t Ct)

−1 = Σ̄t − Σ̄t CT
t (Qt + Ct Σ̄t CT

t)−1 Ct Σ̄t(3.46)

This lets us arrive at the following expression for the covariance:

Σt = (CT
t Q−1

t Ct + Σ̄−1
t)−1(3.47)

= Σ̄t − Σ̄t CT
t (Qt + Ct Σ̄t CT

t)−1 Ct Σ̄t

= [I − Σ̄t CT
t (Qt + Ct Σ̄t CT

t)−1︸ ︷︷ ︸
= Kt, see Eq. (3.45)

Ct] Σ̄t

= (I −Kt Ct) Σ̄t

54 3 Gaussian Filters

This completes our correctness proof, in that it shows the correctness of line
6 of our Kalman filter algorithm.

3.3 The Extended Kalman Filter

3.3.1 Why Linearize?

The assumptions that observations are linear functions of the state and that
the next state is a linear function of the previous state are crucial for the cor-
rectness of the Kalman filter. The observation that any linear transformation
of a Gaussian random variable results in another Gaussian random variable
played an important role in the derivation of the Kalman filter algorithm.
The efficiency of the Kalman filter is then due to the fact that the parameters
of the resulting Gaussian can be computed in closed form.
Throughout this and the following chapters, we will illustrate proper-
ties of different density representations using the transformation of a one-
dimensional Gaussian random variable. Figure 3.3a illustrates the linear
transformation of such a random variable. The graph on the lower right
shows the density of the random variable X ∼ N (x;μ, σ2). Let us assume
that X is passed through the linear function y = ax + b, shown in the upper
right graph. The resulting random variable, Y , is distributed according to a
Gaussian with mean aμ+b and variance a2σ2. This Gaussian is illustrated by
the gray area in the upper left graph of Figure 3.3a. The reader may notice
that this example is closely related to the next state update of the Kalman
filter, with X = xt−1 and Y = xt but without an additive noise variable; see
also Equation (3.2).
Unfortunately, state transitions and measurements are rarely linear in
practice. For example, a robot that moves with constant translational and
rotational velocity typically moves on a circular trajectory, which cannot be
described by linear state transitions. This observation, along with the as-
sumption of unimodal beliefs, renders plain Kalman filters, as discussed so
far, inapplicable to all but the most trivial robotics problems.
The extended Kalman filter, or EKF, relaxes one of these assumptions: theEXTENDED KALMAN

FILTER linearity assumption. Here the assumption is that the state transition proba-
bility and the measurement probabilities are governed by nonlinear functions
g and h, respectively:

xt = g(ut, xt−1) + εt(3.48)

zt = h(xt) + δt(3.49)

3.3 The Extended Kalman Filter 55

p(y)

y

p(y)
Mean of p(y)

x

y=
g(

x)

y = a x + b
Mean μ

x

p(
x)

p(x)
Mean of p(x)

(a)

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)

x

y=
g(

x)

Function g(x)
Mean μ
g(μ)

x

p(
x)

p(x)
Mean μ

(b)

Figure 3.3 (a) Linear and (b) nonlinear transformation of a Gaussian random vari-
able. The lower right plots show the density of the original random variable,X . This
random variable is passed through the function displayed in the upper right graphs
(the transformation of the mean is indicated by the dotted line). The density of the
resulting random variable Y is plotted in the upper left graphs.

56 3 Gaussian Filters

This model strictly generalizes the linear Gaussian model underlying
Kalman filters, as postulated in Equations (3.2) and (3.5). The function g

replaces the matrices At and Bt in (3.2), and h replaces the matrix Ct in
(3.5). Unfortunately, with arbitrary functions g and h, the belief is no longer
a Gaussian. In fact, performing the belief update exactly is usually impossi-
ble for nonlinear functions g and h, and the Bayes filter does not possess a
closed-form solution.
Figure 3.3b illustrates the impact of a nonlinear transformation on a Gaus-
sian random variable. The graphs on the lower right and upper right plot the
random variable X and the nonlinear function g, respectively. The density
of the transformed random variable, Y = g(X), is indicated by the gray area
in the upper left graph of Figure 3.3b. Since this density cannot be computed
in closed form, it was estimated by drawing 500,000 samples according to
p(x), passing them through the function g, and then histogramming over the
range of g. As can be seen, Y is not a Gaussian because the nonlinearities in
g distort the density ofX in ways that destroy its Gaussian shape.
The extended Kalman filter (EKF) calculates a Gaussian approximation
to the true belief. The dashed curve in the upper left graph of Figure 3.3b
shows the Gaussian approximation to the density of the random variable Y .
Accordingly, EKFs represent the belief bel(xt) at time t by a mean μt and a
covariance Σt. Thus, the EKF inherits from the Kalman filter the basic belief
representation, but it differs in that this belief is only approximate, not exact
as was the case in Kalman filters. The goal of the EKF is thus shifted from
computing the exact posterior to efficiently estimating its mean and covari-
ance. However, since these statistics cannot be computed in closed form, the
EKF has to resort to an additional approximation.

3.3.2 Linearization Via Taylor Expansion

The key idea underlying the EKF approximation is called linearization. Fig-
ure 3.4 illustrates the basic concept. Linearization approximates the nonlin-
ear function g by a linear function that is tangent to g at the mean of the
Gaussian (dashed line in the upper right graph). Projecting the Gaussian
through this linear approximation results in a Gaussian density, as indicated
by the dashed line in the upper left graph. The solid line in the upper left
graph represents the mean and covariance of the Monte-Carlo approxima-
tion. The mismatch between these two Gaussians indicates the error caused
by the linear approximation of g.
The key advantage of the linearization, however, lies in its efficiency.

3.3 The Extended Kalman Filter 57

p(y)
y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

x

y=
g(

x)

Function g(x)
Taylor approx.
Mean μ
g(μ)

x

p(
x)

p(x)
Mean μ

Figure 3.4 Illustration of linearization applied by the EKF. Instead of passing the
Gaussian through the nonlinear function g, it is passed through a linear approxima-
tion of g. The linear function is tangent to g at the mean of the original Gaussian.
The resulting Gaussian is shown as the dashed line in the upper left graph. The lin-
earization incurs an approximation error, as indicated by the mismatch between the
linearized Gaussian (dashed) and the Gaussian computed from the highly accurate
Monte-Carlo estimate (solid).

The Monte-Carlo estimate of the Gaussian was achieved by passing 500,000
points through g followed by the computation of their mean and covariance.
The linearization applied by the EKF, on the other hand, only requires deter-
mination of the linear approximation followed by the closed-form computa-
tion of the resulting Gaussian. In fact, once g is linearized, the mechanics of
the EKF’s belief propagation are equivalent to those of the Kalman filter.
This technique also is applied to the multiplication of Gaussians when a
measurement function h is involved. Again, the EKF approximates h by a
linear function tangent to h, thereby retaining the Gaussian nature of the
posterior belief.
There exist many techniques for linearizing nonlinear functions. EKFs
utilize a method called (first order) Taylor expansion. Taylor expansion con-TAYLOR EXPANSION

58 3 Gaussian Filters

structs a linear approximation to a function g from g’s value and slope. The
slope is given by the partial derivative

g′(ut, xt−1) :=
∂g(ut, xt−1)

∂xt−1
(3.50)

Clearly, both the value of g and its slope depend on the argument of g. A
logical choice for selecting the argument is to choose the state deemed most
likely at the time of linearization. For Gaussians, the most likely state is
the mean of the posterior μt−1. In other words, g is approximated by its
value at μt−1 (and at ut), and the linear extrapolation is achieved by a term
proportional to the gradient of g at μt−1 and ut:

g(ut, xt−1) ≈ g(ut, μt−1) + g′(ut, μt−1)︸ ︷︷ ︸
=: Gt

(xt−1 − μt−1)(3.51)

= g(ut, μt−1) + Gt (xt−1 − μt−1)

Written as Gaussian, the state transition probability is approximated as fol-
lows:

p(xt | ut, xt−1)(3.52)

≈ det (2πRt)
−1

2 exp
{−1

2 [xt − g(ut, μt−1)−Gt (xt−1 − μt−1)]
T

R−1
t [xt − g(ut, μt−1)−Gt (xt−1 − μt−1)]

}
Notice that Gt is a matrix of size n × n, with n denoting the dimension of
the state. This matrix is often called the Jacobian. The value of the JacobianJACOBIAN

depends on ut and μt−1, hence it differs for different points in time.
EKFs implement the exact same linearization for the measurement func-
tion h. Here the Taylor expansion is developed around μ̄t, the state deemed
most likely by the robot at the time it linearizes h:

h(xt) ≈ h(μ̄t) + h′(μ̄t)︸ ︷︷ ︸
=: Ht

(xt − μ̄t)(3.53)

= h(μ̄t) + Ht (xt − μ̄t)

with h′(xt) = ∂h(xt)
∂xt
. Written as a Gaussian, we have

p(zt | xt) = det (2πQt)
− 1

2 exp
{−1

2 [zt − h(μ̄t)−Ht (xt − μ̄t)]
T(3.54)

Q−1
t [zt − h(μ̄t)−Ht (xt − μ̄t)]

}

3.3 The Extended Kalman Filter 59

1: Algorithm Extended_Kalman_filter(μt−1,Σt−1, ut, zt):
2: μ̄t = g(ut, μt−1)

3: Σ̄t = Gt Σt−1 GT
t + Rt

4: Kt = Σ̄t HT
t (Ht Σ̄t HT

t + Qt)
−1

5: μt = μ̄t + Kt(zt − h(μ̄t))

6: Σt = (I −Kt Ht) Σ̄t

7: return μt,Σt

Table 3.3 The extended Kalman filter algorithm.

3.3.3 The EKF Algorithm

Table 3.3 states the EKF algorithm. In many ways, this algorithm is similar to
the Kalman filter algorithm stated in Table 3.1. The most important differ-
ences are summarized by the following table:

Kalman filter EKF
state prediction (line 2) At μt−1 + Bt ut g(ut, μt−1)

measurement prediction (line 5) Ct μ̄t h(μ̄t)

That is, the linear predictions in Kalman filters are replaced by their nonlin-
ear generalizations in EKFs. Moreover, EKFs use JacobiansGt andHt instead
of the corresponding linear system matrices At, Bt, and Ct in Kalman filters.
The Jacobian Gt corresponds to the matrices At and Bt, and the Jacobian Ht

corresponds to Ct. A detailed example for extended Kalman filters will be
given in Chapter 7.

3.3.4 Mathematical Derivation of the EKF

The mathematical derivation of the EKF parallels that of the Kalman filter
in Chapter 3.2.4, and hence shall only be sketched here. The prediction is
calculated as follows (c.f. (3.8)):

bel(xt) =

∫
p(xt | xt−1, ut)︸ ︷︷ ︸

∼N (xt;g(ut,μt−1)+Gt(xt−1−μt−1),Rt)

bel(xt−1)︸ ︷︷ ︸
∼N (xt−1;μt−1,Σt−1)

dxt−1(3.55)

This distribution is the EKF analog of the prediction distribution in the
Kalman filter, stated in (3.8). The Gaussian p(xt | xt−1, ut) can be found

60 3 Gaussian Filters

in Equation (3.52). The function Lt is given by (c.f. (3.11))

Lt = 1
2 (xt − g(ut, μt−1)−Gt(xt−1 − μt−1))

T(3.56)

R−1
t (xt − g(ut, μt−1)−Gt(xt−1 − μt−1))

+ 1
2 (xt−1 − μt−1)

T Σ−1
t−1 (xt−1 − μt−1)

which is quadratic in both xt−1 and xt, as above. As in (3.12), we decompose
Lt into Lt(xt−1, xt) and Lt(xt):

Lt(xt−1, xt)(3.57)

= 1
2 (xt−1 − Φt [GT

t R−1
t (xt − g(ut, μt−1) + Gtμt−1) + Σ−1

t−1μt−1])
T Φ−1

(xt−1 − Φt [GT
t R−1

t (xt − g(ut, μt−1) + Gtμt−1) + Σ−1
t−1μt−1])

with

Φt = (GT
t R−1

t Gt + Σ−1
t−1)

−1(3.58)

and hence

Lt(xt) = 1
2 (xt − g(ut, μt−1) + Gtμt−1)

T R−1
t (xt − g(ut, μt−1) + Gtμt−1)(3.59)

+ 1
2 (xt−1 − μt−1)

T Σ−1
t−1 (xt−1 − μt−1)

− 1
2 [GT

t R−1
t (xt − g(ut, μt−1) + Gtμt−1) + Σ−1

t−1μt−1]
T

Φt [GT
t R−1

t (xt − g(ut, μt−1) + Gtμt−1) + Σ−1
t−1μt−1]

As the reader can easily verify, setting the first derivative of Lt(xt) to
zero gives us the update μt = g(ut, μt−1), in analogy to the derivation in
Equations (3.27) through (3.31). The second derivative is given by (Rt +

Gt Σt−1 GT
t)−1 (see (3.32)).

The measurement update is also derived analogously to the Kalman filter
in Chapter 3.2.4. In analogy to (3.33), we have for the EKF

bel(xt) = η p(zt | xt)︸ ︷︷ ︸
∼N (zt;h(μ̄t)+Ht (xt−μ̄t),Qt)

bel(xt)︸ ︷︷ ︸
∼N (xt;μ̄t,Σ̄t)

(3.60)

using the linearized state transition function from (3.53). This leads to the
exponent (see (3.35)):

Jt = 1
2 (zt − h(μ̄t)−Ht (xt − μ̄t))

T Q−1
t (zt − h(μ̄t)−Ht (xt − μ̄t))(3.61)

+ 1
2 (xt − μ̄t)

T Σ̄−1
t (xt − μ̄t)

The resulting mean and covariance is given by

μt = μ̄t + Kt(zt − h(μ̄t))(3.62)

Σt = (I −Kt Ht) Σ̄t(3.63)

3.3 The Extended Kalman Filter 61

with the Kalman gain

Kt = Σ̄t HT
t (Ht Σ̄t−1 HT

t + Qt)
−1(3.64)

The derivation of these equations is analogous to Equations (3.36) through
(3.47).

3.3.5 Practical Considerations

The EKF has become just about the most popular tool for state estimation in
robotics. Its strength lies in its simplicity and in its computational efficiency.
As was the case for the Kalman filter, each update requires time O(k2.4 +

n2), where k is the dimension of the measurement vector zt, and n is the
dimension of the state vector xt. Other algorithms, such as the particle filter
discussed further below, may require time exponential in n.
The EKF owes its computational efficiency to the fact that it represents the
belief by a multivariate Gaussian distribution. A Gaussian is a unimodal
distribution, which can be thought of as a single guess annotated with an
uncertainty ellipse. Inmany practical problems, Gaussians are robust estima-
tors. Applications of the Kalman filter to state spaces with 1,000 dimensions
or more will be discussed in later chapters of this book. EKFs have been ap-
plied with great success to a number of state estimation problems that violate
the underlying assumptions.
An important limitation of the EKF arises from the fact that it approxi-
mates state transitions and measurements using linear Taylor expansions. In
most robotics problems, state transitions and measurements are nonlinear.
The goodness of the linear approximation applied by the EKF depends on
two main factors: The degree of uncertainty and the degree of local non-
linearity of the functions that are being approximated. The two graphs in
Figure 3.5 illustrate the dependency on the uncertainty. Here, two Gaussian
random variables are passed through the same nonlinear function (c.f. also
Figure 3.4). While both Gaussians have the same mean, the variable shown
in (a) has a higher uncertainty than the one in (b). Since the Taylor expansion
only depends on the mean, both Gaussians are passed through the same lin-
ear approximation. The gray areas in the upper left plots of the two figures
show the densities of the resulting random variable, computed by Monte-
Carlo estimation. The density resulting from the wider Gaussian is far more
distorted than the density resulting from the narrow, less uncertain Gaus-
sian. The Gaussian approximations of these densities are given by the solid
lines in the figures. The dashed graphs show the Gaussians estimated by the

62 3 Gaussian Filters

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

x

y=
g(

x)

Function g(x)
Taylor approx.
Mean μ
g(μ)

x

p(
x)

p(x)
Mean μ

(a)

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

x

y=
g(

x)

Function g(x)
Taylor approx.
Mean μ
g(μ)

x

p(
x)

p(x)
Mean μ

(b)

Figure 3.5 Dependency of approximation quality on uncertainty. Both Gaussians
(lower right) have the same mean and are passed through the same nonlinear func-
tion (upper right). The higher uncertainty of the left Gaussian produces a more dis-
torted density of the resulting random variable (gray area in upper left graph). The
solid lines in the upper left graphs show the Gaussians extracted from these densities.
The dashed lines represent the Gaussians generated by the linearization applied by
the EKF.

3.3 The Extended Kalman Filter 63

linearization. A comparison to the Gaussians resulting from theMonte-Carlo
approximations illustrates the fact that higher uncertainty typically results in
less accurate estimates of the mean and covariance of the resulting random
variable.
The second factor for the quality of the linear Gaussian approximation is
the local nonlinearity of the function g, as illustrated in Figure 3.6. Shown
there are two Gaussians with the same variance passed through the same
nonlinear function. In Panel (a), the mean of the Gaussian falls into a more
nonlinear region of the function g than in Panel (b). The mismatch between
the accurate Monte-Carlo estimate of the Gaussian (solid line, upper left)
and the Gaussian resulting from linear approximation (dashed line) shows
that higher nonlinearities result in larger approximation errors. The EKF
Gaussian clearly underestimates the spread of the resulting density.
Sometimes, one might want to pursue multiple distinct hypotheses. For
example, a robot might have two distinct hypotheses as to where it is, but the
arithmetic mean of these hypotheses is not a likely contender. Such situations
require multi-modal representations for the posterior belief. EKFs, in the
form described here, are incapable of representing such multimodal beliefs.
A common extension of EKFs is to represent posteriors using mixtures, orMIXTURE OF

GAUSSIANS sums, of Gaussians. A mixture of Gaussians may be of the form

bel(xt) =
1∑
l ψt,l

∑
l

ψt,l det (2πΣt,l)
−1

2 exp
{
−1

2 (xt − μt,l)
T Σ−1

t,l (xt − μt,l)
}

(3.65)

Here ψt,l are mixture parameters with ψt,l ≥ 0. These parameters serve
as weights of the mixture components. They are estimated from the like-
lihoods of the observations conditioned on the corresponding Gaussians.
EKFs that utilize such mixture representations are called multi-hypothesis (ex-MULTI-HYPOTHESIS

EKF tended) Kalman filters, orMHEKF.
To summarize, if the nonlinear functions are approximately linear at the
mean of the estimate, then the EKF approximation may generally be a good
one, and EKFs may approximate the posterior belief with sufficient accuracy.
Furthermore, the less certain the robot, the wider its Gaussian belief, and the
more it is affected by nonlinearities in the state transition and measurement
functions. In practice, when applying EKFs it is therefore important to keep
the uncertainty of the state estimate small.

64 3 Gaussian Filters

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

x

y=
g(

x)

Function g(x)
Taylor approx.
Mean μ
g(μ)

x

p(
x)

p(x)
Mean μ

(a)

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

x

y=
g(

x)

Function g(x)
Taylor approx.
Mean μ
g(μ)

x

p(
x)

p(x)
Mean μ

(b)

Figure 3.6 Dependence of the approximation quality on local nonlinearity of the
function g. Both Gaussians (lower right in each of the two panels) have the same co-
variance and are passed through the same function (upper right). The linear approx-
imation applied by the EKF is shown as the dashed lines in the upper right graphs.
The solid lines in the upper left graphs show the Gaussians extracted from the highly
accurate Monte-Carlo estimates. The dashed lines represent the Gaussians generated
by the EKF linearization.

3.4 The Unscented Kalman Filter 65

3.4 The Unscented Kalman Filter

The Taylor series expansion applied by the EKF is only one way to linearize
the transformation of a Gaussian. Two other approaches have often been
found to yield superior results. One is known as moments matching (and the
resulting filter is known as assumed density filter, or ADF), in which the lin-
earization is calculated in a way that preserves the true mean and the true
covariance of the posterior distribution (which is not the case for EKFs). An-
other linearization method is applied by the unscented Kalman filter, or UKF,UNSCENTED KALMAN

FILTER which performs a stochastic linearization through the use of a weighted sta-
tistical linear regression process. We now discuss the UKF algorithmwithout
mathematical derivation. The reader is encouraged to read more details in
the literature referenced in the bibliographical remarks.

3.4.1 Linearization Via the Unscented Transform

Figure 3.7 illustrates the linearization applied by the UKF, called the un-
scented transform. Instead of approximating the function g by a Taylor series
expansion, the UKF deterministically extracts so-called sigma points from theSIGMA POINT

Gaussian and passes these through g. In the general case, these sigma points
are located at the mean and symmetrically along the main axes of the covari-
ance (two per dimension). For an n-dimensional Gaussian with mean μ and
covariance Σ, the resulting 2n + 1 sigma points X [i] are chosen according to
the following rule:

X [0] = μ(3.66)

X [i] = μ +
(√

(n + λ) Σ
)

i
for i = 1, . . . , n

X [i] = μ−
(√

(n + λ) Σ
)

i−n
for i = n + 1, . . . , 2n

Here λ = α2(n+κ)−n, with α and κ being scaling parameters that determine
how far the sigma points are spread from the mean. Each sigma point X [i]

has two weights associated with it. One weight, w[i]
m , is used when comput-

ing the mean, the other weight, w[i]
c , is used when recovering the covariance

of the Gaussian.

w[0]
m =

λ

n + λ
(3.67)

w[0]
c =

λ

n + λ
+ (1− α2 + β)

66 3 Gaussian Filters

p(y)
y

p(y)
Gaussian of p(y)
Mean of p(y)
UKF Gaussian
Mean of UKF

x

y=
g(

x)

Function g(x)
Sigma−points
g(sigma points)

x

p(
x)

p(x)
Mean μ

Figure 3.7 Illustration of linearization applied by the UKF. The filter first extracts
2n + 1 weighted sigma points from the n-dimensional Gaussian (n = 1 in this exam-
ple). These sigma points are passed through the nonlinear function g. The linearized
Gaussian is then extracted from the mapped sigma points (small circles in the upper
right plot). As for the EKF, the linearization incurs an approximation error, indi-
cated by the mismatch between the linearized Gaussian (dashed) and the Gaussian
computed from the highly accurate Monte-Carlo estimate (solid).

w[i]
m = w[i]

c =
1

2(n + λ)
for i = 1, . . . , 2n.

The parameter β can be chosen to encode additional (higher order) know-
ledge about the distribution underlying the Gaussian representation. If the
distribution is an exact Gaussian, then β = 2 is the optimal choice.
The sigma points are then passed through the function g, thereby probing
how g changes the shape of the Gaussian.

Y [i] = g(X [i])(3.68)

The parameters (μ′ Σ′) of the resulting Gaussian are extracted from the

3.4 The Unscented Kalman Filter 67

mapped sigma points Y [i] according to

μ′ =

2n∑
i=0

w[i]
m Y [i](3.69)

Σ′ =

2n∑
i=0

w[i]
c (Y [i] − μ′)(Y [i] − μ′)T .

Figure 3.8 illustrates the dependency of the unscented transform on the
uncertainty of the original Gaussian. For comparison, the results using the
EKF Taylor series expansion are plotted alongside the UKF results.
Figure 3.9 shows an additional comparison betweenUKF and EKF approx-
imation, here in dependency of the local nonlinearity of the function g. As
can be seen, the unscented transform is more accurate than the first order
Taylor series expansion applied by the EKF. In fact, it can be shown that the
unscented transform is accurate in the first two terms of the Taylor expan-
sion, while the EKF captures only the first order term. (It should be noted,
however, that both the EKF and the UKF can be modified to capture higher
order terms.)

3.4.2 The UKF Algorithm

The UKF algorithm utilizing the unscented transform is presented in Ta-
ble 3.4. The input and output are identical to the EKF algorithm. Line 2
determines the sigma points of the previous belief using Equation (3.66),
with γ short for

√
n + λ. These points are propagated through the noise-free

state prediction in line 3. The predicted mean and variance are then com-
puted from the resulting sigma points (lines 4 and 5). Rt in line 5 is added to
the sigma point covariance in order to model the additional prediction noise
uncertainty (compare line 3 of the EKF algorithm in Table 3.3). The predic-
tion noise Rt is assumed to be additive. Later, in Chapter 7, we present a
version of the UKF algorithm that performs more accurate estimation of the
prediction and measurement noise terms.
A new set of sigma points is extracted from the predicted Gaussian in line
6. This sigma point set X̄t now captures the overall uncertainty after the pre-
diction step. In line 7, a predicted observation is computed for each sigma
point. The resulting observation sigma points Z̄t are used to compute the
predicted observation ẑt and its uncertainty, St. The matrix Qt is the co-
variance matrix of the additive measurement noise. Note that St represents
the same uncertainty as Ht Σ̄t HT

t + Qt in line 4 of the EKF algorithm in

68 3 Gaussian Filters

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
UKF Gaussian
Mean of UKF

x

y=
g(

x)

Function g(x)
Sigma−points
g(sigma points)

x

p(
x)

p(x)
Mean μ

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

(a)

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
UKF Gaussian
Mean of UKF

x

y=
g(

x)

Function g(x)
Sigma−points
g(sigma points)

x

p(
x)

p(x)
Mean μ

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

(b)

Figure 3.8 Linearization results for the UKF depending on the uncertainty of the
original Gaussian. The results of the EKF linearization are also shown for comparison
(c.f. Figure3.5). The unscented transform incurs smaller approximation errors, as can
be seen by the stronger similarity between the dashed and the solid Gaussians.

Table 3.3. Line 10 determines the cross-covariance between state and obser-
vation, which is then used in line 11 to compute the Kalman gain Kt. The
cross-covariance Σ̄x,z

t corresponds to the term Σ̄t HT
t in line 4 of the EKF

algorithm. With this in mind it is straightforward to show that the estima-
tion update performed in lines 12 and 13 is of equivalent form to the update
performed by the EKF algorithm.

3.4 The Unscented Kalman Filter 69

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
UKF Gaussian
Mean of UKF

x

y=
g(

x)

Function g(x)
Sigma−points
g(sigma points)

x

p(
x)

p(x)
Mean μ

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

(a)

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
UKF Gaussian
Mean of UKF

x

y=
g(

x)

Function g(x)
Sigma−points
g(sigma points)

x

p(
x)

p(x)
Mean μ

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
EKF Gaussian
Mean of EKF

(b)

Figure 3.9 Linearization results for the UKF depending on the mean of the origi-
nal Gaussian. The results of the EKF linearization are also shown for comparison
(c.f. Figure3.6). The sigma point linearization incurs smaller approximation errors, as
can be seen by the stronger similarity between the dashed and the solid Gaussians.

The asymptotic complexity of the UKF algorithm is the same as for the
EKF. In practice, the EKF is often slightly faster than the UKF. The UKF is still
highly efficient, even with this slowdown by a constant factor. Furthermore,
the UKF inherits the benefits of the unscented transform for linearization.
For purely linear systems, it can be shown that the estimates generated by
the UKF are identical to those generated by the Kalman filter. For nonlin-

70 3 Gaussian Filters

1: Algorithm Unscented_Kalman_filter(μt−1,Σt−1, ut, zt):

2: Xt−1 = (μt−1 μt−1 + γ
√

Σt−1 μt−1 − γ
√

Σt−1)

3: X̄ ∗
t = g(ut,Xt−1)

4: μ̄t =
2n∑
i=0

w[i]
mX̄ ∗[i]

t

5: Σ̄t =

2n∑
i=0

w[i]
c (X̄ ∗[i]

t − μ̄t)(X̄
∗[i]
t − μ̄t)

T + Rt

6: X̄t = (μ̄t μ̄t + γ
√

Σ̄t μ̄t − γ
√

Σ̄t)

7: Z̄t = h(X̄t)

8: ẑt =

2n∑
i=0

w[i]
mZ̄ [i]

t

9: St =

2n∑
i=0

w[i]
c (Z̄ [i]

t − ẑt)(Z̄ [i]
t − ẑt)

T + Qt

10: Σ̄x,z
t =

2n∑
i=0

w[i]
c (X̄ [i]

t − μ̄t)(Z̄ [i]
t − ẑt)

T

11: Kt = Σ̄x,z
t S−1

t

12: μt = μ̄t + Kt(zt − ẑt)

13: Σt = Σ̄t −Kt St KT
t

14: return μt,Σt

Table 3.4 The unscented Kalman filter algorithm. The variable n denotes the di-
mensionality of the state vector.

ear systems the UKF produces equal or better results than the EKF, where
the improvement over the EKF depends on the nonlinearities and spread
of the prior state uncertainty. In many practical applications, the difference
between EKF and UKF is negligible.
Another advantage of the UKF is the fact that it does not require the com-
putation of Jacobians, which are difficult to determine in some domains. The
UKF is thus often referred to as a derivative-free filter.DERIVATIVE-FREE

FILTER

3.5 The Information Filter 71

Finally, the unscented transform has some resemblance to the sample-
based representation used by particle filters, which will be discussed in the
next chapter. A key difference however, is that the sigma points of the
unscented transform are determined deterministically, while particle filters
draw samples randomly. This has important implications. If the underlying
distribution is approximately Gaussian, then the UKF representation is far
more efficient than the particle filter representation. If, on the other hand, the
belief is highly non-Gaussian, then the UKF representation is too restrictive
and the filter can perform arbitrarily poorly.

3.5 The Information Filter

The dual of the Kalman filter is the information filter, or IF. Just like the KF
and its nonlinear versions, the EKF and the UKF, the information filter repre-
sents the belief by a Gaussian. Thus, the standard information filter is subject
to the same assumptions underlying the Kalman filter. The key difference
between the KF and the IF arises from the way the Gaussian belief is rep-
resented. Whereas in the Kalman filter family of algorithms, Gaussians are
represented by their moments (mean, covariance), information filters repre-
sent Gaussians in their canonical parameterization, which is comprised of an
information matrix and an information vector. The difference in parameter-
ization leads to different update equations. In particular, what is computa-
tionally complex in one parameterization happens to be simple in the other
(and vice versa). The canonical and the moments parameterizations are often
considered dual to each other, and thus are the IF and the KF.

3.5.1 Canonical Parameterization

The canonical parameterization of a multivariate Gaussian is given by a matrixCANONICAL

PARAMETERIZATION Ω and a vector ξ. The matrix Ω is the inverse of the covariance matrix:

Ω = Σ−1(3.70)

Ω is called the information matrix, or sometimes the precision matrix. The vec-INFORMATION MATRIX

tor ξ is called the information vector. It is defined as

ξ = Σ−1 μ(3.71)

It is easy to see that Ω and ξ are a complete parameterization of a Gaussian.
In particular, the mean and covariance of the Gaussian can easily be obtained

72 3 Gaussian Filters

from the canonical parameterization by the inverse of (3.70) and (3.71):

Σ = Ω−1(3.72)

μ = Ω−1 ξ(3.73)

The canonical parameterization is often derived bymultiplying out the expo-
nent of a Gaussian. In (3.1), we defined the multivariate normal distribution
as follows:

p(x) = det (2πΣ)
− 1

2 exp
{−1

2 (x− μ)T Σ−1(x− μ)
}

(3.74)

A straightforward sequence of transformations leads to the following param-
eterization:

p(x) = det (2πΣ)
− 1

2 exp
{−1

2xT Σ−1x + xT Σ−1μ− 1
2μT Σ−1μ

}
(3.75)

= det (2πΣ)
− 1

2 exp
{−1

2μT Σ−1μ
}︸ ︷︷ ︸

const.

exp
{−1

2xT Σ−1x + xT Σ−1μ
}

The term labeled “const.” does not depend on the target variable x. Hence,
it can be subsumed into the normalizer η.

p(x) = η exp
{−1

2xT Σ−1 x + xT Σ−1 μ
}

(3.76)

This form motivates the parameterization of a Gaussian by its canonical pa-
rameters Ω and ξ.

p(x) = η exp
{−1

2xT Ω x + xT ξ
}

(3.77)

In many ways, the canonical parameterization is more elegant than the mo-
ments parameterization. In particular, the negative logarithm of the Gaus-
sian is a quadratic function in x, with the canonical parameters Ω and ξ:

− log p(x) = const. + 1
2xT Ω x− xT ξ(3.78)

Here “const.” is a constant. The reader may notice that we cannot use the
symbol η to denote this constant, since negative logarithms of probabilities
do not normalize to 1. The negative logarithm of our distribution p(x) is
quadratic in x, with the quadratic term parameterized by Ω and the linear
term by ξ. In fact, for Gaussians, Ω must be positive semidefinite, hence
− log p(x) is a quadratic distance function with mean μ = Ω−1 ξ. This is
easily verified by setting the first derivative of (3.78) to zero:

∂[− log p(x)]

∂x
= 0 ⇐⇒ Ωx− ξ = 0 ⇐⇒ x = Ω−1ξ(3.79)

The matrix Ω determines the rate at which the distance function increases
in the different dimensions of the variable x. A quadratic distance that is
weighted by a matrix Ω is called aMahalanobis distance.MAHALANOBIS

DISTANCE

3.5 The Information Filter 73

1: Algorithm Information_filter(ξt−1,Ωt−1, ut, zt):

2: Ω̄t = (At Ω−1
t−1 AT

t + Rt)
−1

3: ξ̄t = Ω̄t(At Ω−1
t−1 ξt−1 + Bt ut)

4: Ωt = CT
t Q−1

t Ct + Ω̄t

5: ξt = CT
t Q−1

t zt + ξ̄t

6: return ξt,Ωt

Table 3.5 The information filter algorithm.

3.5.2 The Information Filter Algorithm

Table 3.5 states the update algorithm known as information filter. Its input is
a Gaussian in its canonical parameterization ξt−1 and Ωt−1, representing the
belief at time t − 1. Just like all Bayes filters, its input includes the control
ut and the measurement zt. The output are the parameters ξt and Ωt of the
updated Gaussian.
The update involves matrices At, Bt, Ct, Rt, and Qt. Those were defined

in Chapter 3.2. The information filter assumes that the state transition and
measurement probabilities are governed by the following linear Gaussian
equations, originally defined in (3.2) and (3.5):

xt = Atxt−1 + Btut + εt(3.80)

zt = Ctxt + δt(3.81)

Here Rt and Qt are the covariances of the zero-mean noise variables εt and
δt, respectively.
Just like the Kalman filter, the information filter is updated in two steps, a
prediction step and a measurement update step. The prediction step is im-
plemented in lines 2 and 3 in Table 3.5. The parameters ξ̄t and Ω̄t describe
the Gaussian belief over xt after incorporating the control ut, but before in-
corporating the measurement zt. The latter is done through lines 4 and 5.
Here the belief is updated based on the measurement zt.
These two update steps can be vastly different in complexity, especially if
the state space possesses many dimensions. The prediction step, as stated
in Table 3.5, involves the inversion of two matrices of the size n × n, where
n is the dimension of the state space. This inversion requires approximately

74 3 Gaussian Filters

O(n2.4) time. In Kalman filters, the update step is additive and requires at
most O(n2) time; it requires less time if only a subset of variables is affected
by a control, or if variables transition independently of each other. These
roles are reversed for the measurement update step. Measurement updates
are additive in the information filter. They require at most O(n2) time, and
they are even more efficient if measurements carry only information about
a subset of all state variables at a time. The measurement update is the dif-
ficult step in Kalman filters. It requires matrix inversion whose worst case
complexity is O(n2.4). This illustrates the dual character of Kalman and in-
formation filters.

3.5.3 Mathematical Derivation of the Information Filter

The derivation of the information filter is analogous to that of the Kalman
filter.
To derive the prediction step (lines 2 and 3 in Table 3.5), we begin with thePREDICTION STEP

corresponding update equations of the Kalman filters, which can be found
in lines 2 and 3 of the algorithm in Table 3.1 and are restated here for the
reader’s convenience:

μ̄t = At μt−1 + Bt ut(3.82)

Σ̄t = At Σt−1 AT
t + Rt(3.83)

The information filter prediction step follows now directly by substituting
the moments μ and Σ by the canonical parameters ξ and Ω according to their
definitions in (3.72) and (3.73):

μt−1 = Ω−1
t−1 ξt−1(3.84)

Σt−1 = Ω−1
t−1(3.85)

Substituting these expressions in (3.82) and (3.83) gives us the set of predic-
tion equations

Ω̄t = (At Ω−1
t−1 AT

t + Rt)
−1(3.86)

ξ̄t = Ω̄t(At Ω−1
t−1 ξt−1 + Bt ut)(3.87)

These equations are identical to those in Table 3.5. As is easily seen, the
prediction step involves two nested inversions of a potentially large matrix.
These nested inversions can be avoided when only a small number of state
variables is affected by the motion update, a topic that will be discussed later
in this book.

3.5 The Information Filter 75

The derivation of the measurement update is even simpler. We begin withMEASUREMENT

UPDATE the Gaussian of the belief at time t, which was provided in Equation (3.35)
and is restated here once again:

bel(xt)(3.88)

= η exp
{− 1

2 (zt − Ctxt)
T Q−1

t (zt − Ctxt)− 1
2 (xt − μ̄t)

T Σ̄−1
t (xt − μ̄t)

}
For Gaussians represented in their canonical form this distribution is given
by

bel(xt)(3.89)

= η exp
{− 1

2 xT
t CT

t Q−1
t Ct xt + xT

t CT
t Q−1

t zt − 1
2 xT

t Ω̄txt + xT
t ξ̄t

}
which, by reordering the terms in the exponent, resolves to

bel(xt) = η exp
{− 1

2 xT
t [CT

t Q−1
t Ct + Ω̄t] xt + xT

t [CT
t Q−1

t zt + ξ̄t]
}

(3.90)

We can now read off the measurement update equations, by collecting the
terms in the squared brackets:

ξt = CT
t Q−1

t zt + ξ̄t(3.91)

Ωt = CT
t Q−1

t Ct + Ω̄t(3.92)

These equations are identical to the measurement update equations in lines
4 and 5 of Table 3.5.

3.5.4 The Extended Information Filter Algorithm

The extended information filter, or EIF, extends the information filter to the
nonlinear case, very much in the same way the EKF is the non-linear exten-
sion of the Kalman filter. Table 3.6 depicts the EIF algorithm. The predic-
tion is realized in lines 2 through 4, and the measurement update in lines 5
through 7. These update equations are largely analog to the linear informa-
tion filter, with the functions g and h (and their JacobianGt andHt) replacing
the parameters of the linear model At, Bt, and Ct. As before, g and h specify
the nonlinear state transition function and measurement function, respec-
tively. Those were defined in (3.48) and (3.49) and are restated here:

xt = g(ut, xt−1) + εt(3.93)

zt = h(xt) + δt(3.94)

Unfortunately, both g and h require a state as an input. This mandates the
recovery of a state estimate μ from the canonical parameters. The recovery

76 3 Gaussian Filters

1: Algorithm Extended_information_filter(ξt−1,Ωt−1, ut, zt):

2: μt−1 = Ω−1
t−1 ξt−1

3: Ω̄t = (Gt Ω−1
t−1 GT

t + Rt)
−1

4: ξ̄t = Ω̄t g(ut, μt−1)

5: μ̄t = g(ut, μt−1)

6: Ωt = Ω̄t + HT
t Q−1

t Ht

7: ξt = ξ̄t + HT
t Q−1

t [zt − h(μ̄t) + Ht μ̄t]

8: return ξt,Ωt

Table 3.6 The extended information filter (EIF) algorithm.

takes place in line 2, in which the state μt−1 is calculated from Ωt−1 and ξt−1

in the obvious way. Line 5 computes the state μ̄t using the equation familiar
from the EKF (line 2 in Table 3.3). The necessity to recover the state esti-
mate seems at odds with the desire to represent the filter using its canonical
parameters. We will revisit this topic when discussing the use of extended
information filters in the context of robotic mapping.

3.5.5 Mathematical Derivation of the Extended Information Filter

The extended information filter is easily derived by essentially performing
the same linearization that led to the extended Kalman filter above. As in
(3.51) and (3.53), the extended information filter approximates g and h by a
Taylor expansion:

g(ut, xt−1) ≈ g(ut, μt−1) + Gt (xt−1 − μt−1)(3.95)

h(xt) ≈ h(μ̄t) + Ht (xt − μ̄t)(3.96)

Here Gt andHt are the Jacobians of g and h at μt−1 and μ̄t, respectively:

Gt = g′(ut, μt−1)(3.97)

Ht = h′(μ̄t)(3.98)

These definitions are equivalent to those in the EKF. The prediction step is
now derived from lines 2 and 3 of the EKF algorithm (Table 3.3), which are

3.5 The Information Filter 77

restated here:

Σ̄t = Gt Σt−1 GT
t + Rt(3.99)

μ̄t = g(ut, μt−1)(3.100)

Substituting Σt−1 by Ω−1
t−1 and μ̄t by Ω̄−1

t ξ̄t gives us the prediction equations
of the extended information filter:

Ω̄t = (Gt Ω−1
t−1 GT

t + Rt)
−1(3.101)

ξ̄t = Ω̄t g(ut,Ω
−1
t−1 ξt−1)(3.102)

The measurement update is derived from Equations (3.60) and (3.61). In par-
ticular, (3.61) defines the following Gaussian posterior:

bel(xt) = η exp
{− 1

2 (zt − h(μ̄t)−Ht (xt − μ̄t))
T Q−1

t(3.103)

(zt − h(μ̄t)−Ht (xt − μ̄t))− 1
2 (xt − μ̄t)

T Σ̄−1
t (xt − μ̄t)

}
Multiplying out the exponent and reordering the terms gives us the follow-
ing expression for the posterior:

bel(xt) = η exp
{− 1

2 xT
t HT

t Q−1
t Ht xt + xT

t HT
t Q−1

t [zt − h(μ̄t) + Ht μ̄t](3.104)

− 1
2xT

t Σ̄−1
t xt + xT

t Σ̄−1
t μ̄t

}
= η exp

{−1
2 xT

t

[
HT

t Q−1
t Ht + Σ̄−1

t

]
xt

+xT
t

[
HT

t Q−1
t [zt − h(μ̄t) + Ht μ̄t] + Σ̄−1

t μ̄t

]
With Σ̄−1

t = Ω̄t this expression resolves to the following information form:

bel(xt) = η exp
{− 1

2 xT
t

[
HT

t Q−1
t Ht + Ω̄t

]
xt(3.105)

+xT
t

[
HT

t Q−1
t [zt − h(μ̄t) + Ht μ̄t] + ξ̄t

]
We can now read off the measurement update equations by collecting the
terms in the squared brackets:

Ωt = Ω̄t + HT
t Q−1

t Ht(3.106)

ξt = ξ̄t + HT
t Q−1

t [zt − h(μ̄t) + Ht μ̄t](3.107)

3.5.6 Practical Considerations

When applied to robotics problems, the information filter possesses several
advantages over the Kalman filter. For example, representing global un-
certainty is simple in the information filter: simply set Ω = 0. When us-
ing moments, such global uncertainty amounts to a covariance of infinite

78 3 Gaussian Filters

magnitude. This is especially problematic when sensor measurements carry
information about a strict subset of all state variables, a situation often en-
countered in robotics. Special provisions have to be made to handle such
situations in EKFs. The information filter tends to be numerically more sta-
ble than the Kalman filter in many of the applications discussed later in this
book.
Aswe shall see in later chapters of this book, the information filter and sev-
eral extensions enable a robot to integrate information without immediately
resolving it into probabilities. This can be of great advantage in complex
estimation problems, involving hundreds or even millions of variables. For
such large problems, the integration á la Kalman filter induces severe compu-
tational problems, since any new piece of information requires propagation
through a large system of variables. The information filter, with appropriate
modification, can side-step this issue by simply adding the new information
locally into the system. However, this is not a property yet of the simple
information filter discussed here; we will extend this filter in Chapter 12.
Another advantage of the information filter over the Kalman filter arises
from its natural fit for multi-robot problems. Multi-robot problems often in-
volve the integration of sensor data collected decentrally. Such integration is
commonly performed through Bayes rule. When represented in logarithmic
form, Bayes rule becomes an addition. As noted above, the canonical param-
eters of information filters represent a probability in logarithmic form. Thus,
information integration is achieved by summing up information from mul-
tiple robots. Addition is commutative. Because of this, information filters
can often integrate information in arbitrary order, with arbitrary delays, and
in a completely decentralized manner. While the same is possible using the
moments parameterization—after all, they represent the same information—
the necessary overhead for doing so is much higher. Despite this advantage,
the use of information filters in multi-robot systems remains largely under-
explored. We will revisit the multi-robot topic in Chapter 12.
These advantages of the information filter are offset by important limita-
tions. A primary disadvantage of the extended information filter is the need
to recover a state estimate in the update step, when applied to nonlinear sys-
tems. This step, if implemented as stated here, requires the inversion of the
information matrix. Further matrix inversions are required for the prediction
step of the information filters. In many robotics problems, the EKF does not
involve the inversion of matrices of comparable size. For high dimensional
state spaces, the information filter is generally believed to be computation-
ally inferior to the Kalman filter. In fact, this is one of the reasons why the

3.6 Summary 79

EKF has been vastly more popular than the extended information filter.
As we will see later in this book, these limitations do not necessarily apply
to problems in which the information matrix possesses structure. In many
robotics problems, the interaction of state variables is local; as a result, the
information matrix may be sparse. Such sparseness does not translate to
sparseness of the covariance.
Information filters can be thought of as graphs, where states are connected
whenever the corresponding off-diagonal element in the information matrix
is non-zero. Sparse information matrices correspond to sparse graphs; in
fact, such graphs are commonly known as GaussianMarkov random fields. AMARKOV RANDOM

FIELD flurry of algorithms exist to perform the basic update and estimation equa-
tions efficiently for such fields, under names like loopy belief propagation. In
this book, we will encounter a mapping problem in which the information
matrix is (approximately) sparse, and develop an extended information fil-
ter that is significantlymore efficient than both Kalman filters and non-sparse
information filters.

3.6 Summary

In this section, we introduced efficient Bayes filter algorithms that represent
the posterior by multivariate Gaussians. We noted that

• Gaussians can be represented in two different ways: Themoments param-
eterization and the canonical parameterization. The moments parameter-
ization consists of the mean (first moment) and the covariance (second
moment) of the Gaussian. The canonical, or natural, parameterization
consists of an information matrix and an information vector. Both param-
eterizations are duals of each other, and each can be recovered from the
other via matrix inversion.

• Bayes filters can be implemented for both parameterizations. When using
the moments parameterization, the resulting filter is called Kalman filter.
The dual of the Kalman filter is the information filter, which represents
the posterior in the canonical parameterization. Updating a Kalman fil-
ter based on a control is computationally simple, whereas incorporating
a measurement is more difficult. The opposite is the case for the infor-
mation filter, where incorporating a measurement is simple, but updating
the filter based on a control is difficult.

• For both filters to calculate the correct posterior, three assumptions have

80 3 Gaussian Filters

to be fulfilled. First, the initial belief must be Gaussian. Second, the state
transition probability must be composed of a function that is linear in
its argument with added independent Gaussian noise. Third, the same
applies to the measurement probability. It must also be linear in its argu-
ment, with added Gaussian noise. Systems that meet these assumptions
are called linear Gaussian systems.

• Both filters can be extended to nonlinear problems. One technique de-
scribed in this chapter calculates a tangent to the nonlinear function. Tan-
gents are linear, making the filters applicable. The technique for finding
a tangent is called Taylor expansion. Performing a Taylor expansion in-
volves calculating the first derivative of the target function, and evaluat-
ing it at a specific point. The result of this operation is a matrix known as
the Jacobian. The resulting filters are called ‘extended.’

• The unscented Kalman filter uses a different linearization technique,
called unscented transform. It probes the function to be linearized at se-
lected points and calculates a linearized approximation based on the out-
comes of these probes. This filter can be implemented without the need
for any Jacobians, it is thus often referred to as derivative-free. The un-
scented Kalman filter is equivalent to the Kalman filter for linear systems
but often provides improved estimates for nonlinear systems. The com-
putational complexity of this filter is the same as for the extended Kalman
filter.

• The accuracy of Taylor series expansions and unscented transforms de-
pends on two factors: The degree of nonlinearity in the system, and the
width of the posterior. Extended filters tend to yield good results if the
state of the system is known with relatively high accuracy, so that the re-
maining covariance is small. The larger the uncertainty, the higher the
error introduced by the linearization.

• One of the primary advantages of Gaussian filters is computational: The
update requires time polynomial in the dimensionality of the state space.
This is not the case of some of the techniques described in the next chap-
ter. The primary disadvantage is their confinement to unimodal Gaussian
distributions.

• An extension of Gaussians to multimodal posteriors is known as multi-
hypothesis Kalman filter. This filter represents the posterior by a mixture
of Gaussians, which is nothing else but a weighted sum of Gaussians.

3.7 Bibliographical Remarks 81

Themechanics of updating this filter require mechanisms for splitting and
fusing or pruning individual Gaussians. Multi-hypothesis Kalman filters
are particularly well suited for problems with discrete data association,
which commonly occur in robotics.

• Within the multivariate Gaussian regime, both filters, the Kalman filter
and the information filter, have orthogonal strengths and weaknesses.
However, the Kalman filter and its nonlinear extension, the extended
Kalman filter, are vastly more popular than the information filter.

The selection of the material in this chapter is based on today’s most popular
techniques in robotics. There exists a huge number of variations and exten-
sions of Gaussian filters, which address the various limitations and short-
comings of the individual filters.
A good number of algorithms in this book are based on Gaussian fil-
ters. Many practical robotics problems require extensions that exploit sparse
structures or factorizations of the posterior.

3.7 Bibliographical Remarks

The Kalman filter was invented by Swerling (1958) and Kalman (1960). It is usually introduced
as an optimal estimator under the least-squares assumption, and less frequently as a method for
calculating posterior distributions—although under the appropriate assumptions both views
are identical. There exists a number of excellent textbooks on Kalman filters and information
filters, including the ones by Maybeck (1990) and Jazwinsky (1970). Contemporary treatments
of Kalman filters with data association are provided by Bar-Shalom and Fortmann (1988); Bar-
Shalom and Li (1998).
The inversion lemma can be found in Golub and Loan (1986). Matrix inversion can be car-

ried out in O(n2.376) time, according to Coppersmith and Winograd (1990). This result is the
most recent one in a series of papers that provided improvements over theO(n3) complexity of
the variable elimination algorithm. The series started with Strassen’s (1969) seminal paper, in
which he gave an algorithm requiring O(n2.807). Cover and Thomas (1991) provides a survey
of information theory, but with a focus on discrete systems. The unscented Kalman filter is due
to Julier and Uhlmann (1997). A comparison of UKF to the EKF in the context of various state
estimation problems can be found in van der Merwe (2004). Minka (2001) provided a recent
treatment of moments matching and assumed density filtering for Gaussian mixtures.

3.8 Exercises

1. In this and the following exercise, you are asked to design a Kalman filter
for a simple dynamical system: a car with linear dynamics moving in a
linear environment. Assume Δt = 1 for simplicity. The position of the

82 3 Gaussian Filters

car at time t is given by xt. Its velocity is ẋt, and its acceleration is ẍt.
Suppose the acceleration is set randomly at each point in time, according
to a Gaussian with zero mean and covariance σ2 = 1.

(a) What is a minimal state vector for the Kalman filter (so that the result-
ing system is Markovian)?

(b) For your state vector, design the state transition probability p(xt |
ut, xt−1). Hint: this transition function will possess linear matrices A

and B and a noise covariance R (c.f., Equation (3.4) and Table 3.1).

(c) Implement the state prediction step of the Kalman filter. Assuming we
know at time t = 0, x0 = ẋ0 = ẍ0 = 0. Compute the state distributions
for times t = 1, 2, . . . , 5.

(d) For each value of t, plot the joint posterior over x and ẋ in a diagram,
where x is the horizontal and ẋ is the vertical axis. For each posterior,
you are asked to plot an uncertainty ellipse, which is the ellipse of pointsUNCERTAINTY ELLIPSE

that are one standard deviation away from the mean. Hint: If you do
not have access to a mathematics library, you can create those ellipses
by analyzing the eigenvalues of the covariance matrix.

(e) What will happen to the correlation between xt and ẋt as t ↑ ∞?

2. We will now add measurements to our Kalman filter. Suppose at time
t, we can receive a noisy observation of x. In expectation, our sensor
measures the true location. However, this measurement is corrupted by
Gaussian noise with covariance σ2 = 10.

(a) Define the measurement model. Hint: You need to define a matrix C

and another matrix Q (c.f., Equation (3.6) and Table 3.1).

(b) Implement the measurement update. Suppose at time t = 5, we ob-
serve a measurement z = 5. State the parameters of the Gaussian es-
timate before and after updating the KF. Plot the uncertainty ellipse
before and after incorporating the measurement (see above for instruc-
tions as to how to plot an uncertainty ellipse).

3. In Chapter 3.2.4, we derived the prediction step of the KF. This step is
often derived with Z transforms or Fourier transforms, using the Convo-
lution Theorem. Re-derive the prediction step using transforms. Notice:
This exercise requires knowledge of transforms and convolution, which goes be-
yond the material in this book.

3.8 Exercises 83

4. We noted in the text that the EKF linearization is an approximation. To
see how bad this approximation is, we ask you to work out an example.
Suppose we have a mobile robot operating in a planar environment. Its
state is its x-y-location and its global heading direction θ. Suppose we
know x and y with high certainty, but the orientation θ is unknown. This
is reflected by our initial estimate

μ =
(

0 0 0
)
and Σ =

⎛
⎝ 0.01 0 0

0 0.01 0

0 0 10000

⎞
⎠

(a) Draw, graphically, your best model of the posterior over the robot pose
after the robot moves d = 1 units forward. For this exercise, we assume
the robot moves flawlessly without any noise. Thus, the expected lo-
cation of the robot after motion will be⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ x + cos θ

y + sin θ

θ

⎞
⎠

For your drawing, you can ignore θ and only draw the posterior in
x-y-coordinates.

(b) Now develop this motion into a prediction step for the EKF. For that,
you have to define a state transition function and linearize it. You then
have to generate a new Gaussian estimate of the robot pose using the
linearized model. You should give the exact mathematical equations
for each of these steps, and state the Gaussian that results.

(c) Draw the uncertainty ellipse of the Gaussian and compare it with your
intuitive solution.

(d) Now incorporate a measurement. Our measurement shall be a noisy
projection of the x-coordinate of the robot, with covariance Q = 0.01.
Specify the measurement model. Now apply the measurement both
to your intuitive posterior, and formally to the EKF estimate using the
standard EKFmachinery. Give the exact result of the EKF, and compare
it with the result of your intuitive analysis.

(e) Discuss the difference between your estimate of the posterior, and the
Gaussian produced by the EKF. How significant are those differences?
What can be changed to make the approximation more accurate? What
would have happened if the initial orientation had been known, but
not the robot’s y-coordinate?

84 3 Gaussian Filters

5. The Kalman filter Table 3.1 lacked a constant additive term in the mo-
tion and the measurement models. Extend this algorithm to contain such
terms.

6. Prove (via example) the existence of a sparse information matrix in multi-
variate Gaussians (of dimension d) that correlate all d variables with cor-
relation coefficient that are ε-close to 1. We say an information matrix
is sparse if all but a constant number of elements in each row and each
column are zero.

4 Nonparametric Filters

A popular alternative to Gaussian techniques are nonparametric filters. Non-
parametric filters do not rely on a fixed functional form of the posterior, such
as Gaussians. Instead, they approximate posteriors by a finite number of
values, each roughly corresponding to a region in state space. Some non-
parametric Bayes filters rely on a decomposition of the state space, in which
each such value corresponds to the cumulative probability of the posterior
density in a compact subregion of the state space. Others approximate the
state space by random samples drawn from the posterior distribution. In all
cases, the number of parameters used to approximate the posterior can be
varied. The quality of the approximation depends on the number of param-
eters used to represent the posterior. As the number of parameters goes to
infinity, nonparametric techniques tend to converge uniformly to the correct
posterior—under specific smoothness assumptions.
This chapter discusses two nonparametric approaches for approximating
posteriors over continuous spaces with finitely many values. The first de-
composes the state space into finitely many regions, and represents the pos-
terior by a histogram. A histogram assigns to each region a single cumulative
probability; they are best thought of as piecewise constant approximations to
a continuous density. The second technique represents posteriors by finitely
many samples. The resulting filter is known as particle filter and has become
immensely popular in robotics.
Both types of techniques, histograms and particle filters, do not make
strong parametric assumptions on the posterior density. In particular, they
are well-suited to represent complex multimodal beliefs. For this reason,
they are often the method of choice when a robot has to cope with phases
of global uncertainty, and when it faces hard data association problems that
yield separate, distinct hypotheses. However, the representational power of

86 4 Nonparametric Filters

these techniques comes at the price of added computational complexity.
Fortunately, both nonparametric techniques described in this chapter
make it possible to adapt the number of parameters to the (suspected) com-
plexity of the posterior. When the posterior is of low complexity (e.g., fo-
cused on a single state with a small margin of uncertainty), they use only
small numbers of parameters. For complex posteriors, e.g., posteriors with
many modes scattered across the state space, the number of parameters
grows larger.
Techniques that can adapt the number of parameters to represent the pos-
terior online are called adaptive. They are called resource-adaptive if they canRESOURCE-ADAPTIVE

ALGORITHMS adapt based on the computational resources available for belief computation.
Resource-adaptive techniques play an important role in robotics. They en-
able robots to make decisions in real time, regardless of the computational
resources available. Particle filters are often implemented as a resource-
adaptive algorithm, by adapting the number of particles online based on the
available computational resources.

4.1 The Histogram Filter

Histogram filters decompose the state space into finitely many regions and
represent the cumulative posterior for each region by a single probability
value. When applied to finite spaces, such filters are known as discrete Bayes
filters; when applied to continuous spaces, they are commonly called his-
togram filters. We will first describe the discrete Bayes filter and then discuss
its use in continuous state spaces.

4.1.1 The Discrete Bayes Filter Algorithm

Discrete Bayes filters apply to problems with finite state spaces, where the ran-
dom variableXt can take on finitely many values. We already encountered a
discrete Bayes filter in Chapter 2.4.2, when discussing the example of a robot
estimating the probability that a door is open. Some of the robotic mapping
problems discussed in later chapters also involve discrete random variables.
For example, occupancy grid mapping algorithms assume that each location
in the environment is either occupied or free. The corresponding random
variable is binary. It can take on two different values. Thus, finite state spaces
play an important role in robotics.
Table 4.1 provides pseudo-code for the discrete Bayes filter. This code is
derived from the general Bayes filter in Table 2.1 by replacing the integration

4.1 The Histogram Filter 87

1: Algorithm Discrete_Bayes_filter({pk,t−1}, ut, zt):
2: for all k do
3: p̄k,t =

∑
i

p(Xt = xk | ut, Xt−1 = xi) pi,t−1

4: pk,t = η p(zt | Xt = xk) p̄k,t

5: endfor
6: return {pk,t}

Table 4.1 The discrete Bayes filter. Here xi, xk denote individual states.

with a finite sum. The variables xi and xk denote individual states, of which
there may only be finitely many. The belief at time t is an assignment of a
probability to each state xk, denoted pk,t. Thus, the input to the algorithm is
a discrete probability distribution {pk,t}, along with the most recent control
ut and measurement zt. Line 3 calculates the prediction, the belief for the
new state based on the control alone. This prediction is then updated in line
4, so as to incorporate the measurement. The discrete Bayes filter algorithm
is popular in many areas of signal processing, where it is often referred to as
the forward pass of a hidden Markov model, or HMM.HIDDEN MARKOV

MODEL

4.1.2 Continuous State

Of particular interest will be the use of discrete Bayes filters as an approxi-
mate inference tool for continuous state spaces. As noted above, such filters
are called histogram filters. Figure 4.1 illustrates how a histogram filter rep-
resents a random variable and its nonlinear transform. Shown there is the
projection of a histogrammed Gaussian through a nonlinear function. The
original Gaussian distribution possesses 10 bins. So does the projected prob-
ability distribution, but in two of the resulting bins the probability is so close
to zero that they cannot be seen in this figure. Figure 4.1 also shows the
correct continuous distributions for comparison.
Histogram filters decompose a continuous state space into finitely many
bins, or regions:

dom(Xt) = x1,t ∪ x2,t ∪ . . .xK,t(4.1)

88 4 Nonparametric Filters

p(y)

y

p(y)
Histogram

x

y=
g(

x)

Function g(x)

x

p(
x)

p(x)
Histogram

Figure 4.1 Histogram representation of a continuous random variable. The gray
shaded area in the lower right plot shows the density of the continuous random vari-
able, X . The histogram approximation of this density is overlaid in light-gray. The
random variable is passed through the function displayed in the upper right graph.
The density and the histogram approximation of the resulting random variable, Y ,
are plotted in the upper left graph. The histogram of the transformed random vari-
able was computed by passing multiple points from each histogram bin ofX through
the nonlinear function.

Here Xt is the familiar random variable describing the state of the robot at
time t. The function dom(Xt) denotes the state space, which is the universe
of possible values thatXtmight assume. Each xk,t describes a convex region.
These regions together form a partitioning of the state space. For each i �= k

we have xi,t ∩ xk,t = ∅ and ⋃k xk,t = dom(Xt).
A straightforward decomposition of a continuous state space is a multi-
dimensional grid, where each xk,t is a grid cell. Through the granularity of
the decomposition, we can trade off accuracy and computational efficiency.
Fine-grained decompositions infer smaller approximation errors than coarse

4.1 The Histogram Filter 89

ones, but at the expense of increased computational complexity.
As we already discussed, the discrete Bayes filter assigns to each region

xk,t a probability, pk,t. Within each region, the discrete Bayes filter carries no
further information on the belief distribution. Thus, the posterior becomes a
piecewise constant PDF, which assigns a uniform probability to each state xt

within each region xk,t:

p(xt) =
pk,t

|xk,t|(4.2)

Here |xk,t| is the volume of the region xk,t.
If the state space is truly discrete, the conditional probabilities p(xk,t |

ut,xi,t−1) and p(zt | xk,t) are well-defined, and the algorithm can be im-
plemented as stated. In continuous state spaces, one is usually given the
densities p(xt | ut, xt−1) and p(zt | xt), which are defined for individual
states (and not for regions in state space). For cases where each region xk,t

is small and of the same size, these densities are usually approximated by
substituting xk,t by a representative of this region. For example, we might
simply “probe” using the mean state in xk,t

x̂k,t = |xk,t|−1

∫
xk,t

xt dxt(4.3)

One then simply replaces

p(zt | xk,t) ≈ p(zt | x̂k,t)(4.4)

p(xk,t | ut,xi,t−1) ≈ η |xk,t| p(x̂k,t | ut, x̂i,t−1)(4.5)

These approximations are the result of the piecewise uniform interpretation
of the discrete Bayes filter stated in (4.2), and a Taylor-approximation analo-
gous to the one used by EKFs.

4.1.3 Mathematical Derivation of the Histogram Approximation

To see that (4.4) is a reasonable approximation, we note that p(zt | xk,t) can
be expressed as the following integral:

p(zt | xk,t) =
p(zt,xk,t)

p(xk,t)
(4.6)

=

∫
xk,t

p(zt, xt) dxt∫
xk,t

p(xt) dxt

90 4 Nonparametric Filters

=

∫
xk,t

p(zt | xt) p(xt) dxt∫
xk,t

p(xt) dxt

(4.2)
=

∫
xk,t

p(zt | xt)
pk,t

|xk,t| dxt∫
xk,t

pk,t

|xk,t| dxt

=

pk,t

|xk,t|
pk,t

|xk,t|

∫
xk,t

p(zt | xt) dxt∫
xk,t

1 dxt

=

∫
xk,t

p(zt | xt) dxt∫
xk,t

1 dxt

= |xk,t|−1

∫
xk,t

p(zt | xt) dxt

This expression is an exact description of the desired probability under the
piecewise uniform distribution model in (4.2). If we now approximate p(zt |
xt) by p(zt | x̂k,t) for xt ∈ xk,t, we obtain

p(zt | xk,t) ≈ |xk,t|−1

∫
xk,t

p(zt | x̂k,t) dxt(4.7)

= |xk,t|−1 p(zt | x̂k,t)

∫
xk,t

1 dxt

= |xk,t|−1 p(zt | x̂k,t) |xk,t|
= p(zt | x̂k,t)

which is the approximation stated above in (4.4).
The derivation of the approximation to p(xk,t | ut,xi,t−1) in (4.5) is slightly
more involved, since regions occur on both sides of the conditioning bar. In
analogy to our transformation above, we obtain:

p(xk,t | ut,xi,t−1)(4.8)

=
p(xk,t,xi,t−1 | ut)

p(xi,t−1 | ut)

4.1 The Histogram Filter 91

=

∫
xk,t

∫
xi,t−1

p(xt, xt−1 | ut) dxt, dxt−1∫
xi,t−1

p(xt−1 | ut) dxt−1

=

∫
xk,t

∫
xi,t−1

p(xt | ut, xt−1) p(xt−1 | ut) dxt, dxt−1∫
xi,t−1

p(xt−1 | ut) dxt−1

We now exploit the Markov assumption, which implies independence be-
tween xt−1 and ut, and thus p(xt−1 | ut) = p(xt−1):

p(xk,t | ut,xi,t−1)(4.9)

=

∫
xk,t

∫
xi,t−1

p(xt | ut, xt−1) p(xt−1) dxt, dxt−1∫
xi,t−1

p(xt−1) dxt−1

=

∫
xk,t

∫
xi,t−1

p(xt | ut, xt−1)
pi,t−1

|xi,t−1| dxt, dxt−1∫
xi,t−1

pi,t−1

|xi,t−1| dxt−1

=

∫
xk,t

∫
xi,t−1

p(xt | ut, xt−1) dxt, dxt−1∫
xi,t−1

1 dxt−1

= |xi,t−1|−1

∫
xk,t

∫
xi,t−1

p(xt | ut, xt−1) dxt, dxt−1

If we now approximate p(xt | ut, xt−1) by p(x̂k,t | ut, x̂i,t−1) as before, we
obtain the following approximation. Note that the normalizer η becomes
necessary to ensure that the approximation is a valid probability distribution:

p(xk,t | ut,xi,t−1)(4.10)

≈ η |xi,t−1|−1

∫
xk,t

∫
xi,t−1

p(x̂k,t | ut, x̂i,t−1) dxt, dxt−1

= η |xi,t−1|−1 p(x̂k,t | ut, x̂i,t−1)

∫
xk,t

∫
xi,t−1

1 dxt, dxt−1

= η |xi,t−1|−1 p(x̂k,t | ut, x̂i,t−1)|xk,t| |xi,t−1|
= η |xk,t| p(x̂k,t | ut, x̂i,t−1)

If all regions are of equal size (meaning that |xk,t| is the same for all k), we
can simply omit the factor |xk,t|, since it is subsumed by the normalizer. The

92 4 Nonparametric Filters

p(y)

y

p(y)
Histogram

p(y)

y

p(y)
Histogram

x

y=
g(

x)

Function g(x)

x

p(
x)

p(x)
Histogram

Figure 4.2 Dynamic vs. static decomposition. The upper left graph shows the static
histogram approximation of the random variable Y , using 10 bins for covering the
domain of Y (of which 6 are of nearly zero probability). The upper middle graph
presents a tree representation of the same random variable, using the same number
of bins.

resulting discrete Bayes filter is then equivalent to the algorithm outlined in
Table 4.1. If implemented as stated there, the auxiliary parameters p̄k do not
constitute a probability distribution, since they are not normalized (compare
line 3 to (4.10)). However, normalization takes place in line 4, so that the
output parameters are indeed a valid probability distribution.

4.1.4 Decomposition Techniques

In robotics, decomposition techniques of continuous state spaces come in
two basic flavors: static and dynamic. Static techniques rely on a fixed decom-
position that is chosen in advance, irrespective of the shape of the posterior
that is being approximated. Dynamic techniques adapt the decomposition to
the specific shape of the posterior distribution. Static techniques are usually
easier to implement, but they can be wasteful with regards to computational
resources.
A primary example of a dynamic decomposition technique is the family
of density trees. Density trees decompose the state space recursively, in waysDENSITY TREES

that adapt the resolution to the posterior probability mass. The intuition be-

4.1 The Histogram Filter 93

hind this decomposition is that the level of detail in the decomposition is
a function of the posterior probability: The less likely a region, the coarser
the decomposition. Figure 4.2 illustrates the difference between a static grid
representation and a density tree representation. Due to its more compact
representation, the density tree achieves a higher approximation quality us-
ing the same number of bins. Dynamic techniques like density trees can often
cut the computation complexity by orders of magnitude over static ones, yet
they require additional implementation effort.
An effect similar to that of dynamic decompositions can be achieved by
selective updating. When updating a posterior represented by a grid, selectiveSELECTIVE UPDATING

techniques update a fraction of all grid cells only. A common implementation
of this idea updates only those grid cells whose posterior probability exceeds
a user-specified threshold.
Selective updating can be viewed as a hybrid decomposition, which de-
composes the state space into a fine-grained grid and one large set that con-
tains all regions not chosen by the selective update procedure. In this light, it
can be thought of as a dynamic decomposition technique, since the decision
as to which grid cells to consider during the update is made online, based
on the shape of the posterior distribution. Selective updating techniques can
reduce the computational effort involved in updating beliefs by orders of
magnitude. They make it possible to use grid decompositions in spaces of
three or more dimensions.
The mobile robotics literature often distinguishes topological from metric
representations of space. While no clear definition of these terms exist, topo-
logical representations are often thought of as coarse graph-like representa-
tions, where nodes in the graph correspond to significant places (or features)
in the environment. For indoor environments, such places may correspond
to intersections, T-junctions, dead ends, and so on. The resolution of such
decompositions, thus, depends on the structure of the environment. Alter-
natively, one might decompose the state space using regularly-spaced grids.
Such a decomposition does not depend on the shape and location of the en-
vironmental features. Grid representations are often thought of as metric
although, strictly speaking, it is the embedding space that is metric, not the
decomposition. In mobile robotics, the spatial resolution of grid representa-
tions tends to be higher than that of topological representations. For instance,
some of the examples in Chapter 7 use grid decompositions with cell sizes
of 10 centimeters or less. This increased accuracy comes at the expense of
increased computational costs.

94 4 Nonparametric Filters

1: Algorithm binary_Bayes_filter(lt−1, zt):
2: lt = lt−1 + log p(x|zt)

1−p(x|zt)
− log p(x)

1−p(x)

3: return lt

Table 4.2 The binary Bayes filter in log odds form with an inverse measurement
model. Here lt is the log odds of the posterior belief over a binary state variable that
does not change over time.

4.2 Binary Bayes Filters with Static State

Certain problems in robotics are best formulated as estimation problemswith
binary state that does not change over time. Those problems are addressed
by the binary Bayes filter. Problems of this type arise if a robot estimates a
fixed binary quantity in the environment from a sequence of sensor mea-
surements. For example, a robot might want to know if a door is open or
closed, in a context where the door state does not change during sensing.
Another example of binary Bayes filters with static state are occupancy gridOCCUPANCY GRID

MAPS maps, which we will encounter in Chapter 9.
When the state is static, the belief is a function only of the measurements:

belt(x) = p(x | z1:t, u1:t) = p(x | z1:t)(4.11)

where the state is chosen from two possible values, denoted by x and ¬x. In
particular, we have belt(¬x) = 1 − belt(x). The lack of a time index for the
state x reflects the fact that the state does not change.
Naturally, binary estimation problems of this type can be tackled using
the discrete Bayes filter in Table 4.1. However, the belief is commonly imple-
mented as a log odds ratio. The odds of a state x is defined as the ratio of theLOG ODDS RATIO

probability of this event divided by the probability of its negate

p(x)

p(¬x)
=

p(x)

1− p(x)
(4.12)

The log odds is the logarithm of this expression

l(x) := log
p(x)

1− p(x)
(4.13)

4.2 Binary Bayes Filters with Static State 95

Log odds assume values from−∞ to∞. The Bayes filter for updating beliefs
in log odds representation is computationally elegant. It avoids truncation
problems that arise for probabilities close to 0 or 1.
Table 4.2 states the basic update algorithm. This algorithm is additive; in
fact, any algorithm that increments and decrements a variable in response
to measurements can be interpreted as a Bayes filter in log odds form. This
binary Bayes filter uses an inverse measurement model p(x | zt), instead of theINVERSE

MEASUREMENT MODEL familiar forwardmodel p(zt | x). The inverse measurement model specifies a
distribution over the (binary) state variable as a function of the measurement
zt.
Inverse models are often used in situations where measurements are more
complex than the binary state. An example of such a situation is the problem
of estimating whether or not a door is closed from camera images. Here the
state is extremely simple, but the space of all measurements is huge. It is
easier to devise a function that calculates a probability of a door being closed
from a camera image, than describing the distribution over all camera images
that show a closed door. In other words, it is easier to implement an inverse
than a forward sensor model.
As the reader easily verifies from our definition of the log odds (4.13), the
belief belt(x) can be recovered from the log odds ratio lt by the following
equation:

belt(x) = 1− 1

1 + exp{lt}(4.14)

To verify the correctness of our binary Bayes filter algorithm, we briefly re-
state the basic filter equation with the Bayes normalizer made explicit:

p(x | z1:t) =
p(zt | x, z1:t−1) p(x | z1:t−1)

p(zt | z1:t−1)

=
p(zt | x) p(x | z1:t−1)

p(zt | z1:t−1)
(4.15)

We now apply Bayes rule to the measurement model p(zt | x):

p(zt | x) =
p(x | zt) p(zt)

p(x)
(4.16)

and obtain

p(x | z1:t) =
p(x | zt) p(zt) p(x | z1:t−1)

p(x) p(zt | z1:t−1)
.(4.17)

96 4 Nonparametric Filters

By analogy, we have for the opposite event ¬x:

p(¬x | z1:t) =
p(¬x | zt) p(zt) p(¬x | z1:t−1)

p(¬x) p(zt | z1:t−1)
(4.18)

Dividing (4.17) by (4.18) leads to cancellation of various difficult-to-calculate
probabilities:

p(x | z1:t)

p(¬x | z1:t)
=

p(x | zt)

p(¬x | zt)

p(x | z1:t−1)

p(¬x | z1:t−1)

p(¬x)

p(x)
(4.19)

=
p(x | zt)

1− p(x | zt)

p(x | z1:t−1)

1− p(x | z1:t−1)

1− p(x)

p(x)

We denote the log odds ratio of the belief belt(x) by lt(x). The log odds belief
at time t is given by the logarithm of (4.19).

lt(x) = log
p(x | zt)

1− p(x | zt)
+ log

p(x | z1:t−1)

1− p(x | z1:t−1)
+ log

1− p(x)

p(x)
(4.20)

= log
p(x | zt)

1− p(x | zt)
− log

p(x)

1− p(x)
+ lt−1(x)

Here p(x) is the prior probability of the state x. As in (4.20), each measure-
ment update involves the addition of the prior (in log odds form). The prior
also defines the log odds of the initial belief before processing any sensor
measurement:

l0(x) = log
p(x)

1− p(x)
(4.21)

4.3 The Particle Filter

4.3.1 Basic Algorithm

The particle filter is an alternative nonparametric implementation of the Bayes
filter. Just like histogram filters, particle filters approximate the posterior by
a finite number of parameters. However, they differ in the way these param-
eters are generated, and in which they populate the state space. The key idea
of the particle filter is to represent the posterior bel(xt) by a set of random
state samples drawn from this posterior. Figure 4.3 illustrates this idea for
a Gaussian. Instead of representing the distribution by a parametric form—
which would have been the exponential function that defines the density
of a normal distribution—particle filters represent a distribution by a set of
samples drawn from this distribution. Such a representation is approximate,

4.3 The Particle Filter 97

p(y)

y

p(y)
Samples

x

y=
g(

x)

Function g(x)

x

p(
x)

p(x)
Samples

Figure 4.3 The “particle” representation used by particle filters. The lower right
graph shows samples drawn from a Gaussian random variable,X . These samples are
passed through the nonlinear function shown in the upper right graph. The resulting
samples are distributed according to the random variable Y .

but it is nonparametric, and therefore can represent a much broader space of
distributions than, for example, Gaussians. Another advantage of the sam-
ple based representation is its ability to model nonlinear transformations of
random variables, as shown in Figure 4.3.
In particle filters, the samples of a posterior distribution are called particles
and are denoted

Xt := x
[1]
t , x

[2]
t , . . . , x

[M]
t(4.22)

Each particle x
[m]
t (with 1 ≤ m ≤ M) is a concrete instantiation of the state

at time t. Put differently, a particle is a hypothesis as to what the true world
state may be at time t. HereM denotes the number of particles in the particle
set Xt. In practice, the number of particles M is often a large number, e.g.,
M = 1, 000. In some implementationsM is a function of t or other quantities
related to the belief bel(xt).

98 4 Nonparametric Filters

1: Algorithm Particle_filter(Xt−1, ut, zt):
2: X̄t = Xt = ∅
3: form = 1 toM do
4: sample x

[m]
t ∼ p(xt | ut, x

[m]
t−1)

5: w
[m]
t = p(zt | x[m]

t)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: endfor
8: form = 1 toM do
9: draw iwith probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: endfor
12: return Xt

Table 4.3 The particle filter algorithm, a variant of the Bayes filter based on impor-
tance sampling.

The intuition behind particle filters is to approximate the belief bel(xt) by
the set of particles Xt. Ideally, the likelihood for a state hypothesis xt to be
included in the particle setXt shall be proportional to its Bayes filter posterior
bel(xt):

x
[m]
t ∼ p(xt | z1:t, u1:t)(4.23)

As a consequence of (4.23), the denser a subregion of the state space is popu-
lated by samples, the more likely it is that the true state falls into this region.
As we will discuss below, the property (4.23) holds only asymptotically for
M ↑ ∞ for the standard particle filter algorithm. For finiteM , particles are
drawn from a slightly different distribution. In practice, this difference is
negligible as long as the number of particles is not too small (e.g.,M ≥ 100).
Just like all other Bayes filter algorithms discussed thus far, the particle fil-
ter algorithm constructs the belief bel(xt) recursively from the belief bel(xt−1)

one time step earlier. Since beliefs are represented by sets of particles, this
means that particle filters construct the particle set Xt recursively from the
set Xt−1.
The most basic variant of the particle filter algorithm is stated in Table 4.3.
The input of this algorithm is the particle set Xt−1, along with the most re-

4.3 The Particle Filter 99

cent control ut and the most recent measurement zt. The algorithm then first
constructs a temporary particle set X̄ that represented the belief bel(xt). It
does this by systematically processing each particle x

[m]
t−1 in the input particle

set Xt−1. Subsequently, it transforms these particles into the set Xt, which
approximates the posterior distribution bel(xt). In detail:

1. Line 4 generates a hypothetical state x
[m]
t for time t based on the particle

x
[m]
t−1 and the control ut. The resulting sample is indexed by m, indicat-
ing that it is generated from the m-th particle in Xt−1. This step involves
sampling from the state transition distribution p(xt | ut, xt−1). To imple-
ment this step, one needs to be able to sample from this distribution. The
set of particles obtained afterM iterations is the filter’s representation of
bel(xt).

2. Line 5 calculates for each particle x
[m]
t the so-called importance factor, de-IMPORTANCE FACTOR

noted w
[m]
t . Importance factors are used to incorporate the measurement

zt into the particle set. The importance, thus, is the probability of the
measurement zt under the particle x

[m]
t , given by w

[m]
t = p(zt | x

[m]
t). If

we interpret w[m]
t as the weight of a particle, the set of weighted particles

represents (in approximation) the Bayes filter posterior bel(xt).

3. The real “trick” of the particle filter algorithm occurs in lines 8 through
11 in Table 4.3. These lines implemented what is known as resamplingRESAMPLING

or importance sampling. The algorithm draws with replacement M parti-
cles from the temporary set X̄t. The probability of drawing each particle
is given by its importance weight. Resampling transforms a particle set
of M particles into another particle set of the same size. By incorporat-
ing the importance weights into the resampling process, the distribution
of the particles change: Whereas before the resampling step, they were
distributed according to bel(xt), after the resampling they are distributed
(approximately) according to the posterior bel(xt) = η p(zt | x[m]

t)bel(xt).
In fact, the resulting sample set usually possesses many duplicates, since
particles are drawn with replacement. More important are the particles
not contained in Xt: Those tend to be the particles with lower importance
weights.

The resampling step has the important function to force particles back to
the posterior bel(xt). In fact, an alternative (and usually inferior) version of
the particle filter would never resample, but instead wouldmaintain for each

100 4 Nonparametric Filters

particle an importance weight that is initialized by 1 and updatedmultiplica-
tively:

w
[m]
t = p(zt | x[m]

t) w
[m]
t−1(4.24)

Such a particle filter algorithm would still approximate the posterior, but
many of its particles would end up in regions of low posterior probability.
As a result, it would require many more particles; how many depends on
the shape of the posterior. The resampling step is a probabilistic implemen-
tation of the Darwinian idea of survival of the fittest: It refocuses the particle
set to regions in state space with high posterior probability. By doing so, it
focuses the computational resources of the filter algorithm to regions in the
state space where they matter the most.

4.3.2 Importance Sampling

For the derivation of the particle filter, it shall prove useful to discuss the
resampling step in more detail.
Intuitively, we are faced with the problem of computing an expectation
over a probability density function f , but we are only given samples gener-
ated from a different probability density function, g. For example, we might
be interested in the expectation that x ∈ A. We can express this probability
as an expectation over g. Here I is the indicator function, which is 1 if its
argument is true, and 0 otherwise.

Ef [I(x ∈ A)] =

∫
f(x) I(x ∈ A) dx(4.25)

=

∫
f(x)

g(x)︸ ︷︷ ︸
=:w(x)

g(x) I(x ∈ A) dx

= Eg[w(x) I(x ∈ A)]

Here w(x) = f(x)
g(x) is a weighting factor that accounts for the “mismatch”

between f and g. For this equation to be correct, we need f(x) > 0 −→
g(x) > 0.
The importance sampling algorithm utilizes this transformation. Fig-
ure 4.4a shows a density function f of a probability distribution, which
henceforth will be called the target distribution. As before, what we wouldTARGET DISTRIBUTION

like to achieve is to obtain a sample from f . However, sampling from f di-
rectly shall be impossible. We instead generate particles from a density g in

4.3 The Particle Filter 101

2 4 6 8 10 12

0

0.1

0.2

0.3

f

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

2 4 6 8 10 12

0

0.1

0.2

0.3

f g

(a)

(b)

(c)

Figure 4.4 Illustration of importance factors in particle filters: (a) We seek to ap-
proximate the target density f . (b) Instead of sampling from f directly, we can only
generate samples from a different density, g. Samples drawn from g are shown at
the bottom of this diagram. (c) A sample of f is obtained by attaching the weight
f(x)/g(x) to each sample x. In particle filters, f corresponds to the belief bel(xt) and
g to the belief bel(xt).

102 4 Nonparametric Filters

Figure 4.4b. The distribution that corresponds to the density g is called pro-PROPOSAL

DISTRIBUTION posal distribution. The density g must be such that f(x) > 0 implies g(x) > 0,
so that there is a non-zero probability to generate a particle when sampling
from g for any state that might be generated by sampling from f . However,
the resulting particle set, shown at the bottom of Figure 4.4b, is distributed
according to g, not to f . In particular, for any interval A ⊆ dom(X) (or more
generally, any Borel set A) the empirical count of particles that fall into A

converges to the integral of g under A:

1

M

M∑
m=1

I(x[m] ∈ A) −→
∫

A

g(x) dx(4.26)

To offset this difference between f and g, particles x[m] are weighted by the
quotient

w[m] =
f(x[m])

g(x[m])
(4.27)

This is illustrated by Figure 4.4c: The vertical bars in this figure indicate
the magnitude of the importance weights. Importance weights are the non-
normalized probability mass of each particle. In particular, we have

[
M∑

m=1

w[m]

]−1
M∑

m=1

I(x[m] ∈ A) w[m] −→
∫

A

f(x) dx(4.28)

where the first term serves as the normalizer for all importance weights. In
other words, even though we generated the particles from the density g,
the appropriately weighted particles converge to the density f . It can be
shown that under mild conditions, this approximation converges to the de-
sired Ef [I(x ∈ A)] for arbitrary sets A. In most cases, the rate of convergence
is in O(1√

M
), where M is the number of samples. The constant factor de-

pends on the similarity of f(x) and g(x).
In particle filters, the density f corresponds to the target belief bel(xt).
Under the (asymptotically correct) assumption that the particles in Xt−1 are
distributed according to bel(xt−1), the density g corresponds to the product
distribution:

p(xt | ut, xt−1) bel(xt−1)(4.29)

Once again, this distribution is the proposal distribution.

4.3 The Particle Filter 103

4.3.3 Mathematical Derivation of the PF

To derive particle filters mathematically, it shall prove useful to think of par-
ticles as samples of state sequences

x
[m]
0:t = x

[m]
0 , x

[m]
1 , . . . , x

[m]
t(4.30)

It is easy to modify the algorithm accordingly: Simply append to the particle
x

[m]
t the sequence of state samples from which it was generated x

[m]
0:t−1. This

particle filter calculates the posterior over all state sequences:

bel(x0:t) = p(x0:t | u1:t, z1:t)(4.31)

instead of the belief bel(xt) = p(xt | u1:t, z1:t). Admittedly, the space over
all state sequences is huge, and covering it with particles is usually not such
a good idea. However, this shall not deter us here, as this definition serves
only as the means to derive the particle filter algorithm in Table 4.3.
The posterior bel(x0:t) is obtained analogously to the derivation of bel(xt)

in Chapter 2.4.3. In particular, we have

p(x0:t | z1:t, u1:t)(4.32)
Bayes
= η p(zt | x0:t, z1:t−1, u1:t) p(x0:t | z1:t−1, u1:t)

Markov
= η p(zt | xt) p(x0:t | z1:t−1, u1:t)

= η p(zt | xt) p(xt | x0:t−1, z1:t−1, u1:t) p(x0:t−1 | z1:t−1, u1:t)
Markov

= η p(zt | xt) p(xt | xt−1, ut) p(x0:t−1 | z1:t−1, u1:t−1)

Notice the absence of integral signs in this derivation, which is the result
of maintaining all states in the posterior, not just the most recent one as in
Chapter 2.4.3.
The derivation is now carried out by induction. The initial condition is
trivial to verify, assuming that our first particle set is obtained by sampling
the prior p(x0). Let us assume that the particle set at time t− 1 is distributed
according to bel(x0:t−1). For the m-th particle x

[m]
0:t−1 in this set, the sample

x
[m]
t generated in Step 4 of our algorithm is generated from the proposal
distribution:

p(xt | xt−1, ut) bel(x0:t−1) = p(xt | xt−1, ut) p(x0:t−1 | z1:t−1, u1:t−1)(4.33)

with

w
[m]
t =

target distribution
proposal distribution

(4.34)

104 4 Nonparametric Filters

=
η p(zt | xt) p(xt | xt−1, ut) p(x0:t−1 | z1:t−1, u1:t−1)

p(xt | xt−1, ut) p(x0:t−1 | z0:t−1, u0:t−1)

= η p(zt | xt)

The constant η plays no role since the resampling takes place with prob-
abilities proportional to the importance weights. By resampling particles
with probability proportional to w

[m]
t , the resulting particles are indeed dis-

tributed according to the product of the proposal and the importanceweights
w

[m]
t :

η w
[m]
t p(xt | xt−1, ut) p(x0:t−1 | z0:t−1, u0:t−1) = bel(x0:t)(4.35)

(Notice that the constant factor η here differs from the one in (4.34).) The
algorithm in Table 4.4 follows now from the simple observation that if x[m]

0:t

is distributed according to bel(x0:t), then the state sample x
[m]
t is (trivially)

distributed according to bel(xt).
As we will argue below, this derivation is only correct forM ↑ ∞, due to a

laxness in our consideration of the normalization constants. However, even
for finiteM it explains the intuition behind the particle filter.

4.3.4 Practical Considerations and Properties of Particle Filters

Density Extraction

The sample sets maintained by particle filters represent discrete approxima-
tions of continuous beliefs. Many applications, however, require the avail-
ability of continuous estimates, that is, estimates not only at the states repre-
sented by particles, but at any point in the state space. The problem of ex-
tracting a continuous density from such samples is called density estimation.
We will only informally illustrate some approaches to density estimation.
Figure 4.5 illustrates different ways of extracting a density from particles.
The leftmost graph shows the particles and density of the transformed Gaus-
sian from our standard example (c.f. Figure 4.3). A simple and highly effi-
cient approach to extracting a density from such particles is to compute a
Gaussian approximation, as illustrated by the dashed Gaussian in Figure 4.5(b).
In this case, the Gaussian extracted from the particles is virtually identical to
the Gaussian approximation of the true density (solid line).
Obviously, a Gaussian approximation captures only basic properties of a
density, and it is only appropriate if the density is unimodal. Multimodal
sample distributions require more complex techniques such as k-means clus-K-MEANS ALGORITHM

4.3 The Particle Filter 105

tering, which approximates a density using mixtures of Gaussians. An alter-
native approach is illustrated in Figure 4.5(c). Here, a discrete histogram is
superimposed over the state space and the probability of each bin is com-
puted by summing the weights of the particles that fall into its range. As
with histogram filters, an important shortcoming of this technique is the fact
that the space complexity is exponential in the number of dimensions. On the
other hand, histograms can represent multi-modal distributions, they can be
computed extremely efficiently, and the density at any state can be extracted
in time independent of the number of particles.
The space complexity of histogram representations can be reduced signif-
icantly by generating a density tree from the particles, as discussed in Chap-DENSITY TREE

ter 4.1.4. However, density trees come at the cost of more expensive lookups
when extracting the density at any point in the state space (logarithmic in the
depth of the tree).
Kernel density estimation is another way of converting a particle set into aKERNEL DENSITY

ESTIMATION continuous density. Here, each particle is used as the center of a so-called
kernel, and the overall density is given by a mixture of the kernel densi-
ties. Figure 4.5(d) shows such a mixture density resulting from placing a
Gaussian kernel at each particle. The advantage of kernel density estimates
is their smoothness and algorithmic simplicity. However, the complexity of
computing the density at any point is linear in the number of particles, or
kernels.
Which of these density extraction techniques should be used in practice?
This depends on the problem at hand. For example, in many robotics ap-
plications, processing power is very limited and the mean of the particles
provides enough information to control the robot. Other applications, such
as active localization, depend on more complex information about the un-
certainty in the state space. In such situations, histograms or mixtures of
Gaussians are a better choice. The combination of data collected by multiple
robots sometimes requires the multiplication of densities underlying differ-
ent sample sets. Density trees or kernel density estimates are well suited for
this purpose.

Sampling Variance

An important source of error in the particle filter relates to the variation
inherent in random sampling. Whenever a finite number of samples is
drawn from a probability density, statistics extracted from these samples dif-
fer slightly from the statistics of the original density. For instance, if we draw

106 4 Nonparametric Filters

p(y)

y

p(y)
Samples

(a)

p(y)

y

p(y)
Gaussian of p(y)
Mean of p(y)
Gaussian of samples
Mean of samples

(b)

p(y)

y

p(y)
Histogram

(c)

p(y)

y

p(y)
Kernel density

(d)

Figure 4.5 Different ways of extracting densities from particles. (a) Density and
sample set approximation, (b) Gaussian approximation (mean and variance), (c) his-
togram approximation, (d) kernel density estimate. The choice of approximation
strongly depends on the specific application and the computational resources.

4.3 The Particle Filter 107

p(y)

y

p(y)
Samples
Kernel density

(a) 25 samples

p(y)

y

p(y)
Samples
Kernel density

(b) 250 samples

p(y)

y
p(y)
Samples
Kernel density

p(y)

y

p(y)
Samples
Kernel density

p(y)

y

p(y)
Samples
Kernel density

p(y)

y
p(y)
Samples
Kernel density

Figure 4.6 Variance due to random sampling. Samples are drawn from a Gaus-
sian and passed through a nonlinear function. Samples and kernel estimates result-
ing from repeated sampling of 25 (left column) and 250 (right column) samples are
shown. Each row shows one random experiment.

108 4 Nonparametric Filters

samples from a Gaussian random variable, then the mean and variance of
the samples will differ from the mean and variance of the original random
variable. Variability due to random sampling is called the variance of theSAMPLE VARIANCE

sampler.
Imagine two identical robots with identical, Gaussian beliefs performing
identical, noise-free actions. Obviously, both robots should have the same
belief after performing the action. To simulate this situation, we draw sam-
ples repeatedly from a Gaussian density and pass them through a nonlinear
transformation. The graphs in Figure 4.6 show the resulting samples and
their kernel density estimates along with the true belief (gray area). Each
graph in the upper row results from drawing 25 samples from the Gaussian.
Contrary to the desired outcome, some of the kernel density estimates dif-
fer substantially from the true density, and there is a large variability among
the different kernel densities. Fortunately, the sampling variance decreases
with the number of samples. The lower row in Figure 4.6 shows typical re-
sults obtained with 250 samples. Obviously, the higher number of samples
results in more accurate approximations with less variability. In practice, if
enough samples are chosen, the observations made by a robot typically keep
the sample based belief “close enough” to the true belief.

Resampling

The sampling variance is amplified through repetitive resampling. To un-
derstand this problem, it will be useful to consider the extreme case, which
is that of a robot whose state does not change. Sometimes, we know for a fact
that xt = xt−1. A good example is that of mobile robot localization for a robot
that does not move. Let us furthermore assume that the robot possesses no
sensors, hence it cannot estimate the state, and that it is unaware of the state.
Obviously, such a robot can never find out anything about its location, hence
the estimate at time t should be identical to its initial estimate, for any point
in time t.
Unfortunately, this is not the result of a vanilla particle filters. Initially,
our particle set will be generated from the prior, and particles will be spread
throughout the state space. However, the resampling step (line 8 in the al-
gorithm) will occasionally fail to reproduce a state sample x[m]. Since our
state transition is deterministic, no new states will be introduced in the for-
ward sampling step (line 4). As time goes on, more and more particles are
erased simply due to the random nature of the resampling step, without the
creation of any new particles. The result is quite daunting: With probability

4.3 The Particle Filter 109

one, M identical copies of a single particle will survive; the diversity will
disappear due to the repetitive resampling. To an outside observer, it may
appear that the robot has uniquely determined the world state—an apparent
contradiction to the fact that the robot possesses no sensors.
This example hints at another limitation of particle filters with important
practical ramifications. In particular, the resampling process induces a loss of
diversity in the particle population, which in fact manifests itself as approx-
imation error: Even though the variance of the particle set itself decreases,
the variance of the particle set as an estimator of the true belief increases.
Controlling this variance, or error, of the particle filter is essential for any
practical implementation.
There exist two major strategies for variance reduction. First, one mayVARIANCE REDUCTION

reduce the frequency at which resampling takes place. When the state is
known to be static (xt = xt−1) one should never resample. This is the case,
for example, in mobile robot localization: When the robot stops, resampling
should be suspended (and in fact it is usually a good idea to suspend the
integration of measurements as well). Even if the state changes, it is often
a good idea to reduce the frequency of resampling. Multiple measurements
can always be integrated via multiplicatively updating the importance fac-
tor as noted above. More specifically, it maintains the importance weight in
memory and updates them as follows:

w
[m]
t =

{
1 if resampling took place
p(zt | x[m]

t) w
[m]
t−1 if no resampling took place

(4.36)

The choice of when to resample is intricate and requires practical experience:
Resampling too often increases the risk of losing diversity. If one samples too
infrequently, many samples might be wasted in regions of low probability. A
standard approach to determining whether or not resampling should be per-
formed is to measure the variance of the importance weights. The variance
of the weights relates to the efficiency of the sample based representation. If
all weights are identical, then the variance is zero and no resampling should
be performed. If, on the other hand, the weights are concentrated on a small
number of samples, then the weight variance is high and resampling should
be performed.
The second strategy for reducing the sampling error is known as low vari-LOW VARIANCE

SAMPLING ance sampling. Table 4.4 depicts an implementation of a low variance sam-
pler. The basic idea is that instead of selecting samples independently of
each other in the resampling process (as is the case for the basic particle filter
in Table 4.3), the selection involves a sequential stochastic process.

110 4 Nonparametric Filters

1: Algorithm Low_variance_sampler(Xt,Wt):
2: X̄t = ∅
3: r = rand(0;M−1)

4: c = w
[1]
t

5: i = 1

6: form = 1 toM do
7: U = r + (m− 1) ·M−1

8: while U > c

9: i = i + 1

10: c = c + w
[i]
t

11: endwhile
12: add x

[i]
t to X̄t

13: endfor
14: return X̄t

Table 4.4 Low variance resampling for the particle filter. This routine uses a sin-
gle random number to sample from the particle set X with associated weights W ,
yet the probability of a particle to be resampled is still proportional to its weight.
Furthermore, the sampler is efficient: SamplingM particles requires O(M) time.

Instead of choosingM random numbers and selecting those particles that
correspond to these random numbers, this algorithm computes a single ran-
dom number and selects samples according to this number but still with a
probability proportional to the sample weight. This is achieved by drawing
a random number r in the interval [0;M−1], whereM is the number of sam-
ples to be drawn at time t. The algorithm in Table 4.4 then selects particles by
repeatedly adding the fixed amount M−1 to r and by choosing the particle
that corresponds to the resulting number. Any number U in [0; 1] points to
exactly one particle, namely the particle i for which

i = argmin
j

j∑
m=1

w
[m]
t ≥ U(4.37)

The while loop in Table 4.4 serves two tasks, it computes the sum in the right-
hand side of this equation and additionally checks whether i is the index
of the first particle such that the corresponding sum of weights exceeds U .

4.3 The Particle Filter 111

−1 r+2M−1 ...r r+M

...t
[2]wt

[1]w

Figure 4.7 Principle of the low variance resampling procedure. We choose a random
number r and then select those particles that correspond to u = r + (m − 1) · M−1

wherem = 1, . . . , M .

The selection is then carried out in line 12. This process is also illustrated in
Figure 4.7.
The advantage of the low-variance sampler is threefold. First, it covers the
space of samples in a more systematic fashion than the independent random
sampler. This should be obvious from the fact that the dependent sampler
cycles through all particles systematically, rather than choosing them inde-
pendently at random. Second, if all the samples have the same importance
factors, the resulting sample set X̄t is equivalent to Xt so that no samples are
lost if we resample without having integrated an observation into Xt. Third,
the low-variance sampler has a complexity of O(M). Achieving the same
complexity for independent sampling is difficult; obvious implementations
require a O(log M) search for each particle once a random number has been
drawn, which results in a complexity of O(M log M) for the entire resam-
pling process. Computation time is of essence when using particle filters,
and often an efficient implementation of the resampling process can make a
huge difference in the practical performance. For these reasons, implemen-
tations of particle filters in robotics tend to rely on mechanisms like the one
just discussed.
In general, the literature on efficient sampling is huge. Another popu-
lar option is stratified sampling, in which particles are grouped into subsets.STRATIFIED SAMPLING

Sampling from these sets is performed in a two stage procedure. First, the
number of samples drawn from each subset is determined based on the total
weight of the particles contained in the subset. In the second stage, indi-
vidual samples are drawn randomly from each subset using, for example,
low variance resampling. Such a technique has lower sampling variance and
tends to perform well when a robot tracks multiple, distinct hypotheses with
a single particle filter.

112 4 Nonparametric Filters

Sampling Bias

The fact that only finitely many particles are used also introduces a syste-
matic bias in the posterior estimate. Consider the extreme case of M = 1

particle. In this case, the loop in lines 3 through 7 in Table 4.3 will only be
executed once, and X̄t will contain only a single particle, sampled from the
motion model. The key insight is that the resampling step (lines 8 through
11 in Table 4.3) will now deterministically accept this sample, regardless of
its importance factor w

[m]
t . Hence the measurement probability p(zt | x

[m]
t)

plays no role in the result of the update, and neither does zt. Thus, ifM = 1,
the particle filter generates particles from the probability p(xt | u1:t) instead
of the desired posterior p(xt | u1:t, z1:t). It flatly ignores all measurements.
How can this happen?
The culprit is the normalization, implicit in the resampling step. When
sampling in proportion to the importance weights (line 9 of the algorithm),
w

[m]
t becomes its own normalizer ifM = 1:

p(draw x
[m]
t in line 9) =

w
[m]
t

w
[m]
t

= 1(4.38)

In general, the problem is that the non-normalized values wt[m] are drawn
from anM -dimensional space, but after normalization they reside in a space
of dimension M − 1. This is because after normalization, the m-th weight
can be recovered from the M − 1 other weights by subtracting those from
1. Fortunately, for larger values ofM , the effect of loss of dimensionality, or
degrees of freedom, becomes less and less pronounced.

Particle Deprivation

Even with a large number of particles, it may happen that there are no parti-
cles in the vicinity of the correct state. This problem is known as the particle
deprivation problem. It occursmostly when the number of particles is too small
to cover all relevant regions with high likelihood. However, one might argue
that this ultimately must happen in any particle filter, regardless of the par-
ticle set sizeM .
Particle deprivation occurs as the result of the variance in random sam-
pling; an unlucky series of random numbers can wipe out all particles near
the true state. At each sampling step, the probability for this to happen is
larger than zero (although it is usually exponentially small inM). Thus, we

4.4 Summary 113

only have to run the particle filter long enough. Eventually we will generate
an estimate that is arbitrarily incorrect.
In practice, problems of this nature only tend to arise when M is small
relative to the space of all states with high likelihood. A popular solution to
the particle deprivation problem is to add a small number of randomly gen-
erated particles into the set after each resampling process, regardless of the
actual sequence of motion and measurement commands. Such a methodol-
ogy can reduce (but not fix) the deprivation problem, but at the expense of
an incorrect posterior estimate. The advantage of adding random samples
lies in its simplicity: The software modification necessary to add random
samples in a particle filter is minimal. As a rule of thumb, adding random
samples should be considered a measure of last resort, which should only be
applied if all other techniques for fixing a deprivation problem have failed.
Alternative approaches to dealingwith particle deprivationwill be discussed
in Chapter 8, in the context of robot localization.
This discussion showed that the quality of the sample based representation
increases with the number of samples. An important question is therefore
how many samples should be used for a specific estimation problem. Un-
fortunately, there is no perfect answer to this question and it is often left to
the user to determine the required number of samples. As a rule of thumb,
the number of samples strongly depends on the dimensionality of the state
space and the uncertainty of the distributions approximated by the particle
filter. For example, uniform distributions require many more samples than
distributions focused on a small region of the state space. A more detailed
discussion on sample sizes will be given in the context of robot localization
and mapping in future chapters of this book.

4.4 Summary

This section introduced two nonparametric Bayes filters, histogram filters
and particle filters. Nonparametric filters approximate the posterior by a fi-
nite number of values. Undermild assumptions on the systemmodel and the
shape of the posterior, both have the property that the approximation error
converges uniformly to zero as the the number of values used to represent
the posterior goes to infinity.

• The histogram filter decomposes the state space into finitely many convex
regions. It represents the cumulative posterior probability of each region
by a single numerical value.

114 4 Nonparametric Filters

• There exist many decomposition techniques in robotics. In particular, the
granularity of a decompositionmay ormay not depend on the structure of
the environment. When it does, the resulting algorithms are often called
‘topological.’

• Decomposition techniques can be divided into static and dynamic. Static
decompositions are made in advance, irrespective of the shape of the be-
lief. Dynamic decompositions rely on specifics of the robot’s belief when
decomposing the state space, often attempting to increase spatial resolu-
tion in proportion to the posterior probability. Dynamic decompositions
tend to give better results, but they are also more difficult to implement.

• An alternative nonparametric technique is known as particle filter. Parti-
cle filters represent posteriors by a random sample of states, drawn from
the posterior. Such samples are called particles. Particle filters are ex-
tremely easy to implement, and they are the most versatile of all Bayes
filter algorithms represented in this book.

• Specific strategies exist to reduce the error in particle filters. Among the
most popular ones are techniques for reducing the variance of the esti-
mate that arises from the randomness of the algorithm, and techniques
for adapting the number of particles in accordance with the complexity of
the posterior.

The filter algorithms discussed in this and the previous chapter lay the
groundwork for most probabilistic robotics algorithms discussed through-
out the remainder of this book. The material presented here represents
many of today’s most popular algorithms and representations in probabilis-
tic robotics.

4.5 Bibliographical Remarks

West and Harrison (1997) provides an in-depth treatment of several techniques discussed in this
and the previous chapter. Histograms have been used in statistics for many decades. Sturges
(1926) provides one of the early rules for selecting the resolution of a histogram approximation,
and more recent treatment is by Freedman and Diaconis (1981). A contemporary analysis can
be found in Scott (1992). Once a state space is mapped into a discrete histogram, the resulting
temporal inference problem becomes an instance of a discrete Hidden Markov model, of the
type made popular by Rabiner and Juang (1986). Two contemporary texts can be found in
MacDonald and Zucchini (1997) and Elliott et al. (1995).
Particle filters can be traced back to Metropolis and Ulam (1949), the inventors of Monte

Carlo methods; see Rubinstein (1981) for a more contemporary introduction. The sampling

4.6 Exercises 115

importance resampling technique, which is part of the particle filter, goes back to two seminal
papers by Rubin (1988) and Smith and Gelfand (1992). Stratified sampling was first invented by
Neyman (1934). In the past few years, particle filters have been studied extensively in the field
of Bayesian statistics (Doucet 1998; Kitagawa 1996; Liu and Chen 1998; Pitt and Shephard 1999).
In AI, particle filters were reinvented under the name survival of the fittest (Kanazawa et al. 1995);
in computer vision, an algorithm called condensation by Isard and Blake (1998) applies them to
tracking problems. A good contemporary text on particle filters is due to Doucet et al. (2001).

4.6 Exercises

1. In this exercise, you will be asked to implement a histogram filter for a
linear dynamical system studied in the previous chapter.

(a) Implement a histogram filter for the dynamical system described in
Exercise 1 of the previous chapter (see page 81). Use the filter to predict
a sequence of posterior distributions for t = 1, 2, . . . , 5. For each value
of t, plot the joint posterior over x and ẋ into a diagram, where x is the
horizontal and ẋ is the vertical axis.

(b) Now implement the measurement update step into your histogram fil-
ter, as described in Exercise 2 of the previous chapter (page 82). Sup-
pose at time t = 5, we observe a measurement z = 5. State and plot the
posterior before and after updating the histogram filter.

2. You are now asked to implement the histogram filter for the nonlinear
studied in Exercise 4 in the previous chapter (page 83). There, we stud-
ied a nonlinear system defined over three state variables, and with the
deterministic state transition

⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ x + cos θ

y + sin θ

θ

⎞
⎠

The initial state estimate was as follows:

μ =
(

0 0 0
)
and Σ =

⎛
⎝ 0.01 0 0

0 0.01 0

0 0 10000

⎞
⎠

(a) Propose a suitable initial estimate for a histogram filter, which reflects
the state of knowledge in the Gaussian prior.

116 4 Nonparametric Filters

(b) Implement a histogram filter and run its prediction step. Compare the
resulting posterior with the one from the EKF and from your intuitive
analysis. What can you learn about the resolution of the x-y coordi-
nates and the orientation θ in your histogram filter?

(c) Now incorporate a measurement into your estimate. As before, the
measurement shall be a noisy projection of the x-coordinate of the
robot, with covariance Q = 0.01. Implement the step, compute the
result, plot it, and compare it with the result of the EKF and your intu-
itive drawing.

Notice: When plotting the result of a histogram filter, you can show mul-
tiple density plots, one for each discrete slice in the space of all θ-values.

3. We talked about the effect of using a single particle. What is the effect
of using M = 2 particles in particle filtering? Can you give an example
where the posterior will be biased? If so, by what amount?

4. Implement Exercise 1 using particle filters instead of histograms, and plot
and discuss the results.

5. Implement Exercise 2 using particle filters instead of histograms, and plot
and discuss the results. Investigate the effect of varying numbers of par-
ticles on the result.

5 Robot Motion

5.1 Introduction

This and the next chapter describe the two remaining components for im-
plementing the filter algorithms described thus far: the motion and the mea-
surement models. This chapter focuses on the motion model. Motion models
comprise the state transition probability p(xt | ut, xt−1), which plays an es-
sential role in the prediction step of the Bayes filter. This chapter provides
in-depth examples of probabilistic motion models as they are being used in
actual robotics implementations. The subsequent chapter will describe prob-
abilistic models of sensor measurements p(zt | xt), which are essential for the
measurement update step. The material presented here will be essential for
implementing any of the algorithms described in subsequent chapters.
Robot kinematics, which is the central topic of this chapter, has been stud-
ied thoroughly in past decades. However, it has almost exclusively been
addressed in deterministic form. Probabilistic robotics generalizes kinematic
equations to the fact that the outcome of a control is uncertain, due to control
noise or unmodeled exogenous effects. Following the theme of this book,
our description will be probabilistic: The outcome of a control will be de-
scribed by a posterior probability. In doing so, the resulting models will be
amenable to the probabilistic state estimation techniques described in the
previous chapters.
Our exposition focuses entirely on mobile robot kinematics for robots op-
erating in planar environments. In this way, it is much more specific than
most contemporary treatments of kinematics. No model of manipulator
kinematics will be provided, neither will we discuss models of robot dy-
namics. However, this restricted choice of material is by no means to be
interpreted that probabilistic ideas are limited to simple kinematic models of

118 5 Robot Motion

mobile robots. Rather, it is descriptive of the present state of the art, as prob-
abilistic techniques have enjoyed their biggest successes in mobile robotics
using relatively basic models of the types described in this chapter. The use
of more sophisticated probabilistic models (e.g., probabilistic models of robot
dynamics) remains largely unexplored in the literature. Such extensions,
however, are not infeasible. As this chapter illustrates, deterministic robot
actuator models are “probilified” by adding noise variables that characterize
the types of uncertainty that exist in robotic actuation.
In theory, the goal of a proper probabilistic model may appear to accu-
rately model the specific types of uncertainty that exist in robot actuation
and perception. In practice, the exact shape of the model often seems to be
less important than the fact that some provisions for uncertain outcomes are
provided in the first place. In fact, many of the models that have provenmost
successful in practical applications vastly overestimate the amount of uncer-
tainty. By doing so, the resulting algorithms are more robust to violations of
the Markov assumptions (Chapter 2.4.4), such as unmodeled state and the
effect of algorithmic approximations. We will point out such findings in later
chapters, when discussing actual implementations of probabilistic robotic al-
gorithms.

5.2 Preliminaries

5.2.1 Kinematic Configuration

Kinematics is the calculus describing the effect of control actions on the con-
figuration of a robot. The configuration of a rigid mobile robot is commonlyCONFIGURATION

described by six variables, its three-dimensional Cartesian coordinates and
its three Euler angles (roll, pitch, yaw) relative to an external coordinate
frame. The material presented in this book is largely restricted to mobile
robots operating in planar environments, whose kinematic state is summa-
rized by three variables, referred to as pose in this text.
The pose of a mobile robot operating in a plane is illustrated in Figure 5.1.POSE

It comprises its two-dimensional planar coordinates relative to an external
coordinate frame, along with its angular orientation. Denoting the former as
x and y (not to be confused with the state variable xt), and the latter by θ, the

5.2 Preliminaries 119

<0,0>

θ

<x,y>

x

y

Figure 5.1 Robot pose, shown in a global coordinate system.

pose of the robot is described by the following vector:⎛
⎝ x

y

θ

⎞
⎠(5.1)

The orientation of a robot is often called bearing, or heading direction. AsBEARING

shown in Figure 5.1, we postulate that a robot with orientation θ = 0 points
into the direction of its x-axis. A robot with orientation θ = .5π points into
the direction of its y-axis.
Pose without orientation will be called location. The concept of locationLOCATION

will be important in the next chapter, when we discuss measures to describe
robot environments. For simplicity, locations in this book are usually de-
scribed by two-dimensional vectors, which refer to the x-y coordinates of an
object:(

x

y

)
(5.2)

The pose and the locations of objects in the environment may constitute the
kinematic state xt of the robot-environment system.

5.2.2 Probabilistic Kinematics

The probabilistic kinematic model, or motion model plays the role of the state
transition model in mobile robotics. This model is the familiar conditional
density

p(xt | ut, xt−1)(5.3)

Here xt and xt−1 are both robot poses (and not just its x-coordinates), and
ut is a motion command. This model describes the posterior distribution

120 5 Robot Motion

(a) (b)

Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon ex-
ecuting the motion command illustrated by the solid line. The darker a location,
the more likely it is. This plot has been projected into 2-D. The original density is
three-dimensional, taking the robot’s heading direction θ into account.

over kinematic states that a robot assumes when executing the motion com-
mand ut at xt−1. In implementations, ut is sometimes provided by a robot’s
odometry. However, for conceptual reasons we will refer to ut as control.
Figure 5.2 shows two examples that illustrate the kinematic model for a
rigid mobile robot operating in a planar environment. In both cases, the
robot’s initial pose is xt−1. The distribution p(xt | ut, xt−1) is visualized
by the shaded area: The darker a pose, the more likely it is. In this figure,
the posterior pose probability is projected into x-y-space; the figure lacks a
dimension corresponding to the robot’s orientation. In Figure 5.2a, a robot
moves forward some distance, during which it may accrue translational and
rotational error as indicated. Figure 5.2b shows the resulting distribution
of a more complicated motion command, which leads to a larger spread of
uncertainty.
This chapter provides in detail two specific probabilistic motion models

p(xt | ut, xt−1), both for mobile robots operating in the plane. Both mod-
els are somewhat complementary in the type of motion information that is
being processed. The first assumes that themotion data ut specifies the veloc-
ity commands given to the robot’s motors. Many commercial mobile robots
(e.g., differential drive, synchro drive) are actuated by independent transla-
tional and rotational velocities, or are best thought of being actuated in this
way. The second model assumes that one has access to odometry informa-
tion. Most commercial bases provide odometry using kinematic information
(distance traveled, angle turned). The resulting probabilistic model for inte-
grating such information is somewhat different from the velocity model.

5.3 Velocity Motion Model 121

In practice, odometry models tend to be more accurate than velocity mod-
els, for the simple reason that most commercial robots do not execute velocity
commands with the level of accuracy that can be obtained by measuring the
revolution of the robot’s wheels. However, odometry is only available after
executing a motion command. Hence it cannot be used for motion planning.
Planning algorithms such as collision avoidance have to predict the effects of
motion. Thus, odometry models are usually applied for estimation, whereas
velocity models are used for probabilistic motion planning.

5.3 Velocity Motion Model

The velocity motion model assumes that we can control a robot through two
velocities, a rotational and a translational velocity. Many commercial robots
offer control interfaces where the programmer specifies velocities. Drive
trains commonly controlled in this way include differential drives, Acker-
man drives, and synchro-drives. Drive systems not covered by our model
are those without non-holonomic constraints, such as robots equipped with
Mecanum wheels or legged robots.
We will denote the translational velocity at time t by vt, and the rotational

velocity by ωt. Hence, we have

ut =

(
vt

ωt

)
(5.4)

We arbitrarily postulate that positive rotational velocities ωt induce a coun-
terclockwise rotation (left turns). Positive translational velocities vt corre-
spond to forward motion.

5.3.1 Closed Form Calculation

A possible algorithm for computing the probability p(xt | ut, xt−1) is shown
in Table 5.1. It accepts as input an initial pose xt−1 = (x y θ)T , a control
ut = (v ω)T , and a hypothesized successor pose xt = (x′ y′ θ′)T . It out-
puts the probability p(xt | ut, xt−1) of being at xt after executing control ut

beginning in state xt−1, assuming that the control is carried out for the fixed
durationΔt. The parameters α1 to α6 are robot-specific motion error param-
eters. The algorithm in Table 5.1 first calculates the controls of an error-free
robot; the meaning of the individual variables in this calculation will become
more apparent below, when we derive it. These parameters are given by v̂

and ω̂.

122 5 Robot Motion

(a) (b) (c)

Figure 5.3 The velocity motion model, for different noise parameter settings.

The function prob(x, b2) models the motion error. It computes the proba-
bility of its parameter x under a zero-centered random variable with variance
b2. Two possible implementations are shown in Table 5.2, for error variables
with normal distribution and triangular distribution, respectively.
Figure 5.3 shows graphical examples of the velocity motion model, pro-
jected into x-y-space. In all three cases, the robot sets the same translational
and angular velocity. Figure 5.3a shows the resulting distribution with mod-
erate error parameters α1 to α6. The distribution shown in Figure 5.3b is
obtained with smaller angular error (parameters α3 and α4) but larger trans-
lational error (parameters α1 and α2). Figure 5.3c shows the distribution
under large angular and small translational error.

5.3.2 Sampling Algorithm

For particle filters (c.f. Chapter 4.3), it suffices to sample from the motion
model p(xt | ut, xt−1), instead of computing the posterior for arbitrary xt, ut

and xt−1. Sampling from a conditional density is different than calculating
the density: In sampling, one is given ut and xt−1 and seeks to generate
a random xt drawn according to the motion model p(xt | ut, xt−1). When
calculating the density, one is also given xt generated through other means,
and one seeks to compute the probability of xt under p(xt | ut, xt−1).
The algorithm sample_motion_model_velocity in Table 5.3 generates ran-

dom samples from p(xt | ut, xt−1) for a fixed control ut and pose xt−1. It
accepts xt−1 and ut as input and generates a random pose xt according to
the distribution p(xt | ut, xt−1). Line 2 through 4 “perturb” the commanded
control parameters by noise, drawn from the error parameters of the kine-
matic motion model. The noise values are then used to generate the sample’s

5.3 Velocity Motion Model 123

1: Algorithm motion_model_velocity(xt, ut, xt−1):

2: μ =
1

2

(x− x′) cos θ + (y − y′) sin θ

(y − y′) cos θ − (x− x′) sin θ

3: x∗ =
x + x′

2
+ μ(y − y′)

4: y∗ =
y + y′

2
+ μ(x′ − x)

5: r∗ =
√

(x− x∗)2 + (y − y∗)2

6: Δθ = atan2(y′ − y∗, x′ − x∗)− atan2(y − y∗, x− x∗)

7: v̂ =
Δθ

Δt
r∗

8: ω̂ =
Δθ

Δt

9: γ̂ = θ′−θ
Δt

− ω̂

10: return prob(v − v̂, α1v
2 + α2ω

2) · prob(ω − ω̂, α3v
2 + α4ω

2)

· prob(γ̂, α5v
2 + α6ω

2)

Table 5.1 Algorithm for computing p(xt | ut, xt−1) based on velocity information.
Here we assume xt−1 is represented by the vector (x y θ)T ; xt is represented by
(x′ y′ θ′)T ; and ut is represented by the velocity vector (v ω)T . The function
prob(a, b2) computes the probability of its argument a under a zero-centered dis-
tribution with variance b2. It may be implemented using any of the algorithms in
Table 5.2.

1: Algorithm prob_normal_distribution(a, b2):

2: return
1√

2π b2
exp

{
−1

2

a2

b2

}

3: Algorithm prob_triangular_distribution(a, b2):

4: returnmax

{
0,

1√
6 b
− |a|

6 b2

}

Table 5.2 Algorithms for computing densities of a zero-centered normal distribu-
tion and a triangular distribution with variance b2.

124 5 Robot Motion

1: Algorithm sample_motion_model_velocity(ut, xt−1):

2: v̂ = v + sample(α1v
2 + α2ω

2)

3: ω̂ = ω + sample(α3v
2 + α4ω

2)

4: γ̂ = sample(α5v
2 + α6ω

2)

5: x′ = x− v̂
ω̂

sin θ + v̂
ω̂

sin(θ + ω̂Δt)

6: y′ = y + v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂Δt)

7: θ′ = θ + ω̂Δt + γ̂Δt

8: return xt = (x′, y′, θ′)T

Table 5.3 Algorithm for sampling poses xt = (x′ y′ θ′)T from a pose xt−1 =

(x y θ)T and a control ut = (v ω)T . Note that we are perturbing the final orientation
by an additional random term, γ̂. The variables α1 through α6 are the parameters of
the motion noise. The function sample(b2) generates a random sample from a zero-
centered distribution with variance b2. It may, for example, be implemented using
the algorithms in Table 5.4.

1: Algorithm sample_normal_distribution(b2):

2: return
1

2

12∑
i=1

rand(−b, b)

3: Algorithm sample_triangular_distribution(b2):

4: return
√

6

2
[rand(−b, b) + rand(−b, b)]

Table 5.4 Algorithm for sampling from (approximate) normal and triangular dis-
tributions with zero mean and variance b2; see Winkler (1995: p293). The function
rand(x, y) is assumed to be a pseudo random number generator with uniform distri-
bution in [x, y].

5.3 Velocity Motion Model 125

(a) (b) (c)

Figure 5.4 Sampling from the velocity motion model, using the same parameters as
in Figure 5.3. Each diagram shows 500 samples.

new pose, in lines 5 through 7. Thus, the sampling procedure implements a
simple physical robot motionmodel that incorporates control noise in its pre-
diction, in just about the most straightforward way. Figure 5.4 illustrates the
outcome of this sampling routine. It depicts 500 samples generated by sam-
ple_motion_model_velocity. The reader might want to compare this figure
with the density depicted in Figure 5.3.
We note that in many cases, it is easier to sample xt than calculate the den-
sity of a given xt. This is because samples require only a forward simulation
of the physical motion model. To compute the probability of a hypothetical
pose amounts to retro-guessing of the error parameters, which requires us
to calculate the inverse of the physical motion model. The fact that particle
filters rely on sampling makes them specifically attractive from an imple-
mentation point of view.

5.3.3 Mathematical Derivation of the Velocity Motion Model

We will now derive the algorithms motion_model_velocity and sam-
ple_motion_model_velocity. As usual, the reader not interested in the
mathematical details is invited to skip this section at first reading, and con-
tinue in Chapter 5.4 (page 132). The derivation begins with a generative
model of robot motion, and then derives formulae for sampling and com-
puting p(xt | ut, xt−1) for arbitrary xt, ut, and xt−1.

Exact Motion

126 5 Robot Motion

<x ,y >c c

θ

<x,y>

r

x

y

θ−90

Figure 5.5 Motion carried out by a noise-free robot moving with constant velocities
v and ω and starting at (x y θ)T .

Before turning to the probabilistic case, let us begin by stating the kinematics
for an ideal, noise-free robot. Let ut = (v ω)T denote the control at time t. If
both velocities are kept at a fixed value for the entire time interval (t − 1, t],
the robot moves on a circle with radius

r =
∣∣∣ v
ω

∣∣∣(5.5)

This follows from the general relationship between the translational and ro-
tational velocities v and ω for an arbitrary object moving on a circular trajec-
tory with radius r:

v = ω · r(5.6)

Equation (5.5) encompasses the case where the robot does not turn at all (i.e.,
ω = 0), in which case the robot moves on a straight line. A straight line
corresponds to a circle with infinite radius, hence we note that r may be
infinite.
Let xt−1 = (x, y, θ)T be the initial pose of the robot, and suppose we keep

the velocity constant at (v ω)T for some time Δt. As one easily shows, the
center of the circle is at

xc = x− v

ω
sin θ(5.7)

yc = y +
v

ω
cos θ(5.8)

5.3 Velocity Motion Model 127

The variables (xc yc)
T denote this coordinate. After Δt time of motion, our

ideal robot will be at xt = (x′, y′, θ′)T with⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ xc + v

ω
sin(θ + ωΔt)

yc − v
ω

cos(θ + ωΔt)

θ + ωΔt

⎞
⎠(5.9)

=

⎛
⎝ x

y

θ

⎞
⎠+

⎛
⎝ − v

ω
sin θ + v

ω
sin(θ + ωΔt)

v
ω

cos θ − v
ω

cos(θ + ωΔt)

ωΔt

⎞
⎠

The derivation of this expression follows from simple trigonometry: After
Δt units of time, the noise-free robot has progressed v · Δt along the circle,
which caused its heading direction to turn by ω ·Δt. At the same time, its x

and y coordinate is given by the intersection of the circle about (xc yc)
T , and

the ray starting at (xc yc)
T at the angle perpendicular to ω ·Δt. The second

transformation simply substitutes (5.8) into the resulting motion equations.
Of course, real robots cannot jump from one velocity to another, and keep
velocity constant in each time interval. To compute the kinematics with non-
constant velocities, it is therefore common practice to use small values for
Δt, and to approximate the actual velocity by a constant within each time
interval. The (approximate) final pose is then obtained by concatenating
the corresponding cyclic trajectories using the mathematical equations just
stated.

Real Motion
In reality, robot motion is subject to noise. The actual velocities differ from
the commanded ones (or measured ones, if the robot possesses a sensor for
measuring velocity). We will model this difference by a zero-centered ran-
dom variable with finite variance. More precisely, let us assume the actual
velocities are given by(

v̂

ω̂

)
=

(
v

ω

)
+

(
εα1v2+α2ω2

εα3v2+α4ω2

)
(5.10)

Here εb2 is a zero-mean error variable with variance b2. Thus, the true veloc-
ity equals the commanded velocity plus some small, additive error (noise).
In our model, the standard deviation of the error is proportional to the com-
manded velocity. The parameters α1 to α4 (with αi ≥ 0 for i = 1, . . . , 4) are
robot-specific error parameters. They model the accuracy of the robot. The
less accurate a robot, the larger these parameters.

128 5 Robot Motion

-b b

(a)

b-b

(b)

Figure 5.6 Probability density functions with variance b2: (a) Normal distribution,
(b) triangular distribution.

Two common choices for the error εb2 are the normal and the triangular
distribution.
The normal distributionwith zero mean and variance b2 is given by the den-NORMAL DISTRIBUTION

sity function

εb2(a) =
1√

2π b2
e−

1
2

a2

b2(5.11)

Figure 5.6a shows the density function of a normal distribution with variance
b2. Normal distributions are commonly used to model noise in continuous
stochastic processes. Its support, which is the set of points awith p(a) > 0, is
�.
The density of a triangular distribution with zero mean and variance b2 isTRIANGULAR

DISTRIBUTION given by

εb2(a) = max

{
0,

1√
6 b
− |a|

6 b2

}
(5.12)

which is non-zero only in (−√6b;
√

6b). As Figure 5.6b suggests, the density
resembles the shape of a symmetric triangle—hence the name.
A better model of the actual pose xt = (x′ y′ θ′)T after executing the

motion command ut = (v ω)T at xt−1 = (x y θ)T is thus⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ x

y

θ

⎞
⎠+

⎛
⎝ − v̂

ω̂
sin θ + v̂

ω̂
sin(θ + ω̂Δt)

v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂Δt)

ω̂Δt

⎞
⎠(5.13)

This equation is obtained by substituting the commanded velocity ut =

(v ω)T with the noisy motion (v̂ ω̂)T in (5.9). However, this model is still not
very realistic, for reasons discussed in turn.

5.3 Velocity Motion Model 129

Final Orientation

The two equations given above exactly describe the final location of the robot
given that the robot actually moves on an exact circular trajectory with ra-
dius r = v̂

ω̂
. While the radius of this circular segment and the distance

traveled is influenced by the control noise, the very fact that the trajectory
is circular is not. The assumption of circular motion leads to an important
degeneracy. In particular, the support of the density p(xt | ut, xt−1) is two-
dimensional, within a three-dimensional embedding pose space. The fact
that all posterior poses are located on a two-dimensional manifold within
the three-dimensional pose space is a direct consequence of the fact that we
used only two noise variables, one for v and one for ω. Unfortunately, this
degeneracy has important ramifications when applying Bayes filters for state
estimation.
In reality, any meaningful posterior distribution is of course not degener-
ate, and poses can be found within a three-dimensional space of variations
in x, y, and θ. To generalize our motion model accordingly, we will assume
that the robot performs a rotation γ̂ when it arrives at its final pose. Thus,
instead of computing θ′ according to (5.13), we model the final orientation
by

θ′ = θ + ω̂Δt + γ̂Δt(5.14)

with

γ̂ = εα5v2+α6ω2(5.15)

Here α5 and α6 are additional robot-specific parameters that determine the
variance of the additional rotational noise. Thus, the resulting motion model
is as follows:⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ x

y

θ

⎞
⎠+

⎛
⎝ − v̂

ω̂
sin θ + v̂

ω̂
sin(θ + ω̂Δt)

v̂
ω̂

cos θ − v̂
ω̂

cos(θ + ω̂Δt)

ω̂Δt + γ̂Δt

⎞
⎠(5.16)

Computation of p(xt | ut, xt−1)

The algorithm motion_model_velocity in Table 5.1 implements the compu-
tation of p(xt | ut, xt−1) for given values of xt−1 = (x y θ)T , ut = (v ω)T ,
and xt = (x′ y′ θ′)T . The derivation of this algorithm is somewhat involved,
as it effectively implements an inverse motion model. In particular, mo-
tion_model_velocity determines motion parameters ût = (v̂ ω̂)T from the

130 5 Robot Motion

poses xt−1 and xt, along with an appropriate final rotation γ̂. Our derivation
makes it obvious as to why a final rotation is needed: For almost all values
of xt−1, ut, and xt, the motion probability would simply be zero without
allowing for a final rotation.
Let us calculate the probability p(xt | ut, xt−1) of control action ut = (v ω)T

carrying the robot from the pose xt−1 = (x y θ)T to the pose xt = (x′ y′ θ′)T

withinΔt time units. To do so, we will first determine the control û = (v̂ ω̂)T

required to carry the robot from xt−1 to position (x′ y′), regardless of the
robot’s final orientation. Subsequently, we will determine the final rotation
γ̂ necessary for the robot to attain the orientation θ′. Based on these calcula-
tions, we can then easily calculate the desired probability p(xt | ut, xt−1).
The reader may recall that our model assumes that the robot travels with
a fixed velocity during Δt, resulting in a circular trajectory. For a robot that
moved from xt−1 = (x y θ)T to xt = (x′ y′)T , the center of the circle is
defined as (x∗ y∗)T and given by(

x∗

y∗

)
=

(
x

y

)
+

(−λ sin θ

λ cos θ

)
=

(
x+x′

2 + μ(y − y′)
y+y′

2 + μ(x′ − x)

)
(5.17)

for some unknown λ, μ ∈ �. The first equality is the result of the fact that
the circle’s center is orthogonal to the initial heading direction of the robot;
the second is a straightforward constraint that the center of the circle lies on
a ray that lies on the half-way point between (x y)T and (x′ y′)T and is
orthogonal to the line between these coordinates.
Usually, Equation (5.17) has a unique solution—except in the degenerate
case of ω = 0, in which the center of the circle lies at infinity. As the reader
might want to verify, the solution is given by

μ =
1

2

(x− x′) cos θ + (y − y′) sin θ

(y − y′) cos θ − (x− x′) sin θ
(5.18)

and hence(
x∗

y∗

)
=

(
x+x′

2 + 1
2

(x−x′) cos θ+(y−y′) sin θ

(y−y′) cos θ−(x−x′) sin θ
(y − y′)

y+y′

2 + 1
2

(x−x′) cos θ+(y−y′) sin θ

(y−y′) cos θ−(x−x′) sin θ
(x′ − x)

)
(5.19)

The radius of the circle is now given by the Euclidean distance

r∗ =
√

(x− x∗)2 + (y − y∗)2 =
√

(x′ − x∗)2 + (y′ − y∗)2(5.20)

Furthermore, we can now calculate the change of heading direction

Δθ = atan2(y′ − y∗, x′ − x∗)− atan2(y − y∗, x− x∗)(5.21)

5.3 Velocity Motion Model 131

Here atan2 is the common extension of the arcus tangens of y/x extended
to the �2 (most programming languages provide an implementation of this
function):

atan2(y, x) =

⎧⎪⎪⎨
⎪⎪⎩

atan(y/x) if x > 0

sign(y) (π − atan(|y/x|)) if x < 0

0 if x = y = 0

sign(y) π/2 if x = 0, y �= 0

(5.22)

Since we assume that the robot follows a circular trajectory, the translational
distance between xt and xt−1 along this circle is

Δdist = r∗ ·Δθ(5.23)

From Δdist and Δθ, it is now easy to compute the velocities v̂ and ω̂:

ût =

(
v̂

ω̂

)
= Δt−1

(
Δdist

Δθ

)
(5.24)

The rotational velocity γ̂ needed to achieve the final heading θ′ of the robot
in (x′y′)within Δt can be determined according to (5.14) as:

γ̂ = Δt−1(θ′ − θ)− ω̂(5.25)

The motion error is the deviation of ût and γ̂ from the commanded velocity
ut = (v ω)T and γ = 0, as defined in Equations (5.24) and (5.25).

verr = v − v̂(5.26)

ωerr = ω − ω̂(5.27)

γerr = γ̂(5.28)

Under our error model, specified in Equations (5.10), and (5.15), these errors
have the following probabilities:

εα1v2+α2ω2(verr)(5.29)

εα3v2+α4ω2(ωerr)(5.30)

εα5v2+α6ω2(γerr)(5.31)

where εb2 denotes a zero-mean error variable with variance b2, as before.
Since we assume independence between the different sources of error, the
desired probability p(xt | ut, xt−1) is the product of these individual errors:

p(xt | ut, xt−1) = εα1v2+α2ω2(verr) · εα3v2+α4ω2(ωerr) · εα5v2+α6ω2(γerr)(5.32)

132 5 Robot Motion

To see the correctness of the algorithm motion_model_velocity in Table 5.1,
the reader may notice that this algorithm implements this expression. More
specifically, lines 2 to 9 are equivalent to Equations (5.18), (5.19), (5.20), (5.21),
(5.24), and (5.25). Line 10 implements (5.32), substituting the error terms as
specified in Equations (5.29) to (5.31).

Sampling from p(x′ | u, x)

The sampling algorithm sample_motion_model_velocity in Table 5.3 imple-
ments a forward model, as discussed earlier in this section. Lines 5 through 7
correspond to Equation (5.16). The noisy values calculated in lines 2 through
4 correspond to Equations (5.10) and (5.15).
The algorithm sample_normal_distribution in Table 5.4 implements a
common approximation to sampling from a normal distribution. This ap-
proximation exploits the central limit theorem, which states that any av-
erage of non-degenerate random variables converges to a normal distribu-
tion. By averaging 12 uniform distributions, sample_normal_distribution
generates values that are approximately normal distributed; though
technically the resulting values lie always in [−2b, 2b]. Finally, sam-
ple_triangular_distribution in Table 5.4 implements a sampler for triangular
distributions.

5.4 Odometry Motion Model

The velocity motion model discussed thus far uses the robot’s velocity to
compute posteriors over poses. Alternatively, one might want to use the
odometry measurements as the basis for calculating the robot’s motion over
time. Odometry is commonly obtained by integrating wheel encoder infor-
mation; most commercial robots make such integrated pose estimation avail-
able in periodic time intervals (e.g., every tenth of a second). This leads to
a second motion model discussed in this chapter, the odometry motion model.
The odometry motion model uses odometry measurements in lieu of con-
trols.
Practical experience suggests that odometry, while still erroneous, is usu-
ally more accurate than velocity. Both suffer from drift and slippage, but
velocity additionally suffers from the mismatch between the actual motion
controllers and its (crude) mathematical model. However, odometry is only
available in retrospect, after the robot moved. This poses no problem for fil-

5.4 Odometry Motion Model 133

δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is ap-
proximated by a rotation δrot1, followed by a translation δtrans and a second rotation
δrot2. The turns and translations are noisy.

ter algorithms, such as the localization and mapping algorithms discussed
in later chapters. But it makes this information unusable for accurate motion
planning and control.

5.4.1 Closed Form Calculation

Technically, odometric information are sensor measurements, not controls.
To model odometry as measurements, the resulting Bayes filter would have
to include the actual velocity as state variables—which increases the dimen-
sion of the state space. To keep the state space small, it is therefore common
to consider odometry data as if it were control signals. In this section, we
will treat odometry measurements just like controls. The resulting model is
at the core of many of today’s best probabilistic robot systems.
Let us define the format of our control information. At time t, the correct
pose of the robot is modeled by the random variable xt. The robot odome-
try estimates this pose; however, due to drift and slippage there is no fixed
coordinate transformation between the coordinates used by the robot’s in-
ternal odometry and the physical world coordinates. In fact, knowing this
transformation would solve the robot localization problem!
The odometry model uses the relative motion information, as measured by

the robot’s internal odometry. More specifically, in the time interval (t− 1, t],
the robot advances from a pose xt−1 to pose xt. The odometry reports back
to us a related advance from x̄t−1 = (x̄ ȳ θ̄)T to x̄t = (x̄′ ȳ′ θ̄′)T . Here the

134 5 Robot Motion

1: Algorithm motion_model_odometry(xt, ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄

3: δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = atan2(y′ − y, x′ − x)− θ

6: δ̂trans =
√

(x− x′)2 + (y − y′)2

7: δ̂rot2 = θ′ − θ − δ̂rot1

8: p1 = prob(δrot1 − δ̂rot1, α1δ̂
2
rot1 + α2δ̂

2
trans)

9: p2 = prob(δtrans − δ̂trans, α3δ̂
2
trans + α4δ̂

2
rot1 + α4δ̂

2
rot2)

10: p3 = prob(δrot2 − δ̂rot2, α1δ̂
2
rot2 + α2δ̂

2
trans)

11: return p1 · p2 · p3

Table 5.5 Algorithm for computing p(xt | ut, xt−1) based on odometry information.
Here the control ut is given by (x̄t−1 x̄t)

T , with x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′).

bar indicates that these are odometry measurements embedded in a robot-
internal coordinate whose relation to the global world coordinates is un-
known. The key insight for utilizing this information in state estimation is
that the relative difference between x̄t−1 and x̄t, under an appropriate defi-
nition of the term “difference,” is a good estimator for the difference of the
true poses xt−1 and xt. The motion information ut is, thus, given by the pair

ut =

(
x̄t−1

x̄t

)
(5.33)

To extract relative odometry, ut is transformed into a sequence of three steps:
a rotation, followed by a straight line motion (translation), and another ro-
tation. Figure 5.7 illustrates this decomposition: the initial turn is called
δrot1, the translation δtrans, and the second rotation δrot2. As the reader
easily verifies, each pair of positions (s̄ s̄′) has a unique parameter vector
(δrot1 δtrans δrot2)

T , and these parameters are sufficient to reconstruct the

5.4 Odometry Motion Model 135

(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

relative motion between s̄ and s̄′. Thus, δrot1, δtrans, δrot2 form together a suf-
ficient statistics of the relative motion encoded by the odometry.
The probabilistic motion model assumes that these three parameters are
corrupted by independent noise. The reader may note that odometry motion
uses one more parameter than the velocity vector defined in the previous
section, for which reason we will not face the same degeneracy that led to
the definition of a “final rotation.”
Before delving into mathematical detail, let us state the basic algorithm
for calculating this density in closed form. Table 5.5 depicts the algorithm
for computing p(xt | ut, xt−1) from odometry. This algorithm accepts as an
input an initial pose xt−1, a pair of poses ut = (x̄t−1 x̄t)

T obtained from the
robot’s odometry, and a hypothesized final pose xt. It outputs the numerical
probability p(xt | ut, xt−1).
Lines 2 to 4 in Table 5.5 recover relative motion parameters

(δrot1 δtrans δrot2)
T from the odometry readings. As before, they implement

an inverse motion model. The corresponding relative motion parameters
(δ̂rot1 δ̂trans δ̂rot2)

T for the given poses xt−1 and xt are calculated in lines 5
through 7 of this algorithm. Lines 8 to 10 compute the error probabilities for
the individual motion parameters. As above, the function prob(a, b2) imple-
ments an error distribution over a with zero mean and variance b2. Here the
implementer must observe that all angular differences must lie in [−π, π].
Hence the outcome of δrot2 − δ̄rot2 has to be truncated correspondingly—a
common error that tends to be difficult to debug. Finally, line 11 returns the
combined error probability, obtained by multiplying the individual error
probabilities p1, p2, and p3. This last step assumes independence between
the different error sources. The variables α1 through α4 are robot-specific
parameters that specify the noise in robot motion.

136 5 Robot Motion

1: Algorithm sample_motion_model_odometry(ut, xt−1):

2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄

3: δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2

4: δrot2 = θ̄′ − θ̄ − δrot1

5: δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

6: δ̂trans = δtrans − sample(α3δ
2
trans + α4 δ2

rot1 + α4 δ2
rot2)

7: δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans)

8: x′ = x + δ̂trans cos(θ + δ̂rot1)

9: y′ = y + δ̂trans sin(θ + δ̂rot1)

10: θ′ = θ + δ̂rot1 + δ̂rot2

11: return xt = (x′, y′, θ′)T

Table 5.6 Algorithm for sampling from p(xt | ut, xt−1) based on odometry informa-
tion. Here the pose at time t is represented by xt−1 = (x y θ)T . The control is a differ-
entiable set of two pose estimates obtained by the robot’s odometer, ut = (x̄t−1 x̄t)

T ,
with x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′).

Figure 5.8 shows examples of our odometry motion model for different
values of the error parameters α1 to α4. The distribution in Figure 5.8a is a
typical one, whereas the ones shown in Figures 5.8b and 5.8c indicate un-
usually large translational and rotational errors, respectively. The reader
may want to carefully compare these diagrams with those in Figure 5.3 on
page 122. The smaller the time between two consecutive measurements, the
more similar those different motion models. Thus, if the belief is updated
frequently e.g., every tenth of a second for a conventional indoor robot, the
difference between these motion models is not very significant.

5.4 Odometry Motion Model 137

(a) (b) (c)

Figure 5.9 Sampling from the odometry motion model, using the same parameters
as in Figure 5.8. Each diagram shows 500 samples.

5.4.2 Sampling Algorithm

If particle filters are used for localization, we would also like to have an al-
gorithm for sampling from p(xt | ut, xt−1). Recall that particle filters (Chap-
ter 4.3) require samples of p(xt | ut, xt−1), rather than a closed-form expres-
sion for computing p(xt | ut, xt−1) for any xt−1, ut, and xt. The algorithm
sample_motion_model_odometry, shown in Table 5.6, implements the sam-
pling approach. It accepts an initial pose xt−1 and an odometry reading ut

as input, and outputs a random xt distributed according to p(xt | ut, xt−1).
It differs from the previous algorithm in that it randomly guesses a pose xt

(lines 5-10), instead of computing the probability of a given xt. As before,
the sampling algorithm sample_motion_model_odometry is somewhat eas-
ier to implement than the closed-form algorithm motion_model_odometry,
since it side-steps the need for an inverse model.
Figure 5.9 shows examples of sample sets generated by sam-

ple_motion_model_odometry, using the same parameters as in the model
shown in Figure 5.8. Figure 5.10 illustrates the motion model “in action”
by superimposing sample sets from multiple time steps. This data has been
generated using the motion update equations of the algorithm particle_filter
(Table 4.3), assuming the robot’s odometry follows the path indicated by
the solid line. The figure illustrates how the uncertainty grows as the robot
moves. The samples are spread across an increasingly large space.

5.4.3 Mathematical Derivation of the Odometry Motion Model

The derivation of the algorithms is relatively straightforward, and once again
may be skipped at first reading. To derive a probabilistic motionmodel using

138 5 Robot Motion

10 meters

Start location

Figure 5.10 Sampling approximation of the position belief for a non-sensing robot.
The solid line displays the actions, and the samples represent the robot’s belief at
different points in time.

odometry, we recall that the relative difference between any two poses is rep-
resented by a concatenation of three basic motions: a rotation, a straight-line
motion (translation), and another rotation. The following equations show
how to calculate the values of the two rotations and the translation from the
odometry reading ut = (x̄t−1 x̄t)

T , with x̄t−1 = (x̄ ȳ θ̄) and x̄t = (x̄′ ȳ′ θ̄′):

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄(5.34)

δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2(5.35)

δrot2 = θ̄′ − θ̄ − δrot1(5.36)

To model the motion error, we assume that the “true” values of the rotation
and translation are obtained from the measured ones by subtracting inde-

5.4 Odometry Motion Model 139

pendent noise εb2 with zero mean and variance b2:

δ̂rot1 = δrot1 − εα1δ2
rot1+α2δ2

trans
(5.37)

δ̂trans = δtrans − εα3 δ2
trans+α4 δ2

rot1+α4 δ2
rot2

(5.38)

δ̂rot2 = δrot2 − εα1δ2
rot2+α2δ2

trans
(5.39)

As in the previous section, εb2 is a zero-mean noise variable with variance b2.
The parameters α1 to α4 are robot-specific error parameters, which specify
the error accrued with motion.
Consequently, the true position, xt, is obtained from xt−1 by an initial rota-

tion with angle δ̂rot1, followed by a translation with distance δ̂trans, followed
by another rotation with angle δ̂rot2. Thus,⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ x

y

θ

⎞
⎠+

⎛
⎜⎝ δ̂trans cos(θ + δ̂rot1)

δ̂trans sin(θ + δ̂rot1)

δ̂rot1 + δ̂rot2

⎞
⎟⎠(5.40)

Notice that algorithm sample_motion_model_odometry implements Equa-
tions (5.34) through (5.40).
The algorithmmotion_model_odometry is obtained by noticing that lines

5-7 compute the motion parameters δ̂rot1, δ̂trans, and δ̂rot2 for the hypothe-
sized pose xt, relative to the initial pose xt−1. The difference of both,

δrot1 − δ̂rot1(5.41)

δtrans − δ̂trans(5.42)

δrot2 − δ̂rot2(5.43)

is the error in odometry, assuming of course that xt is the true final pose. The
error model (5.37) to (5.39) implies that the probability of these errors is given
by

p1 = εα1δ2
rot1+α2δ2

trans
(δrot1 − δ̂rot1)(5.44)

p2 = εα3 δ2
trans+α4 δ2

rot1+α4 δ2
rot2

(δtrans − δ̂trans)(5.45)

p3 = εα1δ2
rot2+α2δ2

trans
(δrot2 − δ̂rot2)(5.46)

with the distributions ε defined as above. These probabilities are computed
in lines 8-10 of our algorithmmotion_model_odometry, and since the errors
are assumed to be independent, the joint error probability is the product p1 ·
p2 · p3 (c.f., line 11).

140 5 Robot Motion

5.5 Motion and Maps

By considering p(xt | ut, xt−1), we defined robot motion in a vacuum. In par-
ticular, this model describes robot motion in the absence of any knowledge
about the nature of the environment. In many cases, we are also given a
mapm, which may contain information pertaining to the places that a robot
may or may not be able to navigate. For example, occupancy maps, which
will be explained in Chapter 9, distinguish free (traversable) from occupied
terrain. The robot’s pose must always be in the free space. Therefore, know-
ing m gives us further information about the robot pose xt before, during,
and after executing a control ut.
This consideration calls for a motion model that takes the map m into ac-
count. We will denote this model by p(xt | ut, xt−1,m), indicating that it
considers the mapm in addition to the standard variables. Ifm carries infor-
mation relevant to pose estimation, we have

p(xt | ut, xt−1) �= p(xt | ut, xt−1,m)(5.47)

The motion model p(xt | ut, xt−1,m) should give better results than the map-
free motion model p(xt | ut, xt−1). We will refer to p(xt | ut, xt−1,m) as map-MAP-BASED MOTION

MODEL based motion model. The map-based motion model computes the likelihood
that a robot placed in a world with map m arrives at pose xt upon execut-
ing action ut at pose xt−1. Unfortunately, computing this motion model in
closed form is difficult. This is because to compute the likelihood of being
at xt after executing action ut, one has to incorporate the probability that an
unoccupied path exists between xt−1 and xt and that the robot might have
followed this unoccupied path when executing the control ut—a complex
operation.
Luckily, there exists an efficient approximation for the map-based motion
model, which works well if the distance between xt−1 and xt is small (e.g.,
smaller than half a robot diameter). The approximation factorizes the map-
based motion model into two components:

p(xt | ut, xt−1,m) = η
p(xt | ut, xt−1) p(xt | m)

p(xt)
(5.48)

where η is the usual normalizer. Usually, p(xt) is also uniform and can be
subsumed into the constant normalizer. One then simplymultiplies themap-
free estimate p(xt | ut, xt−1) with a second term, p(xt | m), which expresses
the “consistency” of pose xt with the mapm. In the case of occupancy maps,
p(xt | m) = 0 if and only if the robot would be placed in an occupied grid cell

5.5 Motion and Maps 141

1: Algorithm motion_model_with_map(xt, ut, xt−1,m):

2: return p(xt | ut, xt−1) · p(xt | m)

1: Algorithm sample_motion_model_with_map(ut, xt−1,m):

2: do

3: xt = sample_motion_model(ut, xt−1)

3: π = p(xt | m)

4: until π > 0

5: return 〈xt, π〉

Table 5.7 Algorithm for computing p(xt | ut, xt−1, m), which utilizes a map m of
the environment. This algorithms bootstraps previous motion models (Tables 5.1, 5.3,
5.5, and 5.6) to models that take into account that robots cannot be placed in occupied
space in the mapm.

in the map; otherwise it assumes a constant value. By multiplying p(xt | m)

and p(xt | ut, xt−1), we obtain a distribution that assigns all probability mass
to poses xt consistent with the map, which otherwise has the same shape as
p(xt | ut, xt−1). As η can be computed by normalization, this approxima-
tion of a map-based motion model can be computed efficiently without any
significant overhead compared to a map-free motion model.
Table 5.7 states the basic algorithms for computing and for sampling from
the map-based motion model. Notice that the sampling algorithm returns
a weighted sample, which includes an importance factor proportional to
p(xt | m). Care has to be taken in the implementation of the sample version,
to ensure termination of the inner loop. An example of the motion model
is illustrated in Figure 5.11. The density in Figure 5.11a is p(xt | ut, xt−1),
computed according to the velocity motion model. Now suppose the mapm

possesses a long rectangular obstacle, as indicated in Figure 5.11b. The prob-
ability p(xt | m) is zero at all poses xt where the robot would intersect the
obstacle. Since our example robot is circular, this region is equivalent to the
obstacle grown by a robot radius—this is equivalent to mapping the obsta-
cle fromworkspace to the robot’s configuration space or pose space. The resultingCONFIGURATION SPACE

142 5 Robot Motion

(a) p(xt | ut, xt−1) (b) p(xt | ut, xt−1, m)

� (∗)

Figure 5.11 Velocity motion model (a) without a map and (b) conditioned on a map
m.

probability p(xt | ut, xt−1,m), shown in Figure 5.11b, is the normalized prod-
uct of p(xt | m) and p(xt | ut, xt−1). It is zero in the extended obstacle area,
and proportional to p(xt | ut, xt−1) everywhere else.
Figure 5.11 also illustrates a problem with our approximation. The region
marked (∗) possesses non-zero likelihood, since both p(xt | ut, xt−1) and
p(xt | m) are non-zero in this region. However, for the robot to be in this
particular area it must have gone through the wall, which is impossible in
the real world. This error is the result of checking model consistency at the
final pose xt only, instead of verifying the consistency of the robot’s path
to the goal. In practice, however, such errors only occur for relatively large
motions ut, and it can be neglected for higher update frequencies.
To shed light onto the nature of the approximation, let us briefly derive it.
Equation (5.48) can be obtained by applying Bayes rule:

p(xt | ut, xt−1,m) = η p(m | xt, ut, xt−1) p(xt | ut, xt−1)(5.49)

If we approximate p(m | xt, ut, xt−1) by p(m | xt) and observe that p(m) is a
constant relative to the desired posterior, we obtain the desired equation as
follows:

p(xt | ut, xt−1,m) = η p(m | xt) p(xt | ut, xt−1)(5.50)

= η
p(xt | m) p(m)

p(xt)
p(xt | ut, xt−1)

= η
p(xt | m) p(xt | ut, xt−1)

p(xt)

5.6 Summary 143

Here η is the normalizer (notice that the value of η is different for the different
steps in our transformation). This brief analysis shows that our map-based
model is justified under the rough assumption that

p(m | xt, ut, xt−1) = p(m | xt)(5.51)

Obviously, these expressions are not equal. When computing the conditional
over m, our approximation omits two terms: ut and xt−1. By omitting these
terms, we discard any information relating to the robot’s path leading up
to xt. All we know is that its final pose is xt. We already noticed the conse-
quences of this omission in our example above, whenwe observed that poses
behind awall may possess non-zero likelihood. Our approximatemap-based
motion model may falsely assume that the robot just went through a wall, as
long as the initial and final poses are in the unoccupied space. How damag-
ing can this be? As noted above, this depends on the update interval. In fact,
for sufficiently high update rates, and assuming that the noise variables in
the motion model are bounded, we can guarantee that the approximation is
tight and this effect will not occur.
This analysis illustrates a subtle insight pertaining to the implementation
of the algorithm. In particular, one has to pay attention to the update fre-
quency. A Bayes filter that is updated frequently might yield fundamentally
different results than one that is updated only occasionally.

5.6 Summary

This section derived the two principal probabilistic motion models for mo-
bile robots operating on the plane.

• We derived an algorithm for the probabilistic motion model p(xt |
ut, xt−1) that represents control ut by a translational and angular velocity,
executed over a fixed time interval Δt. In implementing this model, we
realized that two control noise parameters, one for the translational and
one for the rotational velocity, are insufficient to generate a space-filling
(non-generate) posterior. We therefore added a third noise parameter, ex-
pressed as a noisy “final rotation.”

• We presented an alternative motion model that uses the robot’s odometry
as input. Odometric measurements were expressed by three parameters,
an initial rotation, followed by a translation, and a final rotation. The
probabilistic motion model was implemented by assuming that all three

144 5 Robot Motion

of these parameters are subject to noise. We noted that odometry readings
are technically not controls; however, by using them just like controls we
arrived at a simpler formulation of the estimation problem.

• For both motion models, we presented two types of implementations,
one in which the probability p(xt | ut, xt−1) is calculated in closed form,
and one that enables us to generate samples from p(xt | ut, xt−1). The
closed-form expression accepts as an input xt, ut, and xt−1, and outputs a
numerical probability value. To calculate this probability, the algorithms
effectively invert the motion model, to compare the actual with the com-
manded control parameters. The sampling model does not require such an
inversion. Instead, it implements a forward model of the motion model
p(xt | ut, xt−1). It accepts as an input the values ut and xt−1 and outputs
a random xt drawn according to p(xt | ut, xt−1). Closed-form models are
required for some probabilistic algorithms. Others, most notably particle
filters, utilize sampling models.

• Finally we extended all motion models to incorporate a map of the envi-
ronment. The resulting probability p(xt | ut, xt−1,m) incorporates a map
m in its conditional. This extension followed the intuition that the map
specifies where a robot may be, which has an effect of the ability to move
from pose xt−1 to xt. The resulting algorithm was approximate, in that
we only checked for the validity of the final pose.

The motion models discussed here are only examples: Clearly, the field of
robotic actuators is much richer than just mobile robots operating in flat ter-
rain. Even within the field of mobile robotics, there exist a number of de-
vices that are not covered by the models discussed here. Examples include
holonomic robots which can move sideways, or cars with suspension. Our
description also does not consider robot dynamics, which are important for
fast-moving vehicles such as cars on highways. Most of these robots can be
modeled analogously; simply specify the physical laws of robot motion, and
specify appropriate noise parameters. For dynamic models, this will require
extending the robot state by a velocity vector that captures the dynamic state
of the vehicle. In many ways, these extensions are straightforward.
As far as measuring ego-motion is concerned, many robots rely on inertial
sensors to measure motion, as a supplement to or in place of odometry. En-
tire books have been dedicated to filter design using inertial sensors. Readers
are encouraged to include richer models and sensors when odometry is in-
sufficient.

5.7 Bibliographical Remarks 145

5.7 Bibliographical Remarks

The present material extends the basic kinematic equations of specific types of mobile robots
(Cox and Wilfong 1990) by a probabilistic component. Drives covered by our model are the
differential drive, the Ackerman drive, and synchro-drive (Borenstein et al. 1996). Drive sys-
tems not covered by our model are those without non-holonomic constraints (Latombe 1991)
like robots equipped with Mecanum wheels (Ilon 1975) or even legged robots, as described in
pioneering papers by Raibert et al. (1986); Raibert (1991); Saranli and Koditschek (2002).
The field of robotics has studied robot motion and interaction with a robotic environment in

much more depth. Contemporary texts on mobile robots covering aspects of kinematics and dy-
namics are due to Murphy (2000c); Dudek and Jenkin (2000); Siegwart and Nourbakhsh (2004).
Cox and Wilfong (1990) provides a collection of articles by leading researchers at the time of
publication; see also Kortenkamp et al. (1998). Classical treatments of robotic kinematics and
dynamics can be found in Craig (1989); Vukobratović (1989); Paul (1981); and Yoshikawa (1990).
A more modern text addressing robotic dynamics is the one by Featherstone (1987). Compliant
motion as one form of environment interaction has been studied by Mason (2001). Terrame-
chanics, which refers to the interaction of wheeled robots with the ground, has been studied in
seminal texts by Bekker (1956, 1969) and Wong (1989). A contemporary text on wheel-ground
interaction can be found in Iagnemma and Dubowsky (2004). Generalizing such models into a
probabilistic framework is a promising direction for future research.

5.8 Exercises

1. All robot models in this chapter were kinematic. In this exercise, you
will consider a robot with dynamics. Consider a robot that lives in a 1-DDYNAMICS

coordinate system. Its location will be denoted by x, its velocity by ẋ,
and its acceleration by ẍ. Suppose we can only control the acceleration
ẍ. Develop a mathematical motion model that computes the posterior
over the pose x′ and the velocity ẋ′ from an initial pose x and velocity ẋ,
assuming that the acceleration ẍ is the sum of a commanded acceleration
and a zero-mean Gaussian noise term with variance σ2 (and assume that
the actual acceleration remains constant in the simulation interval Δt).
Are x′ and ẋ′ correlated in the posterior? Explain why/why not.

2. Consider again the dynamic robot from Exercise 1. Provide a mathemati-
cal formula for computing the posterior distribution over the final velocity
ẋ′, from the initial robot location x, the initial velocity ẋ, and the final pose
x′. What is remarkable about this posterior?

3. Suppose we control this robot with random accelerations for T time inter-
vals, for some large value of T . Will the final location x and the velocity
ẋ be correlated? If yes, will they be fully correlated as T ↑ ∞, so that one
variable becomes a deterministic function of the other?

146 5 Robot Motion

4. Now consider a simple kinematic model of an idealized bicycle. Both tires
are of diameter d, and are mounted to a frame of length l. The front tire
can swivel around a vertical axis, and its steering angle will be denoted α.
The rear tire is always parallel to the bicycle frame and cannot swivel.

For the sake of this exercise, the pose of the bicycle shall be defined
through three variables: the x-y location of the center of the front tire, and
the angular orientation θ (yaw) of the bicycle frame relative to an external
coordinate frame. The controls are the forward velocity v of the bicycle,
and the steering angle α, which wewill assume to be constant during each
prediction cycle.

Provide the mathematical prediction model for a time intervalΔt, assum-
ing that it is subject to Gaussian noise in the steering angle α and the
forward velocity v. The model will have to predict the posterior of the
bicycle state afterΔt time, starting from a known state. If you cannot find
an exact model, approximate it, and explain your approximations.

5. Consider the kinematic bicycle model from Exercise 4. Implement a sam-
pling function for posterior poses of the bicycles under the same noise
assumptions.

For your simulation, you might assume l = 100cm, d = 80cm, Δt =

1sec, |α| ≤ 80◦, v ∈ [0; 100]cm/sec. Assume further that the variance of
the steering angle is σ2

α = 25◦2 and the variance of the velocity is σ2
v =

50cm2/sec2 · v2. Notice that the variance of the velocity depends on the
commanded velocity.

For a bicycle starting at the origin, plot the resulting sample sets for the
following values of the control parameters:

problem number α v

1 25◦ 20cm/sec

2 −25◦ 20cm/sec

3 25◦ 90cm/sec

4 80◦ 10cm/sec

1 85◦ 90cm/sec

All your plots should show coordinate axes with units.

6. Consider once again the kinematic bicycle model from Exercise 4. Given
an initial state x, y, θ and a final x′ and y′ (but no final θ′), provide a math-
ematical formula for determining the most likely values of α, v, and θ′. If

5.8 Exercises 147

you cannot find a closed form solution, you could instead give a technique
for approximating the desired values.

7. A common drive for indoor robots is holonomic. A holonomic robot hasHOLONOMIC

as many controllable degrees of freedom as the dimension of its config-
uration (or pose) space. In this exercise, you are asked to generalize the
velocity model to a holonomic robot operating in the plane. Assume the
robot can control its forward velocity, an orthogonal sidewards velocity,
and a rotational velocity. Let us arbitrarily give sidewards motion to the
left positive values, and motion to the right negative values.

• State a mathematical model for such a robot, assuming that its controls
are subject to independent Gaussian noise.

• Provide a procedure for calculating p(xt | ut, xt−1).

• Provide a sampling procedure for sampling xt ∼ p(xt | ut, xt−1).

8. Prove that the triangular distribution in Equation (5.12) has mean 0 and
variance b2. Prove the same for the sampling algorithm in Table 5.4.

6 Robot Perception

6.1 Introduction

Environment measurement models comprise the second domain-specific model
in probabilistic robotics, next to motion models. Measurement models de-
scribe the formation process by which sensor measurements are generated in
the physical world. Today’s robots use a variety of different sensor modal-
ities, such as tactile sensors, range sensors, or cameras. The specifics of the
model depends on the sensor: Imaging sensors are best modeled by pro-
jective geometry, whereas sonar sensors are best modeled by describing the
sound wave and its reflection on surfaces in the environment.
Probabilistic robotics explicitly models the noise in sensor measurements.
Such models account for the inherent uncertainty in the robot’s sensors. For-
mally, the measurement model is defined as a conditional probability dis-
tribution p(zt | xt,m), where xt is the robot pose, zt is the measurement at
time t, and m is the map of the environment. Although we mainly address
range-sensors throughout this chapter, the underlying principles and equa-
tions are not limited to this type of sensors. Instead the basic principle can
be applied to any kind of sensor, such as a camera or a bar-code operated
landmark detector.
To illustrate the basic problem of mobile robots that use their sensors to
perceive their environment, Figure 6.1a shows a typical sonar range scan ob-SONAR RANGE SCAN

tained in a corridor with a mobile robot equipped with a cyclic array of 24
ultrasound sensors. The distances measured by the individual sensors are
depicted in light gray and the map of the environment is shown in black.
Most of these measurements correspond to the distance of the nearest ob-
ject in the measurement cone; some measurements, however, have failed to
detect any object.

150 6 Robot Perception

(a) (b)

Figure 6.1 (a) Typical ultrasound scan of a robot in its environment. (b) A misread-
ing in ultrasonic sensing. This effect occurs when firing a sonar signal towards a
reflective surface at an angle α that exceeds half the opening angle of the sensor.

The inability for sonar to reliably measure range to nearby objects is of-
ten paraphrased as sensor noise. Technically, this noise is quite predictable:
When measuring smooth surfaces (such as walls), the reflection is usually
specular, and the wall effectively becomes a mirror for the sound wave. ThisSPECULAR REFLECTION

can be problematic when hitting a smooth surface at an angle. Here the echo
may travel into a direction other than the sonar sensor, as illustrated in Fig-
ure 6.1b. This effect often leads to overly large range measurements when
compared to the true distance to the nearest object in the main cone. The
likelihood of this to happen depends on a number of properties, such as the
surface material, the angle between the surface normal and the direction of
the sensor cone, the range of the surface, the width of the main sensor cone,
and the sensitivity of the sonar sensor. Other errors, such as short readings,
may be caused by cross-talk between different sensors (sound is slow!) or by
unmodeled objects in the proximity of the robot, such as people.
Figure 6.2 shows a typical laser range scan, acquired with a 2-D laser rangeLASER RANGE SCAN

finder. Laser is similar to sonar in that it also actively emits a signal and
records its echo, but in the case of laser the signal is a light beam. A key
difference to sonars is that lasers provide much more focused beams. The
specific laser in Figure 6.2 is based on a time-of-flight measurement, and
measurements are spaced in one degree increments.
As a rule of thumb, the more accurate a sensor model, the better the
results—though there are some important caveats that were already dis-
cussed in Chapter 2.4.4. In practice, however, it is often impossible to model

6.1 Introduction 151

Figure 6.2 A typical laser range scan, acquired with a SICK LMS laser. The envi-
ronment shown here is a coal mine. Image courtesy of Dirk Hähnel, University of
Freiburg.

a sensor accurately, primarily due to the complexity of physical phenomena.
Often, the response characteristics of a sensor depends on variables we
prefer not to make explicit in a probabilistic robotics algorithm (such as the
surface material of walls, which for no particular reason is commonly not
considered in robotic mapping). Probabilistic robotics accommodates inac-
curacies of sensor models in the stochastic aspects: By modeling the mea-
surement process as a conditional probability density, p(zt | xt), instead of a
deterministic function zt = f(xt), the uncertainty in the sensor model can be
accommodated in the non-deterministic aspects of the model. Herein lies a
key advantage of probabilistic techniques over classical robotics: in practice,
we can get away with extremely crude models. However, when devising
a probabilistic model, care has to be taken to capture the different types of
uncertainties that may affect a sensor measurement.
Many sensors generate more than one numerical measurement value
when queried. For example, cameras generate entire arrays of values (bright-
ness, saturation, color); similarly, range finders usually generate entire scans
of ranges. We will denote the number of such measurement values within a
measurement zt byK, hence we can write:

zt = {z1
t , . . . , zK

t }(6.1)

We will use zk
t to refer to an individual measurement (e.g., one range value).

152 6 Robot Perception

The probability p(zt | xt,m) is obtained as the product of the individual
measurement likelihoods

p(zt | xt,m) =
K∏

k=1

p(zk
t | xt,m)(6.2)

Technically, this amounts to an independence assumption between the noise
in each individual measurement beam—just as our Markov assumption as-
sumes independent noise over time (c.f., Chapter 2.4.4). This assumption is
only true in the ideal case. We already discussed possible causes of depen-
dent noise in Chapter 2.4.4. To recapitulate, dependencies typically exist due
to a range of factors: people, who often corrupt measurements of several ad-
jacent sensors; errors in the model m; approximations in the posterior; and
so on. For now, however, we will simply not worry about violations of the
independence assumption, as we will return to this issue in later chapters.

6.2 Maps

To express the process of generating measurements, we need to specify the
environment in which a measurement is generated. A map of the environ-
ment is a list of objects in the environment and their locations. We have
already informally discussed maps in the previous chapter, where we de-
veloped robot motion models that took into consideration the occupancy of
different locations in the world. Formally, a map m is a list of objects in the
environment along with their properties:

m = {m1,m2, . . . , mN}(6.3)

Here N is the total number of objects in the environment, and eachmn with
1 ≤ n ≤ N specifies a property. Maps are usually indexed in one of two
ways, known as feature-based and location-based. In feature-based maps, n is a
feature index. The value of mn contains, next to the properties of a feature,
the Cartesian location of the feature. In location-based maps, the index n

corresponds to a specific location. In planar maps, it is common to denote a
map element bymx,y instead ofmn, to make explicit thatmx,y is the property
of a specific world coordinate, (x y).
Both types of maps have advantages and disadvantages. Location-based
maps are volumetric, in that they offer a label for any location in the world.VOLUMETRIC MAPS

Volumetric maps contain information not only about objects in the environ-
ment, but also about the absence of objects (e.g., free-space). This is quite

6.3 Beam Models of Range Finders 153

different in feature-based maps. Feature-based maps only specify the shape of
the environment at the specific locations, namely the locations of the objects
contained in the map. Feature representation makes it easier to adjust the
position of an object; e.g., as a result of additional sensing. For this reason,
feature-based maps are popular in the robotic mapping field, where maps
are constructed from sensor data. In this book, we will encounter both types
of maps—in fact, we will occasionally move from one representation to the
other.
A classical map representation is known as occupancy grid map, which will
be discussed in detail in Chapter 9. Occupancy maps are location-based:
They assign to each x-y coordinate a binary occupancy value that speci-
fies whether or not a location is occupied with an object. Occupancy grid
maps are great for mobile robot navigation: They make it easy to find paths
through the unoccupied space.
Throughout this book, we will drop the distinction between the physical
world and the map. Technically, sensor measurements are caused by physi-
cal objects, not the map of those objects. However, it is tradition to condition
sensor models on the map m; hence we will adopt a notation that suggests
measurements depend on the map.

6.3 BeamModels of Range Finders

Range finders are among the most popular sensors in robotics. Our firstmea-
surement model in this chapter is therefore an approximative physical model
of range finders. Range finders measure the range to nearby objects. Range
may be measured along a beam—which is a good model of the workings
of laser range finders—or within a cone—which is the preferable model of
ultrasonic sensors.

6.3.1 The Basic Measurement Algorithm

Our model incorporates four types of measurement errors, all of which are
essential to making this model work: small measurement noise, errors due
to unexpected objects, errors due to failures to detect objects, and random
unexplained noise. The desired model p(zt | xt,m) is therefore a mixture of
four densities, each of which corresponds to a particular type of error:

1. Correct range with local measurement noise. In an ideal world, a range
finder would always measure the correct range to the nearest object in its

154 6 Robot Perception

(a) Gaussian distribution phit

p(zk
t | xt,m)

zk∗
t zmax

(b) Exponential distribution pshort

p(zk
t | xt,m)

zk∗
t zmax

(c) Uniform distribution pmax

p(zk
t | xt,m)

zk∗
t zmax

(d) Uniform distribution prand

p(zk
t | xt,m)

zk∗
t zmax

Figure 6.3 Components of the range finder sensor model. In each diagram the hor-
izontal axis corresponds to the measurement zk

t , the vertical to the likelihood.

measurement field. Let us use zk∗
t to denote the “true” range of the object

measured by zk
t . In location-based maps, the range zk∗

t can be determined
using ray casting; in feature-based maps, it is usually obtained by search-
ing for the closest feature within a measurement cone. However, even if
the sensor correctly measures the range to the nearest object, the value it
returns is subject to error. This error arises from the limited resolution
of range sensors, atmospheric effect on the measurement signal, and so
on. This measurement noise is usually modeled by a narrow Gaussian withMEASUREMENT NOISE

mean zk∗
t and standard deviation σhit. We will denote the Gaussian by

phit. Figure 6.3a illustrates this density phit, for a specific value of zk∗
t .

In practice, the values measured by the range sensor are limited to the
interval [0; zmax], where zmax denotes the maximum sensor range. Thus,

6.3 Beam Models of Range Finders 155

the measurement probability is given by

phit(z
k
t | xt,m) =

{
η N (zk

t ; zk∗
t , σ2

hit) if 0 ≤ zk
t ≤ zmax

0 otherwise
(6.4)

where zk∗
t is calculated from xt andm via ray casting, andN (zk

t ; zk∗
t , σ2

hit)

denotes the univariate normal distribution with mean zk∗
t and standard

deviation σhit:

N (zk
t ; zk∗

t , σ2
hit) =

1√
2πσ2

hit

e
− 1

2

(zk
t
−zk∗

t
)2

σ2
hit(6.5)

The normalizer η evaluates to

η =

(∫ zmax

0

N (zk
t ; zk∗

t , σ2
hit) dzk

t

)−1

(6.6)

The standard deviation σhit is an intrinsic noise parameter of the measure-
ment model. Below we will discuss strategies for setting this parameter.

2. Unexpected objects. Environments of mobile robots are dynamic,
whereas maps m are static. As a result, objects not contained in the map
can cause range finders to produce surprisingly short ranges—at least
when compared to the map. A typical example of moving objects are peo-
ple that share the operational space of the robot. One way to deal with
such objects is to treat them as part of the state vector and estimate their
location; another, much simpler approach, is to treat them as sensor noise.
Treated as sensor noise, unmodeled objects have the property that they
cause ranges to be shorter than zk∗

t , not longer.

The likelihood of sensing unexpected objects decreases with range. To
see, imagine there are two people that independently and with the same
fixed likelihood show up in the perceptual field of a proximity sensor. One
person’s range is r1, and the second person’s range is r2. Let us further
assume that r1 < r2, without loss of generality. Then we are more likely
to measure r1 than r2. Whenever the first person is present, our sensor
measures r1. However, for it to measure r2, the second person must be
present and the first must be absent.

Mathematically, the probability of range measurements in such situations
is described by an exponential distribution. The parameter of this distribu-
tion, λshort, is an intrinsic parameter of the measurement model. Accord-
ing to the definition of an exponential distributionwe obtain the following

156 6 Robot Perception

equation for pshort(z
k
t | xt,m):

pshort(z
k
t | xt,m) =

{
η λshort e−λshortz

k
t if 0 ≤ zk

t ≤ zk∗
t

0 otherwise
(6.7)

As in the previous case, we need a normalizer η since our exponential is
limited to the interval

[
0; zk∗

t

]
. Because the cumulative probability in this

interval is given as∫ zk∗

t

0

λshort e−λshortz
k
t dzk

t = −e−λshortz
k∗

t + e−λshort0(6.8)

= 1− e−λshortz
k∗

t

the value of η can be derived as:

η =
1

1− e−λshortz
k∗

t

(6.9)

Figure 6.3b depicts this density graphically. This density falls off expo-
nentially with the range zk

t .

3. Failures. Sometimes, obstacles are missed altogether. For example, this
happens frequently for sonar sensors as a result of specular reflections.
Failures also occur with laser range finders when sensing black, light-
absorbing objects, or for some laser systems when measuring objects in
bright sunlight. A typical result of a sensor failure is a max-range measure-SENSOR FAILURE

ment: the sensor returns its maximum allowable value zmax. Since such
events are quite frequent, it is necessary to explicitly model max-range
measurements in the measurement model.

We will model this case with a point-mass distribution centered at zmax:

pmax(z
k
t | xt,m) = I(z = zmax) =

{
1 if z = zmax

0 otherwise
(6.10)

Here I denotes the indicator function that takes on the value 1 if its ar-
gument is true, and is 0 otherwise. Technically, pmax does not possess a
probability density function. This is because pmax is a discrete distribu-
tion. However, this shall not worry us here, as our mathematical model of
evaluating the probability of a sensor measurement is not affected by the
non-existence of a density function. (In our diagrams, we simply draw
pmax as a very narrow uniform distribution centered at zmax, so that we
can pretend a density exists).

6.3 Beam Models of Range Finders 157

zk∗
t zmax

Figure 6.4 “Pseudo-density” of a typical mixture distribution p(zk
t | xt, m).

4. Random measurements. Finally, range finders occasionally produce en-
tirely unexplainable measurements. For example, sonars often generateUNEXPLAINABLE

MEASUREMENTS phantom readings when they bounce off walls, or when they are subject
to cross-talk between different sensors. To keep things simple, such mea-
surements will be modeled using a uniform distribution spread over the
entire sensor measurement range [0; zmax]:

prand(zk
t | xt,m) =

{ 1
zmax

if 0 ≤ zk
t < zmax

0 otherwise
(6.11)

Figure 6.3d shows the density of the distribution prand.

These four different distributions are now mixed by a weighted average, de-
fined by the parameters zhit, zshort, zmax, and zrand with zhit + zshort + zmax +

zrand = 1.

p(zk
t | xt,m) =

⎛
⎜⎜⎝

zhit

zshort

zmax

zrand

⎞
⎟⎟⎠

T

·

⎛
⎜⎜⎝

phit(z
k
t | xt,m)

pshort(z
k
t | xt,m)

pmax(z
k
t | xt,m)

prand(zk
t | xt,m)

⎞
⎟⎟⎠(6.12)

A typical density resulting from this linear combination of the individual
densities is shown in Figure 6.4 (with our visualization of the point-mass
distribution pmax as a small uniform density). As the reader may notice, the
basic characteristics of all four basic models are still present in this combined
density.

158 6 Robot Perception

1: Algorithm beam_range_finder_model(zt, xt,m):

2: q = 1

3: for k = 1 toK do

4: compute zk∗
t for the measurement zk

t using ray casting

5: p = zhit · phit(z
k
t | xt,m) + zshort · pshort(z

k
t | xt,m)

6: +zmax · pmax(z
k
t | xt,m) + zrand · prand(zk

t | xt,m)

7: q = q · p
8: return q

Table 6.1 Algorithm for computing the likelihood of a range scan zt, assuming con-
ditional independence between the individual range measurements in the scan.

The range finder model is implemented by the algorithm
beam_range_finder_model in Table 6.1. The input of this algorithm is
a complete range scan zt, a robot pose xt, and a map m. Its outer loop (lines
2 and 7) multiplies the likelihood of individual sensor beams zk

t , following
Equation (6.2). Line 4 applies ray casting to compute the noise-free range for
a particular sensor measurement. The likelihood of each individual range
measurement zk

t is computed in line 5, which implements the mixing rule for
densities stated in (6.12). After iterating through all sensor measurements zk

t

in zt, the algorithm returns the desired probability p(zt | xt,m).

6.3.2 Adjusting the Intrinsic Model Parameters

In our discussion so far we have not addressed the question of how to choose
the various parameters of the sensor model. These parameters include the
mixing parameters zhit, zshort, zmax, and zrand. They also include the param-
eters σhit and λshort. We will refer to the set of all intrinsic parameters as Θ.
Clearly, the likelihood of any sensor measurement is a function of Θ. Thus,
we will now discuss an algorithm for adjusting model parameters.
One way to determine the intrinsic parameters is to rely on data. Fig-
ure 6.5 depicts two series of 10,000 measurements obtained with a mobile
robot traveling through a typical office environment. Both plots show only
range measurements for which the expected range was approximately 3 me-

6.3 Beam Models of Range Finders 159

300

500

0 5000 10000

(a) Sonar data

300

500

0 5000 10000

(b) Laser data

Figure 6.5 Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor
in an office environment for a “true” range of 300 cm and a maximum range of 500
cm.

ters (between 2.9m and 3.1m). The left plot depicts the data for sonar sensors,
and the right plot the corresponding data for laser sensors. In both plots, the
x-axis shows the number of the reading (from 1 to 10,000), and the y-axis is
the range measured by the sensor.
Whereas most of the measurements are close to the correct range for both

sensors, the behaviors of the sensors differ substantially. The ultrasound
sensor appears to suffer from many more measurement noise and detection
errors. Quite frequently it fails to detect an obstacle, and instead reports max-
imum range. In contrast, the laser range finder is more accurate. However, it
also occasionally reports false ranges.
A perfectly acceptable way to set the intrinsic parameters Θ is by hand:

simply eyeball the resulting density until it agrees with your experience.
Another, more principled way is to learn these parameters from actual data.
This is achieved bymaximizing the likelihood of a reference data setZ = {zi}
with associated positions X = {xi} and map m, where each zi is an actual
measurement, xi is the pose at which the measurement was taken, and m is
the map. The likelihood of the data Z is given by

p(Z | X,m, Θ)(6.13)

Our goal is to identify intrinsic parameters Θ that maximize this likelihood.
Any estimator, or algorithm, that maximizes the likelihood of data is known
as a maximum likelihood estimator, orML estimator.MAXIMUM LIKELIHOOD

ESTIMATOR Table 6.2 depicts the algorithm learn_intrinsic_parameters, which is an
algorithm for calculating the maximum likelihood estimate for the intrinsic

160 6 Robot Perception

1: Algorithm learn_intrinsic_parameters(Z,X,m):

2: repeat until convergence criterion satisfied

3: for all zi in Z do

4: η = [phit(zi | xi,m) + pshort(zi | xi,m)

+ pmax(zi | xi,m) + prand(zi | xi,m)]−1

5: calculate z∗i
6: ei,hit = η phit(zi | xi,m)

7: ei,short = η pshort(zi | xi,m)

8: ei,max = η pmax(zi | xi,m)

9: ei,rand = η prand(zi | xi,m)

10: zhit = |Z|−1
∑

i ei,hit

11: zshort = |Z|−1
∑

i ei,short

12: zmax = |Z|−1
∑

i ei,max

13: zrand = |Z|−1
∑

i ei,rand

14: σhit =
√

1∑
i
ei,hit

∑
i ei,hit(zi − z∗i)2

15: λshort =

∑
i
ei,short∑

i
ei,short zi

16: return Θ = {zhit, zshort, zmax, zrand, σhit, λshort}

Table 6.2 Algorithm for learning the intrinsic parameters of the beam-based sensor
model from data.

parameters. As we shall see below, the algorithm is an instance of the expec-
tation maximization (EM) algorithm, an iterative procedure for estimating ML
parameters.
Initially, the algorithm learn_intrinsic_parameters in Table 6.2 requires

a good initialization of the intrinsic parameters σhit and λshort. In lines 3
through 9, it estimates auxiliary variables: Each ei,xxx is the probability that
the measurement zi is caused by “xxx,” where “xxx” is chosen from the four
aspects of the sensor model, hit, short, max, and random. Subsequently, it es-

6.3 Beam Models of Range Finders 161

timates the intrinsic parameters in lines 10 through 15. The intrinsic parame-
ters, however, are a function of the expectations calculated before. Adjusting
the intrinsic parameters causes the expectations to change, for which reason
the algorithm has to be iterated. However, in practice the iteration converges
quickly, and a dozen iterations are usually sufficient to give good results.
Figure 6.6 graphically depicts four examples of data and the ML measure-
ment model calculated by learn_intrinsic_parameters. The first row shows
approximations to data recordedwith the ultrasound sensor. The second row
contains plots of two functions generated for laser range data. The columns
correspond to different “true” ranges. The data is organized in histograms.
One can clearly see the differences between the different graphs. The smaller
the range zk∗

t the more accurate the measurement. For both sensors the
Gaussians are narrower for the shorter range than they are for the longer
measurement. Furthermore, the laser range finder is more accurate than the
ultrasound sensor, as indicated by the narrower Gaussians and the smaller
number of maximum range measurements. The other important thing to no-
tice is the relatively high likelihood of short and randommeasurements. This
large error likelihood has a disadvantage and an advantage: On the negative
side, it reduces the information in each sensor reading, since the difference in
likelihood between a hit and a random measurement is small. On the posi-
tive side this model is less susceptible to unmodeled systematic perturbations,
such as people who block the robot’s path for long periods of time.
Figure 6.7 illustrates the learned sensor model in action. Shown in Fig-
ure 6.7a is a 180 degree range scan. The robot is placed in a previously
acquired occupancy grid map at its true pose. Figure 6.7b plots a map of
the environment along with the likelihood p(zt | xt,m) of this range scan
projected into x-y-space (by maximizing over the orientation θ). The darker
a location, the more likely it is. As is easily seen, all regions with high likeli-
hood are located in the corridor. This comes at little surprise, as the specific
scan is geometrically more consistent with corridor locations than with loca-
tions inside any of the rooms. The fact that the probability mass is spread out
throughout the corridor suggests that a single sensor scan is insufficient to
determine the robot’s exact pose. This is largely due to the symmetry of the
corridor. The fact that the posterior is organized in two narrow horizontal
bands is due to the fact that the orientation of the robot is unknown: each of
these bands corresponds to one of the two surviving heading directions of
the robot.

162 6 Robot Perception

(a) Sonar data, plots for two different ranges

zk∗
t zk∗

t

(b) Laser data, plots for two different ranges

zk∗
t zk∗

t

Figure 6.6 Approximation of the beam model based on (a) sonar data and (b) laser
range data. The sensor models depicted on the left were obtained by a maximum
likelihood approximation to the data sets depicted in Figure 6.5.

6.3.3 Mathematical Derivation of the BeamModel

To derive the ML estimator, it shall prove useful to introduce auxiliary vari-
ables ci, the so-called correspondence variable. Each ci can take on one of
four values, hit, short, max, and random, corresponding to the four possible
mechanisms that might have produced a measurement zi.
Let us first consider the case in which the ci’s are known. We know which
of the four mechanisms described above caused each measurement zi. Based
on the values of the ci’s, we can decompose Z into four disjoint sets, Zhit,
Zshort, Zmax, and Zrand, which together comprise the set Z. The ML estima-
tors for the intrinsic parameters zhit, zshort, zmax, and zrand are simply the

6.3 Beam Models of Range Finders 163

(a) Laser scan and part of the map

(b) Likelihood for different positions

Figure 6.7 Probabilistic model of perception: (a) Laser range scan, projected into a
previously acquired map m. (b) The likelihood p(zt | xt, m), evaluated for all posi-
tions xt and projected into the map (shown in gray). The darker a position, the larger
p(zt | xt, m).

normalized ratios:⎛
⎜⎜⎝

zhit

zshort

zmax

zrand

⎞
⎟⎟⎠ = |Z|−1

⎛
⎜⎜⎝

|Zhit|
|Zshort|
|Zmax|
|Zrand|

⎞
⎟⎟⎠(6.14)

The remaining intrinsic parameters, σhit and λshort, are obtained as follows.

164 6 Robot Perception

For the data set Zhit, we get from (6.5)

p(Zhit | X,m, Θ) =
∏

zi∈Zhit

phit(zi | xi,m,Θ)(6.15)

=
∏

zi∈Zhit

1√
2πσ2

hit

e
− 1

2

(zi−z∗

i
)2

σ2
hit

Here z∗i is the “true” range, computed from the pose xi and the map m. A
classic trick of ML estimation is to maximize the logarithm of the likelihood,
instead of the likelihood directly. The logarithm is a strictly monotonic func-
tion, hence the maximum of the log-likelihood is also the maximum of the
original likelihood. The log-likelihood is given by

log p(Zhit | X,m, Θ) =
∑

zi∈Zhit

[
−1

2
log 2πσ2

hit −
1

2

(zi − z∗i)2

σ2
hit

]
(6.16)

which is now easily transformed as follows

log p(Zhit | X,m, Θ)(6.17)

= −1

2

∑
zi∈Zhit

[
log 2πσ2

hit +
(zi − z∗i)2

σ2
hit

]

= −1

2

[
|Zhit| log 2π + 2|Zhit| log σhit +

∑
zi∈Zhit

(zi − z∗i)2

σ2
hit

]

= const.− |Zhit| log σhit − 1

2σ2
hit

∑
zi∈Zhit

(zi − z∗i)2

The derivative of this expression in the intrinsic parameter σhit is as follows:

∂ log p(Zhit | X,m, Θ)

∂σhit
= −|Zhit|

σhit
+

1

σ3
hit

∑
zi∈Zhit

(zi − z∗i)2(6.18)

Themaximumof the log-likelihood is now obtained by setting this derivative
to zero. From that we get the solution to our ML estimation problem.

σhit =

√
1

|Zhit|
∑

zi∈Zhit

(zi − z∗i)2(6.19)

The estimation of the remaining intrinsic parameter λshort proceeds just
about in the same way. The posterior over the data Zshort is given by

p(Zshort | X,m, Θ) =
∏

zi∈Zshort

pshort(zi | xi,m)(6.20)

6.3 Beam Models of Range Finders 165

=
∏

zi∈Zshort

λshort e−λshortzi

The logarithm is

log p(Zshort | X,m, Θ) =
∑

zi∈Zshort

log λshort − λshortzi(6.21)

= |Zshort| log λshort − λshort

∑
zi∈Zshort

zi

The first derivative of this expression with respect to the intrinsic parameter
λshort is as follows:

∂ log p(Zshort | X,m, Θ)

∂λshort
=

|Zshort|
λshort

−
∑

zi∈Zshort

zi(6.22)

Setting this to zero gives us the ML estimate for the intrinsic parameter λshort

λshort =
|Zshort|∑
zi∈Zshort

zi

(6.23)

This derivation assumed knowledge of the parameters ci. We now extend it
to the case where the ci’s are unknown. As we shall see, the resulting ML
estimation problem lacks a closed-form solution. However, we can devise a
technique that iterates two steps, one that calculates an expectation for the
ci’s and one that computes the intrinsic model parameters under these ex-
pectations. As noted, the resulting algorithm is an instance of the expectationEM ALGORITHM

maximization algorithm, usually abbreviated as EM.
To derive EM, it will be beneficial to define the likelihood of the data Z

first:

log p(Z | X,m, Θ)(6.24)

=
∑
zi∈Z

log p(zi | xi,m,Θ)

=
∑

zi∈Zhit

log phit(zi | xi,m) +
∑

zi∈Zshort

log pshort(zi | xi,m)

+
∑

zi∈Zmax

log pmax(zi | xi,m) +
∑

zi∈Zrand

log prand(zi | xi,m)

This expression can be rewritten using the variables ci:

log p(Z | X,m, Θ) =
∑
zi∈Z

I(ci = hit) log phit(zi | xi,m)(6.25)

166 6 Robot Perception

+I(ci = short) log pshort(zi | xi,m)

+I(ci = max) log pmax(zi | xi,m)

+I(ci = rand) log prand(zi | xi,m)

where I is the indicator function. Since the values for ci are unknown, it is
common to integrate them out. Put differently, EM maximizes the expecta-
tion E[log p(Z | X,m, Θ)], where the expectation is taken over the unknown
variables ci:

E[log p(Z | X,m, Θ)](6.26)

=
∑

i

p(ci = hit) log phit(zi | xi,m) + p(ci = short) log pshort(zi | xi,m)

+p(ci = max) log pmax(zi | xi,m) + p(ci = rand) log prand(zi | xi,m)

=:
∑

i

ei,hit log phit(zi | xi,m) + ei,short log pshort(zi | xi,m)

+ei,max log pmax(zi | xi,m) + ei,rand log prand(zi | xi,m)

With the definition of the variable e as indicated. This expression is maxi-
mized in two steps. In a first step, we consider the intrinsic parameters σhit

and λshort given and calculate the expectation over the variables ci.⎛
⎜⎜⎝

ei,hit

ei,short

ei,max

ei,rand

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

p(ci = hit)

p(ci = short)

p(ci = max)

p(ci = rand)

⎞
⎟⎟⎠ = η

⎛
⎜⎜⎝

phit(zi | xi,m)

pshort(zi | xi,m)

pmax(zi | xi,m)

prand(zi | xi,m)

⎞
⎟⎟⎠(6.27)

The normalizer is given by

η = [phit(zi | xi,m) + pshort(zi | xi,m)(6.28)

+pmax(zi | xi,m) + prand(zi | xi,m)]−1

This step is called the “E-step,” indicating that we calculate expectations over
the latent variables ci. The remaining step is now straightforward, since the
expectations decouple the dependencies between the different components
of the sensor model. First, we note that the ML mixture parameters are sim-
ply the normalized expectations⎛
⎜⎜⎝

zhit

zshort

zmax

zrand

⎞
⎟⎟⎠ = |Z|−1

∑
i

⎛
⎜⎜⎝

ei,hit

ei,short

ei,max

ei,rand

⎞
⎟⎟⎠(6.29)

6.3 Beam Models of Range Finders 167

The ML parameters σhit and λshort are then obtained analogously, by replac-
ing the hard assignments in (6.19) and (6.23) by soft assignments weighted
by the expectations.

σhit =

√
1∑

zi∈Z ei,hit

∑
zi∈Z

ei,hit(zi − z∗i)2(6.30)

and

λshort =

∑
zi∈Z ei,short∑

zi∈Z ei,short zi

(6.31)

6.3.4 Practical Considerations

In practice, computing the densities of all sensor readings can be quite in-
volved from a computational perspective. For example, laser range scanners
often return hundreds of values per scan, at a rate of several scans per sec-
ond. Since one has to perform a ray casting operation for each beam of the
scan and every possible pose considered, the integration of the whole scan
into the current belief cannot always be carried out in real-time. One typi-
cal approach to solve this problem is to incorporate only a small subset of
all measurements (e.g., 8 equally spaced measurements per laser range scan
instead of 360). This approach has an important additional benefit. Since
adjacent beams of a range scan are often not independent, the state estima-
tion process becomes less susceptible to correlated noise in adjacent mea-
surements.
When dependencies between adjacent measurements are strong, the ML
model may make the robot overconfident and yield suboptimal results. One
simple remedy is to replace p(zk

t | xt,m) by a “weaker” version p(zk
t | xt,m)α

for α < 1. The intuition here is to reduce, by a factor of α, the information
extracted from a sensor measurement (the log of this probability is given by
α log p(zk

t | xt,m)). Another possibility—which we will only mention here—
is to learn the intrinsic parameters in the context of the application: For exam-
ple, in mobile localization it is possible to train the intrinsic parameters via
gradient descent to yield good localization results over multiple time steps.
Such a multi-time step methodology is significantly different from the single
time step ML estimator described above. In practical implementations it can
yield superior results; see Thrun (1998a).
The main drain of computing time for beam-based models is the ray cast-
ing operation. The runtime costs of computing p(zt | xt,m) can be sub-
stantially reduced by pre-cashing the ray casting algorithm, and storing the

168 6 Robot Perception

result in memory—so that the ray casting operation can be replaced by a
(much faster) table lookup. An obvious implementation of this idea is to de-
compose the state space into a fine-grained three-dimensional grid, and to
pre-compute the ranges zk∗

t for each grid cell. This idea was already investi-
gated in Chapter 4.1. Depending on the resolution of the grid, the memory
requirements can be significant. In mobile robot localization, we find that
pre-computing the range with a grid resolution of 15 centimeters and 2 de-
grees works well for indoor localization problems. It fits well into the RAM
for moderate-sized computers, yielding speed-ups by an order of magnitude
over the plain implementation that casts rays online.

6.3.5 Limitations of the BeamModel

The beam-based sensor model, while closely linked to the geometry and
physics of range finders, suffers two major drawbacks.
In particular, the beam-based model exhibits a lack of smoothness. In clut-

tered environments with many small obstacles, the distribution p(zk
t | xt,m)

can be very unsmooth in xt. Consider, for example, an environment with
many chairs and tables (like a typical conference room). A robot like the ones
shown in Chapter 1 will sense the legs of those obstacles. Obviously, small
changes of a robot’s pose xt can have a tremendous impact on the correct
range of a sensor beam. As a result, the measurement model p(zk

t | xt,m) is
highly discontinuous in xt. The heading direction θt is particularly affected,
since small changes in heading can cause large displacements in x-y-space at
a range.
Lack of smoothness has two problematic consequences. First, any approx-
imate belief representation runs the danger of missing the correct state, as
nearby states might have drastically different posterior likelihoods. This
poses constraints on the accuracy of the approximation which, if not met,
increase the resulting error in the posterior. Second, hill climbing methods
for finding the most likely state are prone to local minima, due to the large
number of local maxima in such unsmooth models.
The beam-based model is also computational involved. Evaluating p(zk

t |
xt,m) for each single sensor measurement zk

t involves ray casting, which is
computationally expensive. As noted above, the problem can be partially
remedied by pre-computing the ranges over a discrete grid in pose space.
Such an approach shifts the computation into an initial off-line phase, with
the benefit that the algorithm is faster at run time. However, the resulting
tables are very large, since they cover a large three-dimensional space. Thus,

6.4 Likelihood Fields for Range Finders 169

pre-computing ranges is computationally expensive and requires substantial
memory.

6.4 Likelihood Fields for Range Finders

6.4.1 Basic Algorithm

Wewill now describe an alternative model, called likelihood field, which over-LIKELIHOOD FIELD

comes these limitations. This model lacks a plausible physical explanation.
In fact, it is an “ad hoc” algorithm that does not necessarily compute a condi-
tional probability relative to any meaningful generative model of the physics
of sensors. However, the approach works well in practice. The resulting pos-
teriors are much smoother even in cluttered space, and the computation is
more efficient.
The key idea is to first project the end points of a sensor scan zt into the

global coordinate space of the map. To do so, we need to know where rel-
ative to the global coordinate frame the robot’s local coordinate system is
located, where on the robot the sensor beam zk originates, and where the
sensor points. As usual let xt = (x y θ)T denote a robot pose at time t.
Keeping with our two-dimensional view of the world, we denote the rela-
tive location of the sensor in the robot’s fixed, local coordinate system by
(xk,sens yk,sens)

T , and the angular orientation of the sensor beam relative to
the robot’s heading direction by θk,sens. These values are sensor-specific. The
end point of the measurement zk

t is now mapped into the global coordinate
system via the obvious trigonometric transformation.(

xzk
t

yzk
t

)
=

(
x

y

)
+

(
cos θ − sin θ

sin θ cos θ

)(
xk,sens

yk,sens

)
+ zk

t

(
cos(θ + θk,sens)

sin(θ + θk,sens)

)
(6.32)

These coordinates are only meaningful when the sensor detects an obstacle.
If the range sensor takes on its maximum value zk

t = zmax, these coordinates
have no meaning in the physical world (even though the measurement does
carry information). The likelihood fieldmeasurement model simply discards
max-range readings.
Similar to the beam model discussed before, we assume three types of
sources of noise and uncertainty:

1. Measurement noise. Noise arising from the measurement process is
modeled using Gaussians. In x-y-space, this involves finding the nearest
obstacle in the map. Let dist denote the Euclidean distance between the

170 6 Robot Perception

(a) example environment (b) likelihood field

Figure 6.8 (a) Example environment with three obstacles (gray). The robot is located
towards the bottom of the figure, and takes a measurement zk

t as indicated by the
dashed line. (b) Likelihood field for this obstacle configuration: the darker a location,
the less likely it is to perceive an obstacle there. The probability p(zk

t | xt, m) for the
specific sensor beam is shown in Figure 6.9.

(a) phit(z
k
t | xt, m)

o1 o2 o3 zmax

(b) p(zk
t | xt, m)

o1 o2 o3 zmax

Figure 6.9 (a) Probability phit(z
k
t) as a function of the measurement zk

t , for the sit-
uation depicted in Figure 6.8. Here the sensor beam passes by three obstacles, with
respective nearest points o1, o2, and o3. (b) Sensor probability p(zk

t | xt, m), obtained
for the situation depicted in Figure 6.8, obtained by adding two uniformdistributions.

6.4 Likelihood Fields for Range Finders 171

measurement coordinates (xzk
t

yzk
t
)T and the nearest object in the mapm.

Then the probability of a sensor measurement is given by a zero-centered
Gaussian, which captures the sensor noise:

phit(z
k
t | xt,m) = εσhit

(dist)(6.33)

Figure 6.8a depicts amap, and Figure 6.8b shows the corresponding Gaus-
sian likelihood for measurement points (xzk

t
yzk

t
)T in 2-D space. The

brighter a location, the more likely it is to measure an object with a range
finder. The density phit is now obtained by intersecting (and normaliz-
ing) the likelihood field by the sensor axis, indicated by the dashed line in
Figure 6.8. The resulting function is the one shown in Figure 6.9a.

2. Failures. As before, we assume that max-range readings have a distinct
large likelihood. As before, this is modeled by a point-mass distribution
pmax.

3. Unexplained random measurements. Finally, a uniform distribution
prand is used to model random noise in perception.

Just as for the beam-based sensor model, the desired probability p(zk
t | xt,m)

integrates all three distributions:

zhit · phit + zrand · prand + zmax · pmax(6.34)

using the familiar mixing weights zhit, zrand, and zmax. Figure 6.9b shows
an example of the resulting distribution p(zk

t | xt,m) along a measurement
beam. It should be easy to see that this distribution combines phit, as shown
in Figure 6.9a, and the distributions pmax and prand. Much of what we said
about adjusting the mixing parameters transfers over to our new sensor
model. They can be adjusted by hand or learned using the ML estimator.
A representation like the one in Figure 6.8b, which depicts the likelihood of
an obstacle detection as a function of global x-y-coordinates, is called the
likelihood field.
Table 6.3 provides an algorithm for calculating the measurement proba-
bility using the likelihood field. The reader should already be familiar with
the outer loop, which multiplies the individual values of p(zk

t | xt,m), as-
suming independence between the noise in different sensor beams. Line 4
checks if the sensor reading is a max range reading, in which case it is simply
ignored. Lines 5 to 8 handle the interesting case: Here the distance to the
nearest obstacle in x-y-space is computed (line 7), and the resulting likeli-
hood is obtained in line 8 by mixing a normal and a uniform distribution. As

172 6 Robot Perception

1: Algorithm likelihood_field_range_finder_model(zt, xt, m):

2: q = 1

3: for all k do

4: if zk
t �= zmax

5: xzk
t

= x + xk,sens cos θ − yk,sens sin θ + zk
t cos(θ + θk,sens)

6: yzk
t

= y + yk,sens cos θ + xk,sens sin θ + zk
t sin(θ + θk,sens)

7: dist = min
x′,y′

{√
(xzk

t
− x′)2 + (yzk

t
− y′)2

∣∣∣ 〈x′, y′〉 occupied in m
}

8: q = q ·
(
zhit · prob(dist, σhit) + zrandom

zmax

)
9: return q

Table 6.3 Algorithm for computing the likelihood of a range finder scan using Eu-
clidean distance to the nearest neighbor. The function prob(dist, σhit) computes the
probability of the distance under a zero-centered Gaussian distribution with standard
deviation σhit.

before, the function prob(dist, σhit) computes the probability of dist under a
zero-centered Gaussian distribution with standard deviation σhit.
The search for the nearest neighbor in the map (line 7) is the most costly
operation in algorithm likelihood_field_range_finder_model. To speed up
this search, it is advantageous to pre-compute the likelihood field, so that
calculating the probability of a measurement amounts to a coordinate trans-
formation followed by a table lookup. Of course, if a discrete grid is used, the
result of the lookup is only approximate, in that it might return the wrong
obstacle coordinates. However, the effect on the probability p(zk

t | xt,m) is
typically small even for moderately course grids.

6.4.2 Extensions

A key advantage of the likelihood field model over the beam-based model
discussed before is smoothness. Due to the smoothness of the Euclidean
distance, small changes in the robot’s pose xt only have small effects on the
resulting distribution p(zk

t | xt,m). Another key advantage is that the pre-
computation takes place in 2-D, instead of 3-D, increasing the compactness
of the pre-computed information.

6.4 Likelihood Fields for Range Finders 173

(a) (b)

Figure 6.10 (a) Occupancy gridmap of the San Jose TechMuseum, (b) pre-processed
likelihood field.

However, the current model has three key disadvantages: First, it does not
explicitly model people and other dynamics that might cause short readings.
Second, it treats sensors as if they can “see through walls.” This is because
the ray casting operation was replaced by a nearest neighbor function, which
is incapable of determining whether a path to a point is intercepted by an
obstacle in the map. And third, our approach does not take map uncertainty
into account. In particular, it cannot handle unexplored areas, for which the
map is highly uncertain or unspecified.
The basic algorithm likelihood_field_range_finder_model can be ex-

tended to diminish the effect of these limitations. For example, one might
sort map occupancy values into three categories: occupied, free, and unknown,
instead of just the first two. When a sensor measurement zk

t falls into the
category unknown, its probability p(zk

t | xt,m) is assumed to be the constant
value 1

zmax
. The resulting probabilistic model is crude. It assumes that in the

unexplored space every sensor measurement is equally likely.
Figure 6.10 shows a map and the corresponding likelihood field. Here
again the gray-level of an x-y-location indicates the likelihood of receiving a
sensor reading there. The reader may notice that the distance to the nearest
obstacle is only employed inside the map, which corresponds to the explored
terrain. Outside, the likelihood p(zk

t | xt,m) is a constant. For computational
efficiency, it is worthwhile to pre-compute the nearest neighbor for a fine-
grained 2-D grid.
Likelihood fields over the visible space can also be defined for the most

174 6 Robot Perception

(a) sensor scan (b) likelihood field

Figure 6.11 (a) Sensor scan, from a bird’s eye perspective. The robot is placed at the
bottom of this figure, generating a proximity scan that consists of the 180 dots in front
of the robot. (b) Likelihood function generated from this sensor scan. The darker a
region, the smaller the likelihood for sensing an object there. Notice that occluded
regions are white, hence infer no penalty.

recent scan, which in fact defines a local map. Figure 6.11 shows such a
likelihood field. It plays an important role in techniques that align individual
scans.

6.5 Correlation-Based Measurement Models

There exist a number of range sensor models in the literature that measure
correlations between a measurement and the map. A common technique is
known asmapmatching. Mapmatching requires techniques discussed in laterMAP MATCHING

chapters of this book, namely the ability to transform scans into occupancy
maps. Typically, mapmatching compiles small numbers of consecutive scans
into local maps, denoted mlocal. Figure 6.12 shows such a local map, here in
the form of an occupancy grid map. The sensor measurement model com-
pares the local map mlocal to the global map m, such that the more similar
m and mlocal, the larger p(mlocal | xt,m). Since the local map is represented
relative to the robot location, this comparison requires that the cells of the
local map are transformed into the coordinate framework of the global map.
Such a transformation can be done similar to the coordinate transform (6.32)
of sensor measurements used in the likelihood field model. If the robot is
at location xt, we denote by mx,y,local(xt) the grid cell in the local map that

6.5 Correlation-Based Measurement Models 175

Figure 6.12 Example of a local map generated from 10 range scans, one of which is
shown.

corresponds to (x y)T in global coordinates. Once both maps are in the same
reference frame, they can be compared using the map correlation function,
which is defined as follows:

ρm,mlocal,xt
=

∑
x,y(mx,y − m̄) · (mx,y,local(xt)− m̄)√∑

x,y(mx,y − m̄)2
∑

x,y(mx,y,local(xt)− m̄)2
(6.35)

Here the sum is evaluated over cells defined in both maps, and m̄ is the
average map value:

m̄ =
1

2N

∑
x,y

(mx,y + mx,y,local)(6.36)

where N denotes the number of elements in the overlap between the local
and global map. The correlation ρm,mlocal,xt

scales between ±1. Map match-
ing interprets the value

p(mlocal | xt,m) = max{ρm,mlocal,xt
, 0}(6.37)

as the probability of the local map conditioned on the global mapm and the
robot pose xt. If the local map is generated from a single range scan zt, this
probability substitutes the measurement probability p(zt | xt,m).
Mapmatching has a number of nice properties: just like the likelihood field
model, it is easy to compute, though it does not yield smooth probabilities in
the pose parameter xt. One way to approximate the likelihood field (and to
obtain smoothness) is to convolve the map m with a Gaussian smoothness
kernel, and to run map matching on this smoothed map.

176 6 Robot Perception

A key advantage of map matching over likelihood fields is that it explic-
itly considers the free-space in the scoring of two maps; the likelihood field
technique only considers the end point of the scans, which by definition cor-
respond to occupied space (or noise). On the other hand, many mapping
techniques build local maps beyond the reach of the sensors. For example,
many techniques build circular maps around the robot, setting to 0.5 areas
beyond the range of actual sensor measurements. In such cases, there is a
danger that the result of map matching incorporates areas beyond the actual
measurement range, as if the sensor can “see through walls.” Such side-
effects are found in a number of implemented map matching techniques.
A further disadvantage is that map matching does not possess a plausi-
ble physical explanation. Correlations are the normalized quadratic distance
between maps, which is not the noise characteristic of range sensors.

6.6 Feature-Based Measurement Models

6.6.1 Feature Extraction

The sensor models discussed thus far are all based on raw sensor measure-
ments. An alternative approach is to extract features from the measurements.FEATURES

If we denote the feature extractor as a function f , the features extracted from
a range measurement are given by f(zt). Most feature extractors extract a
small number of features from high-dimensional sensor measurements. A
key advantage of this approach is the enormous reduction of computational
complexity: While inference in the high-dimensional measurement space can
be costly, inference in the low-dimensional feature space can be orders of
magnitude more efficient.
The discussion of specific algorithms for feature extraction is beyond the
scope of this book. The literature offers a wide range of features for a number
of different sensors. For range sensors, it is common to identify lines, corners,
or local minima in range scans, which correspond to walls, corners, or objects
such as tree trunks. When cameras are used for navigation, the processing of
camera images falls into the realm of computer vision. Computer vision has
devised a myriad of feature extraction techniques from camera images. Pop-
ular features include edges, corners, distinct patterns, and objects of distinct
appearance. In robotics, it is also common to define places as features, such
as hallways and intersections.

6.6 Feature-Based Measurement Models 177

6.6.2 Landmark Measurements

In many robotics applications, features correspond to distinct objects in the
physical world. For example, in indoor environments features may be door
posts or windowsills; outdoors theymay correspond to tree trunks or corners
of buildings. In robotics, it is common to call those physical objects landmarks,LANDMARKS

to indicate that they are being used for robot navigation.
The most common model for processing landmarks assumes that the sen-
sor can measure the range and the bearing of the landmark relative to the
robot’s local coordinate frame. Such sensors are called range and bearingRANGE AND BEARING

SENSOR sensors. The existence of a range-bearing sensor is not an implausible as-
sumption: Any local feature extracted from range scans comewith range and
bearing information, as do visual features detected by stereo vision. In addi-
tion, the feature extractor may generate a signature. In this book, we assumeSIGNATURE OF A

LANDMARK a signature is a numerical value (e.g., an average color); it may equally be
an integer that characterizes the type of the observed landmark, or a multi-
dimensional vector characterizing a landmark (e.g., height and color).
If we denote the range by r, the bearing by φ, and the signature by s, the
feature vector is given by a collection of triplets

f(zt) = {f1
t , f2

t , . . .} = {
⎛
⎝ r1

t

φ1
t

s1
t

⎞
⎠ ,

⎛
⎝ r2

t

φ1
t

s2
t

⎞
⎠ , . . .}(6.38)

The number of features identified at each time step is variable. However,
many probabilistic robotic algorithms assume conditional independence be-
tween features

p(f(zt) | xt,m) =
∏

i

p(ri
t, φ

i
t, s

i
t | xt,m)(6.39)

Conditional independence applies if the noise in each individual measure-
ment (ri

t φi
t si

t)
T is independent of the noise in other measurements

(rj
t φj

t sj
t)

T (for i �= j). Under the conditional independence assumption,
we can process one feature at a time, just as we did in several of our range
measurement models. This makes it much easier to develop algorithms that
implement probabilistic measurement models.
Let us now devise a sensor model for features. In the beginning of this
chapter, we distinguished between two types of maps: feature-based and
location-based. Landmark measurement models are usually defined only for
feature-based maps. The reader may recall that those maps consist of lists
of features, m = {m1,m2, . . .}. Each feature may possess a signature and a

178 6 Robot Perception

location coordinate. The location of a feature, denotedmi,x andmi,y , is simply
its coordinate in the global coordinate frame of the map.
The measurement vector for a noise-free landmark sensor is easily speci-
fied by the standard geometric laws. We will model noise in landmark per-
ception by independent Gaussian noise on the range, bearing, and the signa-
ture. The resulting measurement model is formulated for the case where the
i-th feature at time t corresponds to the j-th landmark in the map. As usual,
the robot pose is given by xt = (x y θ)T .

⎛
⎝ ri

t

φi
t

si
t

⎞
⎠ =

⎛
⎝

√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y,mj,x − x)− θ

sj

⎞
⎠+

⎛
⎜⎝ εσ2

r

εσ2
φ

εσ2
s

⎞
⎟⎠(6.40)

Here εσr
, εσφ
, and εσs

are zero-mean Gaussian error variables with standard
deviations σr, σφ, and σs, respectively.

6.6.3 Sensor Model with Known Correspondence

A key problem for range/bearing sensors is known as the data associationDATA ASSOCIATION

PROBLEM problem. This problem arises when landmarks cannot be uniquely identified,
so that some residual uncertainty exists with regards to the identity of a land-
mark. For developing a range/bearing sensor model, it shall prove useful to
introduce a correspondence variable between the feature f i

t and the landmarkCORRESPONDENCE

VARIABLE mj in the map. This variable will be denoted by ci
t with ci

t ∈ {1, . . . , N + 1};
N is the number of landmarks in the map m. If ci

t = j ≤ N , then the i-th
feature observed at time t corresponds to the j-th landmark in the map. In
other words, ci

t is the true identity of an observed feature. The only excep-
tion occurs with ci

t = N + 1: Here a feature observation does not correspond
to any feature in the map m. This case is important for handling spurious
landmarks; it is also of great relevance for the topic of robotic mapping, in
which the robot may encounter previously unobserved landmarks.
Table 6.4 depicts the algorithm for calculating the probability of a feature

f i
t with known correspondence ci

t ≤ N . Lines 3 and 4 calculate the true
range and bearing to the landmark. The probability of the measured ranges
and bearing is then calculated in line 5, assuming independence in the noise.
As the reader easily verifies, this algorithm implements Equation (6.40).

6.6 Feature-Based Measurement Models 179

1: Algorithm landmark_model_known_correspondence(f i
t , c

i
t, xt,m):

2: j = ci
t

3: r̂ =
√

(mj,x − x)2 + (mj,y − y)2

4: φ̂ = atan2(mj,y − y,mj,x − x)

5: q = prob(ri
t − r̂, σr) · prob(φi

t − φ̂, σφ) · prob(si
t − sj , σs)

6: return q

Table 6.4 Algorithm for computing the likelihood of a landmark measurement. The
algorithm requires as input an observed feature f i

t = (ri
t φi

t si
t)

T , and the true iden-
tity of the feature ci

t, the robot pose xt = (x y θ)T , and the mapm. Its output is the
numerical probability p(f i

t | ci
t, m, xt).

6.6.4 Sampling Poses

Sometimes it is desirable to sample robot poses xt that correspond to a mea-
surement f i

t with feature identity ci
t. We already encountered such sampling

algorithms in the previous chapter, where we discussed robot motion mod-
els. Such samplingmodels are also desirable for sensor models. For example,
when localizing a robot globally, it shall become useful to generate sample
poses that incorporate a sensor measurement to generate initial guesses for
the robot pose.
While in the general case, sampling poses xt that correspond to a sensor

measurement zt is difficult, for our landmark model we can actually provide
an efficient sampling algorithm. However, such sampling is only possible
under further assumptions. In particular, we have to know the prior p(xt |
ci
t,m). For simplicity, let us assume this prior is uniform (it generally is not!).
Bayes rule then suggests that

p(xt | f i
t , c

i
t,m) = η p(f i

t | ci
t, xt,m) p(xt | ci

t,m)(6.41)

= η p(f i
t | ci

t, xt,m)

Sampling from p(xt | f i
t , c

i
t,m) can now be achieved from the “inverse” of the

sensor model p(f i
t | ci

t, xt,m). Table 6.5 depicts an algorithm that samples
poses xt. The algorithm is tricky: Even in the noise-free case, a landmark
observation does not uniquely determine the location of the robot. Instead,
the robot may be on a circle around the landmark, whose diameter is the
range to the landmark. The indeterminacy of the robot pose also follows

180 6 Robot Perception

1: Algorithm sample_landmark_model_known_correspondence(f i
t , c

i
t, m):

2: j = ci
t

3: γ̂ = rand(0, 2π)

4: r̂ = ri
t + sample(σr)

5: φ̂ = φi
t + sample(σφ)

6: x = mj,x + r̂ cos γ̂

7: y = mj,y + r̂ sin γ̂

8: θ = γ̂ − π − φ̂

9: return (x y θ)T

Table 6.5 Algorithm for sampling poses from a landmark measurement f i
t =

(ri
t φi

t si
t)

T with known identity ci
t.

from the fact that the range and bearing provide two constraints in a three-
dimensional space of robot poses.
To implement a pose sampler, we have to sample the remaining free pa-
rameter, which determines where on the circle around the landmark the
robot is located. This parameter is called γ̂ in Table 6.5, and is chosen at ran-
dom in line 3. Lines 4 and 5 perturb themeasured range and bearing, exploit-
ing the fact that the mean and the measurement are treated symmetrically in
Gaussians. Finally, lines 6 through 8 recover the pose that corresponds to γ̂,
r̂, and φ̂.
Figure 6.13 illustrates the pose distribution p(xt | f i

t , c
i
t,m) (left

diagram) and also shows a sample drawn with our algorithm sam-
ple_landmark_model_known_correspondence (right diagram). The poste-
rior is projected into x-y-space, where it becomes a ring around themeasured
range ri

t. In 3-D pose space, it is a spiral that unfolds the ring with the angle
θ.

6.6.5 Further Considerations

Both algorithms for landmark-based measurements assume known corre-
spondence. The case of unknown correspondence will be discussed in detail
in later chapters, when we address algorithms for localization and mapping
under unknown correspondence.

6.6 Feature-Based Measurement Models 181

(a) (b)

Figure 6.13 Landmark detectionmodel: (a) Posterior distribution of the robot’s pose
given that it detected a landmark in 5m distance and 30deg relative bearing (projected
onto 2-D). (b) Sample robot poses generated from such a detection. The lines indicate
the orientation of the poses.

A comment is in order on the topic of landmark signature. Most pub-
lished algorithms do not make the use of appearance features explicit. When
the signature is not provided, all landmarks look equal, and the data asso-
ciation problem of estimating the correspondence variables is harder. We
have included the signature in our model because it is a valuable source of
information that can often be easily extracted from the sensor measurements.
As noted above, the main motivation for using features instead of the full
measurement vector is computational in nature: It is much easier to manage
a few hundred features than a few billion range measurements. Our model
presented here is extremely crude, and it clearly does not capture the physi-
cal laws that underlie the sensor formation process. Nevertheless, the model
tends to work well in a great number of applications.
It is important to notice that the reduction of measurements into features
comes at a price. In the robotics literature, features are often (mis)taken for
sufficient statistics of themeasurement vector zt. LetX be a variable of interestSUFFICIENT STATISTICS

(e.g., a map, a pose), and Y some other information that we might bring to
bear (e.g., past sensor measurements). Then f is a sufficient statistics of zt if

p(X | zt, Y) = p(X | f(zt), Y)(6.42)

In practice, however, a lot of information is sacrificed by using features in-
stead of the full measurement vector. This lost information makes certain

182 6 Robot Perception

problems more difficult, such as the data association problem of determin-
ing whether or not the robot just revisited a previously explored location. It
is easy to understand the effects of feature extraction by introspection: When
you open your eyes, the visual image of your environment is probably suf-
ficient to tell you unambiguously where you are—even if you were globally
uncertain before. If, on the other hand, you only sense certain features, such
as the relative location of door posts and windowsills, you would probably
be much less certain as to where you are. Quite likely the information may
be insufficient for global localization.
With the advent of fast computers, features have gradually lost importance
in the field of robotics. Especially when using range sensors, most state-of-
the-art algorithms rely on dense measurement vectors, and they use dense
location-based maps to represent the environment. Nevertheless, features
are still great for educational purposes. They enable us to introduce the ba-
sic concepts in probabilistic robotics, and with proper treatment of problems
such as the correspondence problem they can be brought to bear even in
cases where maps are composed of dense sets of scan points. For this reason,
a number of algorithms in this book are first described for feature represen-
tations, and then extended into algorithms using raw sensor measurements.

6.7 Practical Considerations

This section surveyed a range of measurement models. We placed a strong
emphasis on models for range finders, due to their great importance in
robotics. However, the models discussed here are only representatives of
a much broader class of probabilistic models. In choosing the right model, it
is important to trade off physical realism with properties that might be de-
sirable for an algorithm using these models. For example, we noted that a
physically realistic model of range sensors may yield probabilities that are
not smooth in the alleged robot pose—which in turn causes problems for al-
gorithms such as particle filters. Physical realism is therefore not the only
criterion in choosing the right sensor model; an equally important criterion
is the goodness of a model for the algorithm that utilizes it.
As a general rule of thumb, the more accurate a model, the better. In par-
ticular, the more information we can extract from a sensor measurement, the
better. Feature-based models extract relatively little information, by virtue
of the fact that feature extractors project high-dimensional sensor measure-
ments into lower dimensional space. As a result, feature-basedmethods tend

6.8 Summary 183

to produce inferior results. This disadvantage is offset by superior computa-
tional properties of feature-based representations.
When adjusting the intrinsic parameters of a measurement model, it is of-
ten useful to artificially inflate the uncertainty. This is because of a key limita-
tion of the probabilistic approach: to make probabilistic techniques computa-
tionally tractable, we have to ignore dependencies that exist in the physical
world, along with a myriad of latent variables that cause these dependen-
cies. When such dependencies are not modeled, algorithms that integrate
evidence from multiple measurements quickly become overconfident. Such
overconfidence can ultimately lead to wrong conclusions, which negatively af-OVERCONFIDENCE

fects the results. In practice, it is therefore a good rule of thumb to reduce the
information conveyed by a sensor. Doing so by projecting the measurement
into a low-dimensional feature space is one way of achieving this. However,
it suffers the limitations mentioned above. Uniformly decaying the infor-
mation by exponentiating a measurement model with a parameter α, as dis-
cussed in Chapter 6.3.4, is a much better way, in that it does not introduce
additional variance in the outcome of a probabilistic algorithm.

6.8 Summary

This section described probabilistic measurement models.

• Starting with models for range finders—and lasers in particular—we dis-
cussed measurement models p(zk

t | xt,m). The first such model used ray
casting to determine the shape of p(zk

t | xt,m) for particular maps m and
poses xt. We devised a mixture model that addressed the various types of
noise that can affect range measurements.

• We devised a maximum likelihood technique for identifying the intrin-
sic noise parameters of the measurement model. Since the measurement
model is a mixture model, we provided an iterative procedure for max-
imum likelihood estimation. Our approach was an instance of the ex-
pectation maximization algorithm, which alternates a phase that calcu-
lates expectations over the type of error underlying a measurement, with
a maximization phase that finds in closed form the best set of intrinsic
parameters relative to these expectations.

• An alternative measurement model for range finders is based on likeli-
hood fields. This technique used the nearest distance in 2-D coordinates
to model the probability p(zk

t | xt,m). We noted that this approach tends

184 6 Robot Perception

to yield smoother distributions p(zk
t | xt,m). This comes at the expense of

undesired side effects: The likelihood field technique ignores information
pertaining to free-space, and it fails to consider occlusions in the interpre-
tation of range measurements.

• A third measurement model is based on map matching. Map matching
maps sensor scans into local maps, and correlates those maps with global
maps. This approach lacks a physical motivation, but can be implemented
very efficiently.

• We discussed how pre-computation can reduce the computational bur-
den at runtime. In the beam-based measurement model, the pre-
computation takes place in 3-D; the likelihood field requires only a 2-D
pre-computation.

• We presented a feature-based sensor model, in which the robot extracts
the range, bearing, and signature of nearby landmarks. Feature-based
techniques extract from the raw sensor measurements distinct features.
In doing so, they reduce the dimensionality of the sensor measurements
by several orders of magnitude.

• At the end of the chapter, a discussion on practical issues pointed out
some of the pitfalls that may arise in concrete implementations.

6.9 Bibliographical Remarks

This chapter only skims the rich literature on physical modeling of sensors. More accurate
models of sonar range sensor can be found in Blahut et al. (1991); Grunbaum et al. (1992) and in
Etter (1996). Models of laser range finders are described by Rees (2001). An empirical discussion
of proper noise models can be found in Sahin et al. (1998). Relative to these models, the models
in this chapter are extremely crude.
An early work on beam models for range sensors can be found in the seminal work by

Moravec (1988). A similar model was later applied to mobile robot localization by Burgard et al.
(1996). A beam-based model like the one described in this chapter together with the pre-caching
of range measurements has first been described by Fox et al. (1999b). The likelihood fields have
first been published by Thrun (2001), although they are closely related to the rich literature on
scan matching techniques (Besl and McKay 1992). They in fact can be regarded as a soft variant
of the correlation model described by Konolige and Chou (1999). Methods for computing the
correlation between occupancy grid maps have also been quite popular. Thrun (1993) computes
the sum of squared errors between the individual cells of two grid maps. Schiele and Crow-
ley (1994) present a comparison of different models including correlation-based approaches.
Yamauchi and Langley (1997) analyzed the robustness of map matching to dynamic environ-
ments. Duckett and Nehmzow (2001) transform local occupancy grids into histograms that can
be matched more efficiently.

6.10 Exercises 185

Range and bearings measurements for point landmarks are commonplace in the SLAM lit-
erature. Possibly the first mention is by Leonard and Durrant-Whyte (1991). In earlier work,
Crowley (1989) devised measurement models for straight line objects.

6.10 Exercises

1. Many early robots navigating using features used artificial landmarks in
the environment that were easy to recognize. A good place to mount such
markers is a ceiling (why?). A classical example is a visual marker: Sup-
pose we attach the following marker to the ceiling:

Let the world coordinates of the marker be xm and ym, and its orientation
relative to the global coordinate system θm. We will denote the robot’s
pose by xr, yr, and θr.

Now assume that we are given a routine that can detect the marker in
the image plane of a perspective camera. Let xi and yi denote the coor-
dinates of the marker in the image plane, and θi its angular orientation.
The camera has a focal length of f . From projective geometry, we know
that each displacement d in x-y-space gets projected to a proportional dis-
placement of d · f

h
in the image plane. (You have to make some choices on

your coordinate systems; make these choices explicit).

Your questions:

(a) Describe mathematically where to expect the marker (in global coor-
dinates xm, ym, θm) when its image coordinates are xi, yi, θi, and the
robot is at xr, yr, θr.

(b) Provide a mathematical equation for computing the image coordi-
nates xi, yi, θi from the robot pose xr, yr, θr and the marker coordinates
xm, ym, θm.

(c) Now give a mathematical equation for determining the robot co-
ordinates xr, yr, θr assuming we know the true marker coordinates
xm, ym, θm and the image coordinates xi, yi, θi.

186 6 Robot Perception

(d) So far we assumed there is only a single marker. Now suppose there
are multiple (indistinguishable) markers of the type shown above.
How many such markers must a robot be able to see to uniquely iden-
tify its pose? Draw such a configuration, and argue why it is sufficient.

Hint: You don’t need to consider the uncertainty in the measurement for
answering this question. Also, note that the marker is symmetrical. This
has an impact on the answer of these questions!

2. In this exercise, you will be asked to extend our calculation in the previ-
ous exercise to include error covariances. To simplify the calculation, we
now assume a non-symmetric marker whose absolute orientation can be
estimated:

Also for simplicity, we assume there shall be no noise in the orientation.
However, the x-y estimates in the image plane will be noisy. Specifically,
let the measurements be subject to zero-mean Gaussian noise with covari-
ance

Σ =

⎛
⎝ σ2 0 0

0 σ2 0

0 0 0

⎞
⎠

for some positive value of σ2.

Calculate for the three questions above the corresponding covariances. In
particular,

(a) Given the image coordinates xi, yi, θi and the robot coordinates
xr, yr, θr, what is the error covariance for the values of xm, ym, θm.

(b) Given the robot coordinates xr, yr, θr and the marker covariance
xm, ym, θm, what is your error covariance for the values of xi, yi, θi?

(c) Given the marker covariance xm, ym, θm and the image coordinates
xi, yi, θi, what is your error covariance for the values of xr, yr, θr?

6.10 Exercises 187

Notice that not all those distributions may be Gaussian. For this exercise,
it is fine to apply a Taylor series expansion to attain a Gaussian posterior,
but you have to explain how you did this.

3. Now you are being asked to implement a routine sample_marker_model,
which accepts as an input the location of a marker xm, ym, θm and the lo-
cation of the perceived marker in the image plane xi, yi, θi, and generates
as an output samples of the robot pose xr, yr, θr. The marker is the same
ambiguous marker as in Exercise 1:

Generate a plot of samples for the robot coordinates xr and yr, for the
following parameters (you can ignore the orientation θr in your plot).

problem # xm ym θm xi yi θi h/f σ2

#1 0cm 0cm 0◦ 0cm 0cm 0◦ 200 0.1cm2

#2 0cm 0cm 0◦ 1cm 0cm 0◦ 200 0.1cm2

#3 0cm 0cm 0◦ 2cm 0cm 45◦ 200 0.1cm2

#4 0cm 0cm 0◦ 2cm 0cm 45◦ 200 1.0cm2

#5 50cm 150cm 10◦ 1cm 6cm 200◦ 250 0.5cm2

All your plots should show coordinate axes with units. Notice: If you
cannot devise an exact sampler, provide an approximate one and explain
your approximations.

4. For this exercise you need access to a robot with a sonar sensor, of the type
often used in indoor robotics. Place the sensor in front of a flat wall, at a
range d and an angle φ. Measure the frequency at which the sensor detects
the wall. Plot this value for different values of d (in 0.5 meter increments)
and different values of φ (in 5 degree increments). What do you find?

P A R T I I

Localization

7 Mobile Robot Localization:
Markov and Gaussian

This chapter introduces a number of concrete algorithms for mobile robot
localization. Mobile robot localization is the problem of determining the pose
of a robot relative to a givenmap of the environment. It is often called position
estimation. Mobile robot localization is an instance of the general localization
problem, which is the most basic perceptual problem in robotics. Nearly
all robotics tasks require knowledge of the location of objects that are being
manipulated. The techniques described in this and subsequent chapter are
equally applicable for object localization tasks.
Figure 7.1 depicts a graphical model for the mobile robot localization prob-
lem. The robot is given a map of its environment and its goal is to determine
its position relative to this map given the perceptions of the environment and
its movements.
Mobile robot localization can be seen as a problem of coordinate transfor-
mation. Maps are described in a global coordinate system, which is indepen-
dent of a robot’s pose. Localization is the process of establishing correspon-
dence between the map coordinate system and the robot’s local coordinate
system. Knowing this coordinate transformation enables the robot to express
the location of objects of interest within its own coordinate frame—a neces-
sary prerequisite for robot navigation. As the reader easily verifies, knowing
the pose xt = (x y θ)T of the robot is sufficient to determine this coordinate
transformation, assuming that the pose is expressed in the same coordinate
frame as the map.
Unfortunately—and herein lies the problem of mobile robot localization—
the pose can usually not be sensed directly. Put differently, most robots do
not possess a noise-free sensor for measuring pose. The pose therefore has
to be inferred from data. A key difficulty arises from the fact that a single
sensor measurement is usually insufficient to determine the pose. Instead,

192 7 Mobile Robot Localization: Markov and Gaussian

m

x

zt

t+1x

t+1z

t+1u

xt−1

ut−1 ut

t−1z

t

Figure 7.1 Graphical model of mobile robot localization. The value of shaded nodes
are known: the mapm, the measurements z, and the controls u. The goal of localiza-
tion is to infer the robot pose variables x.

the robot has to integrate data over time to determine its pose. To see why
this is necessary, just picture a robot located inside a building where many
corridors look alike. Here a single sensor measurement (e.g., a range scan) is
usually insufficient to identify the specific corridor.
Localization techniques have been developed for a broad set of map rep-
resentations. We already discussed two types of maps: feature-based and
location-based. An example of the latter was occupancy grid maps, which are
subject to a later chapter in this book. Some other types of maps are shown
in Figure 7.2. This figure shows a hand-drawn metric 2-D map, a graph-like
topological map, an occupancy grid map, and an image mosaic of a ceiling
(which can also be used as a map). Later chapters will investigate specific
map types and discuss algorithms for acquiring maps from data. Localiza-
tion assumes that an accurate map is available.
In this and the subsequent chapter, we present some basic probabilistic
algorithms for mobile localization. All of these algorithms are variants of
the basic Bayes filter described in Chapter 2. We discuss the advantages and
shortcomings of each representation and associated algorithms. The chapter
also goes through a series of extensions that address different localization
problems, as defined through the following taxonomy.

7.1 A Taxonomy of Localization Problems 193

(a) (b)

(c) (d)

Figure 7.2 Example maps used for robot localization: (a) a manually constructed
2-D metric layout, (b) a graph-like topological map, (c) an occupancy grid map, and
(d) an image mosaic of a ceiling. (d) courtesy of Frank Dellaert, Georgia Institute of
Technology.

7.1 A Taxonomy of Localization Problems

Not every localization problem is equally hard. To understand the difficulty
of a localization problem, let us first briefly discuss a taxonomy of localiza-
tion problems. This taxonomy divides localization problems along a number
of important dimensions pertaining to the nature of the environment and
the initial knowledge that a robot may possess relative to the localization
problem.

Local Versus Global Localization Localization problems are characterized
by the type of knowledge that is available initially and at run-time. We dis-
tinguish three types of localization problems with an increasing degree of
difficulty.
Position tracking assumes that the initial robot pose is known. LocalizingPOSITION TRACKING

the robot can be achieved by accommodating the noise in robot motion. The

194 7 Mobile Robot Localization: Markov and Gaussian

effect of such noise is usually small. Hence, methods for position tracking of-
ten rely on the assumption that the pose error is small. The pose uncertainty
is often approximated by a unimodal distribution (e.g., a Gaussian). The po-
sition tracking problem is a local problem, since the uncertainty is local and
confined to region near the robot’s true pose.
In global localization, the initial pose of the robot is unknown. The robotGLOBAL

LOCALIZATION is initially placed somewhere in its environment, but it lacks knowledge of
its whereabouts. Approaches to global localization cannot assume bounded-
ness of the pose error. As we shall see later in this chapter, unimodal prob-
ability distributions are usually inappropriate. Global localization is more
difficult than position tracking; in fact, it subsumes the position tracking
problem.
The kidnapped robot problem is a variant of the global localization problem,KIDNAPPED ROBOT

PROBLEM but one that is even more difficult. During operation, the robot can get kid-
napped and teleported to some other location. The kidnapped robot problem
is more difficult than the global localization problems, in that the robot might
believe it knows where it is while it does not. In global localization, the robot
knows that it does not know where it is. One might argue that robots are
rarely kidnapped in practice. The practical importance of this problem, how-
ever, arises from the observation that most state-of-the-art localization algo-
rithms cannot be guaranteed never to fail. The ability to recover from failures
is essential for truly autonomous robots. Testing a localization algorithm by
kidnapping it measures its ability to recover from global localization failures.

Static Versus Dynamic Environments A second dimension that has a sub-
stantial impact on the difficulty of localization is the environment. Environ-
ments can be static or dynamic.
Static environments are environments where the only variable quantitySTATIC ENVIRONMENT

(state) is the robot’s pose. Put differently, only the robot moves in static envi-
ronment. All other objects in the environments remain at the same location
forever. Static environments have some nice mathematical properties that
make them amenable to efficient probabilistic estimation.
Dynamic environments possess objects other than the robot whose loca-DYNAMIC

ENVIRONMENT tion or configuration changes over time. Of particular interest are changes
that persist over time, and that impact more than a single sensor reading.
Changes that are not measurable are of course of no relevance to localiza-
tion, and those that affect only a single measurement are best treated as noise
(cf.Chapter 2.4.4). Examples of more persistent changes are: people, daylight

7.1 A Taxonomy of Localization Problems 195

(for robots equipped with cameras), movable furniture, or doors. Clearly,
most real environments are dynamic, with state changes occurring at a range
of different speeds.
Obviously, localization in dynamic environments is more difficult than
localization in static ones. There are two principal approaches for accom-
modating dynamics: First, dynamic entities might be included in the state
vector. As a result, the Markov assumption might now be justified, but such
an approach carries the burden of additional computational and modeling
complexity. Second, in certain situations sensor data can be filtered so as to
eliminate the damaging effect of unmodeled dynamics. Such an approach is
described further below in Chapter 8.4.

Passive Versus Active Approaches A third dimension that characterizes
different localization problems pertains to the fact whether or not the local-
ization algorithm controls the motion of the robot. We distinguish two cases:
In passive localization, the localization module only observes the robot op-PASSIVE LOCALIZATION

erating. The robot is controlled through some other means, and the robot’s
motion is not aimed at facilitating localization. For example, the robot might
move randomly or perform its everyday tasks.
Active localization algorithms control the robot so as to minimize the local-ACTIVE LOCALIZATION

ization error and/or the costs arising from moving a poorly localized robot
into a hazardous place.
Active approaches to localization usually yield better localization results
than passive ones. We already discussed an example in the introduction to
this book: coastal navigation. A second example situation is shown in Fig-
ure 7.3. Here the robot is located in a symmetric corridor, and its belief after
navigating the corridor for a while is centered at two (symmetric) poses. The
local symmetry of the environment makes it impossible to localize the robot
while in the corridor. Only if it moves into a room will it be able to elimi-
nate the ambiguity and to determine its pose. It is situations like these where
active localization gives much better results: Instead of merely waiting until
the robot accidentally moves into a room, active localization can recognize
the impasse and escape from it.
However, a key limitation of active approaches is that they require con-
trol over the robot. Thus, in practice, an active localization technique alone
tends to be insufficient: The robot has to be able to localize itself even when
carrying out some other task than localization. Some active localization tech-
niques are built on top of a passive technique. Others combine task perfor-

196 7 Mobile Robot Localization: Markov and Gaussian

local maxima

Figure 7.3 Example situation that shows a typical belief state during global localiza-
tion in a locally symmetric environment. The robot has to move into one of the rooms
to determine its location.

mance goals with localization goals when controlling a robot.
This chapter exclusively considers passive localization algorithms. Active
localization will be discussed in Chapter 17.

Single-Robot Versus Multi-Robot A fourth dimension of the localization
problem is related to the number of robots involved.
Single-robot localization is the most commonly studied approach to local-SINGLE-ROBOT

LOCALIZATION ization. It deals with a single robot only. Single robot localization offers the
convenience that all data is collected at a single robot platform, and there is
no communication issue.
The multi-robot localization problem arises in teams of robots. At firstMULTI-ROBOT

LOCALIZATION glance, each robot could localize itself individually, hence the multi-robot lo-
calization problem can be solved through single-robot localization. If robots
are able to detect each other, however, there is the opportunity to do better.
This is because one robot’s belief can be used to bias another robot’s belief
if knowledge of the relative location of both robots is available. The issue of
multi-robot localization raises interesting, non-trivial issues on the represen-
tation of beliefs and the nature of the communication between them.
These four dimensions capture the four most important characteristics of
the mobile robot localization problem. There exist a number of other charac-

7.2 Markov Localization 197

1: AlgorithmMarkov_localization(bel(xt−1), ut, zt,m):

2: for all xt do

3: bel(xt) =
∫

p(xt | ut, xt−1,m) bel(xt−1) dxt−1

4: bel(xt) = η p(zt | xt,m) bel(xt)

5: endfor

6: return bel(xt)

Table 7.1 Markov localization.

terizations that impact the hardness of the problem, such as the information
provided by robot measurements and the information lost through motion.
Also, symmetric environments are more difficult than asymmetric ones, due
to the higher degree of ambiguity.

7.2 Markov Localization

Probabilistic localization algorithms are variants of the Bayes filter. The
straightforward application of Bayes filters to the localization problem is
called Markov localization. Table 7.1 depicts the basic algorithm. This algo-
rithm is derived from the algorithm Bayes_filter (Table 2.1 on page 27). No-
tice thatMarkov_localization also requires a mapm as input. Themap plays
a role in themeasurementmodel p(zt | xt,m) (line 4). It often, but not always,
is incorporated in the motion model p(xt | ut, xt−1,m) as well (line 3). Just
like the Bayes filter, Markov localization transforms a probabilistic belief at
time t− 1 into a belief at time t. Markov localization addresses the global lo-
calization problem, the position tracking problem, and the kidnapped robot
problem in static environments.
The initial belief, bel(x0), reflects the initial knowledge of the robot’s pose.

It is set differently depending on the type of localization problem.

• Position tracking. If the initial pose is known, bel(x0) is initialized by a
point-mass distribution. Let x̄0 denote the (known) initial pose. Then

bel(x0) =

{
1 if x0 = x̄0

0 otherwise
(7.1)

198 7 Mobile Robot Localization: Markov and Gaussian

Figure 7.4 Example environment used to illustrate mobile robot localization: One-
dimensional hallway environment with three indistinguishable doors. Initially the
robot does not know its location except for its heading direction. Its goal is to find
out where it is.

Point-mass distributions are discrete and therefore do not possess a den-
sity.

In practice the initial pose is often just known in approximation. The be-
lief bel(x0) is then usually initialized by a narrow Gaussian distribution
centered around x̄0. Gaussians were defined in Equation (2.4) on page 15.

bel(x0) = det (2πΣ)
−1

2 exp
{−1

2 (x0 − x̄0)
T Σ−1(x0 − x̄0)

}︸ ︷︷ ︸
∼N (x0;x̄0,Σ)

(7.2)

Σ is the covariance of the initial pose uncertainty.

• Global localization. If the initial pose is unknown, bel(x0) is initialized
by a uniform distribution over the space of all legal poses in the map:

bel(x0) =
1

|X|(7.3)

where |X| stands for the volume (Lebesgue measure) of the space of all
poses within the map.

• Other. Partial knowledge of the robot’s position can usually easily be
transformed into an appropriate initial distribution. For example, if the
robot is known to start next to a door, one might initialize bel(x0) using
a density that is zero except for places near doors, where it may be uni-
form. If it is known to be located in a specific corridor, one might initialize
bel(x0) by a uniform distribution in the area of the corridor and zero any-
where else.

7.2 Markov Localization 199

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 7.5 Illustration of the Markov localization algorithm. Each picture depicts
the position of the robot in the hallway and its current belief bel(x). (b) and (d) ad-
ditionally depict the observation model p(zt | xt), which describes the probability of
observing a door at the different locations in the hallway.

200 7 Mobile Robot Localization: Markov and Gaussian

7.3 Illustration of Markov Localization

We have already discussed Markov localization in the introduction to this
book, as a motivating example for probabilistic robotics. Now we can back
up this example using a concrete mathematical framework. Figure 7.4 de-
picts our one-dimensional hallway with three identical doors. The initial
belief bel(x0) is uniform over all poses, as illustrated by the uniform density
in Figure 7.5a. As the robot queries its sensors and notices that it is adja-
cent to one of the doors, it multiplies its belief bel(x0) by p(zt | xt,m), as
stated in line 4 of our algorithm. The upper density in Figure 7.5b visual-
izes p(zt | xt,m) for the hallway example. The lower density is the result of
multiplying this density into the robot’s uniform prior belief. Again, the re-
sulting belief is multi-modal, reflecting the residual uncertainty of the robot
at this point.
As the robot moves to the right, indicated in Figure 7.5c, line 3 of the
Markov localization algorithm convolves its belief with the motion model
p(xt | ut, xt−1). The motion model p(xt | ut, xt−1) is not focused on a sin-
gle pose but on a whole continuum of poses centered around the expected
outcome of a noise-free motion. The effect is visualized in Figure 7.5c, which
shows a shifted belief that is also flattened out, as a result of the convolution.
The final measurement is illustrated in Figure 7.5d. Here the Markov lo-
calization algorithm multiplies the current belief with the perceptual prob-
ability p(zt | xt). At this point, most of the probability mass is focused on
the correct pose, and the robot is quite confident of having localized itself.
Figure 7.5e illustrates the robot’s belief after having moved further down the
hallway.
We already noted that Markov localization is independent of the under-
lying representation of the state space. In fact, Markov localization can be
implemented using any of the representations discussed in Chapter 2. We
now consider three different representations and devise practical algorithms
that can localize mobile robots in real time. We begin with Kalman filters,
which represent beliefs by their first and second moment. We then continue
with discrete, grid representations and finally introduce algorithms using
particle filters.

7.4 EKF Localization 201

7.4 EKF Localization

The extended Kalman filter localization algorithm, or EKF localization, is a spe-
cial case of Markov localization. EKF localization represents beliefs bel(xt)

by their first and second moment, the mean μt and the covariance Σt. The
basic EKF algorithm was stated in Table 3.3 in Chapter 3.3 (page 59). EKF lo-
calization shall be our first concrete implementation of an EKF in the context
of an actual robotics problem.
Our EKF localization algorithm assumes that the map is represented by
a collection of features. At any point in time t, the robot gets to observe a
vector of ranges and bearings to nearby features: zt = {z1

t , z2
t , . . .}. We begin

with a localization algorithm in which all features are uniquely identifiable.
The existence of uniquely identifiable features may not be a bad assumption:
For example, the Eiffel Tower in Paris is a landmark that is rarely confused
with other landmarks, and it is widely visible throughout Paris. The identity
of a feature is expressed by a set of correspondence variables, denoted ci

t, oneCORRESPONDENCE

VARIABLE for each feature vector zi
t. Correspondence variables were already discussed

in Chapter 6.6. Let us first assume that the correspondences are known. We
then progress to a more general version that allows for ambiguity among
features. The second, more general version applies a maximum likelihood
estimator to estimate the value of the latent correspondence variable, and
uses the result of this estimation as if it were ground truth.

7.4.1 Illustration

Figure 7.6 illustrates the EKF localization algorithm using our example
of mobile robot localization in the one-dimensional corridor environment
(cf. Figure 7.4). To accommodate the unimodal shape of the belief in EKFs,
we make two convenient assumptions: First, we assume that the correspon-
dences are known. We attach unique labels to each door (1, 2, and 3), and
we denote the measurement model by p(zt | xt,m, ct), where m is the map
and ct ∈ {1, 2, 3} is the identity of the door observed at time t. Second, we
assume that the initial pose is relatively well known. A typical initial belief
is represented by the Gaussian distribution shown in Figure 7.6a, centered
on the area near Door 1 and with a Gaussian uncertainty as indicated in that
figure. As the robot moves to the right, its belief is convolved with the mo-
tion model. The resulting belief is a shifted Gaussian of increased width, as
shown in Figure 7.6b.
Now suppose the robot detects that it is in front of door ct = 2. The upper

202 7 Mobile Robot Localization: Markov and Gaussian

x

bel(x)

1 2 3
(a)

x

bel(x)

1 2 3
(b)

x

bel(x)

x

p(z|x)

1 2 3
(c)

x

bel(x)

1 2 3
(d)

Figure 7.6 Application of the Kalman filter algorithm to mobile robot localization.
All densities are represented by unimodal Gaussians.

density in Figure 7.6c visualizes p(zt | xt,m, ct) for this observation—again a
Gaussian. Folding this measurement probability into the robot’s belief yields
the posterior shown in Figure 7.6c. Note that the variance of the resulting
belief is smaller than the variances of both the robot’s previous belief and
the observation density. This is natural, since integrating two independent
estimates should make the robot more certain than each estimate in isola-
tion. After moving down the hallway, the robot’s uncertainty in its position

7.4 EKF Localization 203

increases again, since the EKF continues to incorporate motion uncertainty
into the robot’s belief. Figure 7.6d shows one of these beliefs. This example
illustrates the Kalman filter in our limited setting.

7.4.2 The EKF Localization Algorithm

The discussion thus far has been fairly abstract: We have silently assumed the
availability of an appropriate motion and measurement model, and have left
unspecified a number of key variables in the EKF update. We now discuss
a concrete implementation of the EKF for feature-based maps. Our feature-
based maps consist of point landmarks, as already discussed in Chapter 6.2.
For such point landmarks, we use the common measurement model dis-
cussed in Chapter 6.6. We also adopt the velocity motion model defined
in Chapter 5.3. The reader may take a moment to briefly reacquire the ba-
sic measurement and motion equations discussed in these chapters before
reading on.
Table 7.2 describes EKF_localization_known_correspondences, the EKF

algorithm for localization with known correspondences. This algorithm is
derived from the EKF in Table 3.3 in Chapter 3. It requires as its input a
Gaussian estimate of the robot pose at time t − 1, with mean μt−1 and co-
variance Σt−1. Further, it requires a control ut, a mapm, and a set of features
zt = {z1

t , z2
t , . . .}measured at time t, alongwith the correspondence variables

ct = {c1
t , c

2
t , . . .}. Its output is a new, revised estimate μt,Σt, along with the

likelihood of the feature observation, pzt
. The algorithm does not handle the

case of straight motion for which ωt = 0. The treatment of this special case is
left as an exercise.
The individual calculations in this algorithm are explained further below.
Lines 3 and 4 compute the Jacobians needed for the linearizedmotion model.
Line 5 determines the motion noise covariance matrix from the control. Lines
6 and 7 implement the familiar motion update. The predicted pose after the
motion is calculated as μ̄t in line 6, and line 7 computes the corresponding
uncertainty ellipse. The measurement update (correction step) is realized
through Lines 8 to 21. The core of this update is a loop through all features i

observed at time t. In line 10, the algorithm assigns to j the correspondence
of the i-th feature in the measurement vector. It then calculates a predicted
measurement ẑi

t and the Jacobian Hi
t of the measurement model. Using this

Jacobian, the algorithm determines Si
t , the uncertainty corresponding to the

predicted measurement ẑi
t. The Kalman gain Ki

t is then calculated in line
15. The estimate is updated in lines 16 and 17, once for each feature. Lines

204 7 Mobile Robot Localization: Markov and Gaussian

1: Algorithm EKF_localization_known_correspondences(μt−1, Σt−1, ut, zt, ct, m):

2: θ = μt−1,θ

3: Gt =

⎛
⎝ 1 0 − vt

ωt
cos θ + vt

ωt
cos(θ + ωtΔt)

0 1 − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

0 0 1

⎞
⎠

4: Vt =

⎛
⎜⎝

− sin θ+sin(θ+ωtΔt)
ωt

vt(sin θ−sin(θ+ωtΔt))

ω2
t

+ vt cos(θ+ωtΔt)Δt

ωt

cos θ−cos(θ+ωtΔt)
ωt

− vt(cos θ−cos(θ+ωtΔt))

ω2
t

+ vt sin(θ+ωtΔt)Δt

ωt

0 Δt

⎞
⎟⎠

5: Mt =

(
α1v

2
t + α2ω

2
t 0

0 α3v
2
t + α4ω

2
t

)

6: μ̄t = μt−1 +

⎛
⎜⎝ − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

vt

ωt
cos θ − vt

ωt
cos(θ + ωtΔt)

ωtΔt

⎞
⎟⎠

7: Σ̄t = Gt Σt−1 Gt
T + Vt Mt Vt

T

8: Qt =

⎛
⎝ σ2

r 0 0

0 σ2
φ 0

0 0 σ2
s

⎞
⎠

9: for all observed features zi
t = (ri

t φi
t si

t)
T do

10: j = ci
t

11: q = (mj,x − μ̄t,x)2 + (mj,y − μ̄t,y)2

12: ẑi
t =

⎛
⎝ √

q

atan2(mj,y − μ̄t,y, mj,x − μ̄t,x) − μ̄t,θ

mj,s

⎞
⎠

13: Hi
t =

⎛
⎝ −mj,x−μ̄t,x√

q
−mj,y−μ̄t,y√

q
0

mj,y−μ̄t,y

q
−mj,x−μ̄t,x

q
−1

0 0 0

⎞
⎠

14: Si
t = Hi

t Σ̄t [Hi
t]

T + Qt

15: Ki
t = Σ̄t [Hi

t]
T [Si

t]
−1

16: μ̄t = μ̄t + Ki
t(z

i
t − ẑi

t)

17: Σ̄t = (I − Ki
t Hi

t) Σ̄t

18: endfor

19: μt = μ̄t

20: Σt = Σ̄t

21: pzt =
∏

i
det
(
2πSi

t

)− 1
2 exp

{
− 1

2
(zi

t − ẑi
t)

T [Si
t]
−1(zi

t − ẑi
t)
}

22: return μt, Σt, pzt

Table 7.2 The extended Kalman filter (EKF) localization algorithm, formulated here
for a feature-based map and a robot equipped with sensors for measuring range and
bearing. This version assumes knowledge of the exact correspondences.

7.4 EKF Localization 205

19 and 20 set the new pose estimate, followed by the computation of the
measurement likelihood in line 21. In this algorithm, care has to be taken
when computing the difference of two angles, since the result may be off by
2π.

7.4.3 Mathematical Derivation of EKF Localization

Prediction Step (Lines 3–7) The EKF localization algorithm uses the mo-
tion model defined in Equation (5.13). Let us briefly restate the definition:⎛
⎝ x′

y′

θ′

⎞
⎠ =

⎛
⎝ x

y

θ

⎞
⎠+

⎛
⎜⎝ − v̂t

ω̂t
sin θ + v̂t

ω̂t
sin(θ + ω̂tΔt)

v̂t

ω̂t
cos θ − v̂t

ω̂t
cos(θ + ω̂tΔt)

ω̂tΔt

⎞
⎟⎠(7.4)

Here xt−1 = (x y θ)T and xt = (x′ y′ θ′)T are the state vectors at time t− 1

and t, respectively. The true motion is described by a translational velocity,
v̂t, and a rotational velocity, ω̂t. As already stated in Equation (5.10), these
velocities are generated by the motion control, ut = (vt ωt)

T , with additive
Gaussian noise:(

v̂t

ω̂t

)
=

(
vt

ωt

)
+

(
εα1v2

t +α2ω2
t

εα3v2
t +α4ω2

t

)
=

(
vt

ωt

)
+N (0,Mt)(7.5)

We already know from Chapter 3 that EKF localization maintains a local pos-
terior estimate of the state, represented by the mean μt−1 and covariance
Σt−1. We also recall that the “trick” of the EKF lies in linearizing the motion
and measurement model. For that, we decompose the motion model into a
noise-free part and a random noise component:⎛
⎝ x′

y′

θ′

⎞
⎠

︸ ︷︷ ︸
xt

=

⎛
⎝ x

y

θ

⎞
⎠+

⎛
⎜⎝ − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

vt

ωt
cos θ − vt

ωt
cos(θ + ωtΔt)

ωt Δt

⎞
⎟⎠

︸ ︷︷ ︸
g(ut,xt−1)

+N (0, Rt)(7.6)

Equation (7.6) approximates Equation (7.4) by replacing the true motion
(v̂t ω̂t)

T by the executed control (vt ωt)
T , and capturing the motion noise

in an additive Gaussian with zero mean. Thus the left term in Equation (7.6)
treats the control as if it were the true motion of the robot. We recall from
Chapter 3.3 that EKF linearization approximates the function g through a
Taylor expansion:

g(ut, xt−1) ≈ g(ut, μt−1) + Gt (xt−1 − μt−1)(7.7)

206 7 Mobile Robot Localization: Markov and Gaussian

The function g(ut, μt−1) is simply obtained by replacing the exact state
xt−1—-which we do not know—by our expectation μt−1—which we know.
The Jacobian Gt is the derivative of the function g with respect to xt−1 eval-
uated at ut and μt−1:

Gt =
∂g(ut, μt−1)

∂xt−1
=

⎛
⎜⎝

∂x′

∂μt−1,x

∂x′

∂μt−1,y

∂x′

∂μt−1,θ

∂y′

∂μt−1,x

∂y′

∂μt−1,y

∂y′

∂μt−1,θ

∂θ′

∂μt−1,x

∂θ′

∂μt−1,y

∂θ′

∂μt−1,θ

⎞
⎟⎠(7.8)

Here μt−1 = (μt−1,x μt−1,y μt−1,θ)
T denotes the mean estimate factored

into its individual three values, and ∂x′

∂μt−1,x
is short for the derivative of g

along the x′ dimension, taken with respect to x at μt−1. Calculating these
derivatives from Equation (7.6) gives us the following matrix:

Gt =

⎛
⎜⎝ 1 0 vt

ωt
(− cos μt−1,θ + cos(μt−1,θ + ωtΔt))

0 1 vt

ωt
(− sin μt−1,θ + sin(μt−1,θ + ωtΔt))

0 0 1

⎞
⎟⎠(7.9)

To derive the covariance of the additional motion noise, N (0, Rt), we first
determine the covariance matrixMt of the noise in control space. This follows
directly from the motion model in Equation (7.5):

Mt =

(
α1v

2
t + α2ω

2
t 0

0 α3v
2
t + α3ω

2
t

)
(7.10)

The motion model in (7.6) requires this motion noise to be mapped into state
space. The transformation from control space to state space is performed by
another linear approximation. The Jacobian needed for this approximation,
denoted Vt, is the derivative of the motion function g with respect to the
motion parameters, evaluated at ut and μt−1:

Vt =
∂g(ut, μt−1)

∂ut

(7.11)

=

⎛
⎜⎝

∂x′

∂vt

∂x′

∂ωt

∂y′

∂vt

∂y′

∂ωt

∂θ′

∂vt

∂θ′

∂ωt

⎞
⎟⎠

=

⎛
⎜⎝

− sin θ+sin(θ+ωtΔt)
ωt

vt(sin θ−sin(θ+ωtΔt))
ω2

t

+ vt cos(θ+ωtΔt)Δt

ωt

cos θ−cos(θ+ωtΔt)
ωt

− vt(cos θ−cos(θ+ωtΔt))
ω2

t

+ vt sin(θ+ωtΔt)Δt

ωt

0 Δt

⎞
⎟⎠

The multiplication Vt Mt Vt
T then provides an approximate mapping be-

tween the motion noise in control space to the motion noise in state space.

7.4 EKF Localization 207

With this derivation, lines 6 and 7 of the EKF localization algorithm corre-
spond exactly to the prediction updates of the general EKF algorithm, de-
scribed in Table 3.3.

Correction Step (Lines 8–20) To perform the correction step, EKF localiza-
tion also requires a linearized measurement model with additive Gaussian
noise. The measurement model for our feature-based maps shall be a variant
of Equation (6.40) in Chapter 6.6, which presupposes knowledge of the land-
mark identity via the correspondence variable ct. Let j = ci

t be the identity
of the landmark that corresponds to the i-th component in the measurement
vector. Then we have⎛
⎝ ri

t

φi
t

si
t

⎞
⎠

︸ ︷︷ ︸
zi

t

=

⎛
⎝

√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y,mj,x − x)− θ

mj,s

⎞
⎠

︸ ︷︷ ︸
h(xt,j,m)

+N (0, Qt),(7.12)

where (mj,x mj,y)T are the coordinates of the i-th landmark detection at
time t, and mj,s is its (correct) signature. The Taylor approximation of this
measurement model is

h(xt, j,m) ≈ h(μ̄t, j,m) + Hi
t (xt − μ̄t).(7.13)

Hi
t is the Jacobian of h with respect to the robot location, computed at the
predicted mean μ̄t:

Hi
t =

∂h(μ̄t, j,m)

∂xt

=

⎛
⎜⎜⎝

∂ri
t

∂μ̄t,x

∂ri
t

∂μ̄t,y

∂ri
t

∂μ̄t,θ

∂φi
t

∂μ̄t,x

∂φi
t

∂μ̄t,y

∂φi
t

∂μ̄t,θ

∂si
t

∂μ̄t,x

∂si
t

∂μ̄t,y

∂si
t

∂μ̄t,θ

⎞
⎟⎟⎠(7.14)

=

⎛
⎜⎝ −mj,x−μ̄t,x√

q
−mj,y−μ̄t,y√

q
0

mj,y−μ̄t,y

q
−mj,x−μ̄t,x

q
−1

0 0 0

⎞
⎟⎠

with q short for (mj,x − μ̄t,x)2 + (mj,y − μ̄t,y)2. Notice that the last row of
Hi

t is all zero. This is because the signature does not depend on the robot
pose. The effect of this degeneracy is that the observed signature si

t has no
effect on the result of the EKF update. This should come at no surprise:
knowledge of the correct correspondence ci

t renders the observed signature
entirely uninformative.

208 7 Mobile Robot Localization: Markov and Gaussian

The covariance Qt of the additional measurement noise in Equation (7.12)
follows directly from (6.40):

Qt =

⎛
⎝ σ2

r 0 0

0 σ2
φ 0

0 0 σ2
s

⎞
⎠(7.15)

Finally, we note that our feature-based localizer processes multiple measure-
ments at a time, whereas the EKF discussed in Chapter 3.2 only processed
a single sensor item. Our algorithm relies on an implicit conditional inde-
pendence assumption, which we briefly discussed in Chapter 6.6, Equation
(6.39). Essentially, we assume that all feature measurement probabilities are
independent given the pose xt, the landmark identities ct, and the mapm:

p(zt | xt, ct,m) =
∏

i

p(zi
t | xt, c

i
t,m)(7.16)

This is usually a good assumption, especially if the world is static. It enables
us to incrementally add the information frommultiple features into our filter,
as specified in lines 9 through 18 in Table 7.2. Care has to be taken that the
pose estimate is updated in each iteration of the loop, since otherwise the
algorithm computes incorrect observation predictions (intuitively, this loop
corresponds to multiple observation updates with zero motion in between).
With this in mind it is straightforward to see that lines 8–20 are indeed an
implementation of the general EKF correction step.

Measurement Likelihood (Line 21) Line 21 computes the likelihood p(zt |MEASUREMENT

LIKELIHOOD c1:t,m, z1:t−1, u1:t) of a measurement zt. This likelihood is not essential for
the EKF update but is useful for the purpose of outlier rejection or in the
case of unknown correspondences. Assuming independence between the
individual feature vectors, we can restrict the derivation to individual feature
vectors zt

i and compute the overall likelihood analogous to (7.16). For known
data associations c1:t, the likelihood can be computed from the predicted
belief bel(xt) = N (xt; μ̄t, Σ̄t) by integrating over the pose xt, and omitting
irrelevant conditioning variables:

p(zi
t | c1:t,m, z1:t−1, u1:t)(7.17)

=

∫
p(zi

t | xt, c1:t,m, z1:t−1, u1:t) p(xt | c1:t,m, z1:t−1, u1:t) dxt

=

∫
p(zi

t | xt, c
i
t,m) p(xt | c1:t−1,m, z1:t−1, u1:t) dxt

7.4 EKF Localization 209

=

∫
p(zi

t | xt, c
i
t,m) bel(xt) dxt

The left term in the final integral is the measurement likelihood assuming
knowledge of the robot location xt. This likelihood is given by a Gaussian
with mean at the measurement that is expected at location xt. This measure-
ment, denoted ẑi

t, is provided by the measurement function h. The covari-
ance of the Gaussian is given by the measurement noise Qt.

p(zi
t | xt, c

i
t,m) ∼ N (zi

t; h(xt, c
i
t,m), Qt)(7.18)

≈ N (zi
t; h(μ̄t, c

i
t,m) + Ht (xt − μ̄t), Qt)

(7.18) follows by applying our Taylor expansion (7.13) to h. Plugging this
equation back into (7.17), and replacing bel(xt) by its Gaussian form, we get
the following measurement likelihood:

p(zi
t | c1:t,m, z1:t−1, u1:t)(7.19)

≈ N (zi
t; h(μ̄t, c

i
t,m) + Ht (xt − μ̄t), Qt) ⊗ N (xt; μ̄t, Σ̄t)

where ⊗ denotes the familiar convolution over the variable xt. This equa-
tion reveals that the likelihood function is a convolution of two Gaussians;
one representing the measurement noise, the other representing the state
uncertainty. We already encountered integrals of this form in Chapter 3.2,
where we derived the motion update of the Kalman filter and the EKF. The
closed-form solution to this integral is derived completely analogously to
those derivations. In particular, the Gaussian defined by (7.19) has mean
h(μ̄t, c

i
t,m) and covariance Ht Σ̄t HT

t + Qt. Thus, we have under our linear
approximation the following expression for the measurement likelihood:

p(zi
t | c1:t,m, z1:t−1, u1:t) ∼ N (zi

t; h(μ̄t, c
i
t,m), Ht Σ̄t HT

t + Qt)(7.20)

That is,

p(zi
t | c1:t,m, z1:t−1, u1:t)(7.21)

= η exp

{
−1

2
(zi

t − h(μ̄t, c
i
t,m)T [Ht Σ̄t HT

t + Qt]
−1 (zi

t − h(μ̄t, c
i
t,m)

}
By replacing the mean and covariance of this expression by ẑi

t and St, respec-
tively, we get line 21 of the EKF algorithm in Table 7.2.
The EKF localization algorithm can now easily be modified to accommo-
date outliers. The standard approach is to only accept landmarks for which
the likelihood passes a threshold test. This is generally a good idea: Gaus-
sians fall off exponentially, and a single outlier can have a huge effect on the
pose estimate. In practice, thresholding adds an important layer of robust-
ness to the algorithm without which EKF localization tends to be brittle.

210 7 Mobile Robot Localization: Markov and Gaussian

Figure 7.7 AIBO robots on the RoboCup soccer field. Six landmarks are placed at
the corners and the midlines of the field.

7.4.4 Physical Implementation

We now illustrate the EKF algorithm using simulations of a four-legged
AIBO robot localizing on a RoboCup soccer field. Here, the robot local-
izes using six uniquely colored markers placed around the field (see Fig-
ure 7.7). Just like in the EKF algorithm given in Table 7.2, motion control
ut = (vt ωt)

T is modeled by translational and rotational velocity, and obser-
vations zt = (rt φt st)

T measure relative distance and bearing to a marker.
For simplicity we assume that the robot detects only one landmark at a time.

Prediction Step (Lines 3–7) Figure 7.8 illustrates the prediction step of the
EKF localization algorithm. Shown there are the prediction uncertainties re-
sulting from different motion noise parameters, α1 – α4, used in line 5 of
the algorithm. The parameters α2 and α3 are set to 5% in all visualizations.
The main translational and rotational noise parameters α1 and α4 vary be-
tween 〈10%, 10%〉, 〈30%, 10%〉, 〈10%, 30%〉, and 〈30%, 30%〉 (from upper left
to lower right in Figure 7.8). In each of the plots the robot executes the con-
trol ut = 〈10cm/sec, 5◦/sec〉 for 9 seconds, resulting in a circular arc of length
90cm and rotation 45◦. The robot’s previous location estimate is represented
by the ellipse centered at the mean μt−1 = 〈80, 100, 0〉.
The EKF algorithm computes the predicted mean μ̄t by shifting the previ-

ous estimate under the assumption of noise free motion (line 6). The corre-
sponding uncertainty ellipse, Σ̄t, consists of two components; one estimating

7.4 EKF Localization 211

50 100 150 200 250 300 350

0

50

100

150

200

250

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

V tMtV
T
t

GtΣt−1GT
t

Σ̄t

(a)

50 100 150 200 250 300 350

0

50

100

150

200

250

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

V tMtV
T
t

GtΣt−1GT
t

Σ̄t

(b)

50 100 150 200 250 300 350

0

50

100

150

200

250

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

V tMtV
T
t

GtΣt−1GT
t

Σ̄t

(c)

50 100 150 200 250 300 350

0

50

100

150

200

250

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

V tMtV
T
t

GtΣt−1GT
t

Σ̄t

(d)

Figure 7.8 Prediction step of the EKF algorithm. The panels were generated with
different motion noise parameters. The robot’s initial estimate is represented by the
ellipse centered at μt−1. After moving on a circular arc of 90cm length while turn-
ing 45 degrees to the left, the predicted position is centered at μ̄t. In panel (a), the
motion noise is relatively small in both translation and rotation. The other panels
represent (b) high translational noise, (c) high rotational noise, and (d) high noise in
both translation and rotation.

uncertainty due to the initial location uncertainty, the other estimating uncer-
tainty due to motion noise (line 7). The first component, GtΣt−1G

T
t , ignores

motion noise and projects the previous uncertainty Σt−1 through a linear ap-
proximation of the motion function. Recall from Equations (7.8) and (7.9)
that this linear approximation is represented by the matrix Gt, which is the
Jacobian of the motion function w.r.t. the previous robot location.
The resulting noise ellipses are identical in the four panels since they do
not consider motion noise. Uncertainty due to motion noise is modeled by
the second component of Σ̄t, which is given by Vt Mt Vt

T (line 7). The matrix

212 7 Mobile Robot Localization: Markov and Gaussian

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]
y

[c
m

]

z t

μ̄t

Σ̄t

(a)

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

Q t

HtΣ̄t HT
t

S t

(b)

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

z t

μ̄t

Σ̄t

(c)

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

Q t

HtΣ̄t HT
t

S t

(d)

Figure 7.9 Measurement prediction. The left plots show two predicted robot loca-
tions along with their uncertainty ellipses. The true robot and the observation are
indicated by the white circle and the bold line, respectively. The panels on the right
show the resulting measurement predictions. The white arrows indicate the innova-
tions, the differences between observed and predicted measurements.

Mt represents the motion noise in control space (line 5). This motion noise
matrix is mapped into state space by multiplication with Vt, which is the
Jacobian of the motion function w.r.t. motion control (line 4). As can be seen,
the resulting ellipse represents large translational velocity error (α1 = 30%)
by large uncertainty along the motion direction (right plots in Figure 7.8).
Large rotational error (α4 = 30%) results in large uncertainty orthogonal to
the motion direction (lower plots in Figure 7.8). The overall uncertainty of
the prediction, Σ̄t, is then given by adding the two uncertainty components.

Correction Step: Measurement Prediction (Lines 8–14) In the first part of
the correction step, the EKF algorithm predicts the measurement, z̄t, using

7.4 EKF Localization 213

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

Q t

HtΣ̄t HT
t

S t

(a)

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

μt

μ̄t

Σ̄t

Σt

(b)

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

Q t

HtΣ̄t HT
t

S t

(c)

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

μt

μ̄t

Σ̄t

Σt

(d)

Figure 7.10 Correction step of the EKF algorithm. The panels on the left show the
measurement prediction, and the panels on the right the resulting corrections, which
update the mean estimate and reduce the position uncertainty ellipses.

the predicted robot location and its uncertainty. Figure 7.9 illustrates the
measurement prediction. The left plots show the predicted robot locations
along with their uncertainty ellipses. The true robot location is indicated by
the white circle. Now assume that the robot observes the landmark ahead to
its right, as indicated by the bold line. The panels on the right show the cor-
responding predicted and actual measurements in measurement space. The
predicted measurement, z̄t, is computed from the relative distance and bear-
ing between the predicted mean, μ̄t, and the observed landmark (line 12).
The uncertainty in this prediction is represented by the ellipse St. Similar
to state prediction, this uncertainty results from a convolution of two Gaus-
sians. The ellipse Qt represents uncertainty due to measurement noise (line
8), and the ellipse HtΣ̄tH

T
t represents uncertainty due to uncertainty in the

214 7 Mobile Robot Localization: Markov and Gaussian

robot location. The robot location uncertainty Σ̄t is mapped into observation
uncertainty bymultiplicationwithHt, the Jacobian of themeasurement func-
tion w.r.t. the robot location (line 13). St, the overall measurement prediction
uncertainty, is then the sum of these two ellipses (line 14). The white ar-
rows in the panels on the right illustrate the so-called innovation vector zt− z̄t,MEASUREMENT

INNOVATION which is simply the difference between the observed and the predicted mea-
surement. This vector plays a crucial role in the subsequent update step. It
also provides the likelihood of the measurement zt, which is given by the
likelihood of the innovation vector under a zero mean Gaussian with covari-
ance St (line 21). That is, the “shorter” (in the sense of Mahalanobis distance)
the innovation vector, the more likely the measurement.

Correction Step: Estimation Update (Lines 15–21) The correction step of
the EKF localization algorithm updates the location estimate based on the
innovation vector and the measurement prediction uncertainty. Figure 7.10
illustrates this step. For convenience, the panels on the left show the mea-
surement prediction again. The panels on the right illustrate the resulting
corrections in the position estimates, as shown by the white arrows. These
correction vectors are computed by a scaledmapping of the measurement in-
novation vectors (white arrows in left panels) into state space (line 16). This
mapping and scaling is performed by the Kalman gain matrix,Kt, computed
in line 15. Intuitively, the measurement innovation gives the offset between
predicted and observed measurement. This offset is then mapped into state
space and used to move the location estimate in the direction that would re-
duce the measurement innovation. The Kalman gain additionally scales the
innovation vector, thereby considering the uncertainty in the measurement
prediction. The more certain the observation, the higher the Kalman gain,
and hence the stronger the resulting location correction. The uncertainty el-
lipse of the location estimate is updated by similar reasoning (line 17).

Example Sequence Figure 7.11 shows two sequences of EKF updates, us-
ing different observation uncertainties. The left panels show the robot’s tra-
jectories according to the motion control (dashed lines) and the resulting true
trajectories (solid lines). Landmark detections are indicated by thin lines,
with the measurements in the upper panel being less noisy. The dashed lines
in the right panels plot the paths as estimated by the EKF localization algo-
rithm. As expected, the smaller measurement uncertainty in the upper row
results in smaller uncertainty ellipses and in smaller estimation errors.

7.5 Estimating Correspondences 215

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(a)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(b)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(c)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(d)

Figure 7.11 EKF-based localization with an accurate (upper row) and a less accurate
(lower row) landmark detection sensor. The dashed lines in the left panel indicate the
robot trajectories as estimated from the motion controls. The solid lines represent the
true robot motion resulting from these controls. Landmark detections at five locations
are indicated by the thin lines. The dashed lines in the right panels show the corrected
robot trajectories, along with uncertainty before (light gray, Σ̄t) and after (dark gray,
Σt) incorporating a landmark detection.

7.5 Estimating Correspondences

7.5.1 EKF Localization with Unknown Correspondences

The EKF localization discussed thus far is only applicable when landmark
correspondences can be determined with absolute certainty. In practice, this
is rarely the case. Most implementations therefore determine the identity of
the landmark during localization. Throughout this book, we will encounter
a number of strategies to cope with the correspondence problem. The most
simple of all is known asmaximum likelihood correspondence, in which one firstMAXIMUM LIKELIHOOD

CORRESPONDENCE determines the most likely value of the correspondence variable, and then

216 7 Mobile Robot Localization: Markov and Gaussian

takes this value for granted.
Maximum likelihood techniques are brittle if there are many equally likely
hypotheses for the correspondence variable. However, one can often design
the system for this not to be the case. To reduce the danger of asserting
a false data association, there exist essentially two techniques: First, select
landmarks that are sufficiently unique and sufficiently far apart from each
other that confusing themwith each other is unlikely. Second, make sure that
the robot’s pose uncertainty remains small. Unfortunately, these two strate-
gies are somewhat counter to each other, and finding the right granularity of
landmarks in the environment can be somewhat of an art.
Nevertheless, the maximum likelihood technique is of great practical im-
portance. Table 7.3 depicts the EKF localization algorithm with a maximum
likelihood estimator for the correspondence. The motion update in lines 2
through 7 is identical to the one in Table 7.2. The key difference is in the mea-
surement update: For each observation, we first calculate for all landmarks k
in the map a number of quantities that enable us to determine the most likely
correspondence (lines 10 through 15). The correspondence variable j(i) is
then chosen in line 16, by maximizing the likelihood of the measurement
zi

t given any possible landmark mk in the map. Note that this likelihood
function is identical to the likelihood function used by the EKF algorithm for
known correspondences. The EKF update in lines 18 and 19 only incorpo-
rates the most likely correspondences.
We note that the algorithm in Table 7.3 may not quite be as efficient as it
could be. It can be improved through a more thoughtful selection of land-
marks in line 10. In most settings, the robot only sees a small number of
landmarks at a time in its immediate vicinity; and simple tests can reject a
large number of unlikely landmarks in the map.

7.5.2 Mathematical Derivation of the ML Data Association

The maximum likelihood estimator determines the correspondence that
maximizes the data likelihood.

ĉt = argmax
ct

p(zt | c1:t,m, z1:t−1, u1:t)(7.22)

Here ct is the correspondence vector at time t. As before, the vector zt =

{z1
t , z2

t , . . .} is the measurement vector that contains the list of features, or
landmarks, zi

t, observed at time t.
The argmax operator in (7.22) selects the correspondence vector ĉt that

maximizes the likelihood of the measurement. Note that this expression is

7.5 Estimating Correspondences 217

1: Algorithm EKF_localization(μt−1, Σt−1, ut, zt, m):

2: θ = μt−1,θ

3: Gt =

⎛
⎝ 1 0 − vt

ωt
cos θ + vt

ωt
cos(θ + ωtΔt)

0 1 − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

0 0 1

⎞
⎠

4: Vt =

⎛
⎜⎝

− sin θ+sin(θ+ωtΔt)
ωt

vt(sin θ−sin(θ+ωtΔt))

ω2
t

+ vt cos(θ+ωtΔt)Δt

ωt

cos θ−cos(θ+ωtΔt)
ωt

− vt(cos θ−cos(θ+ωtΔt))

ω2
t

+ vt sin(θ+ωtΔt)Δt

ωt

0 Δt

⎞
⎟⎠

5: Mt =

(
α1v

2
t + α2ω

2
t 0

0 α3v
2
t + α4ω

2
t

)

6: μ̄t = μt−1 +

⎛
⎜⎝ − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

vt

ωt
cos θ − vt

ωt
cos(θ + ωtΔt)

ωtΔt

⎞
⎟⎠

7: Σ̄t = Gt Σt−1 Gt
T + Vt Mt Vt

T

8: Qt =

⎛
⎝ σ2

r 0 0

0 σ2
φ 0

0 0 σ2
s

⎞
⎠

9: for all observed features zi
t = (ri

t φi
t si

t)
T do

10: for all landmarks k in the mapm do
11: q = (mk,x − μ̄t,x)2 + (mk,y − μ̄t,y)2

12: ẑk
t =

⎛
⎝ √

q

atan2(mk,y − μ̄t,y, mk,x − μ̄t,x) − μ̄t,θ

mk,s

⎞
⎠

13: Hk
t =

⎛
⎝ −mk,x−μ̄t,x√

q
−mk,y−μ̄t,y√

q
0

mk,y−μ̄t,y

q
−mk,x−μ̄t,x

q
−1

0 0 0

⎞
⎠

14: Sk
t = Hk

t Σ̄t [Hk
t]T + Qt

15: endfor

16: j(i) = argmax
k

det
(
2πSk

t

)− 1
2 exp

{
− 1

2
(zi

t − ẑk
t)T [Sk

t]−1(zi
t − ẑk

t)
}

17: Ki
t = Σ̄t [H

j(i)
t]T [S

j(i)
t]−1

18: μ̄t = μ̄t + Ki
t(z

i
t − ẑ

j(i)
t)

19: Σ̄t = (I − Ki
t H

j(i)
t) Σ̄t

20: endfor

21: μt = μ̄t

22: Σt = Σ̄t

23: return μt, Σt

Table 7.3 The extended Kalman filter (EKF) localization algorithm with unknown
correspondences. The correspondences j(i) are estimated via a maximum likelihood
estimator.

218 7 Mobile Robot Localization: Markov and Gaussian

conditioned on prior correspondences c1:t−1. While those have been esti-
mated in previous update steps, the maximum likelihood approach treats
them as if they are always correct. This has two important ramifications: It
makes it possible to update the filter incrementally. But it also introduces
brittleness in the filter, which tends to diverge when correspondence esti-
mates are erroneous.
Even under the assumption of known prior correspondences, there are ex-
ponentially many terms in the maximization (7.22). When the number of
detected landmarks per measurement is large, the number of possible cor-
respondences may grow too large for practical implementations. The most
common technique to avoid such an exponential complexity performs the
maximization separately for each individual feature zi

t in the measurement
vector zt. We already derived the likelihood function for individual features
in the derivation of the EKF localization algorithm for known correspon-
dences. Following Equations (7.17) through (7.20), the correspondence of
each feature follows as:

ĉi
t = argmax

ci
t

p(zi
t | c1:t,m, z1:t−1, u1:t)(7.23)

≈ argmax
ci

t

N (zi
t; h(μ̄t, c

i
t,m), Ht Σ̄t HT

t + Qt)

This calculation is implemented in line 16 in Table 7.3. This component-wise
optimization is “justified” only when we happen to know that individual
feature vectors are conditionally independent—an assumption that is usu-
ally adopted for convenience. Under this assumption, the term that is being
maximized in (7.22) becomes a product of terms with disjoint optimization
parameters, for which the maximum is attained when each individual factor
is maximal, as determined in (7.23). Using this maximum likelihood data
association, the correctness of the algorithm follows now directly from the
correctness of the EKF localization algorithm with known correspondences.

7.6 Multi-Hypothesis Tracking

There exist a number of extensions of the basic EKF to accommodate situa-
tions where the correct data association cannot be determined with sufficient
reliability. Several of those techniques will be discussed later in this book,
hence our exposition at this point will be brief.
A classical technique that overcomes difficulties in data association is the
multi-hypothesis tracking filter, or MHT. The MHT can represent a belief by

7.6 Multi-Hypothesis Tracking 219

multiple Gaussians. It represents the posterior by the mixture

bel(xt) =
1∑
l ψt,l

∑
l

ψt,l det (2πΣt,l)
−1

2 exp
{
−1

2 (xt − μt,l)
T Σ−1

t,l (xt − μt,l)
}

(7.24)

Here l is the index of the mixture component. Each such component, or
“track” in MHT jargon, is itself a Gaussian with mean μt,l and covariance
Σt,l. The scalar ψt,l ≥ 0 is a mixture weight. It determines the weight of theMIXTURE WEIGHT

l-th mixture component in the posterior. Since the posterior is normalized by∑
l ψt,l, each ψt,l is a relative weight, and the contribution of the l-th mixture

component depends on the magnitude of all other mixture weights.
As we shall see belowwhen we describe theMHT algorithm, each mixture
component relies on a unique sequence of data association decisions. Hence,
it makes sense to write ct,l for the data association vector associated with the
l-th track, and c1:t,l for all past and present data associations associated with
the l-th mixture component. With this notation, we can now think of mixture
components as contributing local belief functions conditioned on a unique
sequence of data associations:

bell(xt) = p(xt | z1:t, u1:t, c1:t,l)(7.25)

Here c1:t,l = {c1,l, c2,l, . . . , ct,l} denotes the sequence of correspondence vec-
tors associated with the l-th track.
Before describing the MHT, it makes sense to discuss a completely in-
tractable algorithm from which the MHT is derived. This algorithm is the
full Bayesian implementation of the EKF under unknown data association.
It is amazingly simple: Instead of selecting the most likely data association
vector, our fictitious algorithm maintains them all. More specifically, at time
t eachmixture is split into many newmixtures, each conditioned on a unique
correspondence vector ct. Let m be the index of one of the new Gaussians,
and l be the index from which this new Gaussian is derived, for the corre-
spondence ct,l. The weight of this new mixture is then set to

ψt,m = ψt,l p(zt | c1:t−1,l, ct,m, z1:t−1, u1:t)(7.26)

This is the product of the mixture weight ψt,l from which the new com-
ponent was derived, times the likelihood of the measurement zt under the
specific correspondence vector that led to the new mixture component. In
other words, we treat correspondences as latent variable and calculate the
posterior likelihood that a mixture component is correct. A nice aspect of
this approach is that we already know how to compute the measurement
likelihood p(zt | c1:t−1,l, ct,m, z1:t−1, u1:t) in Equation (7.26): It is simply the

220 7 Mobile Robot Localization: Markov and Gaussian

likelihood of themeasurement computed in line 21 of the EKF localization al-
gorithm for known data associations (Table7.2). Thus, we can incrementally
calculate the mixture weights for each new component. The only downside
of this algorithm is the fact that the number of mixture components, or tracks,
grows exponentially over time.
The MHT algorithm approximates this algorithm by keeping the number
of mixture components small. This process is called pruning. Pruning termi-PRUNING

nates every component whose relative mixture weight

ψt,l∑
m ψt,m

(7.27)

is smaller than a threshold ψmin. It is easy to see that the number of mixture
components is always at most ψ−1

min. Thus, the MHT maintains a compact
posterior that can be updated efficiently. It is approximate in that it maintains
a very small number of Gaussians, but in practice the number of plausible
robot locations is usually very small.
We omit a formal description of the MHT algorithm at this point, and in-
stead refer the reader to a large number of related algorithms in this book.
We note than when implementing an MHT, it is useful to devise strategies
for identifying low-likelihood tracks before instantiating them.

7.7 UKF Localization

UKF localization is a feature-based robot localization algorithm using the
unscented Kalman filter. As described in Chapter 3.4, the UKF uses the un-
scented transform to linearize the motion and measurement models. Instead
of computing derivatives of these models, the unscented transform repre-
sents Gaussians by sigma points and passes these through the models. Ta-
ble 7.4 summarizes the UKF algorithm for landmark based robot localization.
It assumes that only one landmark detection is contained in the observation
zt and that the identity of the landmark is known.

7.7.1 Mathematical Derivation of UKF Localization

The main difference between the localization version and the general UKF
given in Table 3.4 is in the handling of prediction and measurement noise.
Recall that the UKF in Table 3.4 is based on the assumption that prediction
and measurement noise are additive. This made it possible to consider the

7.7 UKF Localization 221

1: Algorithm UKF_localization(μt−1, Σt−1, ut, zt, m):

Generate augmented mean and covariance

2: Mt =

(
α1v

2
t + α2ω

2
t 0

0 α3v
2
t + α4ω

2
t

)
3: Qt =

(
σ2

r 0

0 σ2
φ

)
4: μa

t−1 = (μT
t−1 (0 0)T (0 0)T)T

5: Σa
t−1 =

⎛
⎝ Σt−1 0 0

0 Mt 0

0 0 Qt

⎞
⎠

Generate sigma points

6: X a
t−1 = (μa

t−1 μa
t−1 + γ

√
Σa

t−1 μa
t−1 − γ

√
Σa

t−1)

Pass sigma points through motion model and compute Gaussian statistics

7: X̄ x
t = g(ut + Xu

t ,X x
t−1)

8: μ̄t =
∑2L

i=0
w

(m)
i X̄ x

i,t

9: Σ̄t =
∑2L

i=0
w

(c)
i (X̄ x

i,t − μ̄t)(X̄ x
i,t − μ̄t)

T

Predict observations at sigma points and compute Gaussian statistics

10: Z̄t = h(X̄ x
t) + X z

t

11: ẑt =
∑2L

i=0
w

(m)
i Z̄i,t

12: St =
∑2L

i=0
w

(c)
i (Z̄i,t − ẑt)(Z̄i,t − ẑt)

T

13: Σx,z
t =

∑2L

i=0
w

(c)
i (X̄ x

i,t − μ̄t)(Z̄i,t − ẑt)
T

Update mean and covariance

14: Kt = Σx,z
t S−1

t

15: μt = μ̄t + Kt(zt − ẑt)

16: Σt = Σ̄t − Kt St KT
t

17: pzt = det (2πSt)
− 1

2 exp
{
− 1

2
(zt − ẑt)

T S−1
t (zt − ẑt)

}
18: return μt, Σt, pzt

Table 7.4 The unscented Kalman filter (UKF) localization algorithm, formulated
here for a feature-based map and a robot equipped with sensors for measuring range
and bearing. This version handles single feature observations only and assumes
knowledge of the exact correspondence. L is the dimensionality of the augmented
state vector, given by the sum of state, control, and measurement dimensions.

222 7 Mobile Robot Localization: Markov and Gaussian

noise terms by simply adding their covariances Rt and Qt to the predicted
state and measurement uncertainty, respectively (lines 5 and 9 in Table 3.4).
UKF_localization provides an alternative, more accurate approach to con-
sidering the impact of noise on the estimation process. The key “trick” is
to augment the state with additional components representing control and
measurement noise. The dimensionality L of the augmented state is given
by the sum of the state, control, and measurement dimensions, which is
3 + 2 + 2 = 7 in this case (the signature of feature measurements is ignored
for simplicity). Since we assume zero-mean Gaussian noise, the mean μa

t−1

of the augmented state estimate is given by the mean of the location esti-
mate, μt−1, and zero vectors for the control and measurement noise (line 4).
The covariance Σa

t−1 of the augmented state estimate is given by combin-
ing the location covariance, Σt−1, the control noise covariance, Mt, and the
measurement noise covariance, Qt, as done in line 5.
The sigma point representation of the augmented state estimate is gen-
erated in line 6, using Equation (3.66) of the unscented transform. In this
example, X a

t−1 contains 2L + 1 = 15 sigma points, each having components
in state, control, and measurement space:

X a
t−1 =

⎛
⎝ X x

t−1
T

X u
t

T

X z
t

T

⎞
⎠(7.28)

We choose mixed time indices to make clear that X x
t−1 refers to xt−1 and the

control and measurement components refer to ut and zt, respectively.
The location components X x

t−1 of these sigma points are then passed
through the velocity motion model g, defined in Equation (5.9). Line 7 per-
forms this prediction step by applying the velocity motion model defined in
Equation (5.13), using the control ut with the added control noise component
X u

i,t of each sigma point:

X̄ x
i,t = X x

i,t−1 +

⎛
⎜⎝
− vi,t

ωi,t
sin θi,t−1 +

vi,t

ωi,t
sin(θi,t−1 + ωi,tΔt)

vi,t

ωi,t
cos θi,t−1 − vi,t

ωi,t
cos(θi,t−1 + ωi,tΔt)

ωi,tΔt

⎞
⎟⎠(7.29)

where

vi,t = vt + X u[v]
i,t(7.30)

ωi,t = ωt + X u[ω]
i,t(7.31)

θi,t−1 = X x[θ]
i,t−1(7.32)

7.7 UKF Localization 223

are generated from the control ut = (vt ωt)
T and the individual components

of the sigma points. For example, X u[v]
i,t represents the translational velocity

vt of the i-th sigma point. The predicted sigma points, X̄ x
t , are thus a set

of robot locations, each resulting from a different combination of previous
location and control.
Lines 8 and 9 compute the mean and covariance of the predicted robot
location, using the unscented transform technique. Line 9 does not require
the addition of a motion noise term, which was necessary in the algorithm
described in Table 3.4. This is due to the state augmentation, which results
in predicted sigma points that already incorporate the motion noise. This
fact additionally makes the redrawing of sigma points from the predicted
Gaussian obsolete (see line 6 in Table 3.4).
In line 10, the predicted sigma points are then used to generate measure-
ment sigma points based on the measurement model defined in Equation
(6.40) in Chapter 6.6:

Z̄i,t =

(√
(mx − X̄ x[x]

i,t)2 + (my − X̄ x[y]
i,t)2

atan2(my − X̄ x[y]
i,t ,mx − X̄ x[y]

i,t)− X̄ x[θ]
i,t)

)
+

(
X z[r]

i,t

X z[φ]
i,t

)
(7.33)

Observation noise is assumed to be additive in this case.
The remaining updated steps are identical to the general UKF algorithm
stated in Table 3.4. Lines 11 and 12 compute the mean and covariance of
the predicted measurement. The cross-covariance between robot location
and observation is determined in line 13. Lines 14 through 16 update the
location estimate. The likelihood of the measurement is computed from the
innovation and the predicted measurement uncertainty, just like in the EKF
localization algorithm given in Table 7.2.

7.7.2 Illustration

We now illustrate the UKF localization algorithm using the same examples
as were used for the EKF localization algorithm. The reader is encouraged to
compare the following figures to the ones shown in Chapter 7.4.4.

Prediction Step (Lines 2–9) Figure 7.12 illustrates the UKF prediction step
for different motion noise parameters. The location components X x

t−1 of the
sigma points generated from the previous belief are indicated by the cross
marks located symmetrically around μt−1. The 15 sigma points have seven
different robot locations, only five of which are visible in this x-y-projection.

224 7 Mobile Robot Localization: Markov and Gaussian

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

Σ̄t

(a)

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

Σ̄t

(b)

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

Σ̄t

(c)

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

x [cm]

y
[c

m
]

μt−1

μ̄t

Σt−1

Σ̄t

(d)

Figure 7.12 Prediction step of the UKF algorithm. The graphs were generated with
different motion noise parameters. The robot’s initial estimate is represented by the
ellipse centered at μt−1. The robot moves on a circular arc of 90cm length while
turning 45 degrees to the left. In panel (a), the motion noise is relatively small in both
translation and rotation. The other panels represent (b) high translational noise, (c)
high rotational noise, and (d) high noise in both translation and rotation.

The additional two points are located “on top” and “below” the mean sigma
point, representing different robot orientations. The arcs indicate the motion
prediction performed in line 7. As can be seen, 11 different predictions are
generated, resulting from different combinations of previous location and
motion noise. The panels illustrate the impact of the motion noise on these
updates. The mean μ̄t and uncertainty ellipse Σ̄t of the predicted robot loca-
tion is generated from the predicted sigma points.

Measurement Prediction (Lines 10–12) In the measurement prediction
step, the predicted robot locations X̄ x

t are used to generate the measurement

7.7 UKF Localization 225

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

z t

μ̄t

Σ̄t

(a)

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

S t

(b)

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

z t

μ̄t

Σ̄t

(c)

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

S t

(d)

Figure 7.13 Measurement prediction. The left plots show the sigma points predicted
from twomotion updates alongwith the resulting uncertainty ellipses. The true robot
and the observation are indicated by the white circle and the bold line, respectively.
The panels on the right show the resulting measurement prediction sigma points.
The white arrows indicate the innovations, the differences between observed and
predicted measurements.

sigma points Z̄t (line 10). The black cross marks in the left plots of Figure 7.13
represent the location sigma points, and the white cross marks in the right
plots indicate the resulting measurement sigma points. Note that the 11 dif-
ferent location sigma points generate 15 different measurements, which is
due to different measurement noise components X z

t being added in line 10.
The panels also show the mean ẑt and uncertainty ellipse St of the predicted
measurement, extracted in lines 11 and 12.

Correction Step: Estimation Update (Lines 14–16) The correction step of
the UKF localization algorithm is virtually identical to EKF correction step.

226 7 Mobile Robot Localization: Markov and Gaussian

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

S t

(a)

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

μt

μ̄t

Σ̄t

Σt

(b)

0 50 100 150 200 250 300 350

−100

−50

0

50

100

r [cm]

φ
[d

eg
]

z t

ẑ t

S t

(c)

0 50 100 150 200 250 300 350

250

300

350

400

450

500

56

x [cm]

y
[c

m
]

μt

μ̄t

Σ̄t

Σt

(d)

Figure 7.14 Correction step of the UKF algorithm. The panels on the left show the
measurement prediction, and the panels on the right the resulting corrections, which
update the mean estimate and reduce the position uncertainty ellipses.

The innovation vector and the measurement prediction uncertainty are used
to update the estimate, as indicated by the white arrow in Figure 7.14.

Example Figure 7.15 shows a sequence of location estimates generated by
a particle filter (upper right), the EKF (lower left), and the UKF (lower right).
The upper left graph shows the robot’s trajectory according to the motion
control (dashed line) and the resulting true trajectory (solid line). Landmark
detections are indicated by thin lines. The dashed lines in the other three pan-
els show the paths estimated with the different techniques. The covariances
of the particle filter estimates are extracted from the sample sets of a particle
filter before and after the measurement update (see Table 8.2). The particle
filter estimates are shown here as reference since the particle filter does not

7.7 UKF Localization 227

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(a)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(b)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(c)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(d)

Figure 7.15 Comparison of UKF and EKF estimates: (a) Robot trajectory according
to the motion control (dashed lines) and the resulting true trajectory (solid lines).
Landmark detections are indicated by thin lines. (b) Reference estimates, generated
by a particle filter. (c) EKF and (d) UKF estimates.

make any linearization approximations. As can be seen, the estimates of the
EKF and the UKF are extremely close to these reference estimates, with the
UKF being slightly closer.
The impact of the improved linearization applied by the UKF is more
prominent in the example shown in Figure 7.16. Here, a robot performs two
motion controls along the circle indicated by the thin line. The panels show
the uncertainty ellipses after the two motions (the robot makes no obser-
vation). Again, the covariances extracted from exact, sample-based motion
updates are shown as reference. The reference samples were generated us-
ing algorithm sample_motion_model_velocity in Table 5.3. While the EKF
linearization incurs significant errors both in the location of the mean and
in the “shape” of the covariance, the UKF estimates are almost identical to

228 7 Mobile Robot Localization: Markov and Gaussian

−200 −100 0 100 200 300 400 500

100

200

300

400

500

600

x [cm]

y
[c

m
]

True Σt

EKF Σt

(a)

−200 −100 0 100 200 300 400 500

100

200

300

400

500

600

x [cm]

y
[c

m
]

True Σt

UKF Σt

(b)

Figure 7.16 Approximation error due to linearization. The robot moves on a cir-
cle. Estimates based on (a) EKF prediction and (b) UKF prediction. The reference
covariances are extracted from an accurate, sample-based prediction.

the reference estimates. This example also shows a subtle difference between
the EKF and the UKF prediction. The mean predicted by the EKF is always
exactly on the location predicted from the control (line 6 in Table 7.2). The
UKF mean, on the other hand, is extracted from the sigma points and can
therefore deviate from the mean predicted by the control (line 7 in Table 7.4).

7.8 Practical Considerations 229

7.8 Practical Considerations

The EKF localization algorithm and its close relative, MHT localization, are
popular techniques for position tracking. There exist a large number of vari-
ations of these algorithms that enhance their efficiency and robustness.

• Efficient search. First, it is often impractical to loop through all landmarks
k in the map, as is done by our EKF localization algorithm for unknown
correspondences. Often, there exist simple tests to identify plausible can-
didate landmarks (e.g., by simply projecting the measurement into x-y-
space), enabling one to rule out all but a constant number of candidates.
Such algorithms can be orders of magnitude faster than our naive imple-
mentation.

• Mutual exclusion. A key limitation of our implementation arises from
our assumed independence of feature noise in the EKF (and, by inheri-
tance, the MHT). The reader may recall condition (7.16), which enabled
us to process individual features sequentially, thereby avoiding a poten-
tial exponential search through the space of all correspondence vectors.
Unfortunately, such an approach allows for assigning multiple observed
features, say zi

t and zj
t with i �= j, to be assigned to the same landmark in

the map: ĉi
t = ĉj

t . For many sensors, such a correspondence assignment
is wrong by default. For example, if the feature vector is extracted from a
single camera image, we know by default that two different regions in the
image space must correspond to different locations in the physical world.
Put differently, we usually know that i �= j −→ ĉi

t �= ĉi
t. This (hard!) con-

straint is called mutual exclusion principle in data association. It reduces theMUTUAL EXCLUSION

PRINCIPLE IN DATA

ASSOCIATION
space of all possible correspondence vectors. Advanced implementations
consider this constraint. For example, one might first search for each cor-
respondence separately—as in our version of the EKF localizer—followed
by a “repair” phase in which violations of the mutual exclusion principle
are resolved by changing correspondence values accordingly.

• Outlier rejection. Further, our implementation does not address the is-
sue of outliers. The reader may recall from Chapter 6.6 that we allow for
a correspondence c = N + 1, with N being the number of landmarks in
the map. Such an outlier test is quite easily added to the EKF localization
algorithms. In particular, if we set πN+1 to be the a prior probability of
an outlier, the argmax-step in line 16 of EKF localization (Table 7.3) can
default toN +1 if an outlier is the most likely explanation of the measure-

230 7 Mobile Robot Localization: Markov and Gaussian

ment vector. Clearly, an outlier does not provide any information on the
robot’s pose; hence, the pose-related terms are simply omitted in lines 18
and 19 in Table 7.3.

EKF and UKF localization are only applicable to position tracking problems.
In general, linearized Gaussian techniques tend to work well only if the po-
sition uncertainty is small. There are several complimentary reasons for this
observation:

• A unimodal Gaussian is usually a good representation of uncertainty in
tracking whereas it is not in more general global localization problems.

• Even during tracking, unimodal Gaussians are not well suited to repre-
sent hard spatial constraints such as “the robot is close to a wall but can
not be inside the wall”. The severity of this limitation increases with the
uncertainty in the robot location.

• A narrow Gaussian reduces the danger of erroneous correspondence de-
cisions. This is important particularly for the EKF, since a single false
correspondence can derail the tracker by inducing an entire stream of lo-
calization and correspondence errors.

• Linearization is usually only good in a close proximity to the linearization
point. As a rule of thumb, if the standard deviation for the orientation θ is
larger than ±20 degrees, linearization effects are likely to make both the
EKF and the UKF algorithms fail.

The MHT algorithm overcomes most of these problems, at the cost of in-
creased computational complexity.

• It can solve the global localization problem by initializing the belief with
multiple Gaussian hypotheses. The hypotheses can be initialized accord-
ing to the first measurements.

• The kidnapped robot problem can be addressed by injecting additional
hypotheses into the mixture.

• Hard spatial constraints are still hard to model, but can be approximated
better using multiple Gaussians.

• The MHT is more robust to the problem of erroneous correspondence,
though it can fail equally when the correct correspondence is not among
those maintained in the Gaussian mixture.

7.8 Practical Considerations 231

• The MHT discussed here applies the same linearization as the EKF and
suffers thus from similar approximation effects. The MHT can also be
implemented using a UKF for each hypothesis.

The design of the appropriate features for Gaussian localization algorithms is
a bit of an art. This is because multiple competing objectives have to be met.
On the one hand, onewants sufficientlymany features in the environment, so
that the uncertainty in the robot’s pose estimate can be kept small. Small un-
certainty is absolutely vital for reasons already discussed. On the other hand,
one wants to minimize chances that landmarks are confused with each other,
or that the landmark detector detects spurious features. Many environments
do not possess too many point landmarks that can be detected with high re-
liability, hence many implementations rely on relatively sparsely distributed
landmarks. Here the MHT has a clear advantage, in that it is more robust
to data association errors. As a rule of thumb, large numbers of landmarks
tend to work better than small numbers even for the EKF and the UKF.When
landmarks are dense, however, it is critical to apply the mutual exclusion
principle in data association.
Finally, we note that EKF and UKF localization process only a subset of all
information in the sensormeasurement. By going from rawmeasurements to
features, the amount of information that is being processed is already dras-
tically reduced. Further, EKF and UKF localization are unable to process
negative information. Negative information pertains to the absence of a fea-NEGATIVE

INFORMATION ture. Clearly, not seeing a feature when one expects to see it carries relevant
information. For example, not seeing the Eiffel Tower in Paris implies that
it is unlikely that we are right next to it. The problem with negative infor-
mation is that it induces non-Gaussian beliefs, which cannot be represented
by the mean and variance. For this reason, EKF and UKF implementations
simply ignore the issue of negative information, and instead integrate only
information from observed features. The standard MHT also avoids nega-
tive information. However, it is possible to fold negative information into
the mixture weight, by decaying mixture components that failed to observe
a landmark.
With all these limitations, does this mean that Gaussian techniques are
brittle localization techniques? The answer is no. The EKF, the UKF, and
especially the MHT are surprisingly robust to violations of the linear sys-
tem assumptions. In fact, the key to successful localization lies in successful
data association. Later in this book, we will encounter more sophisticated
techniques for handling correspondences than the ones discussed thus far.

232 7 Mobile Robot Localization: Markov and Gaussian

Many of these techniques are applicable (and will be applied) to Gaussian
representations, and the resulting algorithms are often among the best ones
known.

7.9 Summary

In this chapter, we introduced the mobile robot localization problem and de-
vised a first practical algorithm for solving it.

• The localization problem is the problem of estimating a robot’s pose rela-
tive to a known map of its environment.

• Position tracking addresses the problem of accommodating the local un-
certainty of a robot whose initial pose is known; global localization is the
more general problem of localizing a robot from scratch. Kidnapping is a
localization problem in which a well-localized robot is secretly teleported
somewhere else without being told—it is the hardest of the three localiza-
tion problems.

• The hardness of the localization problem is also a function of the degree to
which the environment changes over time. All algorithms discussed thus
far assume a static environment.

• Passive localization approaches are filters: they process data acquired by
the robot but do not control the robot. Active techniques control the robot
during localization, with the purpose of minimizing the robot’s uncer-
tainty. So far, we have only studied passive algorithms. Active algorithms
will be discussed in Chapter 17.

• Markov localization is just a different name for the Bayes filter applied to
the mobile robot localization problem.

• EKF localization applies the extended Kalman filter to the localization
problem. EKF localization is primarily applied to feature-based maps.

• The most common technique for dealing with correspondence problems
is the maximum likelihood technique. This approach simply assumes that
at each point in time, the most likely correspondence is correct.

• The multi hypothesis tracking algorithm (MHT) pursues multiple corre-
spondences, using a Gaussian mixture to represent the posterior. Mixture
components are created dynamically, and terminated if their total likeli-
hood sinks below a user-specified threshold.

7.10 Bibliographical Remarks 233

• The MHT is more robust to data association problems than the EKF, at an
increased computational cost. The MHT can also be implemented using
UKF’s for the individual hypotheses.

• UKF localization uses the unscented transform to linearize themotion and
measurement models in the localization problem.

• All Gaussian filters are well-suited for local position tracking problems
with limited uncertainty and in environments with distinct features. The
EKF and UKF are less applicable to global localization or in environments
where most objects look alike.

• Selecting features for Gaussian filters requires skill. Features must be suf-
ficiently unambiguous to minimize the likelihood of confusing them, and
there must be enough of them that the robot frequently encounters fea-
tures.

• The performance of Gaussian localization algorithms can be improved by
a number of measures, such as enforcing mutual exclusion in data associ-
ation.

In the next chapter, we will discuss alternative localization techniques that
aim at dealing with the limitations of the EKF by using different representa-
tions of the robot’s belief.

7.10 Bibliographical Remarks

Localization has been dubbed “the most fundamental problem to providing a mobile robot with
autonomous capabilities” (Cox 1991). The use of EKF for state estimation in outdoor robotics
was pioneered by Dickmanns and Graefe (1988), who used EKFs to estimate highway curvature
from camera images. Much of the early work on indoor mobile robot localization is surveyed
in Borenstein et al. (1996) (see also (Feng et al. 1994)). Cox and Wilfong (1990) provides an early
text on the state of the art in mobile robotics, which also covers localization. Many of the early
techniques required environmental modifications, such as through artificial beacons. For exam-
ple, Leonard and Durrant-Whyte (1991) used EKFs whenmatching geometric beacons extracted
from sonar scans with beacons predicted from a geometric map of the environment. The prac-
tice of using artificial markers continues to the present day (Salichs et al. 1999), since often the
modification of the environment is both feasible and economical. Other early researchers used
lasers to scan unmodified environments (Hinkel and Knieriemen 1988).
Moving away from point features, a number of researchers developed more geometric tech-

niques for localization. For example, Cox (1991) developed an algorithm for matching distances
measured by infrared sensors, and line segment descriptions of the environment. An approach
byWeiss et al. (1994) correlated rangemeasurements for localization. The idea ofmapmatching—
specifically the comparison of a local occupancy grid map with a global environment map—is

234 7 Mobile Robot Localization: Markov and Gaussian

due to Moravec (1988). A gradient descent localizer based on this idea was described in Thrun
(1993), and used at the first AAAI competition in 1992 (Simmons et al. 1992). Schiele and Crow-
ley (1994) systematically compared different strategies to track the robot’s position based on
occupancy grid maps and ultrasonic sensors. They showed that matching local occupancy grid
maps with a global grid map results in a similar localization performance as if the matching is
based on features that are extracted from bothmaps. Shaffer et al. (1992) compare the robustness
of map-matching and feature-based techniques, showing that combinations of both yielded the
best empirical results. Yamauchi and Langley (1997) showed the robustness of map matching
to environmental change. The idea of using scan matching for localization in robotics goes back
to Lu and Milios (1994); Gutmann and Schlegel (1996); Lu and Milios (1998), although the basic
principle had been popular in other fields (Besl and McKay 1992). A similar technique was pro-
posed by Arras and Vestli (1998), who showed that scan matching made it possible to localize a
robot with remarkable accuracy. Ortin et al. (2004) found that using camera data along a laser
stripe increases the robustness of range scan matching.
A different strain of research investigated geometric techniques for localization (Betke and

Gurvits 1994). The term “kidnapped robot problem” goes back to Engelson and McDermott
(1992). The name “Markov localization” is due to Simmons and Koenig (1995), whose localizer
used a grid to represent posterior probabilities. However, the intellectual roots of this work
goes back to Nourbakhsh et al. (1995), who developed the idea of “certainty factors” for mo-
bile robot localizations. While the update rules for certainty factors did not exactly follow the
laws of probability, they captured the essential idea of multi-hypothesis estimation. A seminal
paper by Cox and Leonard (1994) also developed this idea, by dynamically maintaining trees
of hypotheses for a localizing robot. Fuzzy logic has been proposed for mobile localization by
Saffiotti (1997); see also Driankov and Saffiotti (2001).

7.11 Exercises

1. Suppose a robot is equipped with a sensor for measuring range and bear-
ing to a landmark; and for simplicity suppose that the robot can also sense
the landmark identity (the identity sensor is noise-free). We want to per-
form global localization with EKFs. When seeing a single landmark, the
posterior is usually poorly approximated by a Gaussian. However, when
sensing two or more landmarks at the same time, the posterior is often
well-approximated with a Gaussian.

(a) Explain why.

(b) Given k simultaneous measurements of ranges and bearings of k iden-
tifiably landmarks, devise a procedure for calculating a Gaussian pose
estimate for the robot under uniform initial prior. You should start
with the range/bearing measurement model provided in Chapter 6.6.

2. In this question we seek to design hard environments for global local-
ization. Suppose we can compose a planar environment out of n non-
intersecting straight line segments. The free space in the environment

7.11 Exercises 235

has to be confined; however, there might be island of occupied terrain in-
side the map. For the sake of this exercise, we assume that the robot is
equipped with a circular array of 360 range finders, and that these finders
never err.

(a) What is the maximum number of distinct modes that a globally local-
izing robot might encounter in its belief function? For n = 3, . . . , 8,
draw examples of worst-case environments, along with a plausible be-
lief that maximizes the number of modes.

(b) Does your analysis change if the range finders are allowed to err? In
particular, can you give an example for n = 4 in which the number of
plausible modes is larger than the ones derived above? Show such an
environment along with the (erroneous) range scan and the posterior.

3. You are requested to derive an EKF localization algorithm for a simplistic
underwater robot. The robot lives in a 3-D space and is equipped with
a perfect compass (it always knows its orientation). For simplicity, we
assume the robot move independently in all three Cartesian directions (x,
y, and z), by setting velocities ẋ, ẏ, ż. Its motion noise is Gaussian and
independent for all directions.

The robot is surrounded by a number of beacons that emit acoustic sig-
nals. The emission time of each signal is known, and the robot can de-
termine from each signal the identity of the emitting beacon (hence there
is no correspondence problem). The robot also knows the location of all
beacons, and it is given an accurate clock to measure the arrival time of
each signal. However, the robot cannot sense the direction from which it
received a signal.

(a) You are asked to devise an EKF localization algorithm for this robot.
This involves a mathematical derivation of the motion and the mea-
surement model, along with the Taylor approximation. It also involves
the statement of the final EKF algorithm, assuming known correspon-
dence.

(b) Implement your EKF algorithm and a simulation of the environment.
Investigate the accuracy and the failure modes of the EKF localizer in
the context of the three localization problems: global localization, po-
sition tracking, and the kidnapped robot problem.

4. Consider a simplified global localization in any of the following six grid-
style environments:

236 7 Mobile Robot Localization: Markov and Gaussian

(a) (b) (c)

(d) (e) (f)

In each environment, the robot will be placed at the random position fac-
ing North. You are devised to come up with an open-loop localization
strategy that contains a sequence of the following commands

Action L: Turn left 90 degrees.
Action R: Turn right 90 degrees.
Action M: Move forward until you hit an obstacle.

At the end of this strategy, the robot must be at a predictable location.
For each such environment, provide a shortest such sequence (only “M”
actions count). State where the robot will be after executing your action
sequence. If no such sequence exists, explain why.

5. Now assume the robot can sense the number of steps it takes while exe-
cuting an “M” action in the previous exercise. What will be the shortest
open-loop sequence for the robot to determine its location? Explain your
answer.

Notice: For this question, it might happen that the final location of the
robot is a function of its starting location. All we ask here is that the robot
localize itself.

8 Mobile Robot Localization: Grid
And Monte Carlo

8.1 Introduction

This chapter describes two localization algorithms that are capable of solv-
ing global localization problems. The algorithms discussed here possess a
number of differences to the unimodal Gaussian techniques discussed in the
previous chapter.

• They can process raw sensor measurements. There is no need to extract
features from sensor values. As a direct implication, they can also process
negative information.

• They are non-parametric. In particular, they are not bound to a unimodal
distribution as was the case with the EKF localizer.

• They can solve global localization and—in some instances—kidnapped
robot problems. The EKF algorithm is not able to solve such problems—
although the MHT (multi-hypothesis tracking) can be modified so as to
solve global localization problems.

The techniques presented here have exhibited excellent performance in a
number of fielded robotic systems.
The first approach is called grid localization. It uses a histogram filter to
represent the posterior belief. A number of issues arise when implement-
ing grid localization: with a fine-grained grid, the computation required for
a naive implementation may make the algorithm intolerably slow. With a
coarse grid, the additional information loss through the discretization neg-
atively affects the filter and—if not properly treated—may even prevent the
filter from working.

238 8 Mobile Robot Localization: Grid And Monte Carlo

1: Algorithm Grid_localization({pk,t−1}, ut, zt,m):
2: for all k do
3: p̄k,t =

∑
i

pi,t−1 motion_model(mean(xk), ut,mean(xi))

4: pk,t = η p̄k,t measurement_model(zt,mean(xk),m)

5: endfor
6: return {pk,t}

Table 8.1 Grid localization, a variant of the discrete Bayes filter. The function mo-
tion_model implements one of the motion models, and measurement_model a sen-
sor model. The function “mean” returns the center-of-mass of a grid cell xk.

The second approach is the Monte Carlo localization (MCL) algorithm, ar-
guably the most popular localization algorithm to date. It uses particle filters
to estimate posteriors over robot poses. A number of shortcomings of the
MCL are discussed, and techniques for applying it to the kidnapped robot
problem and to dynamic environments are presented.

8.2 Grid Localization

8.2.1 Basic Algorithm

Grid localization approximates the posterior using a histogram filter over a grid
decomposition of the pose space. The discrete Bayes filter was already exten-
sively discussed in Chapter 4.1 and is depicted in Table 4.1. It maintains as
posterior a collection of discrete probability values

bel(xt) = {pk,t}(8.1)

where each probability pk,t is defined over a grid cell xk. The set of all grid
cells forms a partition of the space of all legitimate poses:

domain(Xt) = x1,t ∪ x2,t ∪ . . .xK,t(8.2)

In the most basic version of grid localization, the partitioning of the space of
all poses is time-invariant, and each grid cell is of the same size. A common
granularity used in many of the indoor environments is 15 centimeters for

8.2 Grid Localization 239

the x- and y-dimensions, and 5 degrees for the rotational dimension. A finer
representation yields better results, but at the expense of increased computa-
tion.
Grid localization is largely identical to the basic histogram filter from
which it is derived. Table 8.1 provides pseudo-code for the most basic im-
plementation. It requires as input the discrete probability values {pt−1,k},
along with the most recent measurement, control, and the map. Its inner
loop iterates through all grid cells. Line 3 implements the motion model
update, and line 4 the measurement update. The final probabilities are nor-
malized through the normalizer η in line 4. The functions motion_model,
andmeasurement_model, may be implemented by any of the motion mod-
els in Chapter 5, and measurement models in Chapter 6, respectively. The
algorithm in Table 8.1 assumes that each cell possesses the same volume.
Figure 8.1 illustrates grid localization in our one-dimensional hallway ex-
ample. This diagram is equivalent to that of the general Bayes filter, except
for the discrete nature of the representation. As before, the robot starts out
with global uncertainty, represented by a uniform histogram. As it senses,
the corresponding grid cells raise their probability values. The example high-
lights the ability to represent multi-modal distributions with grid localiza-
tion.

8.2.2 Grid Resolutions

A key variable of the grid localizer is the resolution of the grid. On the sur-
face, this might appear to be a minor detail; however, the type of sensor
model that is applicable, the computation involved in updating the belief,
and the type results to expect all depend on the grid resolution.
At the extreme end are two types of representations, both of which have
been brought to bear successfully in fielded robotics systems.
A common approach to defining a grid is topological; the resulting gridsTOPOLOGICAL GRID

REPRESENTATION tend to be extremely coarse, and their resolution tends to be influenced by
the structure of the environment. Topological representations decompose
the space of all poses into regions that correspond to significant places in the
environment. Such places may be defined by the presence (or absence) of
specific landmarks, such as doors and windows. In hallway environments,
places may correspond to intersections, T-junctions, dead ends, and so on.
Topological representations tend to be coarse, and their environment decom-
position depends on the structure of the environment. Figure 8.5 shows such
a coarse representation for the one-dimensional hallway example.

240 8 Mobile Robot Localization: Grid And Monte Carlo

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.1 Grid localization using a fine-grained metric decomposition. Each pic-
ture depicts the position of the robot in the hallway along with its belief bel(xt),
represented by a histogram over a grid.

8.2 Grid Localization 241

bel(x)x

pose

Grid Environment

Figure 8.2 Example of a fixed-resolution grid over the robot pose variables x, y,
and θ. Each grid cell represents a robot pose in the environment. Different orien-
tations of the robot correspond to different planes in the grid (shown are only three
orientations).

A much finer grained representation is commonly found through metricMETRIC

REPRESENTATIONS representations. Such representations decompose the state space into fine-
grained cells of uniform size. The resolution of such decompositions is usu-
ally much higher than that of topological grids. For example, some of the
examples in Chapter 7 use grid decompositions with cell sizes of 15 centime-
ters or less. Hence, they are more accurate, but at the expense of increased
computational costs. Figure 8.2 illustrates such a fixed-resolution grid. Fine
resolution like these are commonly associated with metric representation of
space.
When implementing grid localization for coarse resolutions, it is important
to compensate for the coarseness in the resolution in the sensor and motion
models. In particular, for a high-resolution sensor like a laser range finder,
the value of the measurement model p(zt | xt) may vary drastically inside
each grid cell xk,t. If this is the case, just evaluating it at the center-of-mass
will generally yield poor results. Similarly, predicting robot motion from
the center-of-mass may yield poor results: If the motion is updated in 1-
second intervals for a robot moving at 10cm/sec, and the grid resolution is 1
meter, the naive implementation will never result in a state transition! This
is because any location that is approximately 10cm away from the center-of-
mass of a grid cell still falls into the same grid cell.

242 8 Mobile Robot Localization: Grid And Monte Carlo

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

A
ve

ra
ge

 e
st

im
at

io
n

er
ro

r [
cm

]

Cell size [cm]

Ultrasound sensor
Laser-range finder

Figure 8.3 Average localization error as a function of grid cell size, for ultrasound
sensors and laser range-finders.

A common way to compensate this effect is to modify both the measure-
ment and the motion model by inflating the amount of noise. For example,
the variance of a range finder model’s main Gaussian cone may be enlarged
by half the diameter of the grid cell. In doing so, the new model is much
smoother, and its interpretation will be less susceptible to the exact location
of the sample point relative to the correct robot location. However, this mod-
ified measurement model reduces the information extracted from the sensor
measurements,
Similarly a motion model may predict a random transition to a nearby cell
with a probability that is proportional to the length of the motion arc, di-
vided by the diameter of a cell. The result of such an inflated motion model
is that the robot can indeed move from one cell to another, even if its mo-
tion between consecutive updates is small relative to the size of a grid cell.
However, the resulting posteriors are wrong in that an unreasonably large
probability will be placed on the hypothesis that the robot changes cell at
each motion update—and hence moves much faster than commanded.
Figures 8.3 and 8.4 plot the performance of grid localization as a function
of the resolution, for two different types of range sensors. As to be expected,
the localization error increases as the resolution decreases. The total time

8.2 Grid Localization 243

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
A

ve
ra

ge
 lo

ca
liz

at
io

n
tim

e
[s

ec
]

Grid cell size [cm]

Ultrasound sensor
Laser-range finder

Figure 8.4 Average CPU-time needed for global localization as a function of grid
resolution, shown for both ultrasound sensors and laser range-finders.

necessary to localize a robot decreases as the grid becomes coarser, as shown
in Figure 8.4.

8.2.3 Computational Considerations

When using a fine-grained grid such as some of the metric grids described in
the previous section, the basic algorithm cannot be executed in real-time. At
fault are both the motion and the measurement update. The motion update
requires a convolution, which for a 3-D grid is a 6-D operation. The measure-
ment update is a 3-D operation, but calculating the likelihood of a full scan
is a costly operation.
There exist a number of techniques to reduce the computational complex-
ity of grid localization. Model pre-caching pays tribute to the fact that certainMODEL PRE-CACHING

measurementmodels are expensive to compute. For example, the calculation
of a measurement model may require ray casting, which can be pre-cached
for any fixed map. As motivated in Chapter 6.3.4, a common strategy is to
calculate for each grid cell essential statistics that facilitate the measurement
update. In particular, when using a beammodel, it is common to cache away
the correct range for each grid cell. Further, the sensor model can be pre-

244 8 Mobile Robot Localization: Grid And Monte Carlo

(a)

(b)

Figure 8.5 Application of a coarse-grained, topological representation to mobile
robot localization. Each state corresponds to a distinctive place in the environment
(a door in this case). The robot’s belief bel(xt) of being in a state is represented by
the size of the circles. (a) The initial belief is uniform over all poses. (b) shows the
belief after the robot made one state transition and detected a door. At this point, it is
unlikely that the robot is still in the left position.

calculated for a fine-grained array of possible ranges. The calculation of the
measurement model reduces then to two table lookups, which is much faster.
Sensor subsampling achieves further speed-ups by evaluating the measure-SENSOR SUBSAMPLING

ment model only for a subset of all ranges. In some of our systems, we use
only 8 of our 360 laser range measurement and still achieve excellent results.
Subsampling can take place spatially and in time.
Delayed motion updates applies the motion update at lower frequency thanDELAYED MOTION

UPDATES the control or measurement frequency of the robot. This is achieved by ge-
ometrically integrating the controls or odometry readings over a short time
period. A good delayed motion update technique can easily speed up the
algorithm by an order of magnitude.
Selective updating was already described in Chapter 4.1.4. When updat-SELECTIVE UPDATING

ing the grid, selective techniques update a fraction of all grid cells only. A
common implementation of this idea updates only those grid cells whose
posterior probability exceeds a user-specified threshold. Selective updating
techniques can reduce the computational effort involved in updating beliefs
by many orders of magnitude. Special care has to be taken to reactivate low-
likelihood grid cells when one seeks to apply this approach to the kidnapped
robot problem.

8.2 Grid Localization 245

With these modifications, grid localization can in fact become quite effi-
cient; even 10 years ago, low-end PCs were fast enough to generate the re-
sults shown in this chapter. However, our modifications place an additional
burden on the programmer and make a final implementation more complex
than the short algorithm in Table 8.1 suggests.

8.2.4 Illustration

Figure 8.6 shows an example of Markov localization with metric grids, at a
spatial resolution of 15 centimeters and an angular resolution of 5 degrees.
Shown there is a global localization run where a mobile robot equipped with
two laser range-finders localizes from scratch. The probabilistic model of the
range-finders is computed by the beam model described in Chapter 6.3 and
depicted in Table 8.1.
Initially, the robot’s belief is uniformly distributed over the pose space.
Figure 8.6a depicts a scan of the laser range-finders taken at the start position
of the robot. Here, max range measurements are omitted and the relevant
part of the map is shaded in gray. After incorporating this sensor scan, the
robot’s location is focused on just a few regions in the (highly asymmetric)
space, as shown by the gray-scale in Figure 8.6b. Notice that beliefs are pro-
jected into x-y space; the true belief is defined over a third dimension, the
robot’s orientation θ, which is omitted in this and the following diagrams.
Figure 8.6d shows the belief after the robot moved 2m, and incorporated the
second range scan shown in Figure 8.6c. The certainty in the position esti-
mation increases and the global maximum of the belief already corresponds
to the true location of the robot. After integrating another scan into the belief
the robot finally perceives the sensor scan shown in Figure 8.6e. Virtually all
probability mass is now centered at the actual robot pose (see Figure 8.6f).
Intuitively, we say that the robot successfully localized itself. This example
illustrates that grid localization is capable to globally localize a robot effi-
ciently.
A second example is shown in Figure 8.7; see the figure caption for an ex-
planation. Here the environment is partially symmetric, which causes sym-
metric modes to appear in the localization process.
Of course, global localization usually requires more than just a few sensor
scans to succeed. This is particularly the case in symmetric environments,
and if the sensors are less accurate than laser sensors. Figures 8.8 to 8.10 il-
lustrate global localization using amobile robot equipped with sonar sensors
only, and in an environment that possesses many corridors of approximately

246 8 Mobile Robot Localization: Grid And Monte Carlo

Robot position

Robot position

Robot position

(a)

(c)

(e)

(b)

(d)

(f)

Figure 8.6 Global localization in a map using laser range-finder data. (a) Scan of
the laser range-finders taken at the start position of the robot (max range readings are
omitted). Figure (b) shows the situation after incorporating this laser scan, starting
with the uniform distribution. (c) Second scan and (d) resulting belief. After integrat-
ing the final scan shown in (e), the robot’s belief is centered at its actual location (see
(f)).

8.2 Grid Localization 247

34

Room A

Room B

Start 21
5

Room C

I
II

II
I

(a) Path and reference poses

(c) Belief at reference pose 2

(e) Belief at reference pose 4

(b) Belief at reference pose 1

(d) Belief at reference pose 3

(f) Belief at reference pose 5

Figure 8.7 Global localization in an office environment using sonar data. (a) Path
of the robot. (b) Belief as the robot passes position 1. (c) After some meters of robot
motion, the robot knows that it is in the corridor. (d) As the robot reaches position 3 it
has scanned the end of the corridorwith its sonar sensors and hence the distribution is
concentrated on two local maxima. While the maximum labeled I represents the true
location of the robot, the secondmaximum arises due to the symmetry of the corridor
(position II is rotated by 180◦ relative to position I). (e) After moving through Room
A, the probability of being at the correct position I is now higher than the probability
of being at position II. (f) Finally the robot’s belief is centered on the correct pose.

248 8 Mobile Robot Localization: Grid And Monte Carlo

31m

22m

Figure 8.8 Occupancy grid map of the 1994 AAAI mobile robot competition arena.

the same width. An occupancy grid map is shown in Figure 8.8. Figure 8.9a
shows the data set, obtained by moving along one of the corridors and then
turning into another. Each of the measurement beams in Figure 8.9a corre-
sponds to a sonar measurement. In this particular environment, the walls are
smooth and a large fraction of sonar readings are corrupted. Again, the prob-
abilistic model of the sensor readings is the beam-based model described in
Chapter 6.3. Figure 8.9 additionally shows the belief for three different points
in time, marked “A,” “B,” and “C” in Figure 8.9a. After moving approxi-
mately three meters, during which the robot incorporates 5 sonar scans, the
belief is spread almost uniformly along all corridors of approximately equal
size, as shown in Figure 8.9b. A few seconds later, the belief is now focused
on a few distinct hypotheses, as depicted in Figure 8.9c. Finally, as the robot
turns around the corner and reaches the point marked “C,” the sensor data is
now sufficient to uniquely determine the robot’s position. The belief shown
in Figure 8.9d is now closely centered around the actual robot pose. This ex-
ample illustrates that the grid representation works well for high-noise sonar
data and in symmetric environments, where multiple hypotheses have to be
maintained during global localization.
Figure 8.10 illustrates the ability of the grid approach to correct accumu-

lated dead-reckoning errors by matching sonar data with occupancy grid
maps. Figure 8.10a shows the raw odometry data of a 240m long trajectory.
Obviously, the rotational error of the odometry quickly increases. After trav-

8.2 Grid Localization 249

C

A
B

3m

20m

Robot position (A)

Robot position (B) Robot position (C)

(a)

(c)

(b)

(d)

Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environ-
ment shown in Figure 8.8. This data set is sufficient for global localization using the
grid localization. The beliefs at the points marked “A,” “B” and “C” are shown in (b),
(c), and (d).

eling only 40m, the accumulated error in the orientation (raw odometry) is
about 50 degrees. Figure 8.10b shows the path of the robot estimated by the
grid localizer.
Obviously, the resolution of the discrete representation is a key param-
eter for grid Markov localization. Given sufficient computing and mem-
ory resources, fine-grained approaches are generally preferable over coarse-
grained ones. In particular, fine-grained approaches are superior to coarse-
grained approaches, assuming that sufficient computing time and memory
is available. As we already discussed in Chapter 2.4.4, the histogram repre-
sentation causes systematic error that may violate the Markov assumption
in Bayes filters. The finer the resolution, the less error is introduced, and the
better the results. Fine-grained approximations also tend to suffer less from
catastrophic failureswhere the robot’s belief differs significantly from its actualCATASTROPHIC

FAILURE position.

250 8 Mobile Robot Localization: Grid And Monte Carlo

(a)

(b)

Figure 8.10 (a) Odometry information and (b) corrected path of the robot.

8.3 Monte Carlo Localization

Wenow turn our attention to a popular localization algorithm that represents
the belief bel(xt) by particles. The algorithm is calledMonte Carlo Localization,
orMCL. Like grid-basedMarkov localization, MCL is applicable to both local
and global localization problems. Despite its relatively young age, MCL has
already become one of the most popular localization algorithms in robotics.
It is easy to implement and tends to work well across a broad range of local-
ization problems.

8.3.1 Illustration

Figure 8.11 illustratesMCL using the one-dimensional hallway example. The
initial global uncertainty is achieved through a set of pose particles drawn at
random and uniformly over the entire pose space, as shown in Figure 8.11a.
As the robot senses the door, MCL assigns importance factors to each parti-
cle. The resulting particle set is shown in Figure 8.11b. The height of each
particle in this figure shows its importance weight. It is important to notice
that this set of particles is identical to the one in Figure 8.11a—the only thing
modified by the measurement update are the importance weights.
Figure 8.11c shows the particle set after resampling and after incorporat-
ing the robot motion. This leads to a new particle set with uniform impor-
tance weights, but with an increased number of particles near the three likely
places. The new measurement assigns non-uniform importance weights to
the particle set, as shown in Figure 8.11d. At this point, most of the cu-

8.3 Monte Carlo Localization 251

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-
ization.

252 8 Mobile Robot Localization: Grid And Monte Carlo

1: AlgorithmMCL(Xt−1, ut, zt,m):
2: X̄t = Xt = ∅
3: form = 1 toM do
4: x

[m]
t = sample_motion_model(ut, x

[m]
t−1)

5: w
[m]
t = measurement_model(zt, x

[m]
t ,m)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: endfor
8: form = 1 toM do
9: draw iwith probability ∝ w

[i]
t

10: add x
[i]
t to Xt

11: endfor
12: return Xt

Table 8.2 MCL, or Monte Carlo Localization, a localization algorithm based on par-
ticle filters.

mulative probability mass is centered on the second door, which is also the
most likely location. Further motion leads to another resampling step, and a
step in which a new particle set is generated according to the motion model
(Figure 8.11e). As should be obvious from this example, the particle sets ap-
proximate the correct posterior, as would be calculated by an exact Bayes
filter.

8.3.2 The MCL Algorithm

Table 8.2 shows the basic MCL algorithm, which is obtained by substituting
the appropriate probabilistic motion and perceptual models into the algo-
rithm particle_filters (Table 4.3 on page 98). The basic MCL algorithm repre-
sents the belief bel(xt) by a set ofM particlesXt = {x[1]

t , x
[2]
t , . . . , x

[M]
t }. Line 4

in our algorithm (Table 8.2) samples from the motion model, using particles
from present belief as starting points. The measurement model is then ap-
plied in line 5 to determine the importance weight of that particle. The initial
belief bel(x0) is obtained by randomly generatingM such particles from the
prior distribution p(x0), and assigning the uniform importance factor M−1

to each particle. As in grid localization, the functions motion_model, and

8.3 Monte Carlo Localization 253

measurement_model, may be implemented by any of the motion models in
Chapter 5, and measurement models in Chapter 6, respectively.

8.3.3 Physical Implementations

It is straightforward to implement the MCL algorithm for the landmark-
based localization scenario of Chapter 7. To do so, the sam-
pling procedure in line 4 is implemented using the algorithm sam-
ple_motion_model_velocity given in Table 5.3. The algorithm land-
mark_model_known_correspondence given in Table 6.4 provides the likeli-
hood model used in line 5 to weigh the predicted samples.
Figure 8.12 illustrates this version of the MCL algorithm. The scenario is
identical to the one shown in Figure 7.15. For convenience, the illustration
of the robot path and measurements is shown again in the upper left figure.
The lower plot shows a sequence of sample sets generated by the MCL al-
gorithm. The solid line represents the true path of the robot, the dotted line
represents the path based on the control information, and the dashed line
represents the mean path estimated by the MCL algorithm. Predicted sam-
ple sets X̄t at different points in time are shown in dark, the samples Xt after
the resampling steps are shown in lighter gray. Each particle set is defined
over the 3-dimensional pose space, although only the x- and y-coordinates
of each particle are shown. The means and covariances extracted from these
sets are shown in the upper right figure.
Figure 8.13 shows the result of applying MCL in an actual office envi-
ronment, for a robot equipped with an array of sonar range finders. This
version of MCL computes the likelihood of measurements using algorithm
beam_range_finder_model given in Table 6.1. The figure depicts particle
sets after 5, 28, and 55, meters of robot motion, respectively. A third illus-
tration is provided in Figure 8.14, here using a camera pointed towards the
ceiling, and a measurement model that relates the brightness in the center of
the image to a previously acquired ceiling map.

8.3.4 Properties of MCL

MCL can approximate almost any distribution of practical importance. It is
not bound to a limited parametric subset of distributions, as was the case for
EKF localization. Increasing the total number of particles increases the accu-
racy of the approximation. The number of particles M is a parameter that
enables the user to trade off the accuracy of the computation and the compu-

254 8 Mobile Robot Localization: Grid And Monte Carlo

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(a)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(b)

−100 0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

1 2 3

456

(c)

Figure 8.12 The MCL algorithm for landmark-based localization. (a) Robot trajec-
tory according to the motion control (dashed lines) and the resulting true trajectory
(solid lines). Landmark detections are indicated by thin lines. (b) Covariances of
sample sets before and after resampling. (c) Sample sets before and after resampling.

tational resources necessary to run MCL. A common strategy for setting M

is to keep sampling until the next pair ut and zt has arrived. In this way, the
implementation is adaptive with regards to the computational resources: the
faster the underlying processor, the better the localization algorithm. How-
ever, as we will see in Chapter 8.3.7, care has to be taken that the number of
particles remains high enough to avoid filter divergence.
A final advantage of MCL pertains to the non-parametric nature of the
approximation. As our illustrative results suggest, MCL can represent com-
plex multi-modal probability distributions, and blend them seamlessly with

8.3 Monte Carlo Localization 255

Robot position

Start

(a)

Robot position

(b)

Robot position

(c)

Figure 8.13 Illustration ofMonte Carlo localization: Shown here is a robot operating
in an office environment of size 54m × 18m. (a) After moving 5m, the robot is still
globally uncertain about its position and the particles are spread through major parts
of the free-space. (b) Even as the robot reaches the upper left corner of the map, its
belief is still concentrated around four possible locations. (c) Finally, after moving
approximately 55m, the ambiguity is resolved and the robot knows where it is. All
computation is carried out in real-time on a low-end PC.

256 8 Mobile Robot Localization: Grid And Monte Carlo

Figure 8.14 Global localization using a camera pointed at the ceiling.

focused Gaussian-style distributions.

8.3.5 Random Particle MCL: Recovery from Failures

MCL, in its present form, solves the global localization problem but cannot
recover from robot kidnapping, or global localization failures. This is quite
obvious from the results in Figure 8.13: As the position is acquired, particles
at places other than the most likely pose gradually disappear. At some point,
particles only “survive” near a single pose, and the algorithm is unable to
recover if this pose happens to be incorrect.
This problem is significant. In practice, any stochastic algorithm such as
MCL may accidentally discard all particles near the correct pose during the
resampling step. This problem is particularly paramount when the number
of particles is small (e.g.,M = 50), and when the particles are spread over a
large volume (e.g., during global localization).
Fortunately, this problem can be solved by a rather simple heuristic. The
idea of this heuristic is to add random particles to the particle sets, as already
discussed in Chapter 4.3.4. Such an injection of random particles can be justi-INJECTION OF RANDOM

PARTICLES fied mathematically by assuming that the robot might get kidnapped with a
small probability, thereby generating a fraction of random states in the mo-
tion model. Even if the robot does not get kidnapped, however, the random
particles add an additional level of robustness.
The approach of adding particles raises two questions. First, how many
particles should be added at each iteration of the algorithm and, second, from

8.3 Monte Carlo Localization 257

which distribution should we generate these particles? One might add a
fixed number of random particles at each iteration. A better idea is to add
particles based on some estimate of the localization performance.
One way to implement this idea is to monitor the probability of sensor
measurements

p(zt | z1:t−1, u1:t,m)(8.3)

and relate it to the average measurement probability (which is easily learned
from data). In particle filters, an approximation to this quantity is easily ob-
tained from the importance factor, since, by definition, an importance weight
is a stochastic estimate of this probability. The average value

1

M

M∑
m=1

w
[m]
t ≈ p(zt | z1:t−1, u1:t,m)(8.4)

approximates the desired probability as stated. It is usually a good idea to
smooth this estimate by averaging it over multiple time steps. There exist
multiple reasons why the measurement probability may be low, besides a
localization failure. The amount of sensor noise might be unnaturally high,
or the particles may still be spread out during a global localization phase.
For these reasons, it is a good idea to maintain a short-term average of the
measurement likelihood, and relate it to the long-term average when deter-
mining the number of random samples.
The second problem of determining which sample distribution to use can
be addressed in two ways. One can draw particles according to a uniform
distribution over the pose space and weight them with the current observa-
tion.
For some sensor models, however, it is possible to generate particles di-
rectly in accordance to the measurement distribution. One example of such
a sensor model is the landmark detection model discussed in Chapter 6.6.
In this case the additional particles can be placed directly at locations dis-
tributed according to the observation likelihood (see Table 6.5).
Table 8.3 shows a variant of the MCL algorithm that adds random par-
ticles. This algorithm is adaptive, in that it tracks the short-term and the
long-term average of the likelihood p(zt | z1:t−1, u1:t,m). Its first part is iden-
tical to the algorithm MCL in Table 8.2: New poses are sampled from old
particles using the motion model (line 5), and their importance weight is set
in accordance to the measurement model (line 6).
Augmented_MCL calculates the empirical measurement likelihood in line

8, andmaintains short-term and long-term averages of this likelihood in lines

258 8 Mobile Robot Localization: Grid And Monte Carlo

1: Algorithm Augmented_MCL(Xt−1, ut, zt,m):
2: static wslow, wfast

3: X̄t = Xt = ∅
4: form = 1 toM do
5: x

[m]
t = sample_motion_model(ut, x

[m]
t−1)

6: w
[m]
t = measurement_model(zt, x

[m]
t ,m)

7: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

8: wavg = wavg + 1
M

w
[m]
t

9: endfor
10: wslow = wslow + αslow(wavg − wslow)

11: wfast = wfast + αfast(wavg − wfast)

12: form = 1 toM do
13: with probability max{0.0, 1.0− wfast/wslow} do
14: add random pose to Xt

15: else
16: draw i ∈ {1, . . . , N} with probability ∝ w

[i]
t

17: add x
[i]
t to Xt

18: endwith
19: endfor
20: return Xt

Table 8.3 An adaptive variant of MCL that adds random samples. The number
of random samples is determined by comparing the short-term with the long-term
likelihood of sensor measurements.

10 and 11. The algorithm requires that 0 ≤ αslow � αfast. The parameters
αslow, and αfast, are decay rates for the exponential filters that estimate the
long-term, and short-term, averages, respectively. The crux of this algorithm
can be found in line 13: During the resampling process, a random sample is
added with probability

max{0.0, 1.0− wfast/wslow}(8.5)

Otherwise, resampling proceeds in the familiar way. The probability of
adding a random sample takes into consideration the divergence between
the short- and the long-term average of the measurement likelihood. If the

8.3 Monte Carlo Localization 259

short-term likelihood is better or equal to the long-term likelihood, no ran-
dom sample is added. However, if the short-term likelihood is worse than
the long-term one, random samples are added in proportion to the quotient
of these values. In this way, a sudden decay in measurement likelihood in-
duces an increased number of random samples. The exponential smoothing
counteracts the danger of mistaking momentary sensor noise for a poor lo-
calization result.
Figure 8.16 illustrates our augmented MCL algorithm in practice. Shown
there is a sequence of particle sets during global localization and relocal-
ization of a legged robot equipped with a color camera, and operating on
a 3×2m field as it was used in RoboCup soccer competitions. Sensor mea-
surements correspond to the detection and relative localization of six visual
markers placed around the field, as shown in Figure 7.7 on page 210. The
algorithm described in Table 6.4 is used to determine the likelihood of detec-
tions. Step 14 in Figure 8.3 is replaced by an algorithm for sampling accord-
ing to the most recent sensor measurement, which is easily implemented
using algorithm sample_landmark_model_known_correspondence in Ta-
ble 6.5.
Panels (a) through (d) in Figure 8.16 illustrate global localization. At the
first marker detection, virtually all particles are drawn according to this de-
tection (Figure 8.16b). This step corresponds to a situation in which the
short-term average of the measurement probability is much worse than its
long-term correspondent. After several more detections, the particles are
clustered around the true robot position (Figure 8.16d), and both the short-
and long-term average of themeasurement likelihood increases. At this stage
of localization, the robot is merely tracking its position, the observation like-
lihoods are rather high, and only a very small number of random particles
are occasionally added.
As the robot is physically placed at a different location by a referee—a
common event in robotic soccer tournaments—the measurement probability
drops. The first marker detection at this new location does not yet trigger
any additional particles, since the smoothed estimate wfast is still high (see
Figure 8.16e). After several marker detections observed at the new location,
wfast decreases much faster than wslow and more random particles are added
(Figure 8.16f&g). Finally, the robot successfully relocalizes itself as shown in
Figure 8.16h, demonstrating that our augmented MCL algorithm is indeed
capable of “surviving” the kidnapping.

260 8 Mobile Robot Localization: Grid And Monte Carlo

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.16 Monte Carlo localization with random particles. Each picture shows a
particle set representing the robot’s position estimate (small lines indicate the orien-
tation of the particles). The large circle depicts the mean of the particles, and the true
robot position is indicated by the small, white circle. Marker detections are illustrated
by arcs centered at the detected marker. The pictures illustrate global localization (a)–
(d) and relocalization (e)–(h).

8.3 Monte Carlo Localization 261

0

0.2

0.4

0.6

0.8

1

250 500 1000 2000 4000
number of samples

Mixture-MCL

MCL without random samples

MCL with random samples

er
ro

r r
at

e
(in

 p
er

ce
nt

ag
e

of
 lo

st
 p

os
iti

on
s)

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e
[c

m
]

Time [sec]

Standard MCL
Mixture MCL

(b)

Figure 8.17 (a) plain MCL (top curve), MCL with random samples (center curve),
and Mixture MCL with mixture proposal distribution (bottom curve). The error rate
is measured in percentage of time during which the robot lost track of its position, for
a data set acquired by a robot operating in a crowdedmuseum. (b) Error as a function
of time for standard MCL and mixture MCL, using a ceiling map for localization.

8.3.6 Modifying the Proposal Distribution

The MCL proposal mechanism is another source that can render MCL ineffi-
cient. As discussed in Chapter 4.3.4, the particle filter uses the motion model
as proposal distribution, but it seeks to approximate a product of this distri-
bution and the perceptual likelihood. The larger the difference between the
proposal and the target distribution, the more samples are needed.
In MCL, this induces a surprising failure mode: If we were to acquire a
perfect sensor that—without any noise—always informs the robot of its cor-
rect pose, MCL would fail. This is even true for noise-free sensors that do
not carry sufficient information for localization. An example of the latter
would be a 1-D noise-free range sensor: When receiving such a range mea-
surement, the space of valid pose hypotheses will be a 2-D subspace of the
3-D pose space. We already discussed in length in Chapter 4.3.4 that chances
to sample into this 2-D submanifold are zero when sampling from the robot
motion model. Thus, we face the strange situation that under certain circum-
stances, a less accurate sensor would be preferable to a more accurate sensor
when using MCL for localization. This is not the case for EKF localization,
since the EKF update takes the measurements into account when calculating
the new mean—instead of generating mean(s) from the motion model alone.
Luckily, a simple trick provides remedy: Simply use ameasurement model

262 8 Mobile Robot Localization: Grid And Monte Carlo

that artificially inflates the amount of noise in the sensor. One can think of
this inflation as accommodating not just the measurement uncertainty, but
also the uncertainty induced by the approximate nature of the particle filter
algorithm.
An alternative, more sound solution involves a modification of the sam-
pling process which we already discussed briefly in Chapter 4.3.4. The idea
is that for a small fraction of all particles, the role of the motion model and
the measurement model are reversed: Particles are generated according to
the measurement model

x
[m]
t ∼ p(zt | xt)(8.6)

and the importance weight is calculated in proportion to

w
[m]
t =

∫
p(x

[m]
t | ut, xt−1) bel(xt−1) dxt−1(8.7)

This new sampling process is a legitimate alternative to the plain particle
filter. It alone will be inefficient since it entirely ignores the history when gen-
erating particles. However, it is equally legitimate to generate a fraction of
the particles with either of those twomechanisms andmerge the two particle
sets. The resulting algorithm is calledMCL with mixture proposal distribution,
orMixture MCL. In practice, it tends to suffice to generate a small fraction ofMIXTURE MCL

particles (e.g., 5%) through the new process.
Unfortunately, our idea does not come without challenges. The two main
steps—sampling from p(zt | xt) and calculating the importance weights
w

[m]
t —can be difficult to realize. Sampling from the measurement model is
only easy if its inverse possesses a closed form solution from which it is easy
to sample. This is usually not the case: imagine sampling from the space of
all poses that fit a given laser range scan! Calculating the importance weights
is complicated by the integral in (8.7), and by the fact that bel(xt−1) is itself
represented by a set of particles.
Without delving into too much detail, we note that both steps can be im-
plemented, but only with additional approximations. Figure 8.17 shows
comparative results for MCL, MCL augmented with random samples, and
Mixture MCL for two real-world data sets. In both cases, p(zt | xt) was itself
learned from data and represented by a density tree—an elaborate procedure
whose description is beyond the scope of this book. For calculating the im-
portance weights, the integral was replaced by a stochastic integration, and
the prior belief was continued into a space-filling density by convolving each
particle with a narrowGaussian. Details aside, these results illustrate that the
mixture idea yields superior results, but it can be challenging to implement.

8.3 Monte Carlo Localization 263

We also note that the Mixture MCL provides a sound solution to the kid-
napped robot problem. By seed-starting particles using the most recent mea-
surement only, we constantly generate particles at locations that are plausi-
ble given the momentary sensor input, regardless of past measurements and
controls. There exist ample evidence in the literature that such approaches
can cope well with total localization failure (Figure 8.17b happens to show
one such failure for regular MCL), hence provides improved robustness in
practical implementations.

8.3.7 KLD-Sampling: Adapting the Size of Sample Sets

The size of the sample sets used to represent beliefs is an important parame-
ter for the efficiency of particle filters. So far we only discussed particle filters
that use sample sets of fixed size. Unfortunately, to avoid divergence due to
sample depletion in MCL, one has to choose large sample sets so as to allow
a mobile robot to address both the global localization and the position track-
ing problem. This can be a waste of computational resources, as Figure 8.13
reveals. In this example, all sample sets contain 100,000 particles. While such
a high number of particles might be necessary to accurately represent the be-
lief during early stages of localization (cf. Figure 8.13a), it is obvious that only
a small fraction of this number suffices to track the position of the robot once
it knows where it is (Figure 8.13c).
KLD-sampling is a variant of MCL that adapts the number of particles overKLD-SAMPLING

time. We do not provide a mathematical derivation of KLD-sampling, but
only state the algorithm and show some experimental results. The name
KLD-sampling is derived from the Kullback-Leibler divergence, which is a mea-KULLBACK-LEIBLER

DIVERGENCE sure of the difference between two probability distributions. The idea behind
KLD-sampling is to determine the number of particles based on a statistical
bound on the sample-based approximation quality. More specifically, at each
iteration of the particle filter, KLD-sampling determines the number of sam-
ples such that, with probability 1 − δ, the error between the true posterior
and the sample-based approximation is less than ε. Several assumptions not
stated heremake it possible to derive an efficient implementation of this idea.
The KLD-sampling algorithm is shown in Table 8.4. The algorithm takes as
input the previous sample set alongwith themap and themost recent control
andmeasurement. In contrast toMCL, KLD-sampling takes a weighted sam-
ple set as input. That is, the samples inXt−1 are not resampled. Additionally,
the algorithm requires the statistical error bounds ε and δ.
In a nutshell, KLD-sampling generates particles until the statistical bound

264 8 Mobile Robot Localization: Grid And Monte Carlo

1: Algorithm KLD_Sampling_MCL(Xt−1, ut, zt,m, ε, δ):
2: Xt = ∅
3: M = 0, Mχ = 0, k = 0

4: for all b in H do
5: b = empty
6: endfor
7: do
8: draw iwith probability ∝ w

[i]
t−1

9: x
[M]
t = sample_motion_model(ut, x

[i]
t−1)

10: w
[M]
t = measurement_model(zt, x

[M]
t ,m)

11: Xt = Xt + 〈x[M]
t , w

[M]
t 〉

12: if x
[M]
t falls into empty bin b then

13: k = k + 1

14: b = non-empty
15: if k > 1 then

16: Mχ := k−1
2ε

{
1 − 2

9(k−1)
+

√
2

9(k−1)
z1−δ

}3

17: endif
18: M = M + 1

19: whileM < Mχ orM < Mχmin

20: return Xt

Table 8.4 KLD-sampling MCL with adaptive sample set size. The algorithm gener-
ates samples until a statistical bound on the approximation error is reached.

in line 16 is satisfied. This bound is based on the “volume” of the state space
that is covered by particles. The volume covered by particles is measured
by a histogram, or grid, overlayed over the 3-dimensional state space. Each
bin in the histogram H is either empty or occupied by at least one particle.
Initially, each bin is set to empty (Lines 4 through 6). In line 8, a particle is
drawn from the previous sample set. Based on this particle, a new particle is
predicted, weighted, and inserted into the new sample set (Lines 9–11, just
like in MCL).
Lines 12 through 19 implement the key idea of KLD-sampling. If the newly

8.3 Monte Carlo Localization 265

generated particle falls into an empty bin of the histogram, then the number k
of non-empty bins is incremented and the bin is marked as non-empty. Thus,
k measures the number of histogram bins filled with at least one particle.
This number plays a crucial role in the statistical bound determined in line 16.
The quantity Mχ gives the number of particles needed to reach this bound.
Note that for a given ε, Mχ is mostly linear in the number k of non-empty
bins; the second, nonlinear term becomes negligible as k increases. The term
z1−δ is based on the parameter δ. It represents the upper 1− δ quantile of the
standard normal distribution. The values of z1−δ for typical values of δ are
readily available in standard statistical tables.
The algorithm generates new particles until their number M exceeds Mχ

and a user-defined minimumMχmin . As can be seen, the thresholdMχ serves
as a moving target forM . The more samplesM are generated, the more bins
k in the histogram are non-empty, and the higher the thresholdMχ.
In practice, the algorithm terminates based on the following reasoning. In
the early stages of sampling, k increases with almost every new sample since
virtually all bins are empty. This increase in k results in an increase in the
thresholdMχ. However, over time, more and more bins are non-empty and
Mχ increases only occasionally. SinceM increases with each new sample,M
will finally reachMχ and sampling is stopped. When this happens depends
on the belief. The more widespread the particles, the more bins are filled and
the higher the thresholdMχ. During tracking, KLD-sampling generates less
samples since the particles are concentrated on a small number of different
bins. It should be noted that the histogram has no impact on the particle
distribution itself. Its only purpose is to measure the complexity, or volume,
of the belief. The grid is discarded at the end of each particle filter iteration.
Figure 8.18 shows the sample set sizes during a typical global localization
run using KLD-sampling. The figure shows graphs when using a robot’s
laser range-finder (solid line) or ultrasound sensors (dashed line). In both
cases, the algorithm chooses a large number of samples during the initial
phase of global localization. Once the robot is localized, the number of parti-
cles drops to a much lower level (less than 1% of the initial number of parti-
cles). When and how fast this transition from global localization to position
tracking happens depends on the type of the environment and the accuracy
of the sensors. In this example, the higher accuracy of the laser range-finder
is reflected by an earlier transition to a lower level.
Figure 8.19 shows a comparison between the approximation error of KLD-
sampling and MCL with fixed sample sets. The approximation error is mea-
sured by the Kullback-Leibler distance between the beliefs (sample sets) gen-

266 8 Mobile Robot Localization: Grid And Monte Carlo

10

100

1000

10000

100000

0 200 400 600 800 1000 120

N
um

be
r o

f s
am

pl
es

Laser
Sonar

Time [sec]

Figure 8.18 KLD-sampling: Typical evolution of number of samples for a global
localization run, plotted against time (number of samples is shown on a log scale).
The solid line shows the number of samples when using the robot’s laser range-finder,
the dashed graph is based on sonar sensor data.

erated with varying numbers of samples and the “optimal” beliefs. These
“optimal” beliefs were generated by running MCL with sample sets of size
200,000, which is far more than actually needed for position estimation. As
expected, the more samples are used by the two approaches, the smaller the
approximation error. The dashed graph shows the results achieved by MCL
with different sample set sizes. As can be seen, the fixed approach requires
about 50,000 samples before it converges to a KL-distance below 0.25. Larger
errors typically indicate that the particle filter diverges and the robot is not
able to localize. The solid line shows the results when using KLD-sampling.
Here the sample set sizes are averages over the global localization runs. The
different data points were obtained by varying the error bound ε between 0.4
and 0.015, decreasing from left to right. KLD-sampling converges to a small
error level using only 3,000 samples on average. The graph also shows that
KLD-sampling is not guaranteed to accurately track the optimal belief. The
leftmost data points on the solid line indicate that KLD-sampling diverges
due to too loose error bounds.
KLD-sampling can be used by any particle filter, not just MCL. The his-
togram can be implemented either as a fixed, multi-dimensional grid, or
more compactly as tree structures. In the context of robot localization, KLD-

8.4 Localization in Dynamic Environments 267

KLD sampling

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 20000 40000 60000 80000 100000

Fixed sampling

K
L−

di
ve

rg
en

ce

Number of samples

Figure 8.19 Comparison of KLD-sampling and MCL with fixed sample set sizes.
The x-axis represents the average sample set size. The y-axis plots the KL-distance
between the reference beliefs and the sample sets generated by the two approaches.

sampling has been shown to consistently outperformMCLwith fixed sample
set sizes. The advantage of this technique is most significant for a combina-
tion of global localization and tracking problems. In practice, good results
are achieved with error bound values around 0.99 for (1 − δ) and 0.05 for ε

in combination with histogram bin sizes of 50cm × 50cm × 15deg.

8.4 Localization in Dynamic Environments

A key limitation of all localization algorithms discussed thus far arises from
the static world assumption, or Markov assumption. Most interesting en-
vironments are populated by people, and hence exhibit dynamics not mod-
eled by the state xt. To some extent, probabilistic approaches are robust to
such unmodeled dynamics, due to their ability to accommodate sensor noise.
However, as previously noted, the type of sensor noise accommodated in
the probabilistic filtering framework must be independent at each time step,
whereas unmodeled dynamics induce effects on the sensor measurements
over multiple time steps. When such effects are paramount, probabilistic
localization algorithms that rely on the static world assumption may fail.
A good example of such a failure situation is shown in Figure 8.20. This
example involves a mobile tour-guide robot, navigating in museums full of

268 8 Mobile Robot Localization: Grid And Monte Carlo

RHINO

(a) (b)

Figure 8.20 Scenes from the “Deutsches Museum Bonn,” where the mobile robot
“Rhino” was frequently surrounded by dozens of people.

(a) (b)

Figure 8.21 Laser range scans are often heavily corrupted when people surround
the robot. How can a robot maintain accurate localization under such circumstances?

people. The people—their locations, velocities, intentions etc.—are hidden
state relative to the localization algorithm that is not captured in the algo-
rithms discussed thus far. Why is this problematic? Imagine people lining
up in a way that suggests the robot is facing a wall. With each single sen-
sor measurement the robot increases its belief of being next to a wall. Since
information is treated as independent, the robot will ultimately assign high
likelihood to poses near walls. Such an effect is possible with independent
sensor noise, but its likelihood is vanishingly small.

8.4 Localization in Dynamic Environments 269

There exist two fundamental techniques for dealing with dynamic envi-
ronments. The first technique, state augmentation includes the hidden stateSTATE AUGMENTATION

into the state estimated by the filter; the other, outlier rejection pre-processes
sensor measurements to eliminate measurements affected by hidden state.
The former methodology is mathematically the more general one: Instead
of just estimating the robot’s pose, one can define a filter that also estimates
people’s positions, their velocities, etc. In fact, we will later on discuss such
an approach, as an extension to a mobile robot mapping algorithm.
The principle disadvantage of estimating the hidden state variables lies
in its computational complexity: Instead of estimating 3 variables, the robot
must now calculate posteriors over a much larger number of variables. In
fact, the number of variables itself is a variable, as the number of people
may vary over time. Thus, the resulting algorithm will be substantially more
involved than the localization algorithms discussed thus far.
The alternative, outlier rejection, works well in certain limited situations,OUTLIER REJECTION

which includes situations where people’s presence may affect range finders
or (to a lesser extent) camera images. Here we develop it for the beam-based
range finder model from Chapter 6.3.
The idea is to investigate the cause of a sensor measurement, and to reject

those likely to be affected by unmodeled environment dynamics. The sensor
models discussed thus far all address different, alternative ways by which
a measurement can come into existence. If we manage to associate specific
ways with the presence of unwanted dynamic effects—such as people—all
we have to do is to discard those measurements that are with high likelihood
caused by such an unmodeled entity.
This idea is surprisingly general; and in fact, the mathematics are essen-
tially the same as in the EM learning algorithm in Chapter 6.3, but applied in
an online fashion. In Equation(6.12), Chapter 6.3, we defined the beam-based
measurement model for range finders as a mixture of four terms:

p(zk
t | xt,m) =

⎛
⎜⎜⎝

zhit

zshort

zmax

zrand

⎞
⎟⎟⎠

T

·

⎛
⎜⎜⎝

phit(z
k
t | xt,m)

pshort(z
k
t | xt,m)

pmax(z
k
t | xt,m)

prand(zk
t | xt,m)

⎞
⎟⎟⎠(8.8)

As our derivation of the model clearly states, one of those terms, the one
involving zshort and pshort, corresponds to unexpected objects. To calculate
the probability that a measurement zk

t corresponds to an unexpected object,
we have to introduce a new correspondence variable, c̄k

t which can take on
one of the four values {hit, short,max, rand}.

270 8 Mobile Robot Localization: Grid And Monte Carlo

The posterior probability that the range measurement zk
t corresponds to a

“short” reading—our mnemonic from Chapter 6.3 for unexpected obstacle—
is then obtained by applying Bayes rule and subsequently dropping irrele-
vant conditioning variables:

p(c̄k
t = short | zk

t , z1:t−1, u1:t,m)(8.9)

=
p(zk

t | c̄k
t = short, z1:t−1, u1:t,m) p(c̄k

t = short | z1:t−1, u1:t,m)∑
c

p(zk
t | c̄k

t = c, z1:t−1, u1:t,m) p(c̄k
t = c | z1:t−1, u1:t,m)

=
p(zk

t | c̄k
t = short, z1:t−1, u1:t,m) p(c̄k

t = short)∑
c

p(zk
t | c̄k

t = c, z1:t−1, u1:t,m) p(c̄k
t = c)

Here the variable c in the denominator takes on any of the four values
{hit, short,max, rand}. Using the notation in Equation (8.8), the prior p(c̄k

t =

c) is given by the variables zhit, zshort, zmax, and zrand, for the four values of
c. The remaining probability in (8.9) is obtained by integrating out xt:

p(zk
t | c̄k

t = c, z1:t−1, u1:t,m)(8.10)

=

∫
p(zk

t | xt, c̄
k
t = c, z1:t−1, u1:t,m) p(xt | c̄k

t = c, z1:t−1, u1:t,m) dxt

=

∫
p(zk

t | xt, c̄
k
t = c,m) p(xt | z1:t−1, u1:t,m) dxt

=

∫
p(zk

t | xt, c̄
k
t = c,m) bel(xt) dxt

Probabilities of the form p(zk
t | xt, c̄

k
t = c,m) were abbreviated as phit, pshort,

pmax, and prand in Chapter 6.3. This gives us the expression for desired prob-
ability (8.9):

p(c̄k
t = short | zk

t , z1:t−1, u1:t,m) =

∫
pshort(z

k
t | xt,m) zshort bel(xt) dxt∫ ∑

c

pc(z
k
t | xt,m) zc bel(xt) dxt

(8.11)

In general, the integrals in (8.11) do not possess closed-form solutions. To
evaluate them, it suffices to approximate them with a representative sam-
ple of the posterior bel(xt) over the state xt. Those samples might be high-
likelihood grid cells in grid localizer, or particles in a MCL algorithm. The
measurement is then rejected if its probability of being caused by an unex-
pected obstacle exceeds a user-selected threshold χ.

8.4 Localization in Dynamic Environments 271

1: Algorithm test_range_measurement(zk
t , X̄t,m):

2: p = q = 0

3: form = 1 toM do
4: p = p + zshort · pshort(z

k
t | x[m]

t ,m)

5: q = q + zhit · phit(z
k
t | x[m]

t ,m) + zshort · pshort(z
k
t | x[m]

t ,m)

6: +zmax · pmax(z
k
t | x[m]

t ,m) + zrand · prand(zk
t | x[m]

t ,m)

7: endfor
8: if p/q ≤ χ then
9: return accept
10: else
11 return reject
12 endif

Table 8.5 Algorithm for testing range measurements in dynamic environment.

Table 8.5 depicts an implementation of this technique in the context of par-
ticle filters. It requires as input a particle set X̄t representative of the belief
bel(xt), along with a range measurement zk

t and a map. It returns “reject”
if with probability larger than χ the measurement corresponds to an unex-
pected object; otherwise it returns “accept.” This routine precedes the mea-
surement integration step in MCL.
Figure 8.22 illustrates the effect of the filter. Shown in both panels are a
range scan, for a different alignment of the robot pose. The lightly shaded
scans are above threshold and rejected. A key property of our rejectionmech-
anism is that it tends to filter out measurements that are “surprisingly” short,
but leaves others in place that are “surprisingly” long. This asymmetry re-
flects the fact that people’s presence tends to cause shorter-than-expected
measurements. By accepting surprisingly long measurements, the approach
maintains its ability to recover from global localization failures.
Figure 8.23 depicts an episode during which a robot navigates through an
environment that is densely populated with people (see Figure 8.21). Shown
there is the robot’s estimated path along with the endpoints of all scans in-
corporated into the localizer. This figure shows the effectiveness of remov-
ing measurements that do not correspond to physical objects in the map:
there are very few “surviving” range measurements in the freespace for the
right diagram, in which measurements are accepted only if they surpass the

272 8 Mobile Robot Localization: Grid And Monte Carlo

(a) (b)

Figure 8.22 Illustration of our measurement rejection algorithm: Shown in both di-
agrams are range scans (no max-range readings). Lightly shaded readings are filtered
out.

threshold test.
As a rule of thumb, outlier rejection of measurements is generally a good
idea. There exist almost no static environments; even in office environments
furniture is moved, doors are opened/closed, etc. Our specific implementa-
tion here benefits from the asymmetry of range measurements: people make
measurements shorter, not longer. When applying the same idea to other
data (e.g., vision data) or other types of environment modifications (e.g., the
removal of a physical obstacle), such an asymmetry might not exist. Never-
theless, the same probabilistic analysis is usually applicable. The disadvan-
tage of the lack of such a symmetry might be that it becomes impossible to
recover from global localization failures, as every surprising measurement is
rejected. In such cases, it may make sense to impose additional constraints,
such as a limit on the fraction of measurements that may be corrupted.
We note that the rejection test has found successful application even in
highly static environments, for reasons that are quite subtle. The beam-based
sensor model is discontinuous: Small changes of pose can drastically alter
the posterior probability of a sensor measurement. This is because the result
of ray casting is not a continuous function in pose parameters such as the
robot orientation. In environment with cluttered objects, this discontinuity
increases the number of particles necessary for successful localization. By
manually removing clutter from the map—and instead letting the filter man-

8.5 Practical Considerations 273

Distance at final position: 19 cm
Certainty at final position: 0.003

final position

(a)

Distance at final position: 1 cm
Certainty at final position: 0.998

final position

(b)

Figure 8.23 Comparison of (a) standard MCL and (b) MCL with the removal of
sensor measurements likely caused by unexpected obstacles. Both diagrams show
the robot path and the end-points of the scans used for localization.

age the resulting “surprisingly” short measurements—the number of par-
ticles can be reduced drastically. The same strategy does not apply to the
likelihood field model, since this model is smooth in the pose parameters.

8.5 Practical Considerations

Table 8.6 summarizes and compares the main localization techniques dis-
cussed in this and the previous chapter. When choosing a technique, a num-
ber of requirements have to be traded off. A first question will always be
whether it is preferable to extract features from sensor measurements. Ex-
tracting features may be beneficial from a computational perspective, but it
comes at the price of reduced accuracy and robustness.
While in this chapter, we discussed techniques for handling dynamic envi-
ronments in the context of the MCL algorithm, similar ideas can be brought
to bear with other localization techniques as well. In fact, the techniques
discussed here are only representative of a much richer body of approaches.
When implementing a localization algorithm, it is worthwhile to play with
the various parameter settings. For example, the conditional probabilities are
often inflated when integrating nearby measurements, so as to accommo-
date unmodeled dependencies that always exist in robotics. A good strategy
is to collect reference data sets, and tune the algorithm until the overall re-

274 8 Mobile Robot Localization: Grid And Monte Carlo

EKF MHT Coarse
(topologi-
cal) grid

fine (metric)
grid

MCL

Measurements landmarks landmarks landmarks raw mea-
surements

raw mea-
surements

Measurement
noise

Gaussian Gaussian any any any

Posterior Gaussian mixture of
Gaussians

histogram histogram particles

Efficiency
(memory)

++ ++ + − +

Efficiency
(time)

++ + + − +

Ease of imple-
mentation

+ − + − ++

Resolution ++ ++ − + +

Robustness − + + ++ ++

Global local-
ization

no yes yes yes yes

Table 8.6 Comparison of different implementations of Markov localization.

sult is satisfactory. This is necessary because no matter how sophisticated
the mathematical model, there will always remain unmodeled dependencies
and sources of systematic noise that affect the overall result.

8.6 Summary

In this chapter, we discussed two families of probabilistic localization algo-
rithms, grid techniques and Monte Carlo localization (MCL).

• Grid techniques represent posteriors through histograms.

• The coarseness of the grid trades off accuracy and computational effi-
ciency. For coarse grids, it is usually necessary to adjust the sensor and
motion models to account for effects that arise from the coarseness of the
representation. For fine grids, it may be necessary to update grid cells
selectively to reduce the overall computation.

8.7 Bibliographical Remarks 275

• The Monte Carlo localization algorithm represents the posterior using
particles. The accuracy-computational costs trade-off is achieved through
the size of the particle set.

• Both grid localization and MCL can globally localize robots.

• By adding random particles, MCL also solves the kidnapped robot prob-
lem.

• Mixture MCL is an extension that inverts the particle generation process
for a fraction of all particles. This yields improved performance specifi-
cally for robots with low-noise sensors, but at the expense of a more com-
plex implementation.

• KLD-sampling increases the efficiency of particle filters by adapting the
size of sample sets over time. The advantage of this approach is maximal
if the complexity of the beliefs varies drastically over time.

• Unmodeled environment dynamics can be accommodated by filtering
sensor data, rejecting those that with high likelihood correspond to an
unmodeled object. When using range sensors, the robot tends to reject
measurements that are surprisingly short.

The popularity of MCL is probably due to two facts: MCL is just about the
easiest localization algorithm to implement, and it is also one of the most
potent ones, in that it can approximate nearly any distribution.

8.7 Bibliographical Remarks

Grid-based Monte Carlo localization was introduced by Simmons and Koenig, based on the re-
lated method of maintaining certainty factors by Nourbakhsh et al. (1995). Since Simmons and
Koenig’s (1995) seminal paper, a number of techniques emerged that maintained histograms
for localization (Kaelbling et al. 1996). While the initial work used relatively coarse grids to
accommodate the enormous computational overhead of updating grids, Burgard et al. (1996)
introduced selective update techniques that could cope with grids of much higher resolution.
This development was often seen as a shift from coarse, topological Markov localization to de-
tailed, metric localization. Overview articles about this body of work can be found in Koenig
and Simmons (1998); Fox et al. (1999c).
For a number of years, grid-based techniques were considered state of the art in mobile

robot localization. Different successful applications of grid-based Markov localization can be
found. For example, Hertzberg and Kirchner (1996) applied this technique to robots operating
in sewage pipes, Simmons et al. (2000b) used this approach to localize a robot in an office en-
vironment, and Burgard et al. (1999a) applied the algorithm to estimate the position of a robot
operating in museums. Konolige and Chou (1999) introduced the idea of map matching intoMAP MATCHING

276 8 Mobile Robot Localization: Grid And Monte Carlo

Markov localization, by using fast convolution techniques for computing pose probabilities. An
extension that combined both global localization and high-accuracy tracking was described in
Burgard et al. (1998), who coined their technique dynamic Markov localization. A machine learn-
ing technique for learning to recognize places was introduced by Oore et al. (1997). Thrun
(1998a) extended the approach by a learning component for identifying suitable landmarks in
the environment, based on related work by Greiner and Isukapalli (1994). The mathematical
framework was extended by Mahadevan and Khaleeli (1999) to a framework known as semi
Markov decision process, which made it possible to reason about the exact time when a transition
from one cell to another occurred. An experimental comparison between grid-approaches and
Kalman filtering techniques was carried out by Gutmann et al. (1998). Active localization was
introduced for the grid-based paradigm in Burgard et al. (1997), and since extended to multi-
hypothesis tracking by Austin and Jensfelt (2000); Jensfelt and Christensen (2001a). Fox et al.
(2000) and Howard et al. (2003) extended this approach to the multi-robot localization problem.
Moving away from the grid-based paradigm, Jensfelt and Christensen (2001a); Roumeliotis and
Bekey (2000); Reuter (2000) showed that multi-hypothesis EKFs were equally suited for global
localization problem.
Motivated by the famous condensation algorithm in computer vision (Isard and Blake 1998),CONDENSATION

ALGORITHM Dellaert et al. (1999); Fox et al. (1999a) were the first to develop particle filters for mobile robot
localization. They also coined the termMonte Carlo Localization which has become the common
name of this technique in robotics. The idea of adding random samples can be found in Fox
et al. (1999a). An improved technique to deal with the kidnapped robot problem was Lenser
and Veloso’s (2000) sensor resetting technique, in which a number of particles were jump-started
using only the most recent measurement. Fox built on this technique and introduced the Aug-
mented MCL algorithm for determining the number of particles to be added (Gutmann and Fox
2002). MixtureMCL algorithm is due to Thrun et al. (2000c); see also van derMerwe et al. (2001).
It provided a mathematical basis for generating samples from measurements. KLD-sampling,
the adaptive version of particle filters, was introduced by Fox (2003). Jensfelt et al. (2000) and
Jensfelt and Christensen (2001b) applied MCL to feature-based maps, and Kwok et al. (2004)
introduced a real-time version of MCL that adapts the number of particles. Finally, a number
of papers have applied MCL to robots with cameras (Lenser and Veloso 2000; Schulz and Fox
2004; Wolf et al. 2005), including omnidirectional cameras (Kröse et al. 2002; Vlassis et al. 2002).
Particle filters have also been used for a number of related tracking and localization problems.

Montemerlo et al. (2002b) studied the problem of simultaneous localization and people tracking,
using a nested particle filter. A particle filter for tracking variable number of people is described
in Schulz et al. (2001b), who demonstrated how moving people can be tracked reliably with a
moving robot in an unknown environment (Schulz et al. 2001a).

8.8 Exercises

1. Consider a robot with d state variables. For example, the kinematic state
of a free-flying rigid robot is usually d = 6; when velocities are included
in the state vector, the dimension increases to d = 12. How does the
complexity (update time and memory) of the following localization al-
gorithms increase with d: EKF localization, grid localization, and Monte
Carlo localization. Use the O() notation, and argue why your answer is
correct.

8.8 Exercises 277

2. Provide a mathematical derivation of the additive form of the multi-
feature information integration in lines 14 and 15 in Table 7.2.

3. Prove the correctness of Equation (8.4), page 257, in the limit ↑ ∞.
4. As noted in the text, Monte Carlo localization is biased for any finite sam-
ple size—i.e., the expected value of the location computed by the algo-
rithm differs from the true expected value. In this question, you are asked
to quantify this bias.

To simplify, consider a world with four possible robot locations: X =

{x1, x2, x3, x4}. Initially, we draw N ≥ 1 samples uniformly from among
those locations. As usual, it is perfectly acceptable if more than one sam-
ple is generated for any of the locations X . Let Z be a Boolean sensor
variable characterized by the following conditional probabilities:

p(z | x1) = 0.8 p(¬z | x1) = 0.2

p(z | x2) = 0.4 p(¬z | x2) = 0.6

p(z | x3) = 0.1 p(¬z | x3) = 0.9

p(z | x4) = 0.1 p(¬z | x4) = 0.9

MCL uses these probabilities to generate particle weights, which are sub-
sequently normalized and used in the resampling process. For simplicity,
let us assume we only generate one new sample in the resampling pro-
cess, regardless of N . This sample might correspond to any of the four
locations in X . Thus, the sampling process defines a probability distribu-
tion over X .

(a) What is the resulting probability distribution over X for this new
sample? Answer this question separately for N = 1, . . . , 10, and for
N =∞.

(b) The difference between two probability distributions p and q can be
measured by the KL divergence, which is defined as

KL(p, q) =
∑

i

p(xi) log
p(xi)

q(xi)

What are the KL divergences between the distributions in (a) and the
true posterior?

(c) What modification of the problem formulation (not the algorithm!)
would guarantee that the specific estimator above is unbiased even for

278 8 Mobile Robot Localization: Grid And Monte Carlo

finite values of N? Provide at least two such modifications (each of
which should be sufficient).

5. Consider a robot equipped with a range/bearing sensor of the type dis-
cussed in Chapter 6.6. In this question, you are asked to devise an efficient
sampling procedure that can incorporate k simultaneous measurements
of identifiable landmarks. To illustrate that your routineworks, youmight
generate plots of different landmark configurations, using k = 1, . . . , 5

adjacent landmarks. Argue what makes your routine efficient.

6. Exercise 3 on page 235 described a simplistic underwater robot that can
listen to acoustic beacons for localization. Here you are asked to imple-
ment a grid localization algorithm for this robot. Analyze the accuracy
and the failure modes in the context of the three localization problems:
global localization, position tracking, and the kidnapped robot problem.

P A R T I I I

Mapping

9 Occupancy Grid Mapping

9.1 Introduction

The previous two chapters discussed the application of probabilistic tech-
niques to a low-dimensional perceptual problem, that of estimating a robot’s
pose. We assumed that the robot was given a map in advance. This assump-
tion is legitimate in quite a few real-world applications, as maps are often
available a priori or can be constructed by hand. Some application domains,
however, do not provide the luxury of coming with an a priori map. Surpris-
ingly enough, most buildings do not comply with the blueprints generated
by their architects. And even if blueprints were accurate, they would not
contain furniture and other items that, from a robot’s perspective, determine
the shape of the environment just as much as walls and doors. Being able to
learn a map from scratch can greatly reduce the efforts involved in installing
a mobile robot, and enable robots to adapt to changes without human super-
vision. In fact, mapping is one of the core competencies of truly autonomous
robots.
Acquiring maps with mobile robots is a challenging problem for a number
of reasons:

• The hypothesis space, which is the space of all possible maps, is huge.
Since maps are defined over a continuous space, the space of all maps has
infinitely many dimensions. Even under discrete approximations, such
as the grid approximation that shall be used in this chapter, maps can
easily be described 105 or more variables. The sheer size of this high-
dimensional space makes it challenging to calculate full posteriors over
maps; hence, the Bayes filtering approach that worked well for localiza-
tion is inapplicable to the problem of learning maps, at least in its naive
form discussed thus far.

282 9 Occupancy Grid Mapping

• Learning maps is a “chicken-and-egg” problem, for which reason it is
often referred to as the simultaneous localization and mapping (SLAM) or
concurrent mapping and localization problem. First, there is a localization
problem. When the robot moves through its environment, it accumu-
lates errors in odometry, making it gradually less certain as to where it
is. Methods exist for determining the robot’s pose when a map is avail-
able, as we have seen in the previous chapter. Second, there is a mapping
problem. Constructing a map when the robot’s poses are known is also
relatively easy—a claim that will be substantiated in this chapter and sub-
sequent chapters. In the absence of both an initial map and exact pose
information, however, the robot has to do both: estimating the map and
localizing itself relative to this map.

Of course, not all mapping problems are equally hard. The hardness of the
mapping problem is the result of a collection of factors, the most important
of which are:

• Size. The larger the environment relative to the robot’s perceptual range,
the more difficult it is to acquire a map.

• Noise in perception and actuation. If robot sensors and actuators were
noise-free, mapping would be a simple problem. The larger the noise, the
more difficult the problem.

• Perceptual ambiguity. The more frequently different places look alike,
the more difficult it is to establish correspondence between different loca-
tions traversed at different points in time.

• Cycles. Cycles in the environment are particularly difficult to map. If a
robot just goes up and down a corridor, it can correct odometry errors
incrementally when coming back. Cycles make robots return via different
paths, and when closing a cycle the accumulated odometric error can be
huge!

To fully appreciate the difficulty of the mapping problem, consider Fig-
ure 9.1. Shown there is a data set, collected in a large indoor environment.
Figure 9.1a was generated using the robot’s raw odometry information. Each
black dot in this figure corresponds to an obstacle detected by the robot’s
laser range finder. Figure 9.1b shows the result of applying mapping algo-
rithms to this data, one of whichwas the techniques described in this chapter.
This example gives a good flavor of the problem at stake.

9.1 Introduction 283

(a)

(b)

Figure 9.1 (a) Raw range data, position indexed by odometry. (b) Occupancy grid
map.

In this chapter, we first study the mapping problem under the restrictive
assumption that the robot poses are known. Put differently, we side-step
the hardness of the SLAM problem by assuming some oracle informs us
of the exact robot path during mapping. This problem, whose graphical
model is depicted in Figure 9.2, is also known as mapping with known poses.MAPPING WITH

KNOWN POSES We will discuss a popular family of algorithms, collectively called occupancy
grid mapping. Occupancy grid mapping addresses the problem of generat-
ing consistent maps from noisy and uncertain measurement data, under the
assumption that the robot pose is known. The basic idea of the occupancy

284 9 Occupancy Grid Mapping

m

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 9.2 Graphical model of mapping with known poses. The shaded variables
(poses x and measurements z) are known. The goal of mapping is to recover the map
m.

grids is to represent the map as a field of random variables, arranged in an
evenly spaced grid. Each random variable is binary and corresponds to the
occupancy of the location it covers. Occupancy grid mapping algorithms
implement approximate posterior estimation for those random variables.
The reader may wonder about the significance of a mapping technique
that requires exact pose information. After all, no robot’s odometry is perfect!
The main utility of the occupancy grid technique is in post-processing: Many
of the SLAM techniques discussed in subsequent chapters do not generate
maps fit for path planning and navigation. Occupancy grid maps are often
used after solving the SLAM problem by some other means, and taking the
resulting path estimates for granted.

9.2 The Occupancy Grid Mapping Algorithm

The gold standard of any occupancy grid mapping algorithm is to calculate
the posterior over maps given the data

p(m | z1:t, x1:t)(9.1)

As usual, m is the map, z1:t the set of all measurements up to time t, and
x1:t is the path of the robot defined through the sequence of all poses. The
controls u1:t play no role in occupancy grid maps, since the path is already
known. Hence, they will be omitted throughout this chapter.
The types of maps considered by occupancy grid maps are fine-grained

9.2 The Occupancy Grid Mapping Algorithm 285

grids defined over the continuous space of locations. By far the most com-
mon domain of occupancy grid maps are 2-D floor plan maps, which de-
scribe a 2-D slice of the 3-Dworld. 2-Dmaps are usually the representation of
choice when a robot navigates on a flat surface, and the sensors are mounted
so that they capture only a slice of the world. Occupancy grid techniques
generalize to 3-D representations but at significant computational expenses.
Letmi denote the grid cell with index i. An occupancy grid map partitions

the space into finitely many grid cells:

m = {mi}(9.2)

Eachmi has attached to it a binary occupancy value, which specifies whether
a cell is occupied or free. We will write “1” for occupied and “0” for free.
The notation p(mi = 1) or p(mi) refers to the probability that a grid cell is
occupied.
The problem with the posterior in Equation (9.1) is its dimensionality: the
number of grid cells in maps like the one shown in Figure 9.1 are in the tens
of thousands. For a map with 10,000 grid cells, the number of maps that can
be represented by this map is 210,000. Calculating a posterior probability for
each single map is therefore intractable.
The standard occupancy grid approach breaks down the problem of esti-
mating the map into a collection of separate problems, namely that of esti-
mating

p(mi | z1:t, x1:t)(9.3)

for all grid cellmi. Each of these estimation problems is now a binary prob-
lemwith static state. This decomposition is convenient but not without prob-
lems. In particular, it does not enable us to represent dependencies among
neighboring cells; instead, the posterior over maps is approximated as the
product of its marginals:

p(m | z1:t, x1:t) =
∏

i

p(mi | z1:t, x1:t)(9.4)

We will return to this issue in Chapter 9.4 below, when we discuss more
advanced mapping algorithms. For now, we will adopt this factorization for
convenience.
Thanks to our factorization, the estimation of the occupancy probability
for each grid cell is now a binary estimation problem with static state. A
filter for this problem was already discussed in Chapter 4.2: the binary Bayes
filter. The corresponding algorithm was depicted in Table 4.2 on page 94.

286 9 Occupancy Grid Mapping

1: Algorithm occupancy_grid_mapping({lt−1,i}, xt, zt):

2: for all cellsmi do
3: ifmi in perceptual field of zt then
4: lt,i = lt−1,i + inverse_sensor_model(mi, xt, zt)− l0
5: else
6: lt,i = lt−1,i

7: endif
8: endfor
9: return {lt,i}

Table 9.1 The occupancy grid algorithm, a version of the binary Bayes filter in Ta-
ble 4.2.

The algorithm in Table 9.1 applies this filter to the occupancy grid mapping
problem. As in the original filter, our occupancy grid mapping algorithm
uses the log odds representation of occupancy:

lt,i = log
p(mi | z1:t, x1:t)

1− p(mi | z1:t, x1:t)
(9.5)

This representation is already familiar from Chapter 4.2. The advantage of
the log odds over the probability representation is that we can avoid numeri-
cal instabilities for probabilities near zero or one. The probabilities are easily
recovered from the log odds ratio:

p(mi | z1:t, x1:t) = 1− 1

1 + exp{lt,i}(9.6)

The algorithm occupancy_grid_mapping in Table 9.1 loops through all
grid cells i, and updates those that fall into the sensor cone of the measure-
ment zt. For those where it does, it updates the occupancy value by virtue
of the function inverse_sensor_model in line 4 of the algorithm. Otherwise,
the occupancy value remains unchanged, as indicated in line 6. The constant
l0 is the prior of occupancy represented as a log odds ratio:

l0 = log
p(mi = 1)

p(mi = 0)
= log

p(mi)

1− p(mi)
(9.7)

9.2 The Occupancy Grid Mapping Algorithm 287

(a) (b)

Figure 9.3 Two examples of an inverse measurement model in-
verse_range_sensor_model for two different measurement ranges. The darkness of
each grid cell corresponds to the likelihood of occupancy. This model is somewhat
simplistic; in contemporary implementations the occupancy probabilities are usually
weaker at the border of the measurement cone.

The function inverse_sensor_model implements the inverse measurement
model p(mi | zt, xt) in its log odds form:

inverse_sensor_model(mi, xt, zt) = log
p(mi | zt, xt)

1− p(mi | zt, xt)
(9.8)

A somewhat simplistic example of such a function for range finders is given
in Table 9.2 and illustrated in Figure 9.3a&b. This model assigns to all cells
within the sensor cone whose range is close to the measured range an occu-
pancy value of locc. In Table 9.2, the width of this region is controlled by the
parameter α, and the opening angle of the beam is given by β. We note that
this model is somewhat simplistic; in contemporary implementations the oc-
cupancy probabilities are usually weaker at the border of the measurement
cone.
The algorithm inverse_sensor_model calculates the inverse model by first
determining the beam index k and the range r for the center-of-mass of the
cell mi. This calculation is carried out in lines 2 through 5 in Table 9.2. As
usual, we assume that the robot pose is given by xt = (x y θ)T . In line 7, it
returns the prior for occupancy in log odds formwhenever the cell is outside
the measurement range of this sensor beam, or if it lies more than α/2 behind
the detected range zk

t . In line 9, it returns locc > l0 if the range of the cell is
within ±α/2 of the detected range zk

t . It returns lfree < l0 if the range to the

288 9 Occupancy Grid Mapping

1: Algorithm inverse_range_sensor_model(mi, xt, zt):

2: Let xi, yi be the center-of-mass ofmi

3: r =
√

(xi − x)2 + (yi − y)2

4: φ = atan2(yi − y, xi − x)− θ

5: k = argminj |φ− θj,sens|
6: if r > min(zmax, z

k
t + α/2) or |φ− θk,sens| > β/2 then

7: return l0
8: if zk

t < zmax and |r − zk
t | < α/2

9: return locc

10: if r ≤ zk
t

11: return lfree
12: endif

Table 9.2 A simple inverse measurement model for robots equipped with range
finders. Here α is the thickness of obstacles, and β the width of a sensor beam. The
values locc and lfree in lines 9 and 11 denote the amount of evidence a reading carries
for the two different cases.

cell is shorter than the measured range by more than α/2. The left and center
panel of Figure 9.3 illustrates this calculation for the main cone of a sonar
beam.
A typical application of an inverse sensor model for ultrasound sensors
is shown in Figure 9.4. Starting with an initial map the robot successively
extends the map by incorporating local maps generated using the inverse
model. A larger occupancy grid map obtained with this model for the same
environment is depicted in Figure 9.5.
Figures 9.6 shows an example map next to a blueprint of a large open
exhibit hall, and relates it to the occupancy map acquired by a robot. The
map was generated using laser range data gathered in a few minutes. The
gray-level in the occupancymap indicates the posterior of occupancy over an
evenly spaced grid: The darker a grid cell, the more likely it is to be occupied.
While occupancy maps are inherently probabilistic, they tend to quickly con-
verge to estimates that are close to the two extreme posteriors, 1 and 0. In
comparison between the learned map and the blueprint, the occupancy grid
map shows all major structural elements, and obstacles as they were visi-

9.2 The Occupancy Grid Mapping Algorithm 289

+ + +

+ + +

+ + +

+ + +

+ + +

+ + + →

Figure 9.4 Incremental learning of an occupancy grid map using ultra-sound data
in a corridor environment. The upper left image shows the initial map and the lower
right image contains the resultingmap. Themaps in columns 2 to 4 are the local maps
built from an inverse sensor model. Measurements beyond a 2.5m radius have not
been considered. Each cone has an opening angle of 15 degrees. Images courtesy of
Cyrill Stachniss, University of Freiburg.

Figure 9.5 Occupancy probability map of an office environment built from sonar
measurements. Courtesy of Cyrill Stachniss, University of Freiburg.

290 9 Occupancy Grid Mapping

(a)

(b)

Figure 9.6 (a) Occupancy grid map and (b) architectural blue-print of a large open
exhibit space. Notice that the blue-print is inaccurate in certain places.

9.2 The Occupancy Grid Mapping Algorithm 291

(a)

(b)

Figure 9.7 (a) Raw laser range data with corrected pose information. Each dot cor-
responds to a detection of an obstacle. Most obstacles are static (walls etc.), but some
were dynamic, since people walked near the robot during data acquisition. (b) Occu-
pancy gridmap built from the data. The gray-scale indicates the posterior probability:
Black corresponds to occupied with high certainty, and white to free with high cer-
tainty. The gray background color represents the prior. Figure (a) courtesy of Steffen
Gutmann.

292 9 Occupancy Grid Mapping

(a) (b) (c)

Figure 9.8 Estimation of occupancy maps using stereo vision: (a) camera image, (b)
sparse disparity map, (c) occupancy map by projecting the disparity image onto the
2-D plane and convolving the result with a Gaussian. Images courtesy of Thorsten
Fröhlinghaus.

ble at the height of the laser. Through a careful inspection, the reader may
uncover some small discrepancies between the blueprint and the actual en-
vironment configuration.
Figure 9.7 compares a raw dataset with the occupancy grid maps gener-
ated from this data. The data in Panel (a) was preprocessed by a SLAM
algorithm, so that the poses align. Some of the data is corrupted by the pres-
ence of people; the occupancy grid map filters out people quite nicely. This
makes occupancy grid maps much better suited for robot navigation than
sets of scan endpoint data: A planner fed the raw sensor endpoints would
have a hard time finding a path through such scattered obstacles, even if
the evidence that the corresponding cell is free outweighed that of it being
occupied.
We note that our algorithm makes occupancy decisions exclusively based
on sensor measurements. An alternative source of information is the space
claimed by the robot itself: When the robot’s pose is xt, the region surround-
ing xt must be navigable. Our inverse measurement algorithm in Table 9.2
can easily be modified to incorporate this information, by returning a large
negative number for all grid cells occupied by a robot when at xt. In practice,
it is a good idea to incorporate the robot’s volume when generating maps,
especially if the environment is populated during mapping.

9.2 The Occupancy Grid Mapping Algorithm 293

9.2.1 Multi-Sensor Fusion

Robots are often equipped with more than one type of sensor. Hence, a nat-
ural objective is to integrate information from more than one sensor into a
single map. This question as to how to best integrate data from multiple
sensors is particularly interesting if the sensors have different characteristics.
For example, Figure 9.8 shows occupancymaps built with a stereo vision sys-
tem, in which disparities are projected onto the plane and convolved with a
Gaussian. Clearly, the characteristics of stereo are different from that of a
sonar-based range finder. They are sensitive to different types of obstacles.
Unfortunately, fusing data from multiple sensors with Bayes filters is
not an easy endeavor. A naive solution is to execute algorithm occu-
pancy_grid_mapping in Table 9.1 with different sensor modalities. How-
ever, such an approach has a clear drawback. If different sensors detect dif-
ferent types of obstacles, the result of Bayes filtering is ill-defined. Consider,
for example, an obstacle that can be recognized by one sensor type but not by
another. Then these two sensor types will generate conflicting information,
and the resulting mapwill depend on the amount of evidence brought by ev-
ery sensor system. This is generally undesirable, since whether or not a cell
is considered occupied depends on the relative frequency at which different
sensors are polled.
A popular approach to integrating information from multiple sensors is
to build separate maps for each sensor type, and integrate them using an
appropriate combination function. Let mk = {mk

i } denote the map built by
the k-th sensor type. If the measurements of the sensors are independent of
each other we can directly combine them using De Morgan’s law

p(mi) = 1−
∏
k

(
1− p(mk

i)
)

(9.9)

Alternatively, one can compute the maximum

p(mi) = max
k

p(mk
i)(9.10)

of all maps, which yields the most pessimistic estimates of its components. If
any of the sensor-specific maps show that a grid cell is occupied, so will the
combined map.

294 9 Occupancy Grid Mapping

9.3 Learning Inverse Measurement Models

9.3.1 Inverting the Measurement Model

The occupancy grid mapping algorithm requires a marginalized inverse mea-
surement model, p(mi | x, z). This probability is called “inverse” since it rea-
sons from effects to causes: it provides information about the world condi-
tioned on a measurement caused by this world. It is marginalized for the i-th
grid cell; a full inverse would be of the type p(m | x, z). In our exposition of
the basic algorithm, we already provided an ad hoc procedure in Table 9.2 for
implementing such an inverse model. This raises the question as to whether
we can obtain an inverse model in a more principled manner, starting at the
conventional measurement model.
The answer is positive but less straightforward than one might assume at
first glance. Bayes rule suggests

p(m | x, z) =
p(z | x,m) p(m | x)

p(z | x)
(9.11)

= η p(z | x,m) p(m)

Here we silently assume p(m | x) = p(m), hence the pose of the robot tells
us nothing about the map—an assumption that we will adopt for sheer con-
venience. If our goal was to calculate the inverse model for the entire map
at-a-time, we would now be done. However, our occupancy grid mapping
algorithm approximates the posterior over maps by its marginals, one for
each grid cell mi. The inverse model for the i-th grid cell is obtained by
selecting the marginal for the i-th grid cell:

p(mi | x, z) = η
∑

m:m(i)=mi

p(z | x,m) p(m)(9.12)

This expression sums over all mapsm for which the occupancy value of grid
cell i equalsmi. Clearly, this sum cannot be computed, since the space of all
maps is too large.
We will now describe an algorithm for approximating this expression. The
algorithm involves generating samples from the measurement model, and
approximating the inverse using a supervised learning algorithm, such as logis-SUPERVISED LEARNING

ALGORITHM tic regression or a neural network.

9.3 Learning Inverse Measurement Models 295

9.3.2 Sampling from the Forward Model

The basic idea is simple and quite universal: If we can generate random
triplets of poses x

[k]
t , measurements z

[k]
t , and map occupancy valuesm

[k]
i for

any grid cellmi, we can learn a function that accepts a pose x and measure-
ment z as an input, and outputs the probability of occupancy formi.
A sample of the form (x

[k]
t z

[k]
t m

[k]
i) can be generated by the following

procedure.

1. Sample a randommapm[k] ∼ p(m). For example, one might already have
a database of maps that represents p(m) and randomly draws a map from
the database.

2. Sample a pose x
[k]
t inside the map. One may safely assume that poses are

uniformly distributed.

3. Sample a measurement z[k]
t ∼ p(z | x[k]

t ,m[k]). This sampling step is rem-
iniscent of a robot simulator that stochastically simulates a sensor mea-
surement.

4. Extract the desired “true” occupancy valuemi for the target grid cell from
the mapm.

The result is a sampled pose x
[k]
t , a measurement z

[k]
t , and the occupancy

value of the grid cellmi. Repeated application of this sampling step yields a
data set

x
[1]
t z

[1]
t −→ occ(mi)

[1]

x
[2]
t z

[2]
t −→ occ(mi)

[2]

x
[3]
t z

[3]
t −→ occ(mi)

[3]

...
...

...

These triplets may serve as training examples for the supervised learning algo-TRAINING EXAMPLES

rithm, which approximates the desired conditional probability p(mi | z, x).
Here the measurements z and the pose x are input variables, and the occu-
pancy value occ(mi) is a target for the output of the learning algorithm.
This approach is somewhat inefficient, since it fails to exploit a number of
properties that we know to be the case for the inverse sensor model.

• Measurements should carry no information about grid cells far outside
their perceptual range. This observation has two implications: First, we
can focus our sample generation process on triplets where the cell mi is

296 9 Occupancy Grid Mapping

indeed inside the measurement cone. And second, when making a pre-
diction for this cell, we only have to include a subset of the data in a mea-
surement z (e.g., nearby beams) as input to the learning algorithm.

• The characteristics of a sensor are invariant with respect to the absolute
coordinates of the robot or the grid cell when taking a measurement.
Only the relative coordinates matter. If we denote the robot pose by
xt = (x y θ)T and the coordinates of the grid cell bymi = (xmi

ymi
)T ,

the coordinates of the grid cell are mapped into the robot’s local reference
frame via the following translation and rotation:

(
cos θ − sin θ

sin θ cos θ

)(
xmi

− x

ymi
− y

)

In robots with circular arrays of range finders, it makes sense to encode
the relative location of a grid cell using the familiar polar coordinates
(range and bearing).

• Nearby grid cells should have a similar interpretation under the inverse
sensor model. This smoothness suggests that it may be beneficial to learn
a single function in which the coordinates of the grid cell function as an
input, rather than learning a separate function for each grid cell.

• If the robot possesses functionally identical sensors, the inverse sen-
sor model should be interchangeable for different sensors. For robots
equipped with a circular array of range sensors, any of the resulting sen-
sor beams are characterized by the same inverse sensor model.

The most basic way to enforce these invariances is to constrain the learn-
ing algorithm by choosing appropriate input variables. A good choice is to
use relative pose information, so that the learning algorithm cannot base its
decision on absolute coordinates. It is also a good idea to omit sensor mea-
surements known to be irrelevant to occupancy predictions, and to confine
the prediction to grid cells inside the perceptual field of a sensor. By exploit-
ing these invariances, the training set size can be reduced significantly.

9.3.3 The Error Function

To train the learning algorithm, we need an approximate error function. A
popular example are artificial neural networks trained with the Backpropa-
gation algorithm. Backpropagation trains neural networks by gradient descentBACKPROPAGATION

9.3 Learning Inverse Measurement Models 297

in parameter space. Given an error function that measures the “mismatch”
between the network’s actual and desired output, Backpropagation calcu-
lates the first derivative of the target function and the parameters of the
neural network, and then adapts the parameters in opposite direction of the
gradient so as to diminish the mismatch. This raises the question as to what
error function to use.
A common approach is to train the learning algorithm so as to maximize
the log-likelihood of the training data. More specifically we are given a train-
ing set of the form

input[1] −→ occ(mi)
[1]

input[2] −→ occ(mi)
[2]

input[3] −→ occ(mi)
[3]

...
...

(9.13)

occ(mi)
[k] is the k-th sample of the desired conditional probability, and

input[k] is the corresponding input to the learning algorithm. Clearly, the
exact form of the input may vary as a result of the encoding known invari-
ances, but the exact nature of this vector will play no role in the form of the
error function.
Let us denote the parameters of the learning algorithm by W . Assuming

that each individual item in the training data has been generated indepen-
dently, the likelihood of the training data is now∏

i

p(m
[k]
i | input[k],W)(9.14)

and its negative logarithm is

J(W) = −
∑

i

log p(m
[k]
i | input[k],W)(9.15)

Here J defines the function we seek to minimize during training.
Let us denote the learning algorithm by f(input[k],W). The output of this

function is a value in the interval [0; 1]. After training, we want the learning
algorithm to output the probability of occupancy:

p(m
[k]
i | input[k],W) =

{
f(input[k],W) if m

[k]
i = 1

1− f(input[k],W) if m
[k]
i = 0

(9.16)

Thus, we seek an error function that adjustsW so as to minimize the devia-
tion of this predicted probability and the one communicated by the training

298 9 Occupancy Grid Mapping

example. To find such an error function, we re-write (9.16) as follows:

p(m
[k]
i | input[k],W) = f(input[k],W)m

[k]
i (1− f(input[k],W))1−m

[k]
i(9.17)

It is easy to see that this product and Expression (9.16) are identical. In the
product, one of the terms is always 1, since its exponent is zero. Substituting
the product into (9.15) and multiplying the result by minus one gives us the
following function:

J(W) = −
∑

i

log
[
f(input[k],W)m

[k]
i (1− f(input[k],W))1−m

[k]
i

]
(9.18)

= −
∑

i

m
[k]
i log f(input[k],W) + (1−m

[k]
i) log(1− f(input[k],W))

J(W) is the error function to minimize when training the learning algorithm.
It is easily folded into any algorithm that uses gradient descent to adjusts its
parameters.

9.3.4 Examples and Further Considerations

Figure 9.9 shows the result of an artificial neural network trained to mimic
the inverse sensor model. The robot in this example is equipped with a cir-
cular array of sonar range sensors mounted at approximate table height. The
input to the network are the relative range and bearing of a target cell, along
with the set of five adjacent range measurements. The output is a probability
of occupancy: the darker a cell, the more likely it is occupied. As this ex-
ample illustrates, the approach correctly learns to distinguish freespace from
occupied space. The uniformly gray area behind obstacles matches the prior
probability of occupancy, which leads to no change when used in the occu-
pancy grid mapping algorithm. Figure 9.9b contains a faulty short reading
on the bottom left. Here a single reading seems to be insufficient to predict
an obstacle with high probability.
We note that there exists a number of ways to train a function approxi-
mator using actual data collected by a robot, instead of the simulated data
from the forward model. In general, this is the most accurate data one can
use for learning, since the measurement model is necessarily just an approx-
imation. One such way involves a robot operating in a known environment
with a known map. With Markov localization, we can localize the robot, and
then use its actual recorded measurements and the known map occupancy
to assemble training examples. It is even possible to start with an approxi-

9.4 Maximum A Posteriori Occupancy Mapping 299

(a) (b) (c)

Figure 9.9 Inverse sensor model learned from data: Three sample sonar scans (top
row) and local occupancy maps (bottom row), as generated by the neural network.
Bright regions indicate free-space, and dark regions indicate walls and obstacles (en-
larged by a robot diameter).

mate map, use the learned sensor model to generate a better map, and use
the procedure just outlined to improve the inverse measurement model.

9.4 Maximum A Posteriori Occupancy Mapping

9.4.1 The Case for Maintaining Dependencies

In the remainder of this chapter, we will return to one of the very basic as-
sumptions of the occupancy grid mapping algorithm. In Chapter 9.2, we
assumed that we can safely decompose the map inference problem defined
over high-dimensional space of all maps, into a collection of single-cell map-
ping problems. This assumption culminated into the factorization in (9.4):

p(m | z1:t, x1:t) =
∏

i

p(mi | z1:t, x1:t)(9.19)

This raises the question as to how faithful we should be in the result of any
algorithm that relies on such a strong decomposition.
Figure 9.10 illustrates a problem that arises directly as a result of this factor-

300 9 Occupancy Grid Mapping

(a) (b) (c)

(d) (e) (f)

Figure 9.10 The problem with the standard occupancy grid mapping algorithm in
Chapter 9.2: For the environment shown in Figure (a), a passing robot might receive
the (noise-free) measurement shown in (b). The factorial approach maps these beams
into probabilistic maps separately for each grid cell and each beam, as shown in (c)
and (d). Combining both interpretations yields the map shown in (e). Obviously,
there is a conflict in the overlap region, indicated by the circles in (e). The interesting
insight is: There exist maps, such as the one in diagram (f), that perfectly explain the
sensor measurement without any such conflict. For a sensor reading to be explained,
it suffices to assume an obstacle somewhere in the cone of a measurement, and not
everywhere.

ization. Shown there is a situation in which the robot facing a wall receives
two noise-free sonar range measurements. Because the factored approach
predicts an object along the entire arc at the measured range, the occupancy
values of all grid cells along this arc are increased. When combining the
two different measurements shown in Figure 9.10c&d, a conflict is created,
as shown in Figure 9.10e. The standard occupancy grid mapping algorithm

9.4 Maximum A Posteriori Occupancy Mapping 301

1: AlgorithmMAP_occupancy_grid_mapping(x1:t, z1:t):
2: setm = {0}
3: repeat until convergence
4: for all cellsmi do
5: mi = argmax

k=0,1
k l0 +

∑
t

log

measurement_model(zt, xt,m withmi = k)

6: endfor
7: endrepeat
8: returnm

Table 9.3 The maximum a posteriori occupancy grid algorithm, which uses conven-
tional measurement models instead of inverse models.

“resolves” this conflict by summing up positive and negative evidence for
occupancy; however, the result will reflect the relative frequencies of the two
types of measurements, which is undesirable.
However, there exist maps, such as the one in Figure 9.10f, that perfectly
explain the sensor measurements without any such conflict. This is because
for a sensor reading to be explained, it suffices to assume an obstacle some-
where in its measurement cone. Put differently, the fact that cones sweep
over multiple grid cells induces important dependencies between neighbor-
ing grid cells. When decomposing the mapping into thousands of individual
grid cell estimation problems, we lose the ability to consider these dependen-
cies.

9.4.2 Occupancy Grid Mapping with Forward Models

These dependencies are incorporated by an algorithm that outputs the mode
of the posterior, instead of the full posterior. The mode is defined as the
maximum of the logarithm of the map posterior:

m∗ = argmax
m

log p(m | z1:t, x1:t)(9.20)

302 9 Occupancy Grid Mapping

The map posterior factors into a map prior and a measurement likelihood
(c.f., Equation (9.11)):

log p(m | z1:t, x1:t) = const. + log p(z1:t | x1:t,m) + log p(m)(9.21)

The log-likelihood log p(z1:t | x1:t,m) decomposes into a sum of individual
measurement log-likelihoods:

log p(z1:t | x1:t,m) =
∑

log p(zt | xt,m)(9.22)

Further, the log-prior also decomposes. To see, we note that the prior proba-
bility of any mapm is given by the following product:

p(m) =
∏

i

p(m)mi (1− p(m))1−mi(9.23)

= (1− p(m))N
∏

i

p(m)mi (1− p(m))−mi

= η
∏

i

p(m)mi (1− p(m))−mi

Here p(m) is the prior probability of occupancy (e.g., p(m) = 0.5), and N is
the number of grid cells in the map. The expression (1− p(m))N is simply a
constant, which is replaced by our generic symbol η as usual.
This implies for the log version of the prior:

log p(m) = const. +
∑

i

mi log p(m) −mi log(1− p(m))(9.24)

= const. +
∑

i

mi log
p(m)

1− p(m)

= const. +
∑

i

mi l0

The constant l0 is adopted from (9.7). The term M log(1 − p(mi)) is obvi-
ously independent of the map. Hence it suffices to optimize the remaining
expression and the data log-likelihood:

m∗ = argmax
m

∑
t

log p(zt | xt,m) + l0
∑

i

mi(9.25)

A hill-climbing algorithm for maximizing this log-probability is provided in
Table 9.3. This algorithm starts with the all-free map (line 2). It “flips” the
occupancy value of a grid cell when such a flip increases the likelihood of the
data (lines 4-6). For this algorithm it is essential that the prior of occupancy

9.4 Maximum A Posteriori Occupancy Mapping 303

(a) (b)

(c) (d)

Figure 9.11 (a) Sonar range measurements from a noise-free simulation. (b) Results
of the standard occupancymapper, lacking the open door. (c) Amaximum a posterior
map. (d) The residual uncertainty in this map, obtained by measuring the sensitivity
of the map likelihood function with respect to individual grid cells. This map clearly
shows the door, and it also contains flatter walls at both ends.

p(mi) is not too close to 1; otherwise it might return an all-occupied map. As
any hill climbing algorithm, this approach is only guaranteed to find a local
maximum. In practice, there are usually very few, if any, local maxima.
Figure 9.11 illustrates the effect of theMAP occupancy grid algorithm. Fig-
ure 9.11a depicts a noise-free data set of a robot passing by an open door.
Some of the sonar measurements detect the open door, while others are re-
flected at the door post. The standard occupancy mapping algorithm with
inverse models fails to capture the opening, as shown in Figure 9.11b. The
mode of the posterior is shown in Figure 9.11c. This map models the open
door correctly, hence it is better suited for robot navigation than the standard

304 9 Occupancy Grid Mapping

occupancy grid map algorithm. Figure 9.11d shows the residual uncertainty
of this map. This diagram is the result of a cell-wise sensitivity analysis: The
magnitude bywhich flipping a grid cell decreases the log-likelihood function
is illustrated by the grayness of a cell. This diagram, similar in appearance
to the regular occupancy grid map, suggests maximum uncertainty for grid
cells behind obstacles.
There exists a number of limitations of the algorithm MAP_occ-
upancy_grid_mapping, and it can be improved in multiple ways. The algo-
rithm is a maximum a posteriori approach, and as such returns no notion of
uncertainty in the residual map. Our sensitivity analysis approximates this
uncertainty, but this approximation is overconfident, since sensitivity analy-
sis only inspects the mode locally. Further, the algorithm is a batch algorithm
and cannot be executed incrementally. In fact, the MAP algorithm requires
that all data is kept in memory. At the computational end, the algorithm can
be sped up by initializing it with the result of the regular occupancy grid
mapping approach, instead of an empty map. Finally, we note that only a
small number of measurements are affected by flipping a grid cell in line 5
of Table 9.3. While each sum is potentially huge, only a small number of el-
ements has to be inspected when calculating the argmax. This property can
be exploited in the basic algorithm, to increase its computational efficiency.

9.5 Summary

This chapter introduced algorithms for learning occupancy grids. All algo-
rithms in this chapter require exact pose estimates for the robot, hence they
do not solve the general mapping problem.

• The standard occupancy mapping algorithm estimates for each grid cell
individually the posterior probability of occupancy. It is an adaptation of
the binary Bayes filter for static environments.

• Data from multiple sensors can be fused into a single map in two ways:
By maintaining a single map using Bayes filters, and by maintaining mul-
tiple maps, one for each sensor modality. The latter approach is usually
preferable when different sensors are sensitive to different types of obsta-
cles.

• The standard occupancy grid mapping algorithm relies on inverse mea-
surement models, which reason from effects (measurements) to causes
(occupancy). This differs from previous applications of Bayes filters in the

9.6 Bibliographical Remarks 305

context of localization, where the Bayes filter was based on a conventional
measurement model that reasons from causes to effects.

• It is possible to learn inverse sensor models from the conventional mea-
surement model, which models the sensor from causes to effects. To do
so, one has to generate samples and learn an inverse model using a super-
vised learning algorithm.

• The standard occupancy grid mapping algorithm does not maintain de-
pendencies in the estimate of occupancy. This is a result of decomposing
the map posterior estimation problem into a large number of single-cell
posterior estimation problem.

• The full map posterior is generally not computable, due to the large num-
ber of maps that can be defined over a grid. However, it can be max-
imized. Maximizing it leads to maps that are more consistent with the
data than the occupancy grid algorithm using Bayes filters. However, the
maximization requires the availability of all data, and the resulting max-
imum a posterior map does not capture the residual uncertainty in the
map.

Without a doubt, occupancy grid maps and their various extensions are
vastly popular in robotics. This is because they are extremely easy to acquire,
and they capture important elements for robot navigation.

9.6 Bibliographical Remarks

Occupancy gridmaps are due to Elfes (1987), whose Ph.D. thesis (1989) defined the field. Awell-
referenced article by Moravec (1988) provides a highly accessible introduction into this topic,
and lays out the basic probabilistic approach that forms the core of this chapter. In unpublished
work, Moravec and Martin (1994) extended occupancy grid maps to 3-D, using stereo as the
primary sensor. Multi-sensor fusion in occupancy grids were introduced in Thrun et al. (1998a).
The results for learning inverse sensor models described in this chapter can be found in Thrun
(1998b). The forward modeling approach, also described in this chapter, is based on a similar
algorithm in Thrun (2003).
Occupancy maps have been used for a number of different purposes. Borenstein and Koren

(1991) were the first to adopt occupancy grid maps for collision avoidance. A number of au-
thors have used occupancy grid maps for localization, by cross-matching two occupancy grid
maps. Such “mapmatching” algorithms are discussed in detail in Chapter 7. Biswas et al. (2002)
used occupancy grid maps to learn shape models of movable objects in dynamic environments.
This approach was later extended to learning hierarchical class models of dynamic objects, all
represented with occupancy grid maps (Anguelov et al. 2002). Occupancy grid maps have also
extensively been used in the context of the simultaneous localization and mapping problem.
Those applications will be discussed in later chapters.

306 9 Occupancy Grid Mapping

Figure 9.12 Mobile indoor robot of the type RWI B21, with 24 sonar sensors
mounted on a circular array around the robot.

The idea of representing space by grids is only one out of many ideas explored in the mo-
bile robotics literature. Classical work on motion planning often assumes that the environment
is represented by polygons, but leaves open as to how those models are being acquired from
data (Schwartz et al. 1987). An early proposal on learning polygonal maps is due to Chatila and
Laumond (1985). A first implementation using Kalman filters for fitting lines from sonar data
was done by Crowley (1989). In more recent work, Anguelov et al. (2004) devised techniques for
identifying straight-line doors from raw sensor data, and learn visual attributes for improving
the door detection rate.
An early paradigm in spatial representation is the topological paradigm, in which space is

represented by a set of local relations, often corresponding to specific actions a robot may have
to take to navigate between adjacent locations. Examples of topological mapping algorithm
include Kuipers and Levitt’s (1988) work on their Spatial Semantic hierarchy (see also KuipersSPATIAL SEMANTIC

HIERARCHY et al. (2004)); Matarić’s (1990) M.Sc. thesis work, Kortenkamp and Weymouth’s (1994) work on
topological graphs contracted from sonar and vision data, and Shatkay and Kaelbling’s (1997)
approach on spatial HMMs with arc length information. Occupancy grid maps are members of
the complimentary paradigm: metric representations. Metric representations directly describe
the robot environment, in some absolute coordinate system. A second example of a metric
approach is the EKF SLAM algorithm, which will be discussed in the subsequent chapter.
There is a history of attempts to generate mapping algorithms that harvest the best of both

paradigms, topological andmetric. Tomatis et al. (2002) uses topological representations to close
loops consistently, then converts to metric maps. Thrun (1998b) first builds a metric occupancy
grid map, then extracts a topological skeleton to facilitate fast motion planning. In Chapter 11,
we will study techniques that bridge both paradigms, metric and topological.

9.7 Exercises 307

9.7 Exercises

1. Change the basic occupancy grid algorithm in Table 9.1 to include a pro-
vision for the change of occupancy over time. To accommodate such
change, evidence collected Δt time steps in the past should be decayed
by a factor of αΔt, for some value of α < 1 (e.g., α = 0.99). Such a rule is
called exponential decay. State the exponential decay occupancy grid map-EXPONENTIAL DECAY

ping algorithm in log odds form and argue its correctness. If you cannot
find an exact algorithm, state an approximation and argue why it is a
suitable approximation. For simplicity, you might want to assume a prior
p(mi) = 0.5 for occupancy.

2. The binary Bayes filter assumes that a cell is either occupied or unoccu-
pied, and the sensor provides noisy evidence for the correct hypothesis.
In this question, you will be asked to build an alternative estimator for a
grid cell: Suppose the sensor can only measure “0 = unoccupied” or “1 =
occupied”, and it receives a sequence

0, 0, 1, 0, 1, 1, 1, 0, 1, 0.

What is the maximum likelihood probability p for the next reading to be
1? Provide an incremental formula for a general maximum likelihood
estimator for this probability p. Discuss the difference of this estimator to
the binary Bayes filter (all for a single cell only).

3. We study a common sensor configuration in indoor robotics. Suppose an
indoor robot uses sonar sensors with a 15 degree opening cone, mounted
at a fixed height so that they point out horizontally and parallel to the
ground. Figure 9.12 shows such a robot. Discuss, what happens when the
robot faces an obstacle whose height is just below the height of the sensor
(for example, 15 cm below). Specifically, answer the following questions.

(a) Under what conditions will the robot detect the obstacle? Under what
conditions will it fail to detect it? Be concise.

(b) What implications does this all have for the binary Bayes filter and the
underlying Markov assumption? How can you make the occupancy
grid algorithm fail?

(c) Based on your answer to the previous question, can you provide an im-
proved occupancy gridmapping algorithm that will detect the obstacle
more reliably than the plain occupancy grid mapping algorithm?

308 9 Occupancy Grid Mapping

4. In this question, you are being asked to design a simple sensor model.
Suppose you are given binary occupancy measurements for the following
four cells:

cell number type measurement sequence
cell 1 occupied 1 1 0 1 0 1 1
cell 2 occupied 0 1 1 1 0 0 1
cell 3 free 0 0 0 0 0 0 0
cell 4 free 1 0 0 1 0 0 0

What is the maximum likelihood measurement model p(z | mi)? (Hint:
mi is a binary occupancy variable, and z is a binary measurement vari-
able.)

5. For the table in Exercise 4, implement the basic occupancy grid algorithm.

(a) What is the posterior p(mi | z1:7) for the four different cases, assuming
a prior p(mi) = 0.5?

(b) Devise a tuning algorithm for your sensor model that makes the out-
put of your occupancy grid mapping algorithm as close as possible to
the ground truth, for the four cases in Exercise 4. What do you find?
(For this question, you will have to come up with a suitable closeness
measure.)

6. The standard occupancy grid mapping algorithm is implemented us-
ing the log odds form, even though it would have equally been imple-
mentable using probabilities.

(a) Derive an update rule that represented occupancy probabilities di-
rectly, without the detour of the log odds representation.

(b) For an implementation in a common programming language such as
C++, give an example in which the probability implementation yields
different results form the log odds implementation, due to numerical
truncation. Explain your example, and argue whether you judge this
to be a problem in practice.

10 Simultaneous Localization and
Mapping

10.1 Introduction

This and the following chapters address one of the most fundamental prob-
lems in robotics, the simultaneous localization and mapping problem. This prob-
lem is commonly abbreviated as SLAM, and is also known as Concurrent
Mapping and Localization, or CML. SLAM problems arise when the robot does
not have access to a map of the environment, nor does it know its own pose.
Instead, all it is given are measurements z1:t and controls u1:t. The term “si-
multaneous localization and mapping” describes the resulting problem: In
SLAM, the robot acquires a map of its environment while simultaneously lo-
calizing itself relative to this map. SLAM is significantly more difficult than
all robotics problems discussed thus far. It is more difficult than localization
in that the map is unknown and has to be estimated along the way. It is more
difficult than mapping with known poses, since the poses are unknown and
have to be estimated along the way.
From a probabilistic perspective, there are two main forms of the SLAM
problem, which are both of equal practical importance. One is known as the
online SLAM problem: It involves estimating the posterior over the momen-ONLINE SLAM

PROBLEM tary pose along with the map:

p(xt,m | z1:t, u1:t)(10.1)

Here xt is the pose at time t,m is the map, and z1:t and u1:t are the measure-
ments and controls, respectively. This problem is called the online SLAM
problem since it only involves the estimation of variables that persist at time
t. Many algorithms for the online SLAM problem are incremental: they dis-
card past measurements and controls once they have been processed. The
graphical model of online SLAM is depicted in Figure 10.1.

310 10 Simultaneous Localization and Mapping

m

x

zt

t+1x

t+1zt−1z

t+1u

xt−1

ut−1 ut

t

Figure 10.1 Graphical model of the online SLAMproblem. The goal of online SLAM
is to estimate a posterior over the current robot pose along with the map.

The second SLAM problem is called the full SLAM problem. In full SLAM,FULL SLAM PROBLEM

we seek to calculate a posterior over the entire path x1:t along with the map,
instead of just the current pose xt (see also Figure 10.2):

p(x1:t,m | z1:t, u1:t)(10.2)

This subtle difference between online and full SLAM has ramifications in
the type of algorithms that can be brought to bear. In particular, the online
SLAM problem is the result of integrating out past poses from the full SLAM
problem:

p(xt,m | z1:t, u1:t) =

∫ ∫
· · ·
∫

p(x1:t,m | z1:t, u1:t) dx1 dx2 . . . dxt−1(10.3)

In online SLAM, these integrations are typically performed one-at-a-time.
They cause interesting changes of the dependency structures in SLAM that
we will fully explore in the next chapter.
A second key characteristic of the SLAM problem has to do with the na-
ture of the estimation problem. SLAM problems possess a continuous and a
discrete component. The continuous estimation problem pertains to the lo-
cation of the objects in the map and the robot’s own pose variables. Objects
may be landmarks in feature-based representation, or they might be object
patches detected by range finders. The discrete nature has to do with cor-
respondence: When an object is detected, a SLAM algorithm must reason
about the relation of this object to previously detected objects. This reason-
ing is typically discrete: Either the object is the same as a previously detected
one, or it is not.

10.1 Introduction 311

m

x

zt

t+1x

t+1zt−1z

t+1u

xt−1

ut−1 ut

t

Figure 10.2 Graphical model of the full SLAM problem. Here, we compute a joint
posterior over the whole path of the robot and the map.

We already encountered similar continuous-discrete estimation problems
in previous chapters. For example, EKF localization in Chapter 7.4 estimates
the robot pose, which is continuous. But to do so it also estimates the corre-
spondences of measurements and landmarks in the map, which are discrete.
In this and the subsequent chapters, we will discuss a number of different
techniques to deal with the continuous and the discrete aspects of the SLAM
problem.
At times, it will be useful to make the correspondence variables explicit,
as we did in Chapter 7 on localization. The online SLAM posterior is then
given by

p(xt,m, ct | z1:t, u1:t)(10.4)

and the full SLAM posterior by

p(x1:t,m, c1:t | z1:t, u1:t)(10.5)

The online posterior is obtained from the full posterior by integrating out
past robot poses and summing over all past correspondences:

p(xt,m, ct | z1:t, u1:t)(10.6)

=

∫ ∫
· · ·
∫ ∑

c1

∑
c2

· · ·
∑
ct−1

p(x1:t,m, c1:t | z1:t, u1:t) dx1 dx2 . . . dxt−1

In both versions of the SLAM problems—online and full—estimating the full
posterior (10.4) or (10.5) is the gold standard of SLAM. The full posterior
captures all there is to be known about the map and the pose or the path.

312 10 Simultaneous Localization and Mapping

In practice, calculating a full posterior is usually infeasible. Problems arise
from two sources: (1) the high dimensionality of the continuous parameter
space, and (2) the large number of discrete correspondence variables. Many
state-of-the-art SLAM algorithms construct maps with tens of thousands of
features, or more. Even under known correspondence, the posterior over
those maps alone involves probability distributions over spaces with 105 or
more dimensions. This is in stark contrast to localization problems, in which
posteriors were estimated over three-dimensional continuous spaces. Fur-
ther, in most applications the correspondences are unknown. The number of
possible assignments to the vector of all correspondence variables c1:t grows
exponentially in the time t. Thus, practical SLAM algorithms that can cope
with the correspondence problem must rely on approximations.
The SLAM problem will be discussed in a number of subsequent chap-
ters. The remainder of this chapter develops an EKF algorithm for the on-
line SLAM problem. Much of this material builds on Chapter 3.3, where
the EKF was introduced, and Chapter 7.4, where we applied the EKF to the
mobile robot localization problem. We will derive a progression of EKF al-
gorithms that first apply EKFs to SLAM with known correspondences, and
then progress to the more general case with unknown correspondences.

10.2 SLAMwith Extended Kalman Filters

10.2.1 Setup and Assumptions

Historically the earliest—and perhaps the most influential—SLAM algo-
rithm is based on the extended Kalman filter, or EKF. In a nutshell, the EKF
SLAM algorithm applies the EKF to online SLAM using maximum likeli-
hood data association. In doing so, EKF SLAM is subject to a number of
approximations and limiting assumptions:
Maps, in EKF SLAM, are feature-based. They are composed of point land-FEATURE-BASED MAPS

marks. For computational reasons, the number of point landmarks is usually
small (e.g., smaller than 1,000). Further, the EKF approach tends to work
well the less ambiguous the landmarks are. For this reason, EKF SLAM re-
quires significant engineering of feature detectors, sometimes using artificial
beacons as features.
As any EKF algorithm, EKF SLAM makes a Gaussian noise assumption forGAUSSIAN NOISE

ASSUMPTION robot motion and perception. The amount of uncertainty in the posterior
must be relatively small, since otherwise the linearization in EKFs tend to
introduce intolerable errors.

10.2 SLAM with Extended Kalman Filters 313

The EKF SLAM algorithm, just like the EKF localizer discussed in Chap-
ter 7.4, can only process positive sightings of landmarks. It cannot processPOSITIVE

INFORMATION negative information that arises from the absence of landmarks in sensor
measurements. This is a direct consequence of the Gaussian belief represen-
tation and was already discussed in Chapter 7.4.

10.2.2 SLAMwith Known Correspondence

The SLAM algorithm for the case with known correspondence addresses the
continuous portion of the SLAM problem only. Its development is in many
ways parallel to the derivation of the EKF localization algorithm in Chap-
ter 7.4, but with one key difference: In addition to estimating the robot pose
xt, the EKF SLAM algorithm also estimates the coordinates of all landmarks
encountered along the way. This makes it necessary to include the landmark
coordinates into the state vector.
For convenience, let us call the state vector comprising robot pose and the
map the combined state vector, and denote this vector yt. The combined vectorCOMBINED STATE

VECTOR is given by

yt =

(
xt

m

)
(10.7)

= (x y θ m1,x m1,y s1 m2,x m2,y s2 . . . mN,x mN,y sN)T

Here x, y, and θ denote the robot’s coordinates at time t (not to be confused
with the state variables xt and yt), mi,x,mi,y are the coordinates of the i-th
landmark, for i = 1, . . . , N , and si is its signature. The dimension of this state
vector is 3N + 3, where N denotes the number of landmarks in the map.
Clearly, for any reasonable number of N , this vector is significantly larger
than the pose vector that is being estimated in Chapter 7.4, which introduced
the EKF localization algorithm. EKF SLAM calculates the online posterior
p(yt | z1:t, u1:t).
The EKF SLAM algorithm is depicted in Table 10.1—notice the similarity to
the EKF localization algorithm in Table 7.2. Lines 2 through 5 apply the mo-
tion update, whereas lines 6 through 20 incorporate the measurement vector.
Lines 3 and 5 manipulate the mean and covariance of the belief in accor-
dance to the motion model. This manipulation only affects those elements
of the belief distribution concerned with the robot pose. It leaves all mean
and covariance variables for the map unchanged, along with the pose-map
covariances. Lines 7 through 20 iterate through all measurements. The test

314 10 Simultaneous Localization and Mapping

1: Algorithm EKF_SLAM_known_correspondences(μt−1, Σt−1, ut, zt, ct):

2: Fx =

⎛
⎜⎝

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

3N

⎞
⎟⎠

3: μ̄t = μt−1 + F T
x

(− vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

ωtΔt

)

4: Gt = I + F T
x

(
0 0 − vt

ωt
cos μt−1,θ + vt

ωt
cos(μt−1,θ + ωtΔt)

0 0 − vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

0 0 0

)
Fx

5: Σ̄t = Gt Σt−1 GT
t + F T

x Rt Fx

6: Qt =

(
σ2

r 0 0

0 σ2
φ

0

0 0 σ2
s

)
7: for all observed features zi

t = (ri
t φi

t si
t)

T do
8: j = ci

t

9: if landmark j never seen before

10:

(
μ̄j,x

μ̄j,y

μ̄j,s

)
=

(
μ̄t,x

μ̄t,y

si
t

)
+

(
ri
t cos(φi

t + μ̄t,θ)

ri
t sin(φi

t + μ̄t,θ)

0

)
11: endif

12: δ =

(
δx

δy

)
=

(
μ̄j,x − μ̄t,x

μ̄j,y − μ̄t,y

)
13: q = δT δ

14: ẑi
t =

(√
q

atan2(δy , δx) − μ̄t,θ

μ̄j,s

)

15: Fx,j =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0︸ ︷︷ ︸

3j−3

0 0 1 0 · · · 0︸ ︷︷ ︸
3N−3j

⎞
⎟⎟⎟⎟⎟⎟⎠

16: Hi
t = 1

q

(−√
qδx −√

qδy 0 +
√

qδx
√

qδy 0

δy −δx −q −δy +δx 0

0 0 0 0 0 q

)
Fx,j

17: Ki
t = Σ̄t HiT

t (Hi
t Σ̄t HiT

t + Qt)−1

18: μ̄t = μ̄t + Ki
t(z

i
t − ẑi

t)

19: Σ̄t = (I − Ki
t Hi

t) Σ̄t

20: endfor
21: μt = μ̄t

22: Σt = Σ̄t

23: return μt, Σt

Table 10.1 The EKF algorithm for the SLAM problem (with known correspon-
dences).

10.2 SLAM with Extended Kalman Filters 315

in line 9 returns true only for landmarks for which we have no initial loca-
tion estimate. For those, line 10 initializes the location of such a landmark by
the projected location obtained from the corresponding range and bearing
measurement. As we shall discuss below, this step is important for the lin-
earization in EKFs; it would not be needed in linear Kalman filters. For each
measurement, an “expected” measurement is computed in line 14, and the
corresponding Kalman gain is computed in line 17. Notice that the Kalman
gain is a matrix of size 3 by 3N + 3. This matrix is usually not sparse. In-
formation is propagated through the entire state estimate. The filter update
then occurs in lines 18 and 19, where the innovation is folded back into the
robot’s belief.
The fact that the Kalman gain is fully populated for all state variables—
and not just the observed landmark and the robot pose—is important. In
SLAM, observing a landmark does not just improve the position estimate
of this very landmark, but that of other landmarks as well. This effect is
mediated by the robot pose: Observing a landmark improves the robot pose
estimate, and as a result it eliminates some of the uncertainty of landmarks
previously seen by the same robot. The amazing effect here is that we do not
have to model past poses explicitly—which would put us into the realm of
the full SLAM problem andmake the EKF a non-realtime algorithm. Instead,
this dependence is captured in the Gaussian posterior, more specifically, in
the off-diagonal covariance elements of the matrix Σt.
Figure 10.3 illustrates the EKF SLAM algorithm for an artificial example.
The robot navigates from a start pose that serves as the origin of its coordi-
nate system. As it moves, its own pose uncertainty increases, as indicated
by uncertainty ellipses of growing diameter. It also senses nearby landmarks
and maps them with an uncertainty that combines the fixed measurement
uncertainty with the increasing pose uncertainty. As a result, the uncer-
tainty in the landmark locations grows over time. In fact, it parallels that
of the pose uncertainty at the time a landmark is observed. The interesting
transition happens in Figure 10.3d: Here the robot observes the landmark it
saw in the very beginning of mapping, and whose location is relatively well
known. Through this observation, the robot’s pose error is reduced, as indi-
cated in Figure 10.3d—notice the very small error ellipse for the final robot
pose! This observation also reduces the uncertainty for other landmarks in
the map. This phenomenon arises from a correlation that is expressed in
the covariance matrix of the Gaussian posterior. Since most of the uncer-
tainty in earlier landmarks is caused by the robot pose, and since this very
uncertainty persists over time, the location estimates of those landmarks are

316 10 Simultaneous Localization and Mapping

(a) (b)

(c) (d)

Figure 10.3 EKF applied to the online SLAM problem. The robot’s path is a dotted
line, and its estimates of its own position are shaded ellipses. Eight distinguishable
landmarks of unknown location are shown as small dots, and their location estimates
are shown as white ellipses. In (a)–(c) the robot’s positional uncertainty is increas-
ing, as is its uncertainty about the landmarks it encounters. In (d) the robot senses
the first landmark again, and the uncertainty of all landmarks decreases, as does the
uncertainty of its current pose. Image courtesy of Michael Montemerlo, Stanford
University.

correlated. When gaining information on the robot’s pose, this information
spreads to previously observed landmarks. This effect is probably the most
important characteristic of the SLAM posterior. Information that helps lo-
calize the robot is propagated through map, and as a result improves the

10.2 SLAM with Extended Kalman Filters 317

localization of other landmarks in the map.

10.2.3 Mathematical Derivation of EKF SLAM

The derivation of the EKF SLAM algorithm for the case with known corre-
spondences largely parallels that of the EKF localizer in Chapter 7.4. The key
difference is the augmented state vector, which now includes the locations of
all landmarks in addition to the robot pose.
In SLAM, the initial pose is taken to be the origin of the coordinate system.
This definition is somewhat arbitrary, in that it can be replaced by any coor-
dinate. None of the landmark locations are known initially. The following
initial mean and covariance express this belief:

μ0 = (0 0 0 . . . 0)T(10.8)

Σ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 ∞ · · · 0
...
...
...
...
. . .

...
0 0 0 0 · · · ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.9)

The covariance matrix is of size (3N +3)×(3N +3). It is composed of a small
3×3matrix of zeros for the robot pose variables. All other covariance values
are infinite.
As the robot moves, the state vector changes according to the standard
noise-free velocity model (see Equations (5.13) and (7.4)). In SLAM, this mo-
tion model is extended to the augmented state vector:

yt = yt−1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

vt

ωt
cos θ − vt

ωt
cos(θ + ωtΔt)

ωtΔt + γtΔt

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.10)

The variables x, y, and θ denote the robot pose in yt−1. Because the motion
only affects the robot’s pose and all landmarks remain where they are, only
the first three elements in the update are non-zero. This enables us to write

318 10 Simultaneous Localization and Mapping

the same equation more compactly:

yt = yt−1 + FT
x

⎛
⎜⎝ − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

vt

ωt
cos θ − vt

ωt
cos(θ + ωtΔt)

ωtΔt + γtΔt

⎞
⎟⎠(10.11)

Here Fx is a matrix that maps the 3-dimensional state vector into a vector of
dimension 3N + 3.

Fx =

⎛
⎜⎜⎝

1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0︸ ︷︷ ︸
3N columns

⎞
⎟⎟⎠(10.12)

The full motion model with noise is then as follows

yt = yt−1 + FT
x

⎛
⎜⎝ − vt

ωt
sin θ + vt

ωt
sin(θ + ωtΔt)

vt

ωt
cos θ − vt

ωt
cos(θ + ωtΔt)

ωΔt

⎞
⎟⎠

︸ ︷︷ ︸
g(ut,yt−1)

+N (0, FT
x Rt Fx)(10.13)

where FT
x RtFx extends the covariance matrix to the dimension of the full

state vector squared.
As usual in EKFs, the motion function g is approximated using a first de-
gree Taylor expansion

g(ut, yt−1) ≈ g(ut, μt−1) + Gt (yt−1 − μt−1)(10.14)

where the Jacobian Gt = g′(ut, μt−1) is the derivative of g with respect to
yt−1 at ut and μt−1, as in Equation (7.7).
Obviously, the additive form in (10.13) enables us to decompose this Jaco-
bian into an identity matrix of dimension (3N +3)× (3N +3) (the derivative
of yt−1) plus a low-dimensional Jacobian gt that characterizes the change of
the robot pose:

Gt = I + FT
x gt Fx(10.15)

with

gt =

⎛
⎜⎝ 0 0 − vt

ωt
cos μt−1,θ + vt

ωt
cos(μt−1,θ + ωtΔt)

0 0 − vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

0 0 0

⎞
⎟⎠(10.16)

Plugging these approximations into the standard EKF algorithm gives us
lines 2 through 5 of Table 10.1. Obviously, several of the matrices multiplied

10.2 SLAM with Extended Kalman Filters 319

in line 5 are sparse, which should be exploited when implementing this al-
gorithm. The result of this update are the mean μ̄t and the covariance Σ̄t of
the estimate at time t after updating the filter with the control ut, but before
integrating the measurement zt.
The derivation of the measurement update is similar to the one in Chap-
ter 7.4. In particular, we are given the following measurement model

zi
t =

⎛
⎝

√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y,mj,x − x)− θ

mj,s

⎞
⎠

︸ ︷︷ ︸
h(yt,j)

+N (0,

⎛
⎝ σr 0 0

0 σφ 0

0 0 σs

⎞
⎠

︸ ︷︷ ︸
Qt

)(10.17)

Here x, y, and θ denotes the pose of the robot, i is the index of an individual
landmark observation in zt, and j = ci

t is the index of the observed landmark
at time t. The variable r denotes the range to a landmark, φ is the bearing to
a landmark, and s the landmark signature; the terms σr, σφ, and σs are the
corresponding measurement noise covariances.
This expression is approximated by the linear function

h(yt, j) ≈ h(μ̄t, j) + Hi
t (yt − μ̄t)(10.18)

Here Hi
t is the derivative of h with respect to the full state vector yt. Since

h depends only on two elements of that state vector, the robot pose xt

and the location of the j-th landmark mj , the derivative factors into a low-
dimensional Jacobian hi

t and a matrix Fx,j , which maps hi
t into a matrix of

the dimension of the full state vector:

Hi
t = hi

t Fx,j(10.19)

Here hi
t is the Jacobian of the function h(yt, j) at μ̄t, calculated with respect

to the state variables xt andmj :

hi
t =

⎛
⎜⎜⎜⎜⎜⎝

μ̄t,x − μ̄j,x√
q

t

μ̄t,y − μ̄j,y√
q

t

0
μ̄j,x − μ̄t,x√

q
t

μ̄j,y − μ̄t,y√
q

t

0

μ̄j,y − μ̄t,y

qt

μ̄t,x − μ̄j,x

qt

−1
μ̄t,y − μ̄j,y

qt

μ̄j,x − μ̄t,x

qt

0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠(10.20)

The scalar qt = (μ̄j,x − μ̄t,x)2 + (μ̄j,y − μ̄t,y)2, and as before, j = ci
t is the

landmark that corresponds to the measurement zi
t. The matrix Fx,j is of di-

mension 6 × (3N + 3). It maps the low-dimensional matrix hi
t into a matrix

320 10 Simultaneous Localization and Mapping

of dimension 3× (3N + 3):

Fx,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0︸ ︷︷ ︸

3j−3

0 0 1 0 · · · 0︸ ︷︷ ︸
3N−3j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.21)

These expressionsmake up for the gist of the Kalman gain calculation in lines
8 through 17 in our EKF SLAM algorithm in Table 10.1, with one important
extension. When a landmark is observed for the first time, its initial pose
estimate in Equation (10.8) leads to a poor linearization. This is because with
the default initialization in (10.8), the point about which h is being linearized
is (μ̂j,x μ̂j,y μ̂j,s)

T = (0 0 0)T , which is a poor estimator of the actual land-
mark location. A better landmark estimator is given in line 10 of Table 10.1.
Here we initialize the landmark estimate (μ̂j,x μ̂j,y μ̂j,s)

T with the expected
position. This expected position is derived from the expected robot pose and
the measurement variables for this landmark⎛
⎝ μ̄j,x

μ̄j,y

μ̄j,s

⎞
⎠ =

⎛
⎝ μ̄t,x

μ̄t,y

si
t

⎞
⎠+

⎛
⎝ ri

t cos(φi
t + μ̄t,θ)

ri
t sin(φi

t + μ̄t,θ)

0

⎞
⎠(10.22)

We note that this initialization is only possible because the measurement
function h is bijective. Measurements are two-dimensional, as are landmark
locations. In cases where a measurement is of lower dimensionality than the
coordinates of a landmark, h is a true projection and it is impossible to cal-
culate a meaningful expectation for (μ̄j,x μ̄j,y μ̄j,s)

T from a single measure-
ment only. This is, for example, the case in computer vision implementations
of SLAM, since cameras often calculate the angle to a landmark but not the
range. SLAM is then usually performed by integrating multiple sightings
and applying triangulation to determine an appropriate initial location esti-
mate. In the SLAM literature, such a problem is known as bearing only SLAMBEARING ONLY SLAM

and will be further discussed in one of the exercises (page 334).
Finally, we note that the EKF algorithm requires memory that is quadratic
in N , the number of landmarks in the map. Its update time is also quadratic
in N . The quadratic update complexity stems from the matrix multiplica-
tions that take place at various locations in the EKF.

10.2 SLAM with Extended Kalman Filters 321

1: Algorithm EKF_SLAM(μt−1,Σt−1, ut, zt, Nt−1):

2: Nt = Nt−1

3: Fx =

⎛
⎝ 1 0 0 0 · · · 0

0 1 0 0 · · · 0
0 0 1 0 · · · 0

⎞
⎠

4: μ̄t = μt−1 + FT
x

⎛
⎜⎝ − vt

ωt
sinμt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

ωtΔt

⎞
⎟⎠

5: Gt = I + FT
x

⎛
⎜⎝ 0 0 − vt

ωt
cos μt−1,θ + vt

ωt
cos(μt−1,θ + ωtΔt)

0 0 − vt

ωt
sinμt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

0 0 0

⎞
⎟⎠ Fx

6: Σ̄t = Gt Σt−1 GT
t + FT

x Rt Fx

7: Qt =

⎛
⎝ σr 0 0

0 σφ 0

0 0 σs

⎞
⎠

8: for all observed features zi
t = (ri

t φi
t si

t)
T do

9:

⎛
⎝ μ̄Nt+1,x

μ̄Nt+1,y

μ̄Nt+1,s

⎞
⎠ =

⎛
⎝ μ̄t,x

μ̄t,y

si
t

⎞
⎠+ ri

t

⎛
⎝ cos(φi

t + μ̄t,θ)

sin(φi
t + μ̄t,θ)

0

⎞
⎠

10: for k = 1 to Nt+1 do

11: δk =

(
δk,x

δk,y

)
=

(
μ̄k,x − μ̄t,x

μ̄k,y − μ̄t,y

)
12: qk = δT

k δk

see next page for continuation

322 10 Simultaneous Localization and Mapping

continued from the previous page

13: ẑk
t =

⎛
⎝

√
qk

atan2(δk,y, δk,x)− μ̄t,θ

μ̄k,s

⎞
⎠

14: Fx,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 0 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

15: Hk
t = 1

qk

⎛
⎝−

√
q

k
δk,x −√q

k
δk,y 0

√
q

k
δk,x

√
q

k
δk,y 0

δk,y −δk,x −1 −δk,y δk,x 0

0 0 0 0 0 1

⎞
⎠Fx,k

16: Ψk = Hk
t Σ̄t [Hk

t]T + Qt

17: πk = (zi
t − ẑk

t)T Ψ−1
k (zi

t − ẑk
t)

18: endfor

19: πNt+1 = α

20: j(i) = argmin
k

πk

21: Nt = max{Nt, j(i)}
22: Ki

t = Σ̄t [H
j(i)
t]T Ψ−1

j(i)

23: μ̄t = μ̄t + Ki
t (zi

t − ẑ
j(i)
t)

24: Σ̄t = (I −Ki
t H

j(i)
t) Σ̄t

25: endfor

26: μt = μ̄t

27: Σt = Σ̄t

28: return μt,Σt

Table 10.2 The EKF SLAM algorithm with ML correspondences, shown here with
outlier rejection.

10.3 EKF SLAM with Unknown Correspondences 323

10.3 EKF SLAMwith Unknown Correspondences

10.3.1 The General EKF SLAM Algorithm

The EKF SLAM algorithm with known correspondences is now extended
into the general EKF SLAM algorithm, which uses an incremental maximumMAXIMUM LIKELIHOOD

CORRESPONDENCE likelihood (ML) estimator to determine correspondences. Table 10.2 depicts
the algorithm for unknown correspondences.
Since the correspondence is unknown, the input to the algorithm
EKF_SLAM lacks a correspondence variable ct. Instead, it includes the mo-
mentary size of the map, Nt−1. The motion update in lines 3 through 6 is
equivalent to the one in EKF_SLAM_known_correspondences in Table 10.1.
The measurement update loop, however, is different. Starting in line 8, it
first creates the hypothesis of a new landmark with index Nt + 1; this in-
dex is one larger than the landmarks in the map at this point in time. The
new landmark’s location is initialized in line 9, by calculating its expected
location given the estimate of the robot pose and the range and bearing in
the measurement. Line 9 also assigns the observed signature value to this
new landmark. Next, various update quantities are then computed in lines
10 through 18 for all Nt + 1 possible landmarks, including the “new” land-
mark. Line 19 sets the threshold for the creation of a new landmark: A new
landmark is created if the Mahalanobis distance to all existing landmarks in
the map exceeds the value α. The ML correspondence is then selected in line
20. If the measurement is associated with a previously unseen landmark, the
landmark counter is incremented in line 21, and various vectors andmatrices
are enlarged accordingly—this somewhat tedious step is not made explicit in
Table 10.2. The update of the EKF finally takes place in lines 23 and 24. The
algorithm EKF_SLAM returns the new number of landmarks Nt along with
the mean μt and the covariance Σt.
The derivation of this EKF SLAM follows directly from previous deriva-
tions. In particular, the initialization in line 9 is identical to the one in line
10 in EKF_SLAM_known_correspondences, Table 10.1. Lines 10 through 18
parallel lines 12 through 17 in EKF_SLAM_known_correspondences, with
the added variable πk needed for calculating the ML correspondence. The
selection of theML correspondence in line 20, and the definition of theMaha-
lanobis distance in line 17, is analogous to the ML correspondence discussed
in Chapter 7.5; in particular, the algorithm EKF_localization in Table 7.3 on
page 217 used an analogous equation to determine the most likely landmark
(line 16). The measurement updates in lines 23 and 24 of Table 10.2 are also

324 10 Simultaneous Localization and Mapping

analogous to those in the EKF algorithm with known correspondences, as-
suming that the participating vectors and matrices are of the appropriate
dimension in case the map has just been extended.
Our example implementation of EKF_SLAM can be made more efficient
by restricting the landmarks considered in lines 10 through 18 to those that
are near the robot. Further, many of the values and matrices calculated in
this inner loop can safely be cached away when looping through more than
one feature measurement vector zi

t. In practice, a good management of fea-
tures in the map and a tight optimization of this loop can greatly reduce the
running time.

10.3.2 Examples

Figure 10.4 shows the EKF SLAM algorithm—here with known
correspondence—applied in simulation. The left panel of each of the
three diagrams plots the posterior distributions, marginalized for the indi-
vidual landmarks and the robot pose. The right side depicts the correlation
matrix for the augmented state vector yt; the correlation is the normalized
covariance. As is easily seen from the result in Figure 10.4c, over time all
x- and y-coordinate estimates become fully correlated. This means the map
becomes known in relative terms, up to an uncertain global location that
cannot be reconciled. This highlights an important characteristic of the
SLAM problem: The absolute coordinates of a map relative to the coordinate
system defined by the initial robot pose can only be determined in approxi-
mation, whereas the relative coordinates can be determined asymptotically
with certainty.
In practice, EKF SLAM has been applied successfully to a large range of
navigation problems, involving airborne, underwater, indoor, and various
other vehicles. Figure 10.5 shows an example result obtained using the un-
derwater robot Oberon, developed at the University of Sydney, Australia,
and shown in Figure 10.6. This vehicle is equipped with a pencil sonar, a
sonar that can scan at very high resolutions and detect obstacles up to 50
meters away. To facilitate the mapping problem, researchers have deposited
long, small vertical objects in the water, which can be extracted from the
sonar scans with relative ease. In this specific experiment, there is a row of
such objects, spaced approximately 10 meters apart. In addition, a more dis-
tant cliff offers additional point features that can be detected using the pencil
sonar.
In the experiment shown in Figure 10.5, the robot moves by these land-

10.3 EKF SLAM with Unknown Correspondences 325

(a)

(b)

(c)

Figure 10.4 EKF SLAM with known data association in a simulated environment.
The map is shown on the left, with the gray-level corresponding to the uncertainty
of each landmark. The matrix on the right is the correlation matrix, which is the
normalized covariance matrix of the posterior estimate. After some time, all x- and
all y-coordinate estimates become fully correlated.

326 10 Simultaneous Localization and Mapping

−20

−15

−10

−5

0

5

10

15

20

−10 0 10 20 30 40

X
 (

m
)

Y (m)

Estimated Path of the Vehicle

Feature Returns
Tentative Features
Map Features
Vehicle Path

Figure 10.5 Example of Kalman filter estimation of the map and the vehicle pose.
Image courtesy of Stefan Williams and Hugh Durrant-Whyte, Australian Centre for
Field Robotics.

Figure 10.6 Underwater vehicle Oberon, developed at the University of Sydney.
Image courtesy of Stefan Williams and Hugh Durrant-Whyte, Australian Centre for
Field Robotics.

10.3 EKF SLAM with Unknown Correspondences 327

(a) RWI B21 Mobile robot and testing environment

(b) Raw odometry (c) Result of EKF SLAM with ground truth

Figure 10.7 (a) The MIT B21 mobile robot in a calibrated testing facility. (b) Raw
odometry of the robot, as it is manually driven through the environment. (c) The
result of EKF SLAM is a highly accurate map. The image shows the estimated map
overlayed on a manually constructed map. All images and results are courtesy of
John Leonard and Matthew Walter, MIT.

marks, then turns around and moves back. While doing so, it measures and
integrates landmarks into its map using the EKF SLAM algorithm described
in this chapter.
Themap shown in Figure 10.5 shows the robot’s path, marked by the trian-
gles connected by a line. Around each triangle one can see an ellipse, which
corresponds to the covariance matrix of the Kalman filter estimate projected
into the robot’s x-y position. The ellipse shows the variance; the larger it
is, the less certain the robot is about its current pose. Various small dots in

328 10 Simultaneous Localization and Mapping

Figure 10.5 show landmark sightings, obtained by searching the sonar scan
for small and highly reflective objects. The majority of these sightings are
rejected, using a mechanism described in the next section. However, some
are believed to correspond to a landmark and are added to the map. At the
end of the run, the robot has classified 14 such objects as landmarks, each of
which is plotted with the projected uncertainty ellipse in Figure 10.5. These
landmarks include the artificial landmarks put out by the researchers, but
they also include various other terrain features in the vicinity of the robot.
The residual pose uncertainty is small.
Figure 10.7 shows the result of another EKF SLAM implementation. Panel
(a) shows MIT’s RWI B21 mobile robot, situated in a testing environment.
The testing environment is a tennis court; obstacles are hurdles whose po-
sition was measured manually with centimeter accuracy for evaluation pur-
poses. Panel (b) of Figure 10.7 shows the raw odometry path. The result of
EKF SLAM is shown in Panel (c), overlayed with the manually constructed
map. The reader should verify that this is indeed an accurate map.

10.3.3 Feature Selection and Map Management

Making EKF SLAM robust in practice often requires additional techniques
formap management. Many of them pertain to the fact that the Gaussian noise
assumption is unrealistic, and many spurious measurements occur in the far
tail end of the noise distribution. Such spurious measurements can cause the
creation of fake landmarks in the map which, in turn, negatively affect the
localization of the robot.
Many state-of-the-art techniques possess mechanisms to deal with outliersOUTLIERS

in the measurement space. Such outliers are defined as spurious landmark
sightings outside the uncertainty range of any landmark in the map. The
most simple technique to reject such outliers is to maintain a provisional land-PROVISIONAL

LANDMARK LIST mark list. Instead of augmenting the map by a new landmark once a mea-
surement indicates the existence of a new landmark, such a new landmark
is first added to a provisional list of landmarks. This list is just like the map,
but landmarks on this list are not used to adjust the robot pose (the corre-
sponding gradients in the measurement equations are set to zero). Once
a landmark has consistently been observed and its uncertainty ellipse has
shrunk, it is transitioned into the regular map.
In practical implementations, this mechanism tends to reduce the number
of landmarks in the map by a significant factor, while still retaining all phys-
ical landmarks with high probability. A further step, also commonly found

10.3 EKF SLAM with Unknown Correspondences 329

in state-of-the-art implementations, is to maintain a landmark existence prob-LANDMARK EXISTENCE

PROBABILITY ability. Such a posterior probability may be implemented as log odds ratio
and be denoted oj for the j-th landmark in the map. Whenever the j-th land-
mark mj is observed, oj is incremented by a fixed value. Not observing mj

when it would be in the perceptual range of the robot’s sensors leads to a
decrement of oj . Since it can never be known with certainty whether a land-
mark is within a robot’s perceptual range, the decrement may factor in the
probability of such an event. Landmarks are removed from the map when
the value oj drops below a threshold. Such techniques lead to much leaner
maps in the face of non-Gaussian measurement noise.
When initializing the estimate for a new landmark starting with a covari-
ance with very large elements—as suggested in Equation (10.9)—may induce
numerical instabilities. This is because the very first covariance update stepNUMERICAL

INSTABILITY OF EKF
SLAM

will change this value by several orders of magnitude, too many perhaps for
generating amatrix that is still positive definite. A better strategy involves an
explicit initialization step for any feature that has not been observed before.
In particular, such a step would initialize the covariance Σt directly with the
actual landmark uncertainty, instead of executing line 24 in Table 10.2 (same
with the mean in line 23).
As noted previously, the maximum likelihood approach to data associa-
tion has a clear limitation, which arises from the fact that the maximum like-
lihood approach deviates from the idea of full posterior estimation in prob-
abilistic robotics. Instead of maintaining a joint posterior over augmented
states and data associations, it reduces the data association problem to a de-
terministic determination, which is treated as if the maximum likelihood as-
sociation was always correct. This limitation makes EKF brittle with regards
to landmark confusion, which in turn can lead to wrong results. In practice,
researchers often remedy the problem by choosing one of the following two
methods, both of which reduce the chances of confusing landmarks:

• Spatial arrangement. The further apart landmarks are, the smaller the
chance to accidentally confuse them. It is therefore common practice to
choose landmarks that are sufficiently far away from each other so that
the probability of confusing one with another becomes small. This intro-
duces an interesting trade-off: a large number of landmarks increases the
danger of confusing them. Too few landmarks makes it more difficult to
localize the robot, which in turn also increases the chances of confusing
landmarks. Little is currently known about the optimal density of land-
marks, and researchers often use intuition when selecting specific land-

330 10 Simultaneous Localization and Mapping

marks.

• Signatures. When selecting appropriate landmarks, it is essential to max-
imize the perceptual distinctiveness of landmarks. For example, doors
might possess different colors, or corridors might have different widths.
The resulting signatures are essential for successful SLAM.

With these additions, the EKF SLAM algorithm has indeed been applied suc-
cessfully to a wide range of practical mapping problems, involving robotic
vehicles in the air, on the ground, and underwater.
A key limitation of EKF SLAM lies in the necessity to select appropriate
landmarks. By reducing the sensor stream to the presence and absence of
landmarks, a lot of sensor data is usually discarded. This results in an in-
formation loss relative to a SLAM algorithm that can exploit sensors without
extensive pre-filtering. Further, the quadratic update time of the EKF limits
this algorithm to relatively scarce maps with less than 1,000 features. In prac-
tice, one often seeks maps with 106 features or more, in which case the EKF
ceases to be applicable.
The relatively low dimensionality of the map tends to create a harder data
association problem. This is easily verified: When you open your eyes and
look at the full room you are in, you probably have no difficulty in recog-
nizing where you are! However, if you are only told the location of a small
number of landmarks—e.g., the location of all light sources—the decision is
much harder. As a result, data association in EKF SLAM is more difficult
than in some of the SLAM algorithms discussed in subsequent chapters, and
capable of handling orders of magnitude more features. This culminates into
the fundamental dilemma of EKF SLAM: While incremental maximum likeli-FUNDAMENTAL

DILEMMA EKF SLAM hood data association might work well with dense maps with hundreds of
millions of features, it tends to be brittle with scarce maps. However, EKFs
require sparse maps because of the quadratic update complexity. In subse-
quent chapters, we will discuss SLAM algorithms that are more efficient and
can handle much larger maps. We will also discuss more robust data as-
sociation techniques. For its many limitations, the value of the EKF SLAM
algorithm presented in this chapter is mostly historical.

10.4 Summary

This chapter described the general SLAM problem and introduced the EKF
approach.

10.4 Summary 331

• The SLAM problem is defined as a concurrent localization and mapping
problem, in which a robot seeks to acquire a map of the environment
while simultaneously seeking to localize itself relative to this map.

• The SLAM problem comes in two versions: online and global. Both prob-
lems involve the estimation of the map. The online problem seeks to es-
timate the momentary robot pose, whereas the global problem seeks to
determine all poses. Both problems are of equal importance in practice,
and have found equal coverage in the literature.

• The EKF SLAM algorithm is arguably the earliest SLAM algorithm. It
applies the extended Kalman filter to the online SLAM problem. With
known correspondences, the resulting algorithm is incremental. Updates
require time quadratic in the number of landmarks in the map.

• When correspondences are unknown, the EKF SLAM algorithm applies
an incremental maximum likelihood estimator to the correspondence
problem. The resulting algorithm works well when landmarks are suf-
ficiently distinct.

• Additional techniques were discussed for managing maps. Two common
strategies for identifying outliers include a provisional list for landmarks
that are not yet observed sufficiently often, and a landmark evidence
counter that calculates the posterior evidence of the existence of a land-
mark.

• EKF SLAM has been applied with considerable success in a number of
robotic mapping problems. Its main drawback is the need for sufficiently
distinct landmarks, and the computational complexity required for up-
dating the filter.

In practice, EKF SLAM has been applied with some success. When land-
marks are sufficiently distinct, the approach approximates the posterior well.
The advantage of calculating a full posterior are manifold: It captures all
residual uncertainty and enables the robot to reason about its control tak-
ing its true uncertainty into account. However, the EKF SLAM algorithm
suffers from its enormous update complexity, and the limitation to sparse
maps. This, in turn, makes the data association problem a difficult one, and
EKF SLAM tends to work poorly in situations where landmarks are highly
ambiguous. Further brittleness is due to the fact that the EKF SLAM algo-
rithm relies on an incremental maximum likelihood data association tech-

332 10 Simultaneous Localization and Mapping

nique. This technique makes it impossible to revise past data associations,
and can induce failure when the ML data association is incorrect.
The EKF SLAM algorithm applies to the online SLAM problem; it is in-
applicable to the full SLAM problem. In the full SLAM problem, the addi-
tion of a new pose to the state vector at each time step would make both
the state vector and the covariance grow without bounds. Updating the co-
variance would therefore require an ever-increasing amount of time, and the
approach would quickly run out of computational time no matter how fast
the processor.

10.5 Bibliographical Remarks

The problem of SLAM predates the invention of modern robots by many centuries. The prob-
lem of modeling a physical structure from a moving sensor platform is at the core of a number
of fields, such as geosciences, photogrammetry, and computer vision. Many of the mathematical
techniques that form the core of the SLAMwork todaywere first developed for calculating plan-
etary orbits. For example, the least squares method can be traced back to Johann Carl Friedrich
Gauss (1809). SLAM is essentially a geographic surveying problem. Teleported to a robot it
creates challenges that human surveyors rarely face, such as the correspondence problem and
the problem of finding appropriate features.
In robotics, the EKF to the SLAM problem was introduced through a series of seminal papers

by Cheeseman and Smith (1986); Smith and Cheeseman (1986); Smith et al. (1990). These papers
were the first to describe the EKF approach discussed in this chapter. Just like us in this book,
Smith et al. discussed the EKF in the context of feature-based mapping with point landmarks,
and known data association. The first implementations of EKF SLAM were due to Moutarlier
and Chatila (1989a,b) and Leonard and Durrant-Whyte (1991), some using artificial beacons as
landmarks. The EKF became fashionable at a time when many authors investigated alternative
techniques for maintaining accurate pose estimates during mapping (Cox 1991). Early work
by Dickmanns and Graefe (1988) on estimation road curvature in autonomous cars is highly
related; see (Dickmanns 2002) for a survey.
SLAM is a highly active field of research, as a recent workshop indicates (Leonard et al.

2002b). An extensive literature for the field of SLAM—or CML for concurrent mapping and lo-
calization as Leonard and Durrant-Whyte (1991) call it—can be found in Thrun (2002). The
importance of maintaining correlations in the map was pointed out by Csorba (1997), who in
his Ph.D. thesis, who also established some basic convergence results. Since then, a number of
authors have extended the basic paradigm in many different ways. The feature management
techniques described in this chapter are due to Dissanayake et al. (2001, 2002); see also Bailey
(2002). Williams et al. (2001) developed the idea of provisional feature lists in SLAM, to reduce
the effect of feature detection errors. Feature initialization is discussed in Leonard et al. (2002a),
who explicitly maintains an estimate of previous poses to accommodate sensors that provide
incomplete data on feature coordinates. A representation that avoids singularities by explicitly
factoring “perturbations” out of the posterior was devised by Castellanos et al. (1999), who re-
ports improved numerical stability over the vanilla EKF. Jensfelt et al. (2002) found significant
improvements in indoor SLAM when utilizing basic geometric constraints, such as the fact that
most walls are parallel or orthogonal. Early work on SLAM with sonars goes back to Rencken

10.5 Bibliographical Remarks 333

(1993); a state-of-the-art system for SLAMwith sonar sensors can be found in Tardós et al. (2002).
Castellanos et al. (2004) provided a critical consistency analysis for the EKF. An empirical com-
parison of multiple algorithms can be found in Vaganay et al. (2004). A few open questions are
discussed by Salichs and Moreno (2000). Research on the important data association problem
will be reviewed in a later chapter (see page 481).
As noted, a key limitation of the EKF solution to the SLAM problem lies in the quadratic

nature of the covariance matrix. This “flaw” has not remained unnoticed. In the past few years,
a number of researchers have proposed EKF SLAM algorithms that gain remarkable scalability
through decomposing the map into submaps, for which covariances are maintained separately.
Some of the original work in this field is by Leonard and Feder (1999), Guivant and Nebot
(2001), and Williams (2001). Leonard and Feder’s (1999) decoupled stochastic mapping algorithm
decomposes the map into collections of smaller, more manageable submaps. This approach is
computationally efficient, but does not provide a mechanism to propagate information through
the network of local maps (Leonard and Feder 2001). Guivant and Nebot (2001, 2002), in con-
trast, provided an approximate factorization of the covariance matrix which reduced the actual
complexity of EKF updating by a significant factor. Williams (2001) and Williams et al. (2002)
proposed the constrained local submap filter (CLSF), which relies on creating independent local
submaps of the features in the immediate vicinity of the vehicle. Williams et al. (2002) provides
results for underwater mapping (see Figure 10.5 for some of his early work). The sequential
map joining techniques described in Tardós et al. (2002) is a related decomposition. Bailey (2002)
devises a similar technique for representing SLAM maps hierarchically. Folkesson and Chris-
tensen (2003) describes a technique by which frequent updates are limited to a small region
near the robot, whereas the remainder of the map is updated at much lower frequencies. All
these techniques achieve the same rate of convergence as the full EKF solution, but incur an
O(n2) computational burden. However, they scale much better to large problems with tens of
thousands of features.
A number of researchers have developed hybrid SLAM techniques, which combine EKF-style

SLAM techniques with volumetric techniques, such as occupancy grid maps. The hybrid metric
map (HYMM) by Guivant et al. (2004) and Nieto et al. (2004) decomposes maps into triangular
regions (LTRs) using volumetric maps such as occupancy grid maps as a basic representation
for those regions. These local maps are combined using EKFs. Burgard et al. (1999b) also de-
composes maps into local occupancy grid maps, but uses the expectation maximization (EM) al-
gorithm (see Dempster et al. (1977)) for combining local maps into a joint global map. The work
by Betgé-Brezetz et al. (1995, 1996) integrated two types of representations into a SLAM frame-
work: bitmaps for representing outdoor terrain, and object representations for sparse outdoor
objects.
Extensions of SLAM to dynamic environments can be found in Wang et al. (2003), Hähnel

et al. (2003c), and Wolf and Sukhatme (2004). Wang et al. (2003) developed an algorithm called
SLAM with DATMO, short for SLAM with the detection and tracking of moving objects. Their
approach is based on the EKF, but it allows for the possible motion of features. Hähnel et al.
(2003c) studied the problem of performing SLAM in environments with many moving objects.
They successfully employed the EM algorithm for filtering out measurements that likely corre-
spond to moving objects. By doing so, they were able to acquire maps in environments where
conventional SLAM techniques failed. The approach in Wolf and Sukhatme (2004) maintains
two coupled occupancy grids of the environment, one for the static map, and one for moving
objects. SLAM-style localization is achieved by a regular landmark-based SLAM algorithm.
SLAM systems have been brought to bear in a number of deployed systems. Rikoski et al.

(2004) applied SLAM to sonar odometry of submarine, providing a new approach for “auditory
odometry.” SLAM in abandoned mines is described in Nüchter et al. (2004), who extended the

334 10 Simultaneous Localization and Mapping

paradigm to full 6-D pose estimation. Extensions to the multi-robot SLAM problem have been
proposed by a number of researchers. Some of the earlier work is by Nettleton et al. (2000),
who developed a technique by which vehicles maintain local EKF maps, but fuse them using
the information representation of the posterior. An alternative technique is due to Rekleitis et al.
(2001a), who use a team of stationary and moving robots to reduce the localization error when
performing SLAM. Fenwick et al. (2002) provides a comprehensive theoretical investigation of
multi vehicle map fusion, specifically for landmark based SLAM. Techniques for fusing scans
were developed in Konolige et al. (1999); Thrun et al. (2000b); Thrun (2001).
A number of researchers have developed SLAM systems for specific sensor types. An im-

portant sensor is a camera; however, cameras only provide bearing to features. This problem
is well-studied in the computer vision literature as structure from motion (SFM) (Tomasi andSTRUCTURE FROM

MOTION Kanade 1992; Soatto and Brockett 1998; Dellaert et al. 2003), and in the field of photogramme-
try (Konecny 2002). Within SLAM, the seminal work on bearing only SLAM is due to Deans and
Hebert (2000, 2002). Their approach recursively estimates features of the environment that are
invariant to the robot pose, so as to decouple the pose error from the map error. A great num-
ber of researchers has applied SLAM using cameras as the primary sensor (Neira et al. 1997;
Cid et al. 2002; Davison 2003). Davison (1998) provides active vision techniques in the context
of SLAM. Dudek and Jegessur’s (2000) work relies on place recognition based on appearance,
whereas Hayet et al. (2002) and Bouguet and Perona (1995) use visual landmarks. Diebel et al.
(2004) developed a filter for SLAM with an active stereo sensor that accounts for the nonlinear
noise distribution of a stereo range finder. Sensor fusion techniques for SLAM were developed
by Devy and Bulata (1996). Castellanos et al. (2001) found empirically that fusing laser and
camera outperformed each sensor modality in isolation.
SLAM has also been extended to the problem of building dense 3-D models. Early systems

for acquiring 3-D models with indoor mobile robots can be found in Reed and Allen (1997);
Iocchi et al. (2000); Thrun et al. (2004b). Devy and Parra (1998) acquire 3-D models using para-
metric curves. Zhao and Shibasaki (2001), Teller et al. (2001), and Frueh and Zakhor (2003) have
developed impressive systems for building large textured 3-D maps of urban environments.
Neither of these systems addresses the full SLAM problem due to the availability of outdoor
GPS, but they are highly related to the mathematical basis of SLAM. These techniques blend
smoothly with a rich body of work on aerial reconstruction of urban environments (Jung and
Lacroix 2003; Thrun et al. 2003).
The following chapters discuss alternatives to the plain EKFs. The techniques described there

share many of the intuitions with the extensions discussed here, as the boundary between dif-
ferent types of filters has become almost impossible to draw. The literature review will be con-
tinued after the next chapter, when discussing a SLAM algorithm using information-theoretic
representations.

10.6 Exercises

1. What is the computational complexity of the motion update in EKF
SLAM? Use the O() notation. Compare this with the worst case com-
plexity for EKFs over a feature vector of the same size.

2. Bearing only SLAM refers to the SLAM problemwhen the sensors can onlyBEARING ONLY SLAM

measure the bearing of a landmark but not its range. As noted, bearing

10.6 Exercises 335

only SLAM is closely related to Structure fromMotion (SFM) in Computer
Vision. One problem in bearing only SLAM with EKFs concerns the ini-
tialization of landmark location estimates, even if the correspondences are
known. Discuss why, and devise a technique for initializing the landmark
location estimates (means and covariances) that can be applied in bearing
only SLAM.

3. On page 329, we remarked that the EKF algorithm in Table 10.2 can be-
come numerically instable. Devise a method for setting μt and Σt directly
when a new feature is observed for the first time. Such a technique would
not require initializing the covariance with very large values. Show that
the result is mathematically equivalent to lines 23 and 24 when the covari-
ance is initialized as in Equation (10.9).

4. The text suggests using a binary Bayes filter to compute the probability
that a landmark represented in the posterior actually exists in the physical
world.

(a) In the first part of this exercise, you are asked to design such a binary
Bayes filter.

(b) Now extend your filter to a situation in which landmarks sporadically
disappear with a probability p∗.

(c) Picture a situation where for a well-established landmark, no informa-
tion is received for a long time with regards to its existence (no positive
and no negative information). To what value will your filter converge?
Prove your answer.

5. The EKF SLAM algorithm, as presented here, is unable to cope with the
data association problem in a sound statistical way. Lay out an algorithm
(and a statistical framework) for posterior estimation with unknown data
association that represents the posterior by mixtures of Gaussians, and
characterize its advantages and disadvantages. How does the complexity
of the posterior grow over time?

6. Based on the previous problem, develop an approximate method for pos-
terior estimation with unknown data association where the time needed
for each incremental update step does not grow over time (assuming a
fixed number of landmarks).

7. Develop a Kalman filter algorithm that uses local occupancy grid maps as
its basic components, instead of landmarks. Among other things, prob-

336 10 Simultaneous Localization and Mapping

lems that have to be solved are how to relate local grids to each other, and
how to deal with the ever-growing number of local grids.

11 The GraphSLAM Algorithm

11.1 Introduction

The EKF SLAM algorithm described in the previous chapter is subject to a
number of limitations. One of them is its quadratic update complexity; an-
other is the linearization technique in EKFs, which is only performed once in
the EKF for each nonlinear term. In this chapter, we introduce an alternative
SLAM algorithm, called GraphSLAM. In contrast to the EKF, GraphSLAM
solves the full SLAM problem. It calculates a solution for the offline problem
defined over all poses and all features in the map. As we will show in this
chapter, the posterior of the full SLAM problem naturally forms a sparse graph.SPARSE GRAPH

This graph leads to a sum of nonlinear quadratic constraints. Optimizing
these constraints yields a maximum likelihood map and a corresponding set
of robot poses. Historically, this idea can be found in a large number of SLAM
publications. The name “GraphSLAM” has been chosen because it captures
the essence of this approach.
Figure 11.1 illustrates the GraphSLAM algorithm. Shown there is the
graph that GraphSLAM extracts from five poses labeled x0, . . . , x4, and two
map featuresm1,m2. Arcs in this graph come in two types: motion arcs and
measurement arcs. Motion arcs link any two consecutive robot poses, and
measurement arcs link poses to features that were measured there. Each edge
in the graph corresponds to a nonlinear constraint. As we shall see later,
these constraints represent the negative log likelihood of the measurement
and the motion models, hence are best thought of as information constraints.
Adding such a constraint to the graph shall prove to be trivial for Graph-
SLAM; it involves no significant computation. The sum of all constraints
results in a nonlinear least squares problem, as stated in Figure 11.1.LEAST SQUARES

To compute a map posterior, GraphSLAM linearizes the set of constraints.

338 11 The GraphSLAM Algorithm

Figure 11.1 GraphSLAM illustration, with 4 poses and two map features. Nodes
in the graphs are robot poses and feature locations. The graph is populated by two
types of edges: Solid edges link consecutive robot poses, and dashed edges link poses
with features sensed while the robot assumes that pose. Each link in GraphSLAM is a
non-linear quadratic constraint. Motion constraints integrate the motion model; mea-
surement constraints the measurement model. The target function of GraphSLAM is
the sum of these constraints. Minimizing it yields the most likely map and the most
likely robot path.

The result of linearization is an informationmatrix and an information vector
of essentially the same form as already encountered in Chapter 3, when we
discussed the information filter. However, the information matrix inherits
the sparseness from the graph constructed by GraphSLAM. This sparseness
enables GraphSLAM to apply the variable elimination algorithm, thereby
transforming the graph into a much smaller one only defined over robot
poses. The path posterior map is then calculated using standard inference
techniques. GraphSLAM also computes a map and certain marginal posteri-
ors over the map; the full map posterior is of course quadratic in the size of
the map and hence is usually not recovered.
In may ways, EKF SLAM and GraphSLAM are extreme ends of the spec-
trum of SLAM algorithms. A primary difference between EKF SLAM and
GraphSLAM pertains to the representation of information. While EKF

11.1 Introduction 339

SLAM represents information through a covariance matrix and a mean vec-
tor, GraphSLAM represents the information as a graph of soft constraints.
Updating the covariance in an EKF is computationally expensive; whereas
growing the graph is cheap!
Such savings come at a price. GraphSLAM requires additional inference
when recovering the map and the path, whereas EKF maintains its best esti-
mate of the map and the robot pose at all times. The build-up of the graph
is followed by a separate computational phase in which this information is
transformed into an estimate of the state. No such phase is required for EKF
SLAM.
Consequently, one may think of EKF as a proactive SLAM algorithm, inPROACTIVE SLAM

the sense that it resolves any new piece of information immediately into an
improved estimate of the state of the world. GraphSLAM, in contrast, is
more like a lazy SLAM technique, which simply accumulates informationLAZY SLAM

into its graphwithout resolving it. This difference is significant. GraphSLAM
can acquire maps that are many orders of magnitude larger than EKFs can
handle.
There are further differences between EKF SLAM and GraphSLAM. As a
solution to the full SLAM problem, GraphSLAM calculates posteriors over
robot paths, hence is not an incremental algorithm. This approach is differ-
ent from EKF SLAM, which, as a filter, only maintains a posterior over the
momentary pose of the robot. EKF SLAM enables a robot to update its map
forever, whereas GraphSLAM is best suited for problems where one seeks a
map from a data set of fixed size. EKF SLAM can maintain a map over the
entire lifetime of a robot without having to worry about the total number of
time steps elapsed since the beginning of data acquisition.
Because GraphSLAM has access to the full data when building the map,
it can apply improved linearization and data association techniques. In EKF
SLAM, the linearization and the correspondence for a measurement at time t

are calculated based on the data up to time t. In GraphSLAM all data can be
used to linearize and to calculate correspondences. Put differently, Graph-
SLAM can revise past data association, and it can linearize more than once.
In fact, GraphSLAM iterates the three crucial steps in mapping: the con-
struction of the map, the calculation of correspondence variables, and the
linearization of the measurement and motion models—so as to obtain the
best estimate of all of those quantities. As a result of all this, GraphSLAM
tends to produce maps that are superior in accuracy to maps generated by
EKFs.
However, GraphSLAM is not without limitations when compared to the

340 11 The GraphSLAM Algorithm

EKF approach. One was already discussed: The size of the graph grows
linearly over time, whereas the EKF shows no such time dependence in the
amount of memory allocated to its estimate. Another pertains to data associ-
ation. Whereas in EKF SLAM data association probabilities can easily be ob-
tained from the posterior’s covariance matrix, computing the same probabil-
ities in GraphSLAM requires inference. This difference will be elucidated be-
low, where we define an explicit algorithm for computing correspondences
in GraphSLAM. Thus, which method is preferable is very much a question
of the application, as there is no single method that would be superior in all
critical dimensions.
This chapter first describes the intuition behind GraphSLAM and its basic
updates steps. We then derive the various update steps mathematically and
prove its correctness relative to specific linear approximations. A technique
for data association will also be devised, followed by a discussion of actual
implementations of the GraphSLAM algorithm.

11.2 Intuitive Description

The basic intuition behind GraphSLAM is remarkably simple: GraphSLAM
extracts from the data a set of soft constraints, represented by a sparse graph.
It obtains the map and the robot path by resolving these constraints into a
globally consistent estimate. The constraints are generally nonlinear, but in
the process of resolving them they are linearized and transformed into an in-
formation matrix. Thus, GraphSLAM is essentially an information-theoretic
technique. We will describe GraphSLAM both as a technique for building a
sparse graph of nonlinear constraints, and as a technique for populating a
sparse information matrix of linearized constraints.

11.2.1 Building Up the Graph

Suppose we are given a set of measurements z1:t with associated correspon-
dence variables c1:t, and a set of controls u1:t. GraphSLAM turns this data
into a graph. The nodes in the graph are the robot poses x1:t and the features
in the map m = {mj}. Each edge in the graph corresponds to an event: a
motion event generates an edge between two robot poses, and a measure-
ment event creates a link between a pose and a feature in the map. Edges
represent soft constraints between poses and features in GraphSLAM.
For a linear system, these constraints are equivalent to entries in an infor-
mation matrix and an information vector of a large system of equations. As

11.2 Intuitive Description 341

usual, we will denote the information matrix by Ω and the information vec-
tor by ξ. As we shall see below, each measurement and each control leads to
a local update of Ω and ξ, which corresponds to a local addition of an edge
to the graph in GraphSLAM. In fact, the rule for incorporating a control or a
measurement into Ω and ξ is a local addition, paying tribute to the important
fact that information is an additive quantity.
Figure 11.2 illustrates the process of constructing the graph along with the
corresponding information matrix. First consider a measurement zi

t. This
measurement provides information between the location of the feature j = ci

t

and the robot pose xt at time t. In GraphSLAM, this information is mapped
into a constraint between xt andmj . We can think of this edge as a “spring”
in a spring-mass model. As we shall see below, the constraint is of the type:

(zi
t − h(xt,mj))

T Q−1
t (zi

t − h(xt,mj))(11.1)

Here h is the familiar measurement function, and Qt is the covariance of the
measurement noise. Figure 11.2a shows the addition of such a link into the
graph maintained by GraphSLAM.
Now consider robot motion. The control ut provides information about

the relative value of the robot pose at time t−1 and the pose at time t. Again,
this information induces a constraint in the graph, which will be of the form

(xt − g(ut, xt−1))
T R−1

t (xt − g(ut, xt−1))(11.2)

Here g is the familiar kinematic motion model of the robot, and Rt is the
covariance of the motion noise.
Figure 11.2b illustrates the addition of such a link in the graph. It also
shows the addition of a new element in the information matrix, between the
pose xt and the measurement zi

t. This update is again additive. As before,
the magnitude of these values reflects the residual uncertainty Rt due to the
measurement noise; the less noisy the sensor, the larger the value added to Ω

and ξ.
After incorporating all measurements z1:t and controls u1:t, we obtain a

sparse graph of soft constraints. The number of constraints in the graph is
linear in the time elapsed, hence the graph is sparse. The sum of all con-
straints in the graph will be of the form

JGraphSLAM = xT
0 Ω0 x0 +

∑
t

(xt − g(ut, xt−1))
T R−1

t (xt − g(ut, xt−1))(11.3)

+
∑

t

∑
i

(zi
t − h(yt, c

i
t))

T Q−1
t (zi

t − h(yt, c
i
t))

342 11 The GraphSLAM Algorithm

(a) Observation ls landmarkm1

(b) Robot motion from x1 to x2

(c) Several steps later

Figure 11.2 Illustration of the acquisition of the information matrix in GraphSLAM.
The left diagram shows the dependence graph, the right the information matrix.

11.2 Intuitive Description 343

It is a function defined over pose variables x1:t and all feature locations in
the map m. Notice that this expression also features an anchoring constraintANCHORING

CONSTRAINT of the form xT
0 Ω0 x0. This constraint anchors the absolute coordinates of the

map by initializing the very first pose of the robot as (0 0 0)T .
In the associated information matrix Ω, the off-diagonal elements are all
zero with two exceptions: Between any two consecutive poses xt−1 and xt

will be a non-zero value that represents the information link introduced by
the control ut. Also non-zero will be any element between a map featuremj

and a pose xt, if mj was observed when the robot was at xt. All elements
between pairs of different features remain zero. This reflects the fact that
we never received information pertaining to their relative location—all we
receive in SLAM are measurements that constrain the location of a feature
relative to a robot pose. Thus, the information matrix is equally sparse; all
but a linear number of its elements are zero.

11.2.2 Inference

Of course, neither the graph representation nor the information matrix rep-
resentation gives us what we want: the map and the path. In GraphSLAM,
the map and the path are obtained from the linearized information matrix,
via μ = Ω−1ξ (see Equation (3.73) on page 72). This operation requires us to
solve a system of linear equations. This raises the question on how efficiently
we can recover the map estimate μ and the covariance Σ.
The answer to the complexity question depends on the topology of the
world. If each feature is seen only locally in time, the graph represented
by the constraints is linear. Thus, Ω can be reordered so that it becomes a
band-diagonal matrix, and all non-zero values occur near its diagonal. The
equation μ = Ω−1ξ can then be computed in linear time. This intuition car-
ries over to cycle-free world that is traversed once, so that each feature is seen
for a short, consecutive period of time.
Themore common case, however, involves features that are observedmul-
tiple times, with large time delays in between. This might be the case because
the robot goes back and forth through a corridor, or because the world pos-
sesses cycles. In either situation, there will exist features mj that are seen atCYCLES

drastically different time steps xt1 and xt2 , with t2 � t1. In our constraint
graph, this introduces a cyclic dependence: xt1 and xt2 are linked through
the sequence of controls ut1+1, ut1+2, . . . , ut2 and through the joint observa-
tion links between xt1 andmj , and xt2 andmj , respectively. Such links make
our variable reordering trick inapplicable, and recovering the map becomes

344 11 The GraphSLAM Algorithm

more complex. In fact, since the inverse of Ω is multiplied with a vector,
the result can be computed with optimization techniques such as conjugate
gradient, without explicitly computing the full inverse matrix. Since most
worlds possess cycles, this is the case of interest.
The GraphSLAM algorithm now employs an important factorization trick,FACTORIZATION

which we can think of as propagating information through the information
matrix (in fact, it is a generalization of the well-known variable elimination
algorithm for matrix inversion). Suppose we would like to remove a feature
mj from the information matrix Ω and the information state ξ. In our spring
mass model, this is equivalent to removing the node and all springs attached
to this node. As we shall see below, this is possible by a remarkably simple
operation: We can remove all those springs between mj and the poses at
which mj was observed, by introducing new springs between any pair of
such poses.
This process is illustrated in Figure 11.3, which shows the removal of two
map features, m1 and m3 (the removal of m2 and m4 is trivial in this ex-
ample). On both cases, the feature removal modifies the link between any
pair of poses from which a feature was originally observed. As illustrated in
Figure 11.3b, this operation may lead to the introduction of new links in the
graph. In the example shown there, the removal of m3 leads to a new link
between x2 and x4.
Formally, let τ(j) be the set of poses at which mj was observed (that is:

xt ∈ τ(j) ⇐⇒ ∃i : ci
t = j). Then we already know that the feature mj

is only linked to poses xt in τ(j); by construction, mj is not linked to any
other pose, or to any feature in the map. We can now set all links between
mj and the poses τ(j) to zero by introducing a new link between any two
poses xt, xt′ ∈ τ(j). Similarly, the information vector values for all poses
τ(j) are also updated. An important characteristic of this operation is that
it is local: It only involves a small number of constraints. After removing
all links to mj , we can safely remove mj from the information matrix and
vector. The resulting information matrix is smaller—it lacks an entry formj .
However, it is equivalent for the remaining variables, in the sense that the
posterior defined by this information matrix is mathematically equivalent to
the original posterior before removing mj . This equivalence is intuitive: We
simply have replaced springs connecting mj to various poses in our spring
mass model by a set of springs directly linking these poses. In doing so,
the total force asserted by these springs remains equivalent, with the only
exception thatmj is now disconnected.
The virtue of this reduction step is that we can gradually transform our

11.2 Intuitive Description 345

(a) The removal ofm1 changes the link between x1 and x2

(b) The removal ofm3 introduces a new link between x2 and x4

(c) Final Result after removing all map features

Figure 11.3 Reducing the graph in GraphSLAM: Arcs are removed to yield a net-
work of links that only connect robot poses.

346 11 The GraphSLAM Algorithm

inference problem into a smaller one. By removing each feature mj from
Ω and ξ, we ultimately arrive at a much smaller information form Ω̃ and
ξ̃ defined only over the robot path variables. The reduction can be carried
out in time linear in the size of the map; in fact, it generalizes the variable
elimination technique for matrix inversion to the information form, in which
we also maintain an information state. The posterior over the robot path is
now recovered as Σ̃ = Ω̃−1 and μ̃ = Σ̃ξ. Unfortunately, our reduction step
does not eliminate cycles in the posterior. The remaining inference problem
may still require more than linear time.
As a last step, GraphSLAM recovers the feature locations. Conceptually,
this is achieved by building a new information matrix Ωj and information
vector ξj for each mj . Both are defined over the variable mj and the poses
τ(j) at which mj were observed. It contains the original links between mj

and τ(j), but the poses τ(j) are set to the values in μ̃, without uncertainty.
From this information form, it is now simple to calculate the location of mj ,
using the common matrix inversion trick. Clearly, Ωj contains only elements
that connect to mj ; hence the inversion takes time linear in the number of
poses in τ(j).
It should be apparent why the graph representation is such a natural rep-
resentation. The full SLAM problem is solved by locally adding information
into a large information graph, one edge at-a-time for each measurement zi

t

and each control ut. To turn such information into an estimate of the map
and the robot path, it is first linearized, then information between poses and
features is gradually shifted to information between pairs of poses. The re-
sulting structure only constraints the robot poses, which are then calculated
using matrix inversion. Once the poses are recovered, the feature locations
are calculated one-after-another, based on the original feature-to-pose infor-
mation.

11.3 The GraphSLAM Algorithm

We will now make the various computational steps of the GraphSLAM pre-
cise. The full GraphSLAM algorithm will be described in a number of steps.
The main difficulty in implementing the simple additive information algo-
rithm pertains to the conversion of a conditional probability of the form
p(zi

t | xt,m) and p(xt | ut, xt−1) into a link in the information matrix. The
information matrix elements are all linear; hence this step involves lineariz-
ing p(zi

t | xt,m) and p(xt | ut, xt−1). In EKF SLAM, this linearization was

11.3 The GraphSLAM Algorithm 347

1: Algorithm GraphSLAM_initialize(u1:t):

2:

⎛
⎝ μ0,x

μ0,y

μ0,θ

⎞
⎠ =

⎛
⎝ 0

0

0

⎞
⎠

3: for all controls ut = (vt ωt)
T do

4:

⎛
⎝ μt,x

μt,y

μt,θ

⎞
⎠ =

⎛
⎝ μt−1,x

μt−1,y

μt−1,θ

⎞
⎠

4: +

⎛
⎜⎝ − vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

ωtΔt

⎞
⎟⎠

5: endfor
6: return μ0:t

Table 11.1 Initialization of the mean pose vector μ1:t in the GraphSLAM algorithm.

1: Algorithm GraphSLAM_linearize(u1:t, z1:t, c1:t, μ0:t):

2: set Ω = 0, ξ = 0

3: add

⎛
⎝ ∞ 0 0

0 ∞ 0

0 0 ∞

⎞
⎠ to Ω at x0

4: for all controls ut = (vt ωt)
T do

5: x̂t = μt−1 +

⎛
⎜⎝ − vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

ωtΔt

⎞
⎟⎠

6: Gt =

⎛
⎜⎝ 1 0 − vt

ωt
cos μt−1,θ + vt

ωt
cos(μt−1,θ + ωtΔt)

0 1 − vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

0 0 1

⎞
⎟⎠

see next page for continuation

348 11 The GraphSLAM Algorithm

continued from the previous page

7: add
(−GT

t

1

)
R−1

t (−Gt 1) to Ω at xt and xt−1

8: add
(−GT

t

1

)
R−1

t [x̂t −Gt μt−1] to ξ at xt and xt−1

9: endfor

10: for all measurements zt do

11: Qt =

⎛
⎝ σ2

r 0 0

0 σ2
φ 0

0 0 σ2
s

⎞
⎠

12: for all observed features zi
t = (ri

t φi
t si

t)
T do

13: j = ci
t

14: δ =

(
δx

δy

)
=

(
μj,x − μt,x

μj,y − μt,y

)
15: q = δT δ

16: ẑi
t =

⎛
⎝

√
q

atan2(δy, δx)− μt,θ

sj

⎞
⎠

17: Hi
t = 1

q

⎛
⎝ −√qδx −√qδy 0 +

√
qδx

√
qδy 0

δy −δx −q −δy +δx 0

0 0 0 0 0 q

⎞
⎠

18: add HiT
t Q−1

t Hi
t to Ω at xt andmj

19: add HiT
t Q−1

t [zi
t − ẑi

t + Hi
t

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μt,x

μt,y

μt,θ

μj,x

μj,y

μj,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

] to ξ at xt andmj

20: endfor

21: endfor

22: return Ω, ξ

Table 11.2 Calculation of Ω and ξ in GraphSLAM.

11.3 The GraphSLAM Algorithm 349

1: Algorithm GraphSLAM_reduce(Ω, ξ):

2: Ω̃ = Ω

3: ξ̃ = ξ

4: for each feature j do

5: let τ(j) be the set of all poses xt at which j was observed

6: subtract Ω̃τ(j),j Ω̃−1
j,j ξj from ξ̃ at xτ(j) andmj

7: subtract Ω̃τ(j),j Ω̃−1
j,j Ω̃j,τ(j) from Ω̃ at xτ(j) andmj

8: remove from Ω̃ and ξ̃ all rows/columns corresponding to j

9: endfor

10: return Ω̃, ξ̃

Table 11.3 Algorithm for reducing the size of the information representation of the
posterior in GraphSLAM.

1: Algorithm GraphSLAM_solve(Ω̃, ξ̃,Ω, ξ):

2: Σ0:t = Ω̃−1

3: μ0:t = Σ0:t ξ̃

4: for each feature j do

5: set τ(j) to the set of all poses xt at which j was observed

6: μj = Ω−1
j,j (ξj + Ωj,τ(j) μ̃τ(j))

7: endfor

8: return μ,Σ0:t

Table 11.4 Algorithm for updating the posterior μ.

350 11 The GraphSLAM Algorithm

1: Algorithm GraphSLAM_known_correspondence(u1:t, z1:t, c1:t):

2: μ0:t = GraphSLAM_initialize(u1:t)

3: repeat

4: Ω, ξ = GraphSLAM_linearize(u1:t, z1:t, c1:t, μ0:t)

5: Ω̃, ξ̃ = GraphSLAM_reduce(Ω, ξ)

6: μ,Σ0:t = GraphSLAM_solve(Ω̃, ξ̃,Ω, ξ)

7: until convergence

8: return μ

Table 11.5 The GraphSLAM algorithm for the full SLAM problem with known cor-
respondence.

found by calculating a Jacobian at the estimated mean poses μ0:t. To build
our initial information matrix Ω and ξ, we need an initial estimate μ0:t for all
poses x0:t.
There exist a number of solutions to the problem of finding an initial mean

μ suitable for linearization. For example, we can run an EKF SLAM and use
its estimate for linearization. For the sake of this chapter, we will use an even
simpler technique: Our initial estimate will simply be provided by chaining
together the motion model p(xt | ut, xt−1). Such an algorithm is outlined
in Table 11.1, and called there GraphSLAM_initialize. This algorithm takes
the controls u1:t as input, and outputs sequence of pose estimates μ0:t. It
initializes the first pose by zero, and then calculates subsequent poses by re-
cursively applying the velocitymotionmodel. Since we are only interested in
the mean poses vector μ0:t, GraphSLAM_initialize only uses the determin-
istic part of the motion model. It also does not consider any measurement in
its estimation.
Once an initial μ0:t is available, the GraphSLAM algorithm constructs the
full SLAM informationmatrixΩ and the corresponding information vector ξ.
This is achieved by linearizing the links in the graph. The algorithm Graph-
SLAM_linearize is depicted in Table 11.2. This algorithm contains a good
amount of mathematical notation, much of which shall become clear in our
derivation of the algorithm further below. GraphSLAM_linearize accepts as
an input the set of controls, u1:t, the measurements z1:t and associated corre-

11.3 The GraphSLAM Algorithm 351

spondence variables c1:t, and the mean pose estimates μ0:t. It then gradually
constructs the informationmatrixΩ and the information vector ξ through lin-
earization, by locally adding submatrices in accordance with the information
obtained from each measurement and each control.
In particular, line 2 in GraphSLAM_linearize initializes the information
elements. The “infinite” information entry in line 3 fixes the initial pose x0

to (0 0 0)T . It is necessary, since otherwise the resulting matrix becomes
singular, reflecting the fact that from relative information alone we cannot
recover absolute estimates.
Controls are integrated in lines 4 through 9 ofGraphSLAM_linearize. The
pose x̂ and the Jacobian Gt calculated in lines 5 and 6 represent the linear
approximation of the non-linear control function g. As obvious from these
equations, this linearization step utilizes the pose estimates μ0:t−1, with μ0 =

(0 0 0)T . This leads to the updates for Ω, and ξ, calculated in lines 7, and 8,
respectively. Both terms are added into the corresponding rows and columns
of Ω and ξ. This addition realizes the inclusion of a new constraint into the
SLAM posterior, very much along the lines of the intuitive description in the
previous section.
Measurements are integrated in lines 10 through 21 of Graph-
SLAM_linearize. The matrixQt calculated in line 11 is the familiar measure-
ment noise covariance. Lines 13 through 17 compute the Taylor expansion
of the measurement function, here stated for the feature-based measurement
model defined in Chapter 6.6. Attention has to be payed to the implemen-
tation of line 16, since the angular expressions can be shifted arbitrarily by
2π. This calculation culminates into the computation of the measurement
update in lines 18 and 19. The matrix that is being added to Ω in line 18 is
of dimension 6 × 6. To add it, we decompose it into a matrix of dimension
3 × 3 for the pose xt, a matrix of dimension 3 × 3 for the feature mj , and
two matrices of dimension 3 × 3 and 3 × 3 for the link between xt and mj .
Those are added to Ω at the corresponding rows and columns. Similarly, the
vector added to the information vector ξ is of vertical dimension 5. It is also
chopped into two vectors of size 3 and 2, and added to the elements corre-
sponding to xt andmj , respectively. The result of GraphSLAM_linearize is
an information vector ξ and a matrix Ω. We already noted that Ω is sparse. It
contains only non-zero submatrices along the main diagonal, between subse-
quent poses, and between poses and features in the map. The running time
of this algorithm is linear in t, the number of time steps at which data was
accrued.
The next step of the GraphSLAM algorithm pertains to reducing the di-

352 11 The GraphSLAM Algorithm

mensionality of the information matrix/vector. This is achieved through the
algorithm GraphSLAM_reduce in Table 11.3. This algorithm takes as input
Ω and ξ defined over the full space of map features and poses, and outputs
a reduced matrix Ω̃ and vectors ξ̃ defined over the space of all poses (but not
the map!). This transformation is achieved by removing features mj one-at-
a-time, in lines 4 through 9 ofGraphSLAM_reduce. The bookkeeping of the
exact indexes of each item in Ω̃ and ξ̃ is a bit tedious, hence Table 11.3 only
provides an intuitive account.
Line 5 calculates the set of poses τ(j) at which the robot observed feature

j. It then extracts two submatrices from the present Ω̃: Ω̃j,j and Ω̃τ(j),j . Ω̃j,j

is the quadratic submatrix between mj and mj , and Ω̃τ(j),j is composed of
the off-diagonal elements between mj and the pose variables τ(j). It also
extracts from the information state vector ξ̃ the elements corresponding to
the j-th feature, denoted here as ξj . It then subtracts information from Ω̃ and
ξ̃ as stated in lines 6 and 7. After this operation, the rows and columns for
the feature mj are zero. These rows and columns are then removed, reduc-
ing the dimension on Ω̃ and ξ̃ accordingly. This process is iterated until all
features have been removed, and only pose variables remain in Ω̃ and ξ̃. The
complexity ofGraphSLAM_reduce is once again linear in t.
The last step in the GraphSLAM algorithm computes the mean and covari-
ance for all poses in the robot path, and a mean location estimate for all fea-
tures in the map. This is achieved throughGraphSLAM_solve in Table 11.4.
Lines 2 and 3 compute the path estimates μ0:t, by inverting the reduced in-
formation matrix Ω̃ and multiplying the resulting covariance with the infor-
mation vector. Subsequently, GraphSLAM_solve computes the location of
each feature in lines 4 through 7. The return value of GraphSLAM_solve
contains the mean for the robot path and all features in the map, but only
the covariance for the robot path. We note that there exist other, more ef-
ficient ways to compute μ0:t that bypass the matrix inversion step. Those
will be discussed towards the end of this chapter, when applying standard
optimization techniques to GraphSLAM.
The quality of the solution calculated by the GraphSLAM algorithm de-
pends on the goodness of the initial mean estimates, calculated by Graph-
SLAM_initialize. The x- and y- components of these estimates affect the
respective models in a linear way, hence the linearization does not depend
on these values. Not so for the orientation variables in μ0:t. Errors in these
initial estimates affect the accuracy of the Taylor approximation, which in
turn affects the result.
To reduce potential errors due to the Taylor approximation in the lin-

11.4 Mathematical Derivation of GraphSLAM 353

earization, the procedures GraphSLAM_linearize, GraphSLAM_reduce,
andGraphSLAM_solve are run multiple times over the same data set. Each
iteration takes as an input an estimated mean vector μ0:t from the previous
iteration, and outputs a new, improved estimate. The iteration of the Graph-
SLAM optimization are only necessary when the initial pose estimates have
high error (e.g., more than 20 degrees orientation error). A small number of
iterations (e.g., 3) is usually sufficient.
Table 11.5 summarizes the resulting algorithm. It initializes the means,
then repeats the construction step, the reduction step, and the solution step.
Typically, two or three iterations suffice for convergence. The resulting mean
μ is our best guess of the robot’s path and the map.

11.4 Mathematical Derivation of GraphSLAM

The derivation of the GraphSLAM algorithm begins with a derivation of a
recursive formula for calculating the full SLAM posterior, represented in in-
formation form. We then investigate each term in this posterior, and derive
from them the additive SLAM updates through Taylor expansions. From
that, we will derive the necessary equations for recovering the path and the
map.

11.4.1 The Full SLAM Posterior

As in the discussion of EKF SLAM, it will be beneficial to introduce a variable
for the augmented state of the full SLAM problem. We will use y to denote
state variables that combine one or more poses x with the map m. In partic-
ular, we define y0:t to be a vector composed of the path x0:t and the map m,
whereas yt is composed of the momentary pose at time t and the mapm:

y0:t =

⎛
⎜⎜⎜⎜⎜⎜⎝

x0

x1

...
xt

m

⎞
⎟⎟⎟⎟⎟⎟⎠ and yt =

(
xt

m

)
(11.4)

The posterior in the full SLAM problem is p(y0:t | z1:t, u1:t, c1:t), where z1:t

are the familiar measurements with correspondences c1:t, and u1:t are the
controls. Bayes rule enables us to factor this posterior:

p(y0:t | z1:t, u1:t, c1:t)(11.5)

354 11 The GraphSLAM Algorithm

= η p(zt | y0:t, z1:t−1, u1:t, c1:t) p(y0:t | z1:t−1, u1:t, c1:t)

where η is the familiar normalizer. The first probability on the right-hand
side can be reduced by dropping irrelevant conditioning variables:

p(zt | y0:t, z1:t−1, u1:t, c1:t) = p(zt | yt, ct)(11.6)

Similarly, we can factor the second probability by partitioning y0:t into xt and
y0:t−1, and obtain

p(y0:t | z1:t−1, u1:t, c1:t)(11.7)

= p(xt | y0:t−1, z1:t−1, u1:t, c1:t) p(y0:t−1 | z1:t−1, u1:t, c1:t)

= p(xt | xt−1, ut) p(y0:t−1 | z1:t−1, u1:t−1, c1:t−1)

Putting these expressions back into (11.5) gives us the recursive definition of
the full SLAM posterior:

p(y0:t | z1:t, u1:t, c1:t)(11.8)

= η p(zt | yt, ct) p(xt | xt−1, ut) p(y0:t−1 | z1:t−1, u1:t−1, c1:t−1)

The closed form expression is obtained through induction over t. Here p(y0)

is the prior over the mapm and the initial pose x0.

p(y0:t | z1:t, u1:t, c1:t) = η p(y0)
∏

t

p(xt | xt−1, ut) p(zt | yt, ct)(11.9)

= η p(y0)
∏

t

[
p(xt | xt−1, ut)

∏
i

p(zi
t | yt, c

i
t)

]

Here, as before, zi
t is the i-th measurement in the measurement vector zt at

time t. The prior p(y0) factors into two independent priors, p(x0) and p(m).
In SLAM, we usually have no prior knowledge about the mapm. We simply
replace p(y0) by p(x0) and subsume the factor p(m) into the normalizer η.

11.4.2 The Negative Log Posterior

The information form represents probabilities in logarithmic form. The log-
SLAM posterior follows directly from the previous equation:

log p(y0:t | z1:t, u1:t, c1:t)(11.10)

= const. + log p(x0) +
∑

t

[
log p(xt | xt−1, ut) +

∑
i

log p(zi
t | yt, c

i
t)

]

11.4 Mathematical Derivation of GraphSLAM 355

Just as in Chapter 10, we assume the outcome of robot motion is distributed
normally according toN (g(ut, xt−1), Rt), where g is the deterministic motion
function, and Rt is the covariance of the motion error. Similarly, measure-
ments zi

t are generated according to N (h(yt, c
i
t), Qt), where h is the familiar

measurement function andQt is the measurement error covariance. In equa-
tions, we have

p(xt | xt−1, ut) = η exp
{− 1

2 (xt − g(ut, xt−1))
T R−1

t (xt − g(ut, xt−1))
}

(11.11)

p(zi
t | yt, c

i
t) = η exp

{− 1
2 (zi

t − h(yt, c
i
t))

T Q−1
t (zi

t − h(yt, c
i
t))
}

(11.12)

The prior p(x0) in (11.10) is also easily expressed by a Gaussian-type distri-
bution. It anchors the initial pose x0 to the origin of the global coordinate
system: x0 = (0 0 0)T :

p(x0) = η exp
{− 1

2 xT
0 Ω0 x0

}
(11.13)

with

Ω0 =

⎛
⎝ ∞ 0 0

0 ∞ 0

0 0 ∞

⎞
⎠(11.14)

For now, it shall not concern us that the value of∞ cannot be implemented,
as we can easily substitute∞with a large positive number. This leads to the
following quadratic form of the negative log-SLAM posterior in (11.10):

− log p(y0:t | z1:t, u1:t, c1:t)(11.15)

= const. + 1
2

[
xT

0 Ω0 x0 +
∑

t

(xt − g(ut, xt−1))
T R−1

t (xt − g(ut, xt−1))

+
∑

t

∑
i

(zi
t − h(yt, c

i
t))

T Q−1
t (zi

t − h(yt, c
i
t))

]

This is essentially the same as JGraphSLAM in Equation (11.3), with a few dif-
ferences pertaining to the omission of normalization constants (including a
multiplication with −1). Equation (11.15) highlights an essential character-
istic of the full SLAM posterior in the information form: It is composed of a
number of quadratic terms, one for the prior, and one for each control and
each measurement.

11.4.3 Taylor Expansion

The various terms Equation (11.15) are quadratic in the functions g and h, not
in the variables we seek to estimate (poses and the map). GraphSLAM alle-

356 11 The GraphSLAM Algorithm

viates this problem by linearizing g and h via Taylor expansion—completelyLINEARIZATION

analogously to Equations (10.14) and (10.18) in the derivation of the EKF. In
particular, we have:

g(ut, xt−1) ≈ g(ut, μt−1) + Gt(xt−1 − μt−1)(11.16)

h(yt, c
i
t) ≈ h(μt, c

i
t) + Hi

t (yt − μt)(11.17)

Here μt is the current estimate of the state vector yt, and Hi
t = hi

t Fx,j as
defined already in Equation (10.19).
This linear approximation turns the log-likelihood (11.15) into a function
that is quadratic in y0:t. In particular, we obtain

log p(y0:t | z1:t, u1:t, c1:t) = const.− 1
2(11.18) {

xT
0 Ω0 x0 +

∑
t

[xt − g(ut, μt−1)−Gt(xt−1 − μt−1)]
T

R−1
t [xt − g(ut, μt−1)−Gt(xt−1 − μt−1)]

+
∑

i

[zi
t − h(μt, c

i
t)−Hi

t(yt − μt)]
T Q−1

t [zi
t − h(μt, c

i
t)−Hi

t(yt − μt)]

}

This function is indeed a quadratic in y0:t, and it shall prove convenient to
reorder its terms, omitting several constant terms.

log p(y0:t | z1:t, u1:t, c1:t) = const.(11.19)

−1
2 xT

0 Ω0 x0︸ ︷︷ ︸
quadratic in x0

− 1
2

∑
t

xT
t−1:t

(−GT
t

1

)
R−1

t (−Gt 1) xt−1:t︸ ︷︷ ︸
quadratic in xt−1:t

+ xT
t−1:t

(−GT
t

1

)
R−1

t [g(ut, μt−1)−Gt μt−1]︸ ︷︷ ︸
linear in xt−1:t

− 1
2

∑
i

yT
t HiT

t Q−1
t Hi

t yt︸ ︷︷ ︸
quadratic in yt

+ yT
t HiT

t Q−1
t [zi

t − h(μt, c
i
t) + Hi

tμt]︸ ︷︷ ︸
linear in yt

Here xt−1:t denotes the state vector concatenating xt−1 and xt; hence we can

write (xt −Gt xt−1)
T = xT

t−1:t (−Gt 1)T = xT
t−1:t

(−GT
t

1

)
.

If we collect all quadratic terms into the matrix Ω, and all linear terms into
a vector ξ, we see that expression (11.19) is of the form

log p(y0:t | z1:t, u1:t, c1:t) = const.− 1
2 yT

0:t Ω y0:t + yT
0:t ξ(11.20)

11.4 Mathematical Derivation of GraphSLAM 357

11.4.4 Constructing the Information Form

We can read off these terms directly from (11.19), and verify that they are
indeed implemented in the algorithmGraphSLAM_linearize in Table 11.2:

• Prior. The initial pose prior manifests itself by a quadratic term Ω0 over
the initial pose variable x0 in the information matrix. Assuming appro-
priate extension of the matrix Ω0 to match the dimension of y0:t, we have

Ω ←− Ω0(11.21)

This initialization is performed in lines 2 and 3 of the algorithm Graph-
SLAM_linearize.

• Controls. From (11.19), we see that each control ut adds to Ω and ξ the
following terms, assuming that the matrices are rearranged so as to be of
matching dimensions:

Ω ←− Ω +

(−GT
t

1

)
R−1

t (−Gt 1)(11.22)

ξ ←− ξ +

(−GT
t

1

)
R−1

t [g(ut, μt−1)−Gt μt−1](11.23)

This is realized in lines 4 through 9 inGraphSLAM_linearize.

• Measurements. According to Equation (11.19), each measurement zi
t

transforms Ω and ξ by adding the following terms, once again assuming
appropriate adjustment of the matrix dimensions:

Ω ←− Ω + HiT
t Q−1

t Hi
t(11.24)

ξ ←− ξ + HiT
t Q−1

t [zi
t − h(μt, c

i
t) + Hi

tμt](11.25)

This update occurs in lines 10 through 21 inGraphSLAM_linearize.

This proves the correctness of the construction algorithm Graph-
SLAM_linearize, relative to our Taylor expansion approximation.
We also note that the steps above only affect off-diagonal elements that
involve at least one pose. Thus, all between-feature elements are zero in the
resulting information matrix.

358 11 The GraphSLAM Algorithm

Marginals of a multivariate Gaussian. Let the probability distribution
p(x, y) over the random vectors x and y be a Gaussian represented in the
information form

Ω =

(
Ωxx Ωxy

Ωyx Ωyy

)
and ξ =

(
ξx

ξy

)
If Ωyy is invertible, the marginal p(x) is a Gaussian whose information rep-
resentation is

Ω̄xx = Ωxx − Ωxy Ω−1
yy Ωyx and ξ̄x = ξx − Ωxy Ω−1

yy ξy

Proof. The marginal for a Gaussian in its moments parameterization

Σ =

(
Σxx Σxy

Σyx Σyy

)
and μ =

(
μx

μy

)
is N (μx,Σxx). By definition, the information matrix of this Gaussian is
therefore Σ−1

xx , and the information vector is Σ−1
xx μx. We show Σ−1

xx = Ω̄xx

via the Inversion Lemma from Table 3.2 on page 50. Let P = (0 1)T , and
let [∞] be a matrix of the same size as Ωyy but whose entries are all infinite
(with [∞]−1 = 0). This gives us

(Ω + P [∞]PT)−1 =

(
Ωxx Ωxy

Ωyx [∞]

)−1
(∗)
=

(
Σ−1

xx 0

0 0

)
The same expression can also be expanded by the inversion lemma into:

(Ω + P [∞]PT)−1

= Ω− Ω P ([∞]−1 + PT Ω P)−1 PT Ω

= Ω− Ω P (0 + PT Ω P)−1 PT Ω

= Ω− Ω P (Ωyy)−1 PT Ω

=

(
Ωxx Ωxy

Ωyx Ωyy

)
−
(

Ωxx Ωxy

Ωyx Ωyy

)(
0 0

0 Ω−1
yy

)(
Ωxx Ωxy

Ωyx Ωyy

)
(∗)
=

(
Ωxx Ωxy

Ωyx Ωyy

)
−
(

0 Ωxy Ω−1
yy

0 1

)(
Ωxx Ωxy

Ωyx Ωyy

)

=

(
Ωxx Ωxy

Ωyx Ωyy

)
−
(

Ωxy Ω−1
yy Ωyx Ωxy

Ωyx Ωyy

)
=

(
Ω̄xx 0

0 0

)

see next page for continuation

11.4 Mathematical Derivation of GraphSLAM 359

continued from the previous page

The remaining statement, Σ−1
xx μx = ξ̄x, is obtained analogously, exploiting

the fact that μ = Ω−1ξ (see Equation(3.73)) and the equality of the two
expressions marked “(∗)” above:(

Σ−1
xx μx

0

)
=

(
Σ−1

xx 0

0 0

)(
μx

μy

)
=

(
Σ−1

xx 0

0 0

)
Ω−1

(
ξx

ξy

)
(∗)
=

[
Ω−

(
0 Ωxy Ω−1

yy

0 1

)
Ω

]
Ω−1

(
ξx

ξy

)

=

(
ξx

ξy

)
−
(

0 Ωxy Ω−1
yy

0 1

)(
ξx

ξy

)
=

(
ξ̄x

0

)

Table 11.6 Lemma for marginalizing Gaussians in information form. The form of
the covariance Ω̄xx in this lemma is also known as Schur complement.

Conditionals of a multivariate Gaussian. Let the probability distribution
p(x, y) over the random vectors x and y be a Gaussian represented in the
information form

Ω =

(
Ωxx Ωxy

Ωyx Ωyy

)
and ξ =

(
ξx

ξy

)
The conditional p(x | y) is a Gaussian with information matrix Ωxx and
information vector ξx − Ωxy y.
Proof. The result follows trivially from the definition of a Gaussian in in-
formation form:

p(x | y)

= η exp

{
−1

2

(
x

y

)T (
Ωxx Ωxy

Ωyx Ωyy

)(
x

y

)
+

(
x

y

)T (
ξx

ξy

)}

= η exp
{− 1

2xT Ωxxx− xT Ωxyy − 1
2yT Ωyyy + xT ξx + yT ξy

}
= η exp{− 1

2xT Ωxxx + xT (ξx − Ωxyy)−1
2yT Ωyyy + yT ξy︸ ︷︷ ︸

const.

}

= η exp{− 1
2xT Ωxxx + xT (ξx − Ωxyy)}

Table 11.7 Lemma for conditioning Gaussians in information form.

360 11 The GraphSLAM Algorithm

11.4.5 Reducing the Information Form

The reduction step GraphSLAM_reduce is based on a factorization of the
full SLAM posterior.

p(y0:t | z1:t, u1:t, c1:t) = p(x0:t | z1:t, u1:t, c1:t) p(m | x0:t, z1:t, u1:t, c1:t)(11.26)

Here p(x0:t | z1:t, u1:t, c1:t) ∼ N (ξ,Ω) is the posterior over paths alone, with
the map integrated out:

p(x0:t | z1:t, u1:t, c1:t) =

∫
p(y0:t | z1:t, u1:t, c1:t) dm(11.27)

As we will show shortly, this probability is indeed calculated by the algo-
rithm GraphSLAM_reduce in Table 11.3, since

p(x0:t | z1:t, u1:t, c1:t) ∼ N (ξ̃, Ω̃)(11.28)

In general, the integration in (11.27) will be intractable, due to the large num-
ber of variables inm. For Gaussians, this integral can be calculated in closed
form. The key insight is given in Table 11.6, which states and proves the
marginalization lemma for Gaussians.
Let us subdivide the matrix Ω and the vector ξ into submatrices, for the
robot path x0:t and the mapm:

Ω =

(
Ωx0:t,x0:t

Ωx0:t,m

Ωm,x0:t
Ωm,m

)
(11.29)

ξ =

(
ξx0:t

ξm

)
(11.30)

According to the marginalization lemma, the probability (11.28) is obtained as

Ω̃ = Ωx0:t,x0:t
− Ωx0:t,m Ω−1

m,m Ωm,x0:t
(11.31)

ξ̃ = ξx0:t
− Ωx0:t,m Ω−1

m,m ξm(11.32)

The matrix Ωm,m is block-diagonal. This follows from the way Ω is con-
structed, in particular the absence of any links between pairs of features.
This makes the inversion efficient:

Ω−1
m,m =

∑
j

FT
j Ω−1

j,j Fj(11.33)

where Ωj,j = FjΩFT
j is the sub-matrix of Ω that corresponds to the j-th

11.4 Mathematical Derivation of GraphSLAM 361

feature in the map:

Fj =

⎛
⎜⎜⎝

0 · · · 0 1 0 0 0 · · · 0
0 · · · 0 0 1 0 0 · · · 0
0 · · · 0 0 0 1︸ ︷︷ ︸

j−th feature

0 · · · 0

⎞
⎟⎟⎠(11.34)

This insight makes it possible to decompose the implement Equations (11.31)
and (11.32) into a sequential update:

Ω̃ = Ωx0:t,x0:t
−
∑

j

Ωx0:t,j Ω−1
j,j Ωj,x0:t

(11.35)

ξ̃ = ξx0:t
−
∑

j

Ωx0:t,j Ω−1
j,j ξj(11.36)

The matrix Ωx0:t,j is non-zero only for elements in τ(j), the set of poses at
which feature j was observed. This essentially proves the correctness of the
reduction algorithm GraphSLAM_reduce in Table 11.3. The operation per-
formed on Ω in this algorithm can be thought of as the variable elimination
algorithm for matrix inversion, applied to the feature variables but not the
robot pose variables.

11.4.6 Recovering the Path and the Map

The algorithm GraphSLAM_solve in Table 11.4 calculates the mean and
variance of the Gaussian N (ξ̃, Ω̃), using the standard equations, see Equa-
tions (3.72) and (3.73) on page 72:

Σ̃ = Ω̃−1(11.37)

μ̃ = Σ̃ ξ̃(11.38)

In particular, this operation provides us with the mean of the posterior on
the robot path; it does not give us the locations of the features in the map.
It remains to recover the second factor of Equation (11.26):

p(m | x0:t, z1:t, u1:t, c1:t)(11.39)

The conditioning lemma, stated and proved in Table 11.7, shows that this prob-
ability distribution is Gaussian with the parameters

Σm = Ω−1
m,m(11.40)

μm = Σm(ξm + Ωm,x0:t
ξ̃)(11.41)

362 11 The GraphSLAM Algorithm

Here ξm and Ωm,m are the subvector of ξ, and the submatrix of Ω, respec-
tively, restricted to the map variables. The matrix Ωm,x0:t

is the off-diagonal
submatrix of Ω that connects the robot path to the map. As noted before,
Ωm,m is block-diagonal, hence we can decompose

p(m | x0:t, z1:t, u1:t, c1:t) =
∏
j

p(mj | x0:t, z1:t, u1:t, c1:t)(11.42)

where each p(mj | x0:t, z1:t, u1:t, c1:t) is distributed according to

Σj = Ω−1
j,j(11.43)

μj = Σj(ξj + Ωj,x0:t
μ̃) = Σj(ξj + Ωj,τ(j)μ̃τ(j))(11.44)

The last transformation exploited the fact that the submatrixΩj,x0:t
is zero ex-

cept for those pose variables τ(j) from which the j-th feature was observed.
It is important to notice that this is a Gaussian p(m | x0:t, z1:t, u1:t, c1:t)

conditioned on the true path x0:t. In practice, we do not know the path,
hence one might want to know the posterior p(m | z1:t, u1:t, c1:t) with-
out the path in the conditioning set. This Gaussian cannot be factored in
the moments parameterization, as locations of different features are corre-
lated through the uncertainty over the robot pose. For this reason, Graph-
SLAM_solve returns the mean estimate of the posterior but only the covari-
ance over the robot path. Luckily, we never need the full Gaussian in mo-
ments representation—which would involve a fully populated covariance
matrix of massive dimensions—as all essential questions pertaining to the
SLAM problem can be answered at least in approximation without know-
ledge of Σ.

11.5 Data Association in GraphSLAM

Data association in GraphSLAM is realized through correspondence variables,
just as in EKF SLAM. GraphSLAM searches for a single best correspondence
vector, instead of calculating an entire distribution over correspondences.
Thus, finding a correspondence vector is a search problem. However, it shall
prove convenient to define correspondences slightly differently in Graph-
SLAM than before: correspondences are defined over pairs of features in the
map, rather than associations of measurements to features. Specifically, we
say c(j, k) = 1 if mj and mk correspond to the same physical feature in the
world. Otherwise, c(j, k) = 0. This feature-correspondence is in fact logi-
cally equivalent to the correspondence defined in the previous section, but it
simplifies the statement of the basic algorithm.

11.5 Data Association in GraphSLAM 363

The technique for searching the space of correspondences is greedy, just
as in the EKF. Each step in the search of the best correspondence value leads
to an improvement, as measured by the appropriate log-likelihood function.
However, because GraphSLAM has access to all data at the same time, it
is possible to devise correspondence techniques that are considerably more
powerful than the incremental approach in the EKF. In particular:

1. At any point in the search, GraphSLAM can consider the correspondence
of any set of features. There is no requirement to process the observed
features sequentially.

2. Correspondence search can be combined with the calculation of the map.
Assuming that two observed features correspond to the same physical
feature in the world affects the resulting map. By incorporating such a
correspondence hypothesis into the map, other correspondence hypothe-
ses will subsequently look more or less likely.

3. Data association decisions in GraphSLAM can be undone. The goodness
of a data association depends on the value of other data association de-
cisions. What appears to be a good choice early on in the search may, at
some later time in the search, turn out to be inferior. To accommodate such
a situation, GraphSLAM can effectively undo a previous data association
decision.

We will now describe one specific correspondence search algorithm that ex-
ploits the first two properties, but not the third. The data association algo-
rithm will still be greedy, and it will sequentially search the space of possi-
ble correspondences to arrive at a plausible map. However, like all greedy
algorithms, our approach is subject to local maxima; the true space of cor-
respondences is of course exponential in the number of features in the map.
Nevertheless, wewill be content with a hill climbing algorithm and postpone
the treatment of an exhaustive algorithm to the next chapter.

11.5.1 The GraphSLAM Algorithm with Unknown Correspondence

The key component of our algorithm is a likelihood test for correspondence.LIKELIHOOD TEST FOR

CORRESPONDENCE Specifically, GraphSLAM correspondence is based on a simple test: What
is the probability that two different features in the map, mj and mk, corre-
spond to the same physical feature in the world? If this probability exceeds
a threshold, we will accept this hypothesis and merge both features in the
map.

364 11 The GraphSLAM Algorithm

1: Algorithm GraphSLAM_correspondence_test(Ω, ξ, μ,Σ0:t, j, k):

2: Ω[j,k] = Ωjk,jk − Ωjk,τ(j,k) Στ(j,k),τ(j,k) Ωτ(j,k),jk

3: ξ[j,k] = Ω[j,k] μj,k

4: ΩΔj,k =

(
1

−1

)T

Ω[j,k]

(
1

−1

)

5: ξΔj,k =

(
1

−1

)T

ξ[j,k]

6: μΔj,k = Ω−1
Δj,k ξΔj,k

7: return |2π Ω−1
Δj,k|−

1
2 exp

{
−1

2 μT
Δj,k Ω−1

Δj,k μΔj,k

}

Table 11.8 The GraphSLAM test for correspondence: It accepts as input an infor-
mation representation of the SLAM posterior, along with the result of the Graph-
SLAM_solve step. It then outputs the posterior probability that mj corresponds to
mk.

The algorithm for the correspondence test is depicted in Table 11.8: The
input to the test are two feature indexes, j and k, for which we seek to com-
pute the probability that those two features correspond to the same feature
in the physical world. To calculate this probability, our algorithm utilizes a
number of quantities: The information representation of the SLAMposterior,
as manifest by Ω and ξ, and the result of the procedure GraphSLAM_solve,
which is the mean vector μ and the path covariance Σ0:t.
The correspondence test then proceeds in the following way: First, it com-
putes the marginalized posterior over the two target features. This posterior
is represented by the information matrix Ω[j,k] and vector ξ[j,k] computed in
lines 2 and 3 in Table 11.8. This step of the computation utilizes various sub-
elements of the information formΩ, ξ, the mean feature locations as specified
through μ, and the path covariance Σ0:t. Next, it calculates the parameters of
a new Gaussian random variable, whose value is the difference betweenmj

and mk. Denoting the difference variable Δj,k = mj −mk, the information
parameters ΩΔj,k, ξΔj,k are calculated in lines 4 and 5, and the correspond-

11.5 Data Association in GraphSLAM 365

1: Algorithm GraphSLAM(u1:t, z1:t):

2: initialize all ci
t with a unique value

3: μ0:t = GraphSLAM_initialize(u1:t)

4: Ω, ξ = GraphSLAM_linearize(u1:t, z1:t, c1:t, μ0:t)

5: Ω̃, ξ̃ = GraphSLAM_reduce(Ω, ξ)

6: μ,Σ0:t = GraphSLAM_solve(Ω̃, ξ̃,Ω, ξ)

7: repeat

8: for each pair of non-corresponding featuresmj ,mk do

9: πj=k = GraphSLAM_correspondence_test
(Ω, ξ, μ,Σ0:t, j, k)

10: if πj=k > χ then

11: for all ci
t = k set ci

t = j

12: Ω, ξ = GraphSLAM_linearize(u1:t, z1:t, c1:t, μ0:t)

13: Ω̃, ξ̃ = GraphSLAM_reduce(Ω, ξ)

14: μ,Σ0:t = GraphSLAM_solve(Ω̃, ξ̃,Ω, ξ)

15: endif

16: endfor

17: until no more pairmj ,mk found with πj=k < χ

18: return μ

Table 11.9 The GraphSLAM algorithm for the full SLAM problem with unknown
correspondence. The inner loop of this algorithm can be mademore efficient by selec-
tive probing feature pairsmj , mk, and by collecting multiple correspondences before
solving the resulting collapsed set of equations.

ing expectation for the difference is computed in line 6. Line 7 returns the
probability that the difference betweenmj andmk is zero.
The correspondence test provides us with an algorithm for performing
data association search in GraphSLAM. Table 11.9 shows such an algorithm.
It initializes the correspondence variables with unique values. The four steps

366 11 The GraphSLAM Algorithm

that follow (lines 3-7) are the same as in our GraphSLAM algorithm with
known correspondence, stated in Table 11.5. However, this general SLAM
algorithm then engages in the data association search. Specifically, for each
pair of different features in the map, it calculates the probability of corre-
spondence (line 9 in Table 11.9). If this probability exceeds a threshold χ, the
correspondence vectors are set to the same value (line 11).
The GraphSLAM algorithm iterates the construction, reduction, and solu-
tion of the SLAM posterior (lines 12 through 14). As a result, subsequent
correspondence tests factor in previous correspondence decisions though a
newly constructed map. The map construction is terminated when no fur-
ther features are found in its inner loop.
Clearly, the algorithmGraphSLAM is not particularly efficient. In particu-

lar, it tests all feature pairs for correspondence, not just nearby ones. Further,
it reconstructs the map whenever a single correspondence is found; rather
than processing sets of corresponding features in batch. Such modifications,
however, are relatively straightforward. A good implementation of Graph-
SLAMwill be more refined than our basic implementation discussed here.

11.5.2 Mathematical Derivation of the Correspondence Test

We essentially restrict our derivation to showing the correctness of the cor-
respondence test in Table 11.8. Our first goal shall be to define a posterior
probability distribution over a variable Δj,k = mj − mk, the difference be-
tween the location of feature mj and feature mk. Two features mj and mk

are equivalent if and only if their location is the same. Hence, by calculat-
ing the posterior probability of Δj,k, we obtain the desired correspondence
probability.
We obtain the posterior for Δj,k by first calculating the joint over mj and

mk:

p(mj ,mk | z1:t, u1:t, c1:t)(11.45)

=

∫
p(mj ,mk | x1:t, z1:t, c1:t) p(x1:t | z1:t, u1:t, c1:t) dx1:t

We will denote the information form of this marginal posterior by ξ[j,k] and
Ω[j,k]. Note the use of the squared brackets, which distinguish these values
from the submatrices of the joint information form.
The distribution (11.45) is obtained from the joint posterior over y0:t, by
applying the marginalization lemma. Specifically, Ω and ξ represent the joint
posterior over the full state vector y0:t in information form, and τ(j) and τ(k)

11.5 Data Association in GraphSLAM 367

denote the sets of poses at which the robot observed feature j, and feature
k, respectively. GraphSLAM gives us the mean pose vector μ̃. To apply the
marginalization lemma (Table 11.6), we shall leverage the result of the al-
gorithm GraphSLAM_solve. Specifically, GraphSLAM_solve provides us
already with a mean for the featuresmj andmk. We simply restate the com-
putation here for the joint feature pair:

μ[j,k] = Ω−1
jk,jk (ξjk + Ωjk,τ(j,k)μτ(j,k))(11.46)

Here τ(j, k) = τ(j)∪τ(k) denotes the set of poses at which the robot observed
mj ormk.
For the joint posterior, we also need a covariance. This covariance is not
computed in GraphSLAM_solve, simply because the joint covariance over
multiple features requires space quadratic in the number of features. How-
ever, for pairs of features the covariance of the joint is easily recovered.
Let Στ(j,k),τ(j,k) be the submatrix of the covariance Σ0:t restricted to all

poses in τ(j, k). Here the covariance Σ0:t is calculated in line 2 of the al-
gorithm GraphSLAM_solve. Then the marginalization lemma provides us
with the marginal information matrix for the posterior over (mj mk)T :

Ω[j,k] = Ωjk,jk − Ωjk,τ(j,k) Στ(j,k),τ(j,k) Ωτ(j,k),jk(11.47)

The information form representation for the desired posterior is now com-
pleted by the following information vector:

ξ[j,k] = Ω[j,k] μ[j,k](11.48)

Hence we have for the joint

p(mj ,mk | z1:t, u1:t, c1:t)(11.49)

= η exp

{
−1

2

(
mj

mk

)T

Ω[j,k]

(
mj

mk

)
+

(
mj

mk

)T

ξ[j,k]

}

These equations are identical to lines 2 and 3 in Table 11.8.
The nice thing about our representation is that it immediately lets us define
the desired correspondence probability. For that, let us consider the random
variable

Δj,k = mj − mk(11.50)

=

(
1

−1

)T (
mj

mk

)

=

(
mj

mk

)T (
1

−1

)

368 11 The GraphSLAM Algorithm

Plugging this into the definition of a Gaussian in information representation,
we obtain:

p(Δj,k | z1:t, u1:t, c1:t)(11.51)

= η exp

{
− 1

2ΔT
j,k

(
1

−1

)T

Ω[j,k]

(
1

−1

)
︸ ︷︷ ︸

=: ΩΔj,k

Δj,k + ΔT
j,k

(
1

−1

)T

ξ[j,k]︸ ︷︷ ︸
=: ξΔj,k

}

= η exp
{−1

2 ΔT
j,k ΩΔj,k + ΔT

j,k ξΔj,k

}T

which is Gaussian with information matrix ΩΔj,k and information vector
ξΔj,k as defined above. To calculate the probability that this Gaussian as-
sumes the value of Δj,k = 0, it shall be useful to rewrite this Gaussian in
moments parameterization:

p(Δj,k | z1:t, u1:t, c1:t)(11.52)

= |2π Ω−1
Δj,k|−

1
2 exp

{
−1

2 (Δj,k − μΔj,k)T Ω−1
Δj,k (Δj,k − μΔj,k)

}
where the mean is given by the obvious expression:

μΔj,k = Ω−1
Δj,k ξΔj,k(11.53)

These steps are found in lines 4 through 6 in Table 11.8.
The desired probability for Δj,k = 0 is the result of plugging 0 into this

distribution, and reading off the resulting probability:

p(Δj,k = 0 | z1:t, u1:t, c1:t) = |2π Ω−1
Δj,k|−

1
2 exp

{
−1

2 μT
Δj,k Ω−1

Δj,k μΔj,k

}
(11.54)

This expression is the probability that two features in the map, mj and mk,
correspond to the same features in the map. This calculation is implemented
in line 7 in Table 11.8.

11.6 Efficiency Consideration

Practical implementations of GraphSLAM rely on a number of additional
insights and techniques for improving efficiency. Possibly the biggest defi-
ciency of GraphSLAM, as discussed thus far, is due to the fact that in the very
beginning, we assume that all observed features constitute different features.
Our algorithm unifies them one-by-one. For any reasonable number of fea-
tures, such an approach will be unbearably slow. Further, it will neglect the

11.6 Efficiency Consideration 369

important constraint that at any point in time, the same feature can only be
observed once, but not twice.
Existing implementations of the GraphSLAM idea exploit such opportu-
nities.
Features that are immediately identified to correspond with high likeli-
hood are often unified form the very beginning, before running the full
GraphSLAM solution. For example, it is quite common to compile short
segments into local submaps, e.g., local occupancy grid maps. GraphSLAMLOCAL SUBMAPS

inference is then performed only between those local occupancy grid maps,
where the match of two maps is taken as a probabilistic constraint between
the relative poses of these maps. Such a hierarchical technique reduces the
complexity of SLAM by orders of magnitude, while still retaining some of
the key elements of GraphSLAM, specifically the ability to perform data as-
sociation over large data sets.
Many robots are equipped with sensors that observe large number of fea-
tures at a time. For example, laser range finders observe dozens of features
within a single scan. For any such scan, one commonly assumes that dif-
ferent measurements indeed correspond to different features in the environ-
ment, by virtue of the fact that each scan points in a different direction. This
is known as the mutual exclusion principle, which was already discussed in
Chapter 7. It therefore follows that i �= j −→ ci

t �= cj
t . No two measurements

acquired within a single scan correspond to the same feature in the world.
Our pairwise data association technique above is unable to incorporate
this constraint. Specifically, it may assign two measurements zi

t and zj
t to the

same feature zk
s for some s �= t. To overcome this problem, it is common

to associate entire measurement vectors zt and zs at the same time. This in-
volves a calculation of a joint over all features in zt and zs. Such a calculation
generalizes our pairwise calculation and is mathematically straightforward.
The GraphSLAM algorithm stated in this chapter does not make use of its
ability to undo a data association. Once a data association decision is made,
it cannot be reverted further down in the search. Mathematically, it is rela-
tively straightforward to undo past data association decisions in the infor-
mation framework. One can change the correspondence variables of any
two measurements in arbitrary ways in our algorithm above. However, it is
more difficult to test whether a data association should be undone, as there
is no (obvious) test for testing whether two previously associated features
should be distinct. A simple implementation involves undoing a data as-
sociation in question, rebuilding the map, and testing whether our criterion
above still calls for correspondence. Such an approach can be computation-

370 11 The GraphSLAM Algorithm

Figure 11.4 The Groundhog robot is a 1,500 pound custom-built vehicle equipped
with onboard computing, laser range sensing, gas and sinkage sensors, and video
recording equipment. The robot has been built to map abandoned mines.

ally involved, as it provides no means of detecting which data association to
test. Mechanisms for detecting unlikely associations are outside the scope of
this book, but should be considered when implementing this approach.
Finally, the GraphSLAM algorithm does not consider negative information.NEGATIVE

INFORMATION In practice, not seeing a feature can be as informative as seeing one. How-
ever, our simple formulation does not perform the necessary geometric com-
putations.
In practice, whether or not we can exploit negative information depends
on the nature of the sensor model, and themodel of our features in the world.
For example, we might have to compute probabilities of occlusion, which
might be tricky for certain type sensors (e.g., range and bearing sensors for
landmarks). However, contemporary implementations indeed consider neg-
ative information, but often by replacing proper probabilistic calculations
through approximations. One such example will be given in the next section.

11.7 Empirical Implementation

We will now highlight empirical results for a GraphSLAM implementation.
The vehicle used in our experiment is Figure 11.4; it is a robot designed to
map abandoned mines.
The typemap collected by the robot is shown in Figure 11.5. This map is an
occupancy gridmap, using effectively pairwise scanmatching for recovering
the robot’s poses. Pairwise scan matching can be thought of as a version of

11.7 Empirical Implementation 371

Figure 11.5 Map of a mine, acquired by pairwise scan matching. The diameter of
this environment is approximately 250 meters. The map is obviously inconsistent,
in that several hallways show up more than once. Image courtesy of Dirk Hähnel,
University of Freiburg.

372 11 The GraphSLAM Algorithm

Figure 11.6 Mine map skeleton, visualizing the local maps.

GraphSLAM, but correspondence is only established between immediately
consecutive scans. The result of this approach leads to an obvious deficiency
of the map shown in Figure 11.5.
To apply the GraphSLAM algorithm, our software decomposes the map
into small local submaps, one for each five meters of robot travel. Within
these five meters, the maps are sufficiently accurate, as general drift is small
and hence scan matching performs essentially flawlessly. Each submap’s co-
ordinates become a pose node in the GraphSLAM. Adjacent submaps are
linked through the relative motion constraints between them. The resulting

11.7 Empirical Implementation 373

(a) (b)

(c) (d)

(e) (f)

Figure 11.7 Data association search. See text.

374 11 The GraphSLAM Algorithm

Figure 11.8 Final map, after optimizing for data associations. Image courtesy of
Dirk Hähnel, University of Freiburg.

11.7 Empirical Implementation 375

−50 0 50 100 150 200

−150

−100

−50

0

50

100

1 2 3 4 5 6 7 8 9
10

11
12

13
14

15
16

17
18

19
20

21
2223

24

25
26
27

28

29
30

31
32

33 34 35
36

37
38
39

40
41

42
43 44 45

46
47
48
49
50

51
52

53
54 55

56

575859

6061626364

65
66 67

686970
71

727374
75

76
77
78

79

80
81

8283
84

85

86
87

88 89 90 91 92
93
94
95

96
97

9899100101102103104105
106 107

108

109

optimized global map

Figure 11.9 Minemap generated by theAtlas SLAM algorithm by Bosse et al. (2004).
Image courtesy of Michael Bosse, Paul Newman, John Leonard, and Seth Teller, MIT.

structure is shown in Figure 11.6.
Next, we apply the recursive data association search. The correspondence
test is now implemented using a correlation analysis for two overlaying
maps, and the Gaussian matching constraints are recovered by approximat-
ing this match function through a Gaussian. Figure 11.7 illustrates the pro-
cess of data association: The circles each correspond to a new constraint that
is imposed when constructing the information form with GraphSLAM. This
figure illustrates the iterative nature of the search: Certain correspondences
are only discovered when others have been propagated, and others are dis-
solved in the process of the search. The final model is stable, in that addi-
tional search for new data association induces no further changes. Displayed
as a grid map, it yields the 2-D map shown in Figure 11.8. While this map

376 11 The GraphSLAM Algorithm

is far from being perfect—largely due to a crude implementation of the lo-
cal map matching constraints—it nevertheless is superior to the one found
through incremental scan matching.
The reader should notice that other information-theoretic techniques for
SLAM have produced similar results. Figure 11.9 shows a map of the same
data set generated by Bosse et al. (2004), using an algorithm called Atlas.ATLAS

This algorithm decomposesmaps into submapswhose relation ismaintained
through information-theoretic relative links. See the bibliographical remarks
for more detail.

11.8 Alternative Optimization Techniques

The reader may recall that the central target function JGraphSLAM in Graph-
SLAM is the nonlinear quadratic function in Equation (11.3). GraphSLAM
minimizes this function through a sequence of linearizations, variable elim-
inations, and optimizations. The inference technique in GraphSLAM_solve
in Table 11.4 is generally not very efficient. If all one is interested in is a map
and a path without covariances, the calculation of the inverse in line 2 in
Table 11.4 can be avoided. The resulting implementation will be computa-
tionally much more efficient.
The key to efficient inference lies in the form of the function JGraphSLAM.

This function is of a general least squares form, and hence can be minimized
by a number of different algorithms in the literature. Examples include gra-
dient descent techniques, Levenberg Marquardt, and conjugate gradient.
Figure 11.10a shows results obtained using conjugate gradient for minimiz-CONJUGATE GRADIENT

ing JGraphSLAM. The data is a map of an outdoor environment of the ap-
proximate size 600 by 800 meters, collected on Stanford’s campus with the
robot shown in Figure 11.10b. Figure 11.11 illustrates the alignment process,
from a data set that is based on pose data only, to a fully aligned map and
robot path. This dataset contains approximately 108 features and 105 poses.
Running an EKF would be infeasible on such a large data set. As would be
inverting the matrix Ω in Table 11.4. Conjugate gradient required only a few
seconds to minimize JGraphSLAM. For this reason, many contemporary im-
plementations of this approach use modern optimization techniques, instead
of the relatively slow algorithm discussed here. The interested reader shall
be referred to the bibliographical remarks for more pointers to alternative
optimization techniques.

11.8 Alternative Optimization Techniques 377

(a)

(b)

Figure 11.10 (a) A 3-D map of Stanford’s campus. (b) The robot used for acquir-
ing this data is based on a Segway RMP platform, whose development was funded
by the DARPA MARS program. Image courtesy of Michael Montemerlo, Stanford
University. (Turn this page 90 degrees to the right to view this figure.)

378 11 The GraphSLAM Algorithm

(a)

(b)

Figure 11.11 2-D slice through the Stanford campus map (a) before and (b) after
alignment using conjugate gradient. Such an optimization takes only a few seconds
with the conjugate gradient method applied to the least square formulation of Graph-
SLAM. Images courtesy of Michael Montemerlo, Stanford University.

11.9 Summary 379

11.9 Summary

This chapter introduced the GraphSLAM algorithm to the full SLAM prob-
lem.

• GraphSLAM algorithm addresses the full SLAM problem. It calculates
posteriors over the full robot path along with the map. Therefore, Graph-
SLAM is a batch algorithm, not an online algorithm like EKF SLAM.

• GraphSLAM constructs a graph of soft constraints from the data set. In
particular, measurements are mapped into edges that represent nonlinear
constraints between poses and sensed features, and motion commands
map into soft constraints between consecutive poses. The graph is nat-
urally sparse. The number of edges is a linear function of the number
of nodes, and each node is only connected to finitely many other nodes,
regardless of the size of the graph.

GraphSLAM simply records all this information in the graph, through
links that are defined between poses and features, and pairs of subse-
quent poses. However, this information representation does not provide
estimates of the map or of the robot path.

• The sum of all such constraints is given by a function JGraphSLAM. The
maximum likelihood estimates for the robot path and the map can be ob-
tained by minimizing this function JGraphSLAM.

• GraphSLAM performs inference by mapping the graph into an isomor-
phic information matrix and information vector, defined over all pose
variables and the entire map. The key insight of the GraphSLAM algo-
rithm is that the structure of information is sparse. Measurements pro-
vide information of a feature relative to the robot’s pose at the time of
measurement. In information space, they form constraints between these
pairs of variables. Similarly, motion provides information between two
subsequent poses. In information space, each motion command forms a
constraint between subsequent pose variables. This sparseness is inher-
ited from the sparse graph.

• The vanilla GraphSLAM algorithm recovers maps through an iterative
procedure that involves three steps: Construction of a linear information
form through Taylor expansion, reduction of this form to remove themap,
and solving the resulting optimization problem over robot poses. These
three steps effectively resolve the information, and produce a consistent

380 11 The GraphSLAM Algorithm

probabilistic posterior over the path and the map. Since GraphSLAM is
run batch, we can repeat the linearization step to improve the result.

• Alternative implementations perform inference through nonlinear least
squares optimization of the function JGraphSLAM. However, such tech-
niques only find the mode of the posterior, not its covariance.

• Data association in GraphSLAM is performed by calculating the probabil-
ity that two features have identical world coordinates. Since GraphSLAM
is a batch algorithm, this can be done for any pair of features, at any time.
This led to an iterative greedy search algorithm over all data association
variables, which recursively identifies pairs of features in the map that
likely correspond.

• Practical implementations of the GraphSLAM often use additional tricks
to keep the computation low and to avoid false data associations. Specif-
ically, practical implementations tend to reduce the data complexity by
extracting local maps and using each map as the basic entity; they tend
to match multiple features at-a-time, and they tend to consider negative
information in the data association search.

• We briefly provided results for a variant of GraphSLAM that follows the
decomposition idea, but uses occupancy grid maps for representing sets
of range scans. Despite these approximations, we find that data asso-
ciation and inference techniques yield favorable results in a large-scale
mapping problem.

• Results were also provided for a conjugate gradient implementation to the
underlying least square problem. We noted that the general target func-
tion of GraphSLAM can be optimized by any least squares technique. Cer-
tain techniques, such as conjugate gradient, are significantly faster than
the basic optimization technique in GraphSLAM.

As noted in the introduction, EKF SLAM and GraphSLAM are extreme ends
of a spectrum of SLAM algorithms. Algorithms that fall in between these
extremes will be discussed in the next two chapters. References to further
techniques can be found in the bibliographical remarks of the next few chap-
ters.

11.10 Bibliographical Remarks 381

11.10 Bibliographical Remarks

Graphical inference techniques are well known in computer vision and photogrammetry, and
are related to structure from motion and bundle adjustment (Hartley and Zisserman 2000; B et al.
2000; Mikhail et al. 2001). The first mention of relative, graph-like constraints in the SLAM litera-
ture goes back to Cheeseman and Smith (1986) and Durrant-Whyte (1988), but these approaches
did not perform any global relaxation, or optimization. The algorithm presented in this chapter
is loosely based on a seminal paper by Lu and Milios (1997). They were historically the first
to represent the SLAM prior as a set of links between robot poses, and to formulate a global
optimization algorithm for generating a map from such constraints. Their original algorithm
for globally consistent range scan alignment used the robot pose variables as the frame of refer-
ence, which differed from the standard EKF view in which poses were integrated out. Through
analyzing odometry and laser range scans, their approach generated relative constraints be-
tween poses that can be viewed as the edges in GraphSLAM; however, they did not phrase their
method using information representations. Lu and Milios’s (1997) algorithm was first success-
fully implemented byGutmann andNebel (1997), who reported numerical instabilities, possibly
due to the extensive use of matrix inversion. Golfarelli et al. (1998) were the first to establish the
relation of SLAM problems and spring-mass models, and Duckett et al. (2000, 2002) provided a
first efficient technique for solving such problems. The relation between covariances and the in-
formation matrix is discussed in Frese and Hirzinger (2001). Araneda (2003) developed a more
detailed elaborate graphical model.
The Lu and Milios algorithm initiated a development of offline SLAM algorithms that up to

the present date runs largely parallel to the EKF work. Gutmann and Konolige combined their
implementation with a Markov localization step for establishing correspondence when closing
a loop in a cyclic environment. Bosse et al. (2003, 2004) developed Atlas, which is a hierarchi-
cal mapping framework based on the decoupled stochastic mapping paradigm, which retains
relative information between submaps. It uses an optimization technique similar to the one in
Duckett et al. (2000) and GraphSLAM when aligning multiple submaps. Folkesson and Chris-
tensen (2004a,b) exploited the optimization perspective of SLAM by applying gradient descent
to the log-likelihood version of the SLAM posterior. Their Graphical SLAM algorithm reduced
the number of variables to the path variables—just like GraphSLAM—when closing the loop.
This reduction (which is mathematically an approximation since the map is simply omitted)
significantly accelerated gradient descent. Konolige (2004) and Montemerlo and Thrun (2004)
introduced conjugate gradient into the field of SLAM, which is known to be more efficient than
gradient descent. Both also reduced the number of variables when closing large cycles, and
report that maps with 108 features can be aligned in just a few seconds. The Levenberg Mar-
quardt technique mentioned in the text is due to Levenberg (1944) and Marquardt (1963), who
devised it in the context of least squares optimization. Frese et al. (2005) analyzed the efficiency
of SLAM in the information form, and developed highly efficient optimization techniques us-
ing multi-grid optimization techniques. He reports speed-ups of several orders of magnitude;
the resulting optimization techniques are presently the state-of-the-art. Dellaert (2005) devel-
oped efficient factorization techniques for the GraphSLAM constraint graph, specifically aimed
at transforming the constraint graph into more compact versions while retaining sparseness.
It should be mentioned that the intuition to maintain relative links between local entities is at

the core of many of the submapping techniques discussed in the previous section—although it
is rarely made explicit. Authors such as Guivant and Nebot (2001); Williams (2001); Tardós et al.
(2002); Bailey (2002) report of data structures for minuting the relative displacement between
submaps, which are easily mapped to information theoretic concepts. While many of these

382 11 The GraphSLAM Algorithm

algorithms are filters, they nevertheless share a good amount of insight with the information
form discussed in this chapter.
To our knowledge, the GraphSLAM algorithm presented here has never been published in

the present form (an earlier draft of this book referred to this algorithm as extended information
form). However, GraphSLAM is closely tied to the literature reviewed above, building on Lu
and Milios’s (1997) seminal algorithm. The name GraphSLAM bears resemblance to the name
Graphical SLAM by Folkesson and Christensen (2004a); we have chosen it for this chapter be-
cause graphs of constraints are the essence of this entire line of SLAM research. A number of
authors have developed filters in information form, which address the online SLAM problem
instead of the full SLAM problem. These algorithms will be discussed in the coming chapter,
which explicitly addresses the problem of filtering.
The GraphSLAM formulation of the SLAMproblem relates to a decades-old discussion in the

representation of spatial maps, which was already mentioned in the bibliographical remarks to
Chapter 9. Information representations bring together two different paradigms of map repre-
sentation: topological and metric. Behind this distinction is a decades-old debate about the
representation of space, in people and for robots (Chown et al. 1995). Topological approaches
were already discussed in the bibliographical remarks to Chapter 9. A key feature of topological
representation pertains to the fact that they only specify relative information between entities in
the map. Hence, they are free of the problem of finding a consistent metric embedding of this
relative information. State-of-the-art topological tend to augment links with metric information,
such as the distance between two locations.
Just like topological representations, information-theoretic methods accumulate relative in-

formation between adjacent objects (landmarks and robots). However, the relative map infor-
mation is “translated” into metric embeddings by inference. In the linear Gaussian case, this
inference step is loss-free and invertible. Computing the full posterior, including the covari-
ance, requires matrix inversion. A second matrix inversion operation leads back to the original
form of relative constraints. Thus, both the topological view and the metric view appear to be
duals of each other, just like information-theoretic and probabilistic representations (or EKF and
GraphSLAM). So maybe there shall be a unifying mathematical framework that embraces both,
topological and metric maps? The reader shall be forewarned that this view has not yet been
adopted by the mainstream research community.

11.11 Exercises

1. We already encountered bearing only SLAM in the exercises to the previous
chapter, as a form of SLAM inwhich sensors can onlymeasure the bearing
of landmarks but not the range. We conjecture that GraphSLAM is better
suited for this problem than the EKF. Why?

2. In this question, you are asked to prove convergence results for a special
class of SLAM problems: linear Gaussian SLAM. In linear Gaussian SLAM,LINEAR GAUSSIAN

SLAM the motion equation is of the simple additive type

xt ∼ N (xt−1 + ut, R)

11.11 Exercises 383

and the measurement equation is of the type

zt = N (mj − xt, Q)

where R and Q are diagonal covariances matrices, and mj is the feature
observed at time t. You may assume that the number of landmarks is
finite, that all landmarks are seen infinitely often and in no specific order,
and that the correspondence is known.

(a) Prove that for GraphSLAM the distance between any two landmarks
converges to the correct distance with probability 1.

(b) What does this proof entail for EKF SLAM?

(c) Does GraphSLAM converge for the general SLAM problem with
known correspondence? If so, argue why; if not, argue why not (with-
out proof).

3. The algorithm GraphSLAM_reduce reduces the set of constraints by in-
tegrating out the map variables, leaving a constraint system over robot
poses only. Is it possible to instead integrate out the pose variables, so
that the resulting network of constraints is defined only over map vari-
ables? If so, what would the resulting inference problem be sparse? How
would cycles in the robot’s path affect this new set of constraints?

4. The GraphSLAM algorithm in this chapter ignored the landmark signa-
tures. Extend the basic GraphSLAM algorithm to utilize such signatures
in its measurements and in its map.

12 The Sparse Extended Information
Filter

12.1 Introduction

The previous two chapters covered two extreme ends of a spectrum of
SLAM algorithms. We already noted that EKF SLAM is proactive. Every
time information is acquired, it resolves this information into a probability
distribution—which is computationally expensive. The GraphSLAM algo-
rithm is different: It simply accumulates information. We noted that such
an accumulation is lazy: at the time of data acquisition, GraphSLAM simply
memorizes the information it receives. To turn the accumulated information
into a map, GraphSLAM performs inference. This inference is performed
after all data is acquired. This makes GraphSLAM an offline algorithm.
This raises the question as to whether we can devise an online filter al-
gorithm that inherits the efficiency of the information representation. The
answer is yes, but only with a number of approximations. The sparse extended
information filter, or SEIF, implements an information solution to the online
SLAM problem. Just like the EKF, the SEIF integrates out past robot poses,
and only maintains a posterior over the present robot pose and the map. But
like GraphSLAM and unlike EKF SLAM, SEIF maintains an information rep-
resentation of all knowledge. In doing so, updating the SEIF becomes a lazy
information shifting operation, which is superior to the proactive probabilis-
tic update of the EKF. Thus, the SEIF can be seen as the best of both worlds:
It runs online, and it is computationally efficient.
As an online algorithm, the SEIF maintains a belief over the very same
state vector as the EKF:

yt =

(
xt

m

)
(12.1)

386 12 The Sparse Extended Information Filter

Figure 12.1 Motivation for using an information filter for online SLAM. Left: Simu-
lated robot run with 50 landmarks. Center: The correlation matrix of an EKF, which
shows strong correlations between any two landmarks’ coordinates. Right: The nor-
malized information matrix of the EKF is naturally sparse. This sparseness leads to a
SLAM algorithm that can be updated more efficiently.

Here xt is the robot state, andm the map. The posterior under known corre-
spondences is given by p(yt | z1:t, u1:t, c1:t).
The key insight for turning GraphSLAM into an online SLAM algorithm is
illustrated in Figure 12.1. This figure shows the result of the EKF SLAM
algorithm in a simulated environment containing 50 landmarks. The left
panel displays a moving robot along with its probabilistic estimate of the
location of all 50 point features. The central information maintained by the
EKF SLAM is a covariance matrix of these different estimates. The correla-
tion, which is the normalized covariance, is visualized in the center panel
of this figure. Each of the two axes lists the robot pose (location and ori-
entation) followed by the 2-D locations of all 50 landmarks. Dark entries
indicate strong correlations. We already discussed in the EKF SLAM chapter
that in the limit, all feature coordinates become fully correlated—hence the
checker-board appearance of the correlation matrix.
The right panel of Figure 12.1 shows the information matrix Ωt, normal-
ized just like the correlation matrix. As in the previous chapter, elements
in this normalized information matrix can be thought of as constraints, or
links, which constrain the relative locations of pairs of features in the map:
The darker an entry in the display, the stronger the link. As this depiction
suggests, the normalized information matrix appears to be sparse. It is dom-
inated by a small number of strong links; and it possesses a large number of
links whose values, when normalized, are practically zero.

12.1 Introduction 387

Figure 12.2 Illustration of the network of features generated by our approach.
Shown on the left is a sparse information matrix, and on the right a map in which
entities are linked whose information matrix element is non-zero. As argued in the
text, the fact that not all features are connected is a key structural element of the
SLAM problem, and at the heart of our constant time solution.

The strength of each link is related to the distance of the corresponding
features: Strong links are found only between nearby features. The more
distant two features, the weaker their link.
This sparseness is distinctly different from that in the previous chapter:
First, there exist links between pairs of landmarks. In the previous chapter,
no such links could exist. Second, the sparseness is only approximate: In fact,
all elements of the normalized information matrix are non-zero, but nearly
all of them are very close to zero.
The SEIF SLAM algorithm exploits this insight by maintaining a sparseSPARSE INFORMATION

MATRIX information matrix, in which only nearby features are linked through a non-
zero element. The resulting network structure is illustrated in the right panel
of Figure 12.2, where disks correspond to point features and dashed arcs to
links, as specified in the information matrix visualized on the left. This dia-
gram also shows the robot, which is linked to a small subset of all features
only. Those features are called active features and are drawn in black. StoringACTIVE FEATURES

a sparse informationmatrix requires space linear in the number of features in
the map. More importantly, all essential updates in SEIF SLAM can be per-
formed in constant time, regardless of the number of features in the map.
This result is somewhat surprising, as a naive implementation of motion
updates in information filters—as stated in Table 3.6 on page 76—requires
inversion of the entire information matrix.

388 12 The Sparse Extended Information Filter

The SEIF is an online SLAM algorithm that maintains such a sparse in-
formation matrix, and for which the time required for all update steps is
independent of the size of the map for the case with known data association,
and logarithmic is data association search is involved. This makes SEIF the
first efficient online SLAM algorithm encountered in this book.

12.2 Intuitive Description

We begin with an intuitive description of the SEIF update, using graphical
illustrations. Specifically, a SEIF update is composed of 4 steps: a motion
update step, a measurement update step, a sparsification step, and a state
estimation step.
We begin with the measurement update step, depicted in Figure 12.3. Each
of the two panels shows the information matrix maintained by the SEIF,
along with the graph defined by the information links. Just as in Graph-
SLAM, sensing a feature m1 leads the SEIF to update the off-diagonal ele-
ment of its information matrix, which links the robot pose estimate xt to the
observed featurem1. This is illustrated in the left panel of Figure 12.3a.
Sensing m2 leads it to update the elements in the information matrix that
link the robot pose xt and the featurem2, as illustrated in Figure 12.3b. As we
shall see, each of these updates correspond to local additions in the informa-
tionmatrix and the information vector. In both cases (informationmatrix and
vector), this addition touches only elements that link the robot pose variable
to the observed feature. As in GraphSLAM, the complexity of incorporating
a measurement into a SEIF takes time independent of the size of the map.
The motion update differs from GraphSLAM, since, as a filter, the SEIF
eliminates past pose estimates. It is shown in Figure 12.4. Here a robot’s
pose changes; Figure 12.4a depicts a the information state before, and Fig-
ure 12.4b after motion, respectively. The motion affects the information state
in multiple ways. First, the links between the robot’s pose and the features
m1,m2 are weakened. This is a result of the fact that robot motion introduces
new uncertainty, hence causes us to lose information about where the robot
is relative to the map. However, this information is not entirely lost. Some
of it is mapped into information links between pairs of features. This shift of
information comes about since even though we lost information on the robot
pose, we did not lose information on the relative location of features in the
map. Whereas previously, those features were linked indirectly through the
robot pose, they are now linked also directly after the update step.

12.2 Intuitive Description 389

(a) (b)

Figure 12.3 The effect of measurements on the information matrix and the associ-
ated network of features: (a) Observing m1 results in a modification of the informa-
tion matrix elements Ωxt,m1 . (b) Similarly, observingm2 affects Ωxt,m2 .

(a) (b)

Figure 12.4 The effect of motion on the information matrix and the associated
network of features: (a) before motion, and (b) after motion. If motion is non-
deterministic, motion updates introduce new links (or reinforce existing links) be-
tween any two active features, while weakening the links between the robot and those
features. This step introduces links between pairs of features.

(a) (b)

Figure 12.5 Sparsification: A feature is deactivated by eliminating its link to the
robot. To compensate for this change in information state, links between active fea-
tures and/or the robot are also updated. The entire operation can be performed in
constant time.

390 12 The Sparse Extended Information Filter

The shift of information from robot pose links to between-feature links
is a key element of the SEIF. It is a direct consequence of using the infor-
mation form as a filter, for the online SLAM problem. By integrating out
past pose variables, we lose those links, and they are mapped back into the
between-feature elements in the information matrix. This differs from the
GraphSLAM algorithm discussed in the previous chapter, which never in-
troduced any links between pairs of features in the map.
For a pair of features to acquire a direct link in this process, both have to be
active before the update, hence their corresponding elements linking them to
the robot pose in the information matrix have to be non-zero. This is illus-
trated in Figure 12.4: A between-feature link is only introduced between fea-
tures m1 and m2. Feature m3, which is not active, remains untouched. This
suggests that by controlling the number of active landmarks at any point in
time, we can control the computational complexity of themotion update, and
the number of links in the information matrix. If the number of active links
remains small, so will the update complexity for the motion update, and so
will the number of non-zero between-landmark elements in the information
matrix.
SEIF therefore employs a sparsification step, illustrated in Figure 12.5. TheSPARSIFICATION

sparsification involves the removal of a link between the robot and an active
feature, effectively turning the active feature into a passive one. In SEIFs,
this arc removal leads to a redistribution of information into neighboring
links, specifically between other active features and the robot pose. The time
required for sparsification is independent of the size of the map. However,
it is an approximation, one that induces an information loss in the robot’s
posterior. The benefit of this approximation is that it induces true sparseness,
and hence makes it possible to update the filter efficiently.
There exists one final step in the SEIF algorithm, which is not depicted in
any of the figures. This step involves the propagation of a mean estimate
through the graph. As was already discussed in Chapter 3, the extended
information filter requires an estimate of the state μt for linearization of the
motion and the measurement model. SEIFs also require a state estimate for
the sparsification step.
Clearly, one could recover the state estimate through the equation μ =

Ω−1ξ, where Ω is the information vector, and ξ the information state. How-
ever, this would require solving an inference problem that is too large to be
run at each time step. SEIFs circumvent the step by an iterative relaxation al-RELAXATION

ALGORITHM gorithm that propagates state estimates through the information graph. Each
local state estimate is updated based on the best estimates of its neighbors in

12.3 The SEIF SLAM Algorithm 391

the information graph. This relaxation algorithm converges to the true mean
μ. Since the information form is sparse in SEIFs, each such update requires
constant time, though with the caveat that more than a finite number of such
updates may be needed to achieve good results. To keep the computation
independent of the size of the state space, SEIFs perform a fixed number of
such updates at any iteration. The resulting state vector is only an approx-
imation, which is used instead of the correct mean estimate in all updating
steps.

12.3 The SEIF SLAM Algorithm

The outer loop of the SEIF update is depicted in Table 12.1. The algo-
rithm accepts as input an information matrix Ωt−1, an information vector
ξt−1, and an estimate of the state μt−1. It also accepts a measurement zt,
a control ut, and a correspondence vector ct. The output of the algorithm
SEIF_SLAM_known_correspondences is a new state estimate, represented
by the information matrix Ωt and the information vector ξt. The algorithm
also outputs an improved estimate μt.
As stated in Table 12.1, the SEIF update proceeds in four major steps. The
motion update in Table 12.2 incorporates the control ut into the filter esti-
mate. It does so through a number of computationally efficient operations.
Specifically, the only components of the information vector/matrix that are
modified in this update are those of the robot pose and the active features.
The measurement update in Table 12.3 incorporates the measurement vector
zt under known correspondence ct. This step is also local, just like the mo-
tion update step. It only updates the information values of the robot pose
and the observed features in the map. The sparsification step, shown in Ta-
ble 12.4, is an approximate step: It removes active features by transforming
the information matrix and the information vector accordingly. This step is
again efficient; it only modifies links between the robot and the active land-
marks. Finally, the state estimate update in Table 12.5, applies an amortized
coordinate descent technique to recover the state estimate μt. This step once
again exploits the sparseness of the SEIF, throughwhich it only has to consult
a small number of other state vector elements in each incremental update.
Together, the entire update loop of the SEIF is constant time, in that the
processing time is independent of the size of themap. This is in stark contrast
to the only other online SLAM algorithm discussed so far—the EKF—which
requires time quadratic the size of the map for each update. However, such

392 12 The Sparse Extended Information Filter

1: Algorithm SEIF_SLAM_known_correspondences(ξt−1,Ωt−1,

μt−1, ut, zt, ct):
2: ξ̄t, Ω̄t, μ̄t = SEIF_motion_update(ξt−1,Ωt−1, μt−1, ut)

3: μt = SEIF_update_state_estimate(ξ̄t, Ω̄t, μ̄t)

4: ξt,Ωt = SEIF_measurement_update(ξ̄t, Ω̄t, μt, zt, ct)

5: ξ̃t, Ω̃t = SEIF_sparsification(ξt,Ωt)

6: return ξ̃t, Ω̃t, μt

Table 12.1 The Sparse Extended Information Filter algorithm for the SLAM Prob-
lem, here with known data association.

1: Algorithm SEIF_motion_update(ξt−1,Ωt−1, μt−1, ut):

2: Fx =

⎛
⎜⎜⎜⎝

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

3N

⎞
⎟⎟⎟⎠

3: δ =

⎛
⎜⎝
− vt

ωt
sinμt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

ωtΔt

⎞
⎟⎠

4: Δ =

⎛
⎜⎝

0 0 vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

0 0 vt

ωt
sin μt−1,θ − vt

ωt
sin(μt−1,θ + ωtΔt)

0 0 0

⎞
⎟⎠

5: Ψt = FT
x [(I + Δ)−1 − I] Fx

6: λt = ΨT
t Ωt−1 + Ωt−1 Ψt + ΨT

t Ωt−1 Ψt

7: Φt = Ωt−1 + λt

8: κt = Φt FT
x (R−1

t + Fx Φt FT
x)−1 Fx Φt

9: Ω̄t = Φt − κt

10: ξ̄t = ξt−1 + (λt − κt) μt−1 + Ω̄t FT
x δt

11: μ̄t = μt−1 + FT
x δ

12: return ξ̄t, Ω̄t, μ̄t

Table 12.2 The motion update in SEIFs.

12.3 The SEIF SLAM Algorithm 393

1: Algorithm SEIF_measurement_update(ξ̄t, Ω̄t, μt, zt, ct):

2: Qt =

⎛
⎝ σr 0 0

0 σφ 0

0 0 σs

⎞
⎠

3: for all observed features zi
t = (ri

t φi
t si

t)
T do

4: j = ci
t

5: if landmark j never seen before

6:

⎛
⎝ μj,x

μj,y

μj,s

⎞
⎠ =

⎛
⎝ μt,x

μt,y

si
t

⎞
⎠+ ri

t

⎛
⎝ cos(φi

t + μt,θ)

sin(φi
t + μt,θ)

0

⎞
⎠

7: endif

8: δ =

(
δx

δy

)
=

(
μj,x − μt,x

μj,y − μt,y

)
9: q = δT δ

10: ẑi
t =

⎛
⎝

√
q

atan2(δy, δx)− μt,θ

μj,s

⎞
⎠

11: Hi
t = 1

q

⎛
⎜⎜⎝
√

qδx −√qδy 0 0 · · · 0 −√qδx
√

qδy 0 0 · · · 0
δy δx −1 0 · · · 0 −δy −δx 0 0 · · · 0
0 0 0 0 · · · 0︸ ︷︷ ︸

3j−3

0 0 1 0 · · · 0︸ ︷︷ ︸
3j

⎞
⎟⎟⎠

12: endfor

13: ξt = ξ̄t +
∑

i HiT
t Q−1

t [zi
t − ẑi

t −Hi
t μt]

14: Ωt = Ω̄t +
∑

i HiT
t Q−1

t Hi
t

15: return ξt,Ωt

Table 12.3 The measurement update step in SEIFs.

394 12 The Sparse Extended Information Filter

1: Algorithm SEIF_sparsification(ξt,Ωt):

2: define Fm0
, Fx,m0

, Fx as projection matrices
from yt tom0, {x,m0}, and x, respectively

3: Ω̃t = Ωt − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t

+ Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t

− Ωt Fx (FT
x ΩtFx)−1 FT

x Ωt

4: ξ̃t = ξt + μt (Ω̃t − Ωt)

5: return ξ̃t, Ω̃t

Table 12.4 The sparsification step in SEIFs.

1: Algorithm SEIF_update_state_estimate(ξ̄t, Ω̄t, μ̄t):

2: for a small set of map featuresmi do

3: Fi =

⎛
⎝ 0 · · · 0 1 0 0 · · · 0

0 · · · 0︸ ︷︷ ︸
2(N−i)

0 1 0 · · · 0︸ ︷︷ ︸
2(i−1)x

⎞
⎠

4: μi,t = (Fi Ωt FT
i)−1 Fi [ξt − Ωt μ̄t + Ωt FT

i Fi μ̄t]

5: endfor

6: for all other map featuresmi do
7: μi,t = μ̄i,t

8: endfor

9: Fx =

⎛
⎜⎜⎜⎝

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

3N

⎞
⎟⎟⎟⎠

10: μx,t = (Fx Ωt FT
x)−1 Fx [ξt − Ωt μ̄t + Ωt FT

x Fx μ̄t]

11: return μt

Table 12.5 The amortized state update step in SEIFs updates a small number of state
estimates.

12.4 Mathematical Derivation of the SEIF 395

a “constant time SLAM” conjecture should be taken with a grain of salt: TheCONSTANT TIME SLAM

recovery of state estimates is a computational problem for which no linear-
time solution is presently known, if the environment possesses large cycles.

12.4 Mathematical Derivation of the SEIF

12.4.1 Motion Update

The motion update in SEIF processes the control ut by transforming the in-
formation matrix Ωt−1 and the information vector ξt−1 into a new matrix Ω̄t

and vector ξ̄t. As usual, the bar in our notation indicates that this predic-
tion is only based on the control; it does not yet take the measurement into
account.
The motion update in SEIFs exploits the sparseness of the informa-
tion matrix, which makes it possible to perform this update in time
independent of the map size n. This derivation is best started with
the corresponding formula for the EKF. We begin with the algorithm
EKF_SLAM_known_correspondences in Table 10.1, page 314. Lines 3 and 5
state the motion update, which we restate here for the reader’s convenience:

μ̄t = μt−1 + FT
x δ(12.2)

Σ̄t = Gt Σt−1 GT
t + FT

x Rt Fx(12.3)

The essential elements of this update were defined as follows:

Fx =

⎛
⎝ 1 0 0 0 · · · 0

0 1 0 0 · · · 0
0 0 1 0 · · · 0

⎞
⎠(12.4)

δ =

⎛
⎜⎝ − vt

ωt
sin μt−1,θ + vt

ωt
sin(μt−1,θ + ωtΔt)

vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

ωtΔt

⎞
⎟⎠(12.5)

Δ =

⎛
⎜⎝ 0 0 vt

ωt
cos μt−1,θ − vt

ωt
cos(μt−1,θ + ωtΔt)

0 0 vt

ωt
sin μt−1,θ − vt

ωt
sin(μt−1,θ + ωtΔt)

0 0 0

⎞
⎟⎠(12.6)

Gt = I + FT
x Δ Fx(12.7)

In SEIFs, we have to define the motion update over the information vector ξ
and the information matrix Ω. From Equation (12.3), the definition of Gt in

396 12 The Sparse Extended Information Filter

(12.7), and the information matrix equation Ω = Σ−1, it follows that

Ω̄t =
[
Gt Ω−1

t−1 GT
t + FT

x Rt Fx

]−1
(12.8)

=
[
(I + FT

x Δ Fx) Ω−1
t−1 (I + FT

x Δ Fx)T + FT
x Rt Fx

]−1

Akey insight is this update can be implemented in constant time—regardless
of the dimension of Ω. The fact that this is possible for sparse matrices Ωt−1

is somewhat non-trivial, since Equation (12.8) seems to require two nested
inversions of matrices of size (3N + 3)× (3N + 3). As we shall see, if Ωt−1 is
sparse, this update step can be carried out efficiently. We define

Φt =
[
Gt Ω−1

t−1 GT
t

]−1
(12.9)

= [GT
t]−1 Ωt−1 G−1

t

and hence Equation (12.8) can be rewritten as

Ω̄t =
[
Φ−1

t + FT
x Rt Fx

]−1
(12.10)

We now apply the matrix inversion lemma and obtain:

Ω̄t =
[
Φ−1

t + FT
x Rt Fx

]−1
(12.11)

= Φt − Φt FT
x (R−1

t + Fx Φt FT
x)−1 Fx Φt︸ ︷︷ ︸

κt

= Φt − κt

Here κt is defined as indicated. This expression can be calculated in constant
time if we can compute Φt in constant time from Ωt−1. To see that this is in-
deed possible, we note that the argument inside the inverse,R−1

t +Fx Φt FT
x ,

is 3-dimensional. Multiplying this inverse with FT
x and Fx induces a matrix

that is of the same size as Ω; however, this matrix is only non-zero for the
3 × 3 sub-matrix corresponding to the robot pose. Multiplying this matrix
with a sparse matrix Ωt−1 (left and right) touches only elements for which
the off-diagonal element in Ωt−1 between the robot pose and a map feature
is non-zero. Put differently, the result of this operation only touches rows and
columns that correspond to active features in the map. Since sparsity implies
that the number of active features in Ωt−1 is independent of the size of Ωt−1,
the total number of non-zero elements in κt is also O(1). Consequently, the
subtraction requires O(1) time.
It remains to be shown that we can calculate Φt from Ωt−1 in constant
time. We begin with a consideration of the inverse of Gt, which is efficiently

12.4 Mathematical Derivation of the SEIF 397

calculated as follows:

G−1
t = (I + FT

x Δ Fx)−1(12.12)

= (I −FT
x I Fx + FT

x I Fx︸ ︷︷ ︸
= 0

+FT
x Δ Fx)−1

= (I − FT
x I Fx + FT

x (I + Δ) Fx)−1

= I − FT
x I Fx + FT

x (I + Δ)−1 Fxb

= I + FT
x [(I + Δ)−1 − I] Fx︸ ︷︷ ︸

Ψt

= I + Ψt

By analogy, we get for the transpose [GT
t]−1 = (I + FT

x ΔT Fx)−1 = I + ΨT
t .

Here the matrixΨt is only non-zero for elements that correspond to the robot
pose. It is zero for all features in the map, and hence can be computed in con-
stant time. This gives us for our desired matrix Φt the following expression:

Φt = (I + ΨT
t) Ωt−1 (I + Ψt)(12.13)

= Ωt−1 + ΨT
t Ωt−1 + Ωt−1 Ψt + ΨT

t Ωt−1 Ψt︸ ︷︷ ︸
λt

= Ωt−1 + λt

where Ψt is zero except for the sub-matrix corresponding to the robot pose.
Since Ωt−1 is sparse, λt is zero except for a finite number of elements, which
correspond to active map features and the robot pose.
Hence, Φt can be computed from Ωt−1 in constant time, assuming that

Ωt−1 is sparse. Equations (12.11) through (12.13) are equivalent to lines 5
through 9 in Table 12.2, which proves the correctness of the information ma-
trix update in SEIF_motion_update.
Finally, we show a similar result for the information vector. From (12.2)
we obtain

μ̄t = μt−1 + FT
x δt(12.14)

This implies for the information vector:

ξ̄t = Ω̄t (Ω−1
t−1 ξt−1 + FT

x δt)(12.15)

= Ω̄t Ω−1
t−1 ξt−1 + Ω̄t FT

x δt

= (Ω̄t + Ωt−1 − Ωt−1 + Φt − Φt) Ω−1
t−1 ξt−1 + Ω̄t FT

x δt

= (Ω̄t −Φt + Φt︸ ︷︷ ︸
= 0

−Ωt−1 + Ωt−1︸ ︷︷ ︸
= 0

) Ω−1
t−1 ξt−1 + Ω̄t FT

x δt

398 12 The Sparse Extended Information Filter

= (Ω̄t − Φt︸ ︷︷ ︸
= −κt

+ Φt − Ωt−1︸ ︷︷ ︸
= λt

) Ω−1
t−1 ξt−1︸ ︷︷ ︸
= μt−1

+ Ωt−1 Ω−1
t−1︸ ︷︷ ︸

= I

ξt−1 + Ω̄t FT
x δt

= ξt−1 + (λt − κt) μt−1 + Ω̄t FT
x δt

Since λt and κt are both sparse, the product (λt − κt) μt−1 only contains
finitely many non-zero elements and can be calculated in constant time. Fur-
ther, FT

x δt is a sparse matrix. The sparseness of the product Ω̄t FT
x δt follows

now directly from the fact that Ω̄t is sparse as well.

12.4.2 Measurement Updates

The second important step of SLAM concerns the update of the filter in accor-
dance to robotmotion. Themeasurement update in SEIF directly implements
the general extended information filter update, as stated in lines 6 and 7 of
Table 3.6, page 76:

Ωt = Ω̄t + HT
t Q−1

t Ht(12.16)

ξt = ξ̄t + HT
t Q−1

t [zt − h(μ̄t)−Ht μt](12.17)

Writing the prediction ẑt = h(μ̄t) and summing over all individual elements
in the measurement vector leads to the form in lines 13 and 14 in Table 12.3:

Ωt = Ω̄t +
∑

i

HiT
t Q−1

t Hi
t(12.18)

ξt = ξ̄t +
∑

i

HiT
t Q−1

t [zi
t − ẑi

t −Hi
t μt](12.19)

Here Qt, δ, q, and Hi
t are defined as before (e.g., Table 11.2 on page 348).

12.5 Sparsification

12.5.1 General Idea

The key step in SEIFs concerns the sparsification of the information matrix
Ωt. Because sparsification is so essential to SEIFs, let us first discuss it in
general terms before we apply it to the information filter. Sparsification is an
approximation through which a posterior distribution is approximated by
two of its marginals. Suppose a, b, and c are sets of random variables (not
to be confused with any other occurrence of these variables in this book!),
and suppose we are given a joint distribution p(a, b, c) over these variables.
To sparsify this distribution, we have to remove any direct link between the

12.5 Sparsification 399

variables a and b. In other words, we would like to approximate p by a
distribution p̃ for which the following property holds: p̃(a | b, c) = p(a | c)

and p̃(b | a, c) = p(b | c). In multivariate Gaussians, it is easily shown that
this conditional independence is equivalent to the absence of a direct link
between a and b. The corresponding element in the information matrix is
zero.
A good approximation p̃ is obtained by a term proportional to the product
of the marginals, p(a, c) and p(b, c). Neither of these marginals retain de-
pendence between the variables a and b, since they both contain only one
of those variables. Thus, the product p(a, c) p(b, c) does not contain any
direct dependencies between a and b; instead, a and b are conditionally in-
dependent given c. However, p(a, c) p(b, c) is not yet a valid probability
distribution over a, b, and c. This is because c occurs twice in this expression.
However, proper normalization by p(c) yields a probability distribution (as-
suming p(c) > 0):

p̃(a, b, c) =
p(a, c) p(b, c)

p(c)
(12.20)

To understand the effect of this approximation, we apply the following trans-
formation:

p̃(a, b, c) =
p(a, b, c)

p(a, b, c)

p(a, c) p(b, c)

p(c)
(12.21)

= p(a, b, c)
p(a, c)

p(c)

p(b, c)

p(a, b, c)

= p(a, b, c)
p(a | c)

p(a | b, c)
In other words, removing the direct dependence between a and b is equiva-
lent to approximating the conditional p(a | b, c) by a conditional p(a | c). We
also note (without proof) that among all approximations q of pwhere a and b

are conditionally independent given c, the one described here is “closest” to
p, where closeness is measured by the Kullback-Leibler divergence, a com-
mon asymmetric measure of the “nearness” of one probability distribution
to another.
An important observation pertains to the fact that the original p(a | b, c)

is at least as informative as p(a | c), the conditional that replaces p(a | b, c) in
p̃. This is because p(a | b, c) is conditioned on a superset of variables of the
conditioning variables in p(a | c). For Gaussians, this implies that the vari-
ances of the approximation p(a | c) is equal or larger than the variance of the

400 12 The Sparse Extended Information Filter

original conditional, p(a | b, c). Further, the variances of the marginals p̃(a),
p̃(b), and p̃(c) are also larger than or equal to the corresponding variances of
p(a), p(b), and p(c). In other words, it is impossible that the variance shrinks
under this approximation.

12.5.2 Sparsification in SEIFs

The SEIF applies the idea of sparsification to the posterior p(yt |
z1:t, u1:t, c1:t), to maintain an information matrix Ωt that is sparse at all times.
To do so, it suffices to deactivate links between the robot pose and individ-
ual features in the map. If done correctly, this also limits the number of links
between pairs of features.
To see, let us briefly consider the two circumstances under which a new
link may be introduced. First, observing a passive feature activates this fea-
ture and hence introduces a new link between the robot pose and the very
feature. Second, motion introduces links between any two active features.
This consideration suggests that controlling the number of active features
can avoid violation of both sparseness bounds. Thus, sparseness is achieved
simply by keeping the number of active features small at any point in time.
To define the sparsification step, it will prove useful to partition the set of
all features into three disjoint subsets:

m = m+ + m0 + m−(12.22)

wherem+ is the set of all active features that shall remain active. The setm0

are one or more active features that we seek to deactivate. Put differently, we
seek to remove the links between m0 and the robot pose. And finally, m−

are all currently passive features; they shall remain passive in the process
of sparsification. Since m+ ∪ m0 contains all currently active features, the
posterior can be factored as follows:

p(yt | z1:t, u1:t, c1:t)(12.23)

= p(xt,m
0,m+,m− | z1:t, u1:t, c1:t)

= p(xt | m0,m+,m−, z1:t, u1:t, c1:t) p(m0,m+,m− | z1:t, u1:t, c1:t)

= p(xt | m0,m+,m− = 0, z1:t, u1:t, c1:t) p(m0,m+,m− | z1:t, u1:t, c1:t)

In the last step we exploited the fact that if we know the active features m0

andm+, the variable xt does not depend on the passive featuresm−. We can
hence setm− to an arbitrary value without affecting the conditional posterior
over xt, p(xt | m0,m+,m−, z1:t, u1:t, c1:t). Here we simply choosem− = 0.

12.5 Sparsification 401

Following the sparsification idea discussed in general terms in the previ-
ous section, we now replace p(xt | m0,m+,m− = 0) by p(xt | m+,m− = 0)

and thereby drop the dependence onm0.

p̃(xt,m | z1:t, u1:t, c1:t)(12.24)

= p(xt | m+,m− = 0, z1:t, u1:t, c1:t) p(m0,m+,m− | z1:t, u1:t, c1:t)

This approximation is obviously equivalent to the following expression:

p̃(xt,m | z1:t, u1:t, c1:t)(12.25)

=
p(xt,m

+ | m− = 0, z1:t, u1:t, c1:t)

p(m+ | m− = 0, z1:t, u1:t, c1:t)
p(m0,m+,m− | z1:t, u1:t, c1:t)

12.5.3 Mathematical Derivation of the Sparsification

In the remainder of this section, we show that the algorithm
SEIF_sparsification in Table 12.4 implements this probabilistic calcula-
tion, and that it does so in constant time. We begin by calculating the
information matrix for the distribution p(xt,m

0,m+ | m− = 0) of all
variables butm−, and conditioned onm− = 0. This is obtained by extracting
the sub-matrix of all state variables butm−:

Ω0
t = Fx,m+,m0 FT

x,m+,m0 Ωt Fx,m+,m0 FT
x,m+,m0(12.26)

With that, the matrix inversion lemma (Table 3.2 on page 50) leads to the fol-
lowing information matrices for the terms p(xt,m

+ | m− = 0, z1:t, u1:t, c1:t)

and p(m+ | m− = 0, z1:t, u1:t, c1:t), denoted Ω1
t and Ω2

t , respectively:

Ω1
t = Ω0

t − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t(12.27)

Ω2
t = Ω0

t − Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t(12.28)

Here the various F -matrices are projection matrices that project the full state
yt into the appropriate sub-state containing only a subset of all variables—
in analogy to the matrix Fx used in various previous algorithms. The final
term in our approximation (12.25), p(m0,m+,m− | z1:t, u1:t, c1:t), possesses
the following information matrix:

Ω3
t = Ωt − ΩtFx(FT

x ΩtFx)−1FT
x Ωt(12.29)

Putting these expressions together according to Equation (12.25) yields the
following information matrix, in which the featurem0 is now indeed deacti-
vated:

Ω̃t = Ω1
t − Ω2

t + Ω3
t(12.30)

402 12 The Sparse Extended Information Filter

= Ωt − Ω0
t Fm0

(FT
m0

Ω0
t Fm0

)−1 FT
m0

Ω0
t

+ Ω0
t Fx,m0

(FT
x,m0

Ω0
t Fx,m0

)−1 FT
x,m0

Ω0
t

−Ωt Fx (FT
x Ωt Fx)−1 FT

x Ωt

The resulting information vector is now obtained by the following simple
consideration:

ξ̃t = Ω̃t μt(12.31)

= (Ωt − Ωt + Ω̃t) μt

= Ωt μt + (Ω̃t − Ωt) μt

= ξt + (Ω̃t − Ωt) μt

This completes the derivation of lines 3 and 4 in Table 12.4.

12.6 Amortized Approximate Map Recovery

The final update step in SEIFs is concernedwith the computation of themean
μ. Throughout this section, we will drop the time index from our notation,
since it plays no role in the techniques to be discussed. So we will write μ

instead of μt.
Before deriving an algorithm for recovering the state estimate μ from the

information form, let us briefly consider what parts of μ are needed in SEIFs,
and when. SEIFs need the state estimate μ of the robot pose and the active
features in the map. These estimates are needed at three different occasions:

1. The mean is used for the linearization of the motion model, which takes
place in lines 3, 4, and 10 in Table 12.2.

2. It is also used for linearization of the measurement update, see lines 6, 8,
10, 13 in Table 12.3.

3. Finally, it is used in the sparsification step, specifically in line 4 in Ta-
ble 12.4.

However, we never need the full vector μ. We only need an estimate of the
robot pose, and an estimate of the locations of all active features. This is a
small subset of all state variables in μ. Nevertheless, computing these esti-
mates efficiently requires some additionalmathematics, as the exact approach
for recovering the mean via μ = Ω−1 ξ requires matrix inversion or the use
of some other optimization technique—even when recovering a subset of
variables.

12.6 Amortized Approximate Map Recovery 403

Once again, the key insight is derived from the sparseness of the matrix
Ω. The sparseness enables us do define an iterative algorithm for recovering
state variables online, as the data is being gathered and the estimates ξ and
Ω are being constructed. To do so, it will prove convenient to reformulate
μ = Ω−1 ξ as an optimization problem. As we will show in just a minute, the
state μ is the mode

μ̂ = argmax
μ

p(μ)(12.32)

of the following Gaussian distribution, defined over the variable μ:

p(μ) = η exp
{−1

2 μT Ω μ + ξT μ
}

(12.33)

Here μ is a vector of the same form and dimensionality as μ. To see that this
is indeed the case, we note that the derivative of p(μ) vanishes at μ = Ω−1 ξ:

∂p(μ)

∂μ
= η (−Ω μ + ξ) exp

{−1
2 μT Ω μ + ξT μ

} !
= 0(12.34)

which implies Ω μ = ξ or, equivalently, μ = Ω−1 ξ.
This transformation suggests that recovering the state vector μ is equiva-
lent to finding the mode of (12.33), which now has become an optimization
problem. For this optimization problem, we will now describe an iterative
hill climbing algorithm which, thanks to the sparseness of the information
matrix.
Our approach is an instantiation of coordinate descent. For simplicity, weCOORDINATE DESCENT

state it here for a single coordinate only; our implementation iterates a con-
stant number K of such optimizations after each measurement update step.
The mode μ̂ of (12.33) is attained at:

μ̂ = argmax
μ

exp
{−1

2 μT Ω μ + ξT μ
}

(12.35)

= argmin
μ

1
2 μT Ω μ− ξT μ

We note that the argument of the min-operator in (12.35) can be written in a
form that makes the individual coordinate variables μi (for the i-th coordi-
nate of μt) explicit:

1
2μT Ω μ− ξT μ = 1

2

∑
i

∑
j

μT
i Ωi,j μj −

∑
i

ξT
i μi(12.36)

where Ωi,j is the element with coordinates (i, j) in the matrix Ω, and ξi if the
i-th component of the vector ξ. Taking the derivative of this expression with

404 12 The Sparse Extended Information Filter

respect to an arbitrary coordinate variable μi gives us

∂

∂μi

⎧⎨
⎩1

2

∑
i

∑
j

μT
i Ωi,j μj −

∑
i

ξT
i μi

⎫⎬
⎭ =

∑
j

Ωi,j μj − ξi(12.37)

Setting this to zero leads to the optimum of the i-th coordinate variable μi

given all other estimates μj :

μi = Ω−1
i,i

⎡
⎣ξi −

∑
j �=i

Ωi,j μj

⎤
⎦(12.38)

The same expression can conveniently be written in matrix notation. Here
we define Fi = (0 . . . 0 1 0 . . . 0) to be a projection matrix for extracting the
i-th component from the matrix Ω:

μi = (Fi Ω FT
i)−1 Fi [ξ − Ω μ + Ω FT

i Fi μ](12.39)

This consideration derives our incremental update algorithm. Repeatedly
updating

μi ←− (Fi Ω FT
i)−1 Fi [ξ − Ω μ + Ω FT

i Fi μ](12.40)

for some element of the state vector μi reduces the error between the left-
hand side and the right-hand side of Equation (12.39). Repeating this update
indefinitely for all elements of the state vector converges to the correct mean
(without proof).
As is easily seen, the number of elements in the summation in (12.38), and
hence the vector multiplication in the update rule (12.40), is constant if Ω is
sparse. Hence, each update requires constant time. To maintain the constant-
time property of our SLAM algorithm, we can afford a constant number of
updates K per time step. This usually leads to convergence over many up-
dates.
However, a note of caution is in order. The quality of this approximation
depends on a number of factors, among them the size of the largest cyclic
structure in the map. In general, a constant number of K updates per time
stepmight be insufficient to yield good results. Also, there exists a number of
optimization techniques that are more efficient than the coordinate descent
algorithm described here. A “classical” example is the conjugate gradient
discussed in the context of GraphSLAM. In practical implementations it is
advisable to rely on efficient optimization techniques to recover μ.

12.7 How Sparse Should SEIFs Be? 405

(a)

(b)

Figure 12.6 Comparison of (a) SEIF without sparsification with (b) SEIF using the
sparsification step with 4 active landmarks. The comparison is carried out in a sim-
ulated environment with 50 landmarks. In each row, the left panel shows the set of
links in the filter, the center panel the correlation matrix, and the right panel the nor-
malized information matrix. Obviously, the sparsified SEIF maintains many fewer
links, but its result is less confident as indicated by its less-expressed correlation ma-
trix.

12.7 How Sparse Should SEIFs Be?

A key question pertains to the degree of sparseness one should enforce in a
SEIF. In particular, the number of active features in SEIFs determines the de-
gree of sparseness. The sparseness trades off two factors: the computational
efficiency of the SEIF, and the accuracy of the result. When implementing a
SEIF algorithm, it is therefore advisable to get a feeling for this trade-off.
The “gold standard” for a SEIF is the EKF, which avoids sparsification
and also does not rely on relaxation techniques for recovering the state es-
timate. The following comparison characterizes the three key performance
measures that set sparse SEIFs apart from EKFs. Our comparison is based on
a simulated robot world, in which the robot senses the range, proximity, and
identity of nearby landmarks.

406 12 The Sparse Extended Information Filter

Figure 12.7 The comparison of average CPU time between SEIF and EKF.

Figure 12.8 The comparison of average memory usage between SEIF and EKF.

Figure 12.9 The comparison of root mean square distance error between SEIF and
EKF.

12.7 How Sparse Should SEIFs Be? 407

1. Computation. Figures 12.7 compares the computation per update in
SEIFs with that in EKFs; in both cases the implementation is optimized.
This graph illustrates the major computational ramification of the proba-
bilistic versus information representation in the filter. While EKFs indeed
require time quadratic in themap size, SEIFs level off and require constant
time.

2. Memory. Figure 12.8 compares the memory use of EKFs with that of
SEIFs. Here once again, EKFs scale quadratically, whereas SEIFs scale
linearly, due to the sparseness of its information representation.

3. Accuracy. Here EKFs outperform SEIFs, due to the fact that SEIFS require
approximation for maintaining sparseness, and when recovering the state
estimate μt. This is shown in Figure 12.9, which plots the error of both
methods as a function of map size.

One way to get a feeling for the effect of the degree of sparseness can be
obtained via simulation. Figure 12.10 plots the update time and the approx-
imation error as a function of the number of active landmarks in the SEIF
update, for a map consisting of 50 landmarks. The update time falls mono-
tonically with the number of active features. Figure 12.11 shows the corre-
sponding plot for the error, comparing the EKF with the SEIF at different
degrees of sparseness. The solid line is the SEIF as described, whereas the
dashed line corresponds to a SEIF that recovers the mean μt exactly. As this
plot suggests, 6 active features seem to provide competitive results, at sig-
nificant computational savings over the EKF. For smaller numbers of active
features, the error increases drastically. A careful implementation of SEIFs
will require the experimenter to vary this important parameter, and graph
its effect on key factors as done here.

408 12 The Sparse Extended Information Filter

Figure 12.10 The update time of the EKF (leftmost data point only) and the SEIF,
for different degrees of sparseness, as induced by a bound on the number of active
features as indicated.

Figure 12.11 The approximation error EKF (leftmost data point only) and SEIF for
different degrees of sparseness. In both figures, the map consists of 50 landmarks.

12.8 Incremental Data Association 409

12.8 Incremental Data Association

We will now turn our attention to the problem of data association in SEIFs.
Our first technique will be the familiar incremental approach, which greed-
ily identifies the most likely correspondence, and then treats this value as if it
was ground truth. We already encountered an instance of such a greedy data
association technique in Chapter 10.3, where we discussed data association
in the EKF. In fact, the only difference between greedy incremental data asso-
ciation in SEIFs and EKFs pertains to the calculation of the data association
probability. As a rule of thumb, computing this probability is generally more
difficult in an information filter than in a probabilistic filter such as the EKF,
since the information filter does not keep track of covariances.

12.8.1 Computing Incremental Data Association Probabilities

As before, the data association vector at time twill be denoted ct. The greedy
incremental technique maintains a set of data association guesses, denoted
ĉ1:t. In the incremental regime, we are given the estimated correspondences
ĉ1:t−1 from previous updates when computing ĉt. The data associating step
then pertains to the estimation of the most likely value for the data asso-
ciation variable ĉt at time t. This is achieved via the following maximum
likelihood estimator:

ĉt = argmax
ct

p(zt | z1:t−1, u1:t, ĉ1:t−1, ct)(12.41)

= argmax
ct

∫
p(zt | yt, ct) p(yt | z1:t−1, u1:t, ĉ1:t−1)︸ ︷︷ ︸

Ω̄t,ξ̄t

dyt

= argmax
ct

∫ ∫
p(zt | xt, yct

, ct) p(xt, yct
| z1:t−1, u1:t, ĉ1:t−1) dxt dyct

Our notation p(zt | xt, yct
, ct) of the sensor model makes the correspondence

variable ct explicit. Calculating this probability exactly is not possible in con-
stant time, since it involves marginalizing out almost all variables in themap.
However, the same type of approximation that was essential for the efficient
sparsification can also be applied here as well.
In particular, let us denote by m+

ct
the combined Markov blanket of the

robot pose xt and the landmark yct
. This Markov blanket is the set of all

features in the map that are linked to the robot of landmark yct
. Figure 12.12

illustrates this set. Notice that m+
ct
includes by definition all active land-

marks. The spareness of Ω̄t ensures that m+
ct
contains only a fixed number

410 12 The Sparse Extended Information Filter

xx
tt

yy
nn

Figure 12.12 The combined Markov blanket of feature yn and the observed features
is usually sufficient for approximating the posterior probability of the feature loca-
tions, conditioning away all other features.

of features, regardless of the size of the map N . If the Markov blankets of
xt and of yct

do not intersect, further features are added that represent the
shortest path in the information graph between xt and of yct

.
All remaining features will now be collectively referred to asm−

ct
:

m−
ct

= m−m+
ct
− {yct

}(12.42)

The set m−
ct
contains only features that have only a minor impact on the tar-

get variables, xt and yct
. The SEIF approximates the probability p(xt, yct

|
z1:t−1, u1:t, ĉ1:t−1) in Equation (12.41) by essentially ignoring these indirect
influences:

p(xt, yct
| z1:t−1, u1:t, ĉ1:t−1)(12.43)

=

∫ ∫
p(xt, yct

,m+
ct

,m−
ct
| z1:t−1, u1:t, ĉ1:t−1) dm+

ct
dm−

ct

=

∫ ∫
p(xt, yct

| m+
ct

,m−
ct

, z1:t−1, u1:t, ĉ1:t−1)

p(m+
ct
| m−

ct
, z1:t−1, u1:t, ĉ1:t−1) p(m−

ct
| z1:t−1, u1:t, ĉ1:t−1) dm+

ct
dm−

ct

≈
∫

p(xt, yct
| m+

ct
,m−

ct
= μ−

ct
, z1:t−1, u1:t, ĉ1:t−1)

p(m+
ct
| m−

ct
= μ−

ct
, z1:t−1, u1:t, ĉ1:t−1) dm+

ct

12.8 Incremental Data Association 411

This probability can be computed in constant time if the set of features con-
sidered in this calculation is independent of the map size (which it generally
is). In complete analogy to various derivations above, we note that the ap-
proximation of the posterior is simply obtained by carving out the submatrix
corresponding to the two target variables:

Σt:ct
= FT

xt,yct
(FT

xt,yct
,m+

ct

Ωt Fxt,yct
,m+

ct

)−1 Fxt,yct
(12.44)

μt:ct
= μtFxt,yct

(12.45)

This calculation is constant time, since it involves a matrix whose size is in-
dependent of N . From this Gaussian, the desired measurement probability
in Equation (12.41) is now easily recovered.
As in our EKF SLAM algorithm, features are labeled as newwhen the like-
lihood p(zt | z1:t−1, u1:t, ĉ1:t−1, ct) remains below a threshold α. We then
simply set ĉt = Nt−1 + 1 and Nt = Nt−1 + 1. Otherwise the size of the map
remains unchanged, henceNt = Nt−1. The value ĉt is chosen that maximizes
the data association probability.
As a last caveat, sometimes the combines Markov blanket is insufficient,
in that it does not contain a path between the robot pose and the landmark
that is being tested for correspondence. This will usually be the case when
closing a large cycle in the environment. Here we need to augment the set
of features m+

ct
by a set of landmarks along at least one path between mct

and the robot pose xt. Depending on the size of this cycle, the numbers of
landmarks contained in the resulting set may now depend on N , the size of
the map. We leave the details of such an extension as an exercise.

12.8.2 Practical Considerations

In general, the incremental greedy data association technique is brittle, as
discussed in the chapters EKF SLAM. Spurious measurements can easily
cause false associations and induce significant errors into the SLAM estimate.
The standard remedy for this brittleness—in EKFs and SEIFs alike—pertains
to the creation of a provisional landmark list. We already discussed this ap-
proach in depth in Chapter 10.3.3, in the context of EKF SLAM. A provi-
sional list adds any new feature that has not been previously observed into a
candidate list, which is maintained separately from the SEIF. In the measure-
ment steps that follow, the newly arrived candidates are checked against all
candidates in the waiting list, reasonable matches increase the weight of cor-
responding candidates, and not seeing a nearby feature decreases its weight.

412 12 The Sparse Extended Information Filter

Figure 12.13 The vehicle used in our experiments is equippedwith a 2-D laser range
finder and a differential GPS system. The vehicle’s ego-motion is measured by a lin-
ear variable differential transformer sensor for the steering, and a wheel-mounted
velocity encoder. In the background, the Victoria Park test environment can be seen.
Image courtesy of José Guivant and Eduardo Nebot, Australian Centre for Field
Robotics.

When a candidate’s weight is above a certain threshold, it joins the SEIF net-
work of features.
We notice that data association violates the constant time property of
SEIFs. This is because when calculating data associations, multiple features
have to be tested. If we can ensure that all plausible features are already
connected in the SEIF by a short path to the set of active features, it would
be feasible to perform data association in constant time. In this way, the
SEIF structure naturally facilitates the search of the most likely feature given
a measurement. However, this is not the case when closing a cycle for the
first time, in which case the correct association might be far away in the SEIF
adjacency graph.
We will now briefly turn our attention to an implementation of the SEIF
algorithm using a physical vehicle. The data used here is a common bench-
mark in the SLAM field. This data set was collected with an instrumented
outdoor vehicle driven through a park in Sydney, Australia.
The vehicle and its environment are shown in Figures 12.13 and 12.14, re-
spectively. The robot is equippedwith a SICK laser range finder and a system
for measuring steering angle and forward velocity. The laser is used to detect
trees in the environment, but it also picks up hundreds of spurious features

12.8 Incremental Data Association 413

Figure 12.14 The testing environment: A 350 meter by 350 meter patch in Victoria
Park in Sydney. Overlayed is the integrated path from odometry readings. Data and
aerial image courtesy of José Guivant and EduardoNebot, Australian Centre for Field
Robotics; results courtesy of Michael Montemerlo, Stanford University.

Figure 12.15 The path recovered by the SEIF, is correct within ±1m. Courtesy of
Michael Montemerlo, Stanford University.

414 12 The Sparse Extended Information Filter

Figure 12.16 Overlay of estimated landmark positions and robot path. Images cour-
tesy of Michael Montemerlo, Stanford University

such as corners of moving cars on a nearby highway. The raw odometry, as
used in our experiments, is poor, resulting in several hundredmeters of error
when used for path integration along the vehicle’s 3.5km path. This is illus-
trated in Figure 12.14, which shows the path of the vehicle. The poor quality
of the odometry information along with the presence of many spurious fea-
tures make this dataset particularly amenable for testing SLAM algorithms.
The path recovered by the SEIF is shown in Figure 12.15. This path is
quantitatively indistinguishable from the one produced by the EKF. The av-
erage position error, as measured through differential GPS, is smaller than
0.50 meters, which is small compared to the overall path length of 3.5 km.
The corresponding landmark map is shown in Figure 12.16. It, too, is of com-
parable accuracy as state-of-the-art EKF results. Compared with the EKF, the
SEIF runs approximately twice as fast and consumes less than a quarter of
the memory EKF uses. This saving is relatively small, but it a result of the
small map size, and the fact that most time is spent preprocessing the sensor
data. For larger maps, the relative savings are larger.

12.9 Branch-and-Bound Data Association 415

12.9 Branch-and-Bound Data Association

SEIFs make it possible to define a radically different data association ap-
proach, which can be proven to yield the optimal results (although possibly
in exponential time). The technique is built on three key insights:

• Just like GraphSLAM, SEIFs make it possible to add soft data associationSOFT DATA

ASSOCIATION

CONSTRAINTS
constraints. Given two features mi and mj , a soft data association con-
straint is nothing else but an information link that forces the distance
between mi and mj to be small. We already encountered examples of
such soft links in the previous chapter. In sparse extended information
filters, introducing such a link is a simple, local addition of values in the
information matrix.

• We can also easily remove soft association constraints. Just as introducing
a new constraint amounts to a local addition in the information matrix,
removing it is nothing else but a local subtraction. Such an “undo” oper-
ation can be applied to arbitrary data association links, regardless when
they were added, or when the respective feature was last observed. This
makes it possible to revise past data association decisions.

• The ability to freely add and subtract data associations arbitrarily enables
us to search the tree of possible data associations in a way that is both
efficient and complete—as will be shown below.

To develop a branch-and-bound data association algorithm, it shall prove useful
to consider the data association tree that defines the sequence of data associ-
ation decisions over time. At each point in time, each observed feature can be
associated with a number of other features, or considered a new, previously
unobserved feature. The resulting tree of data association choices, starting at
time t = 1 all the way to the present time, is illustrated in Figure 12.17a.
Of course, the tree grows exponentially over time, hence searching it ex-
haustively is impossible. The incremental greedy algorithm described in the
previous section, in contrast, follows one path through this tree, defined by
the locally most likely data associations. Such a path is visualized in Fig-
ure 12.17a as the thick gray path.
Obviously, if the incremental greedy approach succeeds, the resulting path
is optimal. However, the incremental greedy technique may fail. Once
a wrong choice has been made, the incremental approach cannot recover.
Moreover, wrong data association decisions introduce errors in the map
which, subsequently, can induce more errors in the data association.

416 12 The Sparse Extended Information Filter

12.9.1 Recursive Search

The approach discussed in the remainder of this chapter generalizes the in-
cremental greedy algorithm into a full-blown search algorithm for the tree
that is provably optimal. Of course, searching all branches in the tree is in-
tractable. However, if we maintain the log-likelihood of all nodes on the fron-FRONTIER

tier of the tree expanded thus far, we can guarantee optimality. Figure 12.17b
illustrates the idea: The branch-and-bound SEIF maintains not just a single
path through the data association tree, but an entire frontier. Every time a
node is expanded (e.g., through incremental ML), all alternative outcomes
are also assessed and the corresponding likelihoods are memorized. This
is illustrated in Figure 12.17b, which depicts the log-likelihood for an entire
frontier of the tree.
Finding the maximum in Equation (12.41) implies that the log-likelihood
of the chosen leaf is greater or equal to that of any other leaf at the same
depth. Since the log-likelihood decreases monotonically with the depth of
the tree, we can guarantee that we have indeed found the optimal data asso-
ciation values when the log-likelihood of the chosen leaf is greater or equal
to the log-likelihood of any other node on the frontier. Put differently, when
a frontier node assumes a log-likelihood greater than the one of the chosen
leaf, there might be an opportunity to further increase the likelihood of the
data by revising past data association decisions. Our approach then simply
expands such frontier nodes. If an expansion reaches a leaf and its value
is larger than the one of the present best leaf, this leaf is chosen as the new
data association. Otherwise the search is terminated when the entire frontier
possesses values that are all smaller or equal to the one of the chosen leaf.
This approach is guaranteed to always maintain the best set of values for the
data association variables; however, occasionally it might require substantial
search.

12.9.2 Computing Arbitrary Data Association Probabilities

To test whether or not two features in the map should be linked, we now
need a technique that, for any two features in the map, calculates the prob-
ability of equality. This test is essentially the same as GraphSLAM’s corre-
spondence test, stated in Table 11.8 on page 364. However, in SEIFs this test is
approximate, in that the exact calculation of the log-likelihood would require
additional computation.
Table 12.6 lists an algorithm that tests the probability that two features in

12.9 Branch-and-Bound Data Association 417

(a) (b)

(c)

Figure 12.17 (a) The data association tree, whose branching factor grows with
the number of landmarks in the map. (b) The tree-based SEIF maintains the log-
likelihood for the entire frontier of expanded nodes, enabling it to find alternative
paths. (c) Improved path.

418 12 The Sparse Extended Information Filter

1: Algorithm SEIF_correspondence_test(Ω, ξ, μ,mj ,mk):

2: let B(j) be the blanket ofmj

3: let B(k) be the blanket ofmk

4: B = B(j) ∪B(k)

5: if B(j) ∩B(k) = ∅
5: add features along the shortest path betweenmi andmj to B

7: endif

8: FB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 1 0 0 0 · · · 0 · · ·
0 · · · 0 0 1 0 0 · · · 0 · · ·
0 · · · 0 0 0 1 0 · · · 0 · · ·

· · · 0 · · · 0 1 0 0 0 · · · 0
· · · 0 · · · 0 0 1 0 0 · · · 0
· · · 0 · · · 0 0 0 1 0 · · · 0

. . .
· · · 0 · · · 0
· · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

9: (size (3N + 3) by 3|B|)
10: ΣB = (FB Ω FT

B)−1

11: μB = ΣB FB ξ

12: FΔ =

⎛
⎝ 0 · · · 0 1 0 0 · · · 0 −1 0 0 · · · 0

0 · · · 0 0 1︸︷︷︸
feature mj

0 · · · 0 0 − 1︸ ︷︷ ︸
feature mj

0 · · · 0
⎞
⎠

13: ΣΔ = (FΔ Ω FT
Δ)−1

14: μΔ = ΣΔ FΔ ξ

15: return det(2π ΣΔ)−
1
2 exp{− 1

2 μT
Δ Σ−1

Δ μΔ}

Table 12.6 The SEIF SLAM test for correspondence.

12.9 Branch-and-Bound Data Association 419

the map are one and the same—this test is sufficient to implement the greedy
data association technique. The key calculation here pertains to the recov-
ery of a joint covariance and mean vector over a small set of map features
B. To determine whether two features in the map are identical, SEIFs must
consider the information links between them. Technically, the more links in-
cluded in this consideration, the more accurate the result, but at the expense
of increased computation. In practice, it usually suffices to identify the two
Markov blankets of the features in question. A Markov blanket of a featureMARKOV BLANKET

is the feature itself, and all other features that are connected via a non-zero
element in the information matrix. In most cases, both Markov blankets in-
tersect; if they do not, the algorithm in Table 12.6 identifies a path between
the landmarks (which must exist if both were observed by the same robot).
The algorithm in Table 12.6 then proceeds by cutting out a local informa-
tion matrix and information vector, employing the very same mathemati-
cal “trick” that led to an efficient sparsification step: SEIFs condition away
features outside the Markov blankets. As a result, SEIFs obtain an efficient
technique for calculating the desired probability, one that is approximate (be-
cause of the conditioning), but works very well in practice.
This result is interesting in that it not only enables SEIFs to make a data
association decision, but it provides a way for calculating the log-likelihood
of such a decision. The logarithm of the result of this procedure corresponds
to the log-likelihood of this specific data item, and summing those up along
the path in the data association tree becomes the total data log-likelihood
under a specific association.

12.9.3 Equivalence Constraints

Once two features in the map have determined to be equivalent in the data
association search, SEIFs add a soft link to the information matrix. Suppose
the first feature is mi and the second is mj . The soft link constrains their
position to be equal through the following exponential-quadratic constraint

exp
{−1

2 (mi −mj)
T C (mi −mj)

}
(12.46)

Here C is a diagonal penalty matrix of the type

C =

⎛
⎝ ∞ 0 0

0 ∞ 0

0 0 ∞

⎞
⎠(12.47)

In practice, the diagonal elements of C are replaced by large positive values;
the larger those values, the stronger the constraint.

420 12 The Sparse Extended Information Filter

It is easily seen that the non-normalized Gaussian (12.46) can be written
as a link between mi and mj in the information matrix. Simply define the
projection matrix

Fmi−mj
=

⎛
⎜⎜⎝

0 · · · 0 1 0 0 0 · · · 0 −1 0 0 0 · · · 0
0 · · · 0 0 1 0 0 · · · 0 0 − 1 0 0 · · · 0
0 · · · 0 0 0 1︸ ︷︷ ︸

mi

0 · · · 0 0 0 − 1︸ ︷︷ ︸
mj

0 · · · 0

⎞
⎟⎟⎠(12.48)

This matrix maps the state yt to the differencemi −mj . Thus, the expression
(12.46) becomes

exp
{− 1

2 (Fmi−mj
yt)

T C (Fmi−mj
yt)
}

(12.49)

= exp
{
− 1

2 yT
t [FT

mi−mj
C Fmi−mj

] yt

}
Thus, to implement this soft constraint, SEIFs have to add FT

mi−mj
C Fmi−mj

to the information matrix, while leaving the information vector unchanged:

Ωt ←− Ωt + FT
mi−mj

C Fmi−mj
(12.50)

Clearly, the additive term is sparse: it only contains non-zero off-diagonal
elements between the features mi and mj . Once a soft link has been added,
it can be removed by the inverse operation

Ωt ←− Ωt − FT
mi−mj

C Fmi−mj
(12.51)

This removal can occur even regardless of the time that elapsed since a con-
straint was introduced in the filter. However, careful bookkeeping is nec-
essary to guarantee that SEIFs never remove a non-existent data associa-
tion constraint—otherwise the information matrix may no longer be positive
semidefinite, and the resulting belief might not correspond to a valid proba-
bility distribution.

12.10 Practical Considerations

In any competitive implementation of this approach, there will usually only
exist a small number of data association paths that are plausible at any point
in time. When closing a loop in an indoor environment, for example, there
are usually at most three plausible hypotheses: a closure, a continuation on
the left, and a continuation on the right. But all should quickly become un-
likely, so the number of times in which the tree is searched recursively should
be small.

12.10 Practical Considerations 421

(a)

(b)

Figure 12.18 (a) Map with incremental ML scan matching and (b) full recursive
branch-and-bound data association. Images courtesy of Dirk Hähnel, University of
Freiburg.

One way to make the data association succeed more often is to incorporate
negative measurement information. Range sensors, which are brought to bear in
our implementation, return positive and negative information with regards
to the presence of objects in the world. The positive information are object
detections. The negative information applies to the space between the detec-
tion and the sensor. The fact that the robot failed to detect an object closer
than its actual reading provides information about the absence of an object
within the measurement range.

422 12 The Sparse Extended Information Filter

-450

-400

-350

-300

-250

-200

-150

-100

0 10 20 30 40 50 60 70 80

(a)

-450

-400

-350

-300

-250

-200

-150

-100

0 10 20 30 40 50 60 70

(b)

Figure 12.19 (a) Log-likelihood of the actual measurement, as a function of time.
The lower likelihood is caused by the wrong assignment. (b) Log-likelihood, when
recursively fixing false data association hypotheses through the tree search. The suc-
cess is manifested by the lack of a distinct dip.

(a) (b)

�
start

conflict
�

map after adjustment

Figure 12.20 Example of the tree-based data association technique: (a) When clos-
ing a large loop, the robot first erroneously assumes the existence of a second, parallel
hallway. However, this model leads to a gross inconsistency as the robot encounters
a corridor at a right angle. At this point, the approach recursively searches for im-
proved data association decisions, arriving on the map shown in diagram (b).

An approach that evaluates the effect of a new constraint on the overall
likelihood considers both types of information: positive and negative. Both
are obtained by calculating the pairwise (mis)match of two scans under their
pose estimate. When using range scanners, one way to obtain a combination
of positive and negative information is by superimposing a scan onto a local
occupancy grid map built by another scan. In doing so, it is straightforward
to determine an approximate matching probability for two local maps in a
way that incorporates both the positive and the negative information.
The remainder of this section highlights practical results achieved using
SEIFs with tree-based data association. The left panel of Figure 12.18a depicts
the result of incremental ML data association, which is equivalent to regular
incremental scan matching. Clearly, certain corridors are represented doubly
in this map, illustrating the shortcomings of the ML approach. The right
panel, in comparison, shows the result. Clearly, this map is more accurate

12.10 Practical Considerations 423

START

END

SECOND LOOP CLOSURE

FIRST LOOP CLOSURE

(a) Robot path (b) Incremental ML (map inconsistent on left)

(c) FastSLAM (see next Chapter) (d) SEIFs with branch-and-bound data association

���
inconsistent
map

���
inconsistent
map

Figure 12.21 (a) Path of the robot. (b) Incremental ML (scan matching) (c) Fast-
SLAM. (d) SEIFs with lazy data association. Image courtesy of Dirk Hähnel, Univer-
sity of Freiburg.

than the one generated by the incremental ML approach.
Figure 12.19a illustrates the log-likelihood of the most recent measurement

(not the entire path), which drops significantly as the map becomes inconsis-
tent. At this point, the SEIF engages in searching alternative data association
values. It quickly finds the “correct” one and produces the map shown in
Figure 12.18b. The area in question is shown in Figure 12.20, illustrating

424 12 The Sparse Extended Information Filter

the moment at which the likelihood takes its dip. The log-likelihood of the
measurement is shown in Figure 12.19b.
Finally, Figure 12.21 compares various techniques in the context of map-
ping a large building with multiple cycles.

12.11 Multi-Robot SLAM

The SEIF is also applicable to multi-robot SLAM problems. The multi-robot
SLAM problem involves several robots that independently explore and map
an environment, with the eventual goal of integrating their maps into a sin-
gle, monolithic map. In many ways, the multi-robot SLAM problem is rem-
iniscent of the single-mapping problem, in that data needs to be integrated
into a single posterior over time. However, the multi-robot problem is sig-
nificantly more difficult in a number of dimensions:

• In the absence of prior information on the relative location of two robots,
the correspondence problem becomes a global problem. In principal, any
two features in the mapmay correspond, and only through comparison of
many features will the robots be able to determine good correspondences.

• Each map will be acquired in a local coordinate frame, which may differ
in absolute locations and orientations. Before integrating two maps, they
have to be oriented and shifted. In SEIFs, this requires a re-linearization
step of the information matrix and vector.

• The degree of overlap between the different maps is unknown. For exam-
ple, the robots might operate at different floors of a buildingwith identical
floor plans. In such a situation, the ability to differentiate the different
maps may rely on small environmental features that differ, such as furni-
ture that might be arranged slightly differently in the different floors.

In this section, we will only sketch some of the main ideas necessary to im-
plement an algorithm for multi-robot mapping. We will present an algo-
rithm for integrating two maps once correspondence has been established.
We will also discuss, but not prove, techniques for establishing global corre-
spondence in multi-robot SLAM.

12.11.1 Integrating Maps

The critical subroutine for fusing maps under known correspondence is
shown in Table 12.7. This algorithm accepts as an input two local robot pos-

12.11 Multi-Robot SLAM 425

1: Algorithm SEIF_map_fusion(Ωj , ξj ,Ωk, ξk, d, α, C):

2: Δ = (dx dy α dx dy 0 · · · dx dy 0)T

3: A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos α sin α 0 · · · 0

− sin α cos α 0
...

0 0 1

. . .
cos α sin α 0

... − sin α cos α 0

0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4: Ωj→k = A ΩjAT

5: ξj→k = A (ξj − Ωj→k Δ)

6: Ω =

(
Ωk 0

0 Ωj→k

)

7: ξ =

(
ξk

ξj→k

)

8: for any pair (mj ,mk) ∈ Cj,k do

9: F =

⎛
⎜⎜⎝

0 · · · 0 1 0 0 0 · · · 0 −1 0 0 0 · · · 0
0 · · · 0 0 1 0 0 · · · 0 0 − 1 0 0 · · · 0
0 · · · 0 0 0 1︸ ︷︷ ︸

mj

0 · · · 0 0 0 − 1︸ ︷︷ ︸
mk

0 · · · 0

⎞
⎟⎟⎠

10: Ω ←− Ω + FT

⎛
⎝ ∞ 0 0

0 ∞ 0

0 0 ∞

⎞
⎠ F

11: endfor

12: return Ω, ξ

Table 12.7 The map fusion loop in multi-robot mapping with SEIFs.

426 12 The Sparse Extended Information Filter

teriors, represented by the information form Ωj , ξj and Ωk, ξk, respectively.
It also requires three other items

1. A linear displacement tuple d

2. A relative rotation angle α

3. A set of feature correspondences Cj,k

The displacement vector d = (dx dy)T and rotation α specify the relative
orientation of the two robots’ coordinate systems. In particular, the j-th robot
pose xj and features in the map of the j-th robot are mapped into the k-th
robot’s coordinate frame through a rotation by α followed by a translation
by d. Here we use “j → k” to denote the coordinates of an item in the j-th
robot’s map represented in the k-th robot coordinate frame.

1. For the j-th robot pose xj
t⎛

⎝ xj→k

yj→k

θj→k

⎞
⎠

︸ ︷︷ ︸
x

j→k
t

=

⎛
⎝ dx

dy

α

⎞
⎠+

⎛
⎝ cos α sinα 0

− sin α cos α 0

0 0 1

⎞
⎠
⎛
⎝ xj

yj

θj

⎞
⎠

︸ ︷︷ ︸
x

j
t

(12.52)

2. For each feature in the j-th robot’s mapmj
i⎛

⎜⎝ mj→k
i,x

mj→k
i,y

mj→k
i,s

⎞
⎟⎠

︸ ︷︷ ︸
m

j→k

i

=

⎛
⎝ dx

dy

0

⎞
⎠+

⎛
⎝ cos α sin α 0

− sin α cos α 0

0 0 1

⎞
⎠
⎛
⎜⎝ mj

i,x

mj
i,y

mj
i,s

⎞
⎟⎠

︸ ︷︷ ︸
m

j

i

(12.53)

These two mappings are performed in lines 2 through 5 of the algorithm
SEIF_map_fusion in Table 12.7. This step involves a local rotation and shift
of the information matrix and the information vector, which preserved the
sparseness of the SEIF. Afterwards, the map fusion proceeds by building a
single joint posterior map, in lines 6 and 7. The final step in the fusion al-
gorithm pertains to the correspondence list Cj,k. This set consists of pairs
(mj ,mk) of features that mutually correspond in the maps of robot j and
robot k. The fusion is performed analogously to the soft equivalence con-
straints considered in Chapter 12.9.3. Specifically, for any two correspond-
ing features, we simply add large terms into the information matrix at the
elements linking these two features.

12.11 Multi-Robot SLAM 427

We note that an alternative way to implement the map fusing step collapses
the corresponding rows and columns of the resulting informationmatrix and
vector. The following example illustrates the operation of collapsing feature
2 and 4 in the filter, which would occur when our correspondence list states
that feature 2 and 4 are identical:⎛
⎜⎜⎝

Ω11 Ω12 Ω13 Ω14

Ω21 Ω22 Ω23 Ω24

Ω31 Ω32 Ω33 Ω34

Ω41 Ω42 Ω43 Ω44

⎞
⎟⎟⎠ −→

⎛
⎝ Ω11 Ω12+Ω14 Ω13

Ω21+Ω41 Ω22+Ω42+Ω24+Ω44 Ω23+Ω43

Ω31 Ω32+Ω34 Ω33

⎞
⎠(12.54)

⎛
⎜⎜⎝

ξ1

ξ2

ξ3

ξ4

⎞
⎟⎟⎠ −→

⎛
⎝ ξ1

ξ2+ξ4

ξ3

⎞
⎠(12.55)

Collapsing the information state exploits the additivity of the information
state.

12.11.2 Mathematical Derivation of Map Integration

For the derivation, it shall prove successful to give the rotation matrix and
the shift vectors in (12.52) and (12.53) names. Let us define the variables δx,
δm, and A as follows:

δx = (dx dy α)T(12.56)

δm = (dx dy 0)T(12.57)

A =

⎛
⎝ cos α sinα 0

− sin α cos α 0

0 0 1

⎞
⎠(12.58)

We can then rewrite (12.52) and (12.53) as

xj→k
t = δx + A xj

t(12.59)

mj→k
i = δm + A mj

i(12.60)

For the full state vector, we now obtain

yj→k
t = Δ +A yj

t(12.61)

with

Δ = (δr δm δm · · · δm)T(12.62)

428 12 The Sparse Extended Information Filter

A =

⎛
⎜⎜⎜⎝

Ar 0 · · · 0

0 Am · · · 0
...

...
. . .

...
0 0 · · · Am

⎞
⎟⎟⎟⎠(12.63)

The coordinate transformations needed in information space are similar. To
see, let the posterior of the j-th robot at time t be defined through the infor-
mation matrix Ωj and the information vector ξj . The following transforma-
tion applies the shift and rotation:

p(yj→k | zj
1:t, u

j
1:t)(12.64)

= η exp
{− 1

2 yj→k,T Ωj→k yj→k + yj→k,T ξj→k
}

= η exp
{− 1

2 (Δ +A yj)T Ωj→k (Δ +A yj) + (Δ +A yj)T ξj→k
}

= η exp

⎧⎪⎨
⎪⎩− 1

2 yjT AT Ωj→k A yj + yjT Ωj→k Δ− 1
2ΔT Ωj→k Δ︸ ︷︷ ︸

const.

+ ΔT ξj→k︸ ︷︷ ︸
const.

+ yjT AT ξj→k

⎫⎬
⎭

= η exp
{−1

2 yjT AT Ωj→k A yj + yjT Ωj→k Δ + yjT AT ξj→k
}

= η exp

⎧⎪⎨
⎪⎩− 1

2 yjT AT Ωj→k A︸ ︷︷ ︸
Ωj

yj + yjT (Ωj→k Δ +AT ξj→k)︸ ︷︷ ︸
ξj

⎫⎪⎬
⎪⎭

Thus, we have

Ωj = AT Ωj→k A(12.65)

ξj = (Ωj→k Δ +AT ξj→k)(12.66)

From A−1 = AT , it follows that

Ωj→k = A ΩjAT

ξj→k = A (ξj − Ωj→k Δ)(12.67)

This proves the correctness of lines 2 through 7 in Table 12.7. The remain-
ing soft equality constraints follow directly from the deliberations in Chap-
ter 12.9.3.

12.11 Multi-Robot SLAM 429

12.11.3 Establishing Correspondence

The remaining problem pertains to establishing correspondence between dif-
ferent maps, and calculating the rotation α and translation δ. There exists a
myriad of possible approaches, hence we will only sketch one possible algo-
rithm here. Clearly, the problem lies in the large number of features that can
potentially be matched in both local maps.
A canonical algorithm for landmark-basedmapsmight seek to cache away
local configurations of sufficiently nearby landmarks so that a comparison of
such local configurations yields good candidates for correspondences. For
example, one might identify sets ofm nearby landmarks (for a small number
m), and calculate relative distances or angles between them. Such a vector of
distances or angles will then serve as statistics that can be used to compare
two maps. Using hash tables or kd-trees, they may be efficiently accessi-
ble, so that a query “do the following m landmarks in the j-th robot’s map
correspond to anym landmarks in the map of robot k?” can be answered ef-
ficiently, at least in approximation. Once an initial correspondence has been
identified, we can easily calculate d and α by minimizing the quadratic dis-
tance between thesem features in both maps.
The fusion then proceeds as follows: First, the fusion operator is called
using the d, α, and Cj,k computed from those m local features in both maps.
Subsequently, additional landmarks are identified for which our correspon-
dence test in Table 12.6 generates a probability that falls below a threshold.
A simple termination may occur when no such pairs of landmarks can be
found.
A comparison of both components of the unified maps—and specifically
of nearby landmarks that are not in correspondence—will then provide a
criterion for acceptance of the resulting match. Formally, once the search
has terminated, a fusion is accepted if the resulting reduction of the overall
likelihood (in logarithmic form) is offset by the number of collapsed features
times a constant; this effectively implements a Bayesian MAP estimator with
an exponential prior over the number of features in the world.
In general, we note that the search for the optimal correspondence is NP-
hard. However, hill climbing tends to work extremely well in practice.

12.11.4 Example

Figure 12.22 shows an example of eight local maps. These maps are obtained
by partitioning our benchmark data set discussed previously, into 8 disjoint

430 12 The Sparse Extended Information Filter

Figure 12.22 Eight local maps obtained by splitting the data into eight sequences.

Figure 12.23 Amulti-robot SLAM result, obtained using the algorithm described in
this chapter. Image courtesy of Yufeng Liu.

12.11 Multi-Robot SLAM 431

Step t = 3 Step t = 62

Step t = 65 Step t = 85

Step t = 89 Step t = 500

Figure 12.24 Snapshots from our multi-robot SLAM simulation at different points
in time. During Steps 62 through 64, vehicle 1 and 2 traverse the same area for the
first time; as a result, the uncertainty in their local maps shrinks. Later, in steps 85
through 89, vehicle 2 observes the same landmarks as vehicle 3, with a similar effect
on the overall uncertainty. After 500 steps, all landmarks are accurately localized.

432 12 The Sparse Extended Information Filter

subsequences, and running SEIF on each one of those in separation.
By combining those local maps using m = 4 local features in a hash table

for the correspondence search, the SEIF arrives reliably at the map shown
in Figure 12.23. This map, when calculated through μ = Ω−1ξ, is not just
the superposition of the individual local maps that participated. Instead,
each local map is slightly bent in the process, which is a result of additively
combining the information forms.
Figure 12.24 shows a simulation of three air vehicles. The diagram illus-
trates that through fusing maps, the uncertainty in each individual map is
reduced.

12.12 Summary

This chapter has described an efficient solution to the online SLAM problem:
the sparse extended information filter, of SEIF. The SEIF is similar to Graph-
SLAM in that it represents the posterior in information form. However it
differs in that past poses are integrated out, which results in an online SLAM
algorithm. We learned:

• When integrating out past poses, features that were observed from those
poses become linked directly in the information matrix.

• The information matrix tends to be dominated by a small number of
between-features links that are found between physically nearby features.
The further two features separated, the weaker their link.

• By sparsifying the matrix, which amounts to shifting information through
the SEIF in a way that reduces the number of links, the information matrix
will remain sparse at all times. Sparseness implies that every element in
this matrix is only linked through a non-zero information value to finitely
many other elements, regardless of the total map size N . However, spar-
sification is an approximation, and not an exact operation.

• We observed that for sparse information matrix, both essential filtering
steps can be carried out in time independent of the map size: the mea-
surement step and the motion update step. In regular information filters,
only the measurement update step requires constant time. The motion
update step requires more time.

• For a number of steps, the SEIF still requires a state estimate. The SEIF
uses an amortized algorithm for recovering these estimates.

12.12 Summary 433

• We discussed two techniques for data association. The first is identical to
the one discussed for EKF SLAM: Incremental maximum likelihood. This
technique associates measurements to the most likely one at each point in
time, but never revises a correspondence decision.

• An improved technique recursively searches the tree of all data associa-
tions, so as to arrive at a data association vector that maximizes the like-
lihood of all data associations together. It does this based on an online
version of branch-and-bound. This techniques uses a lazy tree expansion
technique, in which the log-likelihood values of the data are remembered
along the fringe of a partially expanded tree. When the present best leaf
arrives at a value that is inferior to a partially expanded value at the fringe,
the fringe is expanded until it either becomes inferior itself or a better
global solution is found to the data association problem.

• We also discussed the use of SEIF in the context of multi-robot mapping.
The algorithm uses as an inner loop a technique for rotating and shift-
ing maps represented in information form, without ever computing the
underlying map itself. This operation maintains the sparseness of the in-
formation matrix.

• An algorithm was sketched that makes it possible to efficiently carry out
the global correspondence between two maps in the multi-robot map-
ping problem. This algorithm hashes away local feature configurations
and uses fast search techniques to establish correspondence. It then fuses
maps recursively, and accepts a merge if the resulting maps fit well.

The SEIF is our first efficient online SLAM algorithm in this book. It marries
the elegance of the information representation with the idea of integrating
out past poses. It is the “lazy” sister of the EKF: Whereas EKFs proactively
spread the information of each new measurement through the network of
features so as to calculate a correct joint covariance, the SEIF merely accu-
mulates this information, and resolves it slowly over time. The tree-based
data association in SEIF is also lazy: It only considered alternative paths to
the best known one when necessary. This will be in contrast to the technique
described in the coming chapter, which applies particle filters to the problem
of data association.
To attain efficient online, however, the SEIF has to make a number of ap-
proximations, which make its result less accurate than that of GraphSLAM
or the EKF. In particular, the SEIF has two limitations: First, it linearizes only

434 12 The Sparse Extended Information Filter

once, just like the EKF. GraphSLAM can re-linearize, which generally im-
proves the accuracy of the result. Second, the SEIF uses an approximation
step to maintain sparsity of its information matrix. This sparsity was natu-
rally given for the GraphSLAM algorithm, by nature of the information that
was being integrated.
While each of the basic SEIF steps (with known correspondence) can be
implemented in “constant time,” a final note of caution is in order. If SEIFs
were applied to a linear system (meaning, we do not need Taylor series ap-
proximations, and the data association is known), the update would be truly
constant time. However, because of the need to linearize, we need an esti-
mate of the mean μt along with the information state. This estimate is not
maintained in the traditional information filter, and recovering it requires a
certain amount of time. Our SEIF implementation only approximates it, and
the quality of the posterior estimate depends on the quality of this approxi-
mation.

12.13 Bibliographical Remarks

The literature on information-theoretic representations in SLAM was already discussed in the
previous chapter, insofar it pertains to offline optimization. Information filters have a relatively
young history in the SLAM field. In 1997, Csorba developed an information filter that main-
tained relative information between triplets of three landmarks. He was possibly the first to
observe that such information linksmaintained global correlation information implicitly, paving
the way for algorithms with quadratic to linear memory requirements. Newman (2000); New-
man and Durrant-Whyte (2001) developed a similar information filter, but left open the ques-
tion how the landmark-landmark information links are actually acquired. Under the ambitious
name “consistent, convergent, and constant-time SLAM,” Leonard and Newman further devel-
oped this approach into an efficient alignment algorithm, which was successfully applied to an
autonomous underwater vehicle using synthetic aperture sonar (Newman and Rikoski 2003).
Another seminal algorithm in the field is Paskin’s (2003) thin junction filter algorithm, whichTHIN JUNCTION FILTER

represents the SLAM posterior in a sparse network known as thin junction trees (Pearl 1988;
Cowell et al. 1999). The same idea was exploited by Frese (2004), who developed a similar tree
factorization of the information matrix for efficient inference. Julier and Uhlmann developed
a scalable technique called covariance intersection, which sparsely approximates the posterior inCOVARIANCE

INTERSECTION a way that provably prevents overconfidence. Their algorithm was successfully implemented
on NASA’s MARS Rover fleet (Uhlmann et al. 1999). The information filter perspective is also
related to early work by Bulata and Devy (1996), whose approach acquired landmark models
first in local landmark-centric reference frames, and only later assembles a consistent global map
by resolving the relative information between landmarks. Finally, certain “offline” SLAM algo-
rithms that solve the full SLAM problem, such as the ones by Bosse et al. (2004), Gutmann and
Konolige (2000), Frese (2004), and Montemerlo and Thrun (2004), have shown to be fast enough
to run online on limited-sized data sets.
Multi-robot map merging is discussed in Gutmann and Konolige (2000). Nettleton et al.

(2003) was the first to extended the information representation to multi-robot SLAM problems.

12.14 Exercises 435

They realized that the additivity of information enabled the asynchronous integration of local
maps across vehicles. They also realized that the addition of submaps led to efficient communi-
cation algorithms, whereby the integration of maps would be possible in time logarithmic in the
number of vehicles involved. However, they left open as to how to align such maps, a problem
later addressed by Thrun and Liu (2003).
The SEIF algorithm was developed by Thrun et al. (2002); see also Thrun et al. (2004a). To

our knowledge, it is the first algorithm that derives the creation of information links between
pairs of features from a filtering perspective. A greedy data association algorithm for SEIFs was
developed by Liu and Thrun (2003), which was subsequently extended to multi-robot SLAM
by Thrun and Liu (2003). The branch-and-bound data association search is due to Hähnel et al.
(2003a), based on earlier branch-and-bound methods by Lawler andWood (1966) and Narendra
and Fukunaga (1977). It parallels work by Kuipers et al. (2004), who developed a similar data
association technique, albeit not in the context of information theoretic concepts. SEIFs were
applied to mapping problems of abandoned mines (Thrun et al. 2004c), involving maps with
108 features.
The Victoria Park dataset referenced in this chapter is due to Guivant et al. (2000).

12.14 Exercises

1. Compare the sparseness in GraphSLAM with the sparseness in SEIFs:
what are the advantages and disadvantages of each? Provide conditions
under which either would be clearly preferable. The more concise your
reasoning, the better.

2. An important concept for many SLAM researchers is consistency. TheCONSISTENCY

SLAM community defines consistency a bit different from the general
field of statistics (in which consistency is an asymptotic property).

Let x be a random vector, and N (μ,Σ) be a Gaussian estimate of x. The
Gaussian is said to be consistent if it meets the following two properties:

Condition 1: Unbiasedness: The mean μ is an unbiased estimator of x:

E[μ] = x

Condition 2: No Overconfidence: The covarianceΣ is not overconfident.
Let Ξ be the true the covariance of the estimator μ:

Ξ = E[(μ− E[μ]) (μ− E[μ])T]

Then Σ overconfident if there exists a vector x̄ for which

x̄T Σ−1 x̄ > x̄T Ξ−1 x̄

Overconfidence implies that the 95% confidence ellipse of the esti-
mated covariance Σ falls inside or intersects with the true confidence
ellipse of the estimator.

436 12 The Sparse Extended Information Filter

Proving consistency is generally difficult for SLAM algorithms. Here we
want you to prove or disprove that sparsification retains consistency (see
Equation (12.20)). In particular, prove or disprove the following conjec-
ture: Given a consistent joint p(a, b, c) in Gaussian form, the following approxi-
mation will also be consistent:

p̃(a, b, c) =
p(a, c) p(b, c)

p(c)

3. You are asked to implement the SEIF algorithm for linear Gaussian SLAM.
In linear Gaussian SLAM, the motion equation is of the simple additive
type

xt ∼ N (xt−1 + ut, R)

and the measurement equation is of the type

zt = N (mj − xt, Q)

where R and Q are diagonal covariances matrices. The data associations
are known in linear Gaussian SLAM.

(a) Run it on simple simulations and verify the correctness of your imple-
mentation.

(b) Graph the error of the SEIF as a function of the sparseness of the infor-
mation matrix. What can you learn?

(c) Graph the computation time of your SEIF implementation as a function
of the sparseness of the information matrix. Report any interesting
findings.

4. The sparsification rule in SEIFs conditions away all passive features m−,
by assuming m− = 0. Why is this done? What would be the update
equation if these features would not be conditioned away? Would the
result be more accurate or less accurate? Would the computation be more
or less efficient? Be concise.

5. At present, SEIFs linearize as soon as a measurement or a motion com-
mand is integrated into the filter. Brainstorm about a SEIF algorithm that
allows for retro-actively altering the linearization. How would the poste-
rior of such an algorithm be represented? What would be the representa-
tion of the information matrix?

13 The FastSLAM Algorithm

Wewill now turn our attention to the particle filter approach to SLAM. We al-
ready encountered particle filters in several chapters of this book. We noted
that particle filters are at the core of some of the most effective robotics algo-
rithms. This raises the question as to whether particle filters are applicable to
the SLAM problem. Unfortunately, particle filters are subject to the curse of
dimensionality: whereas Gaussians scale between linearly and quadratically
with the number of dimensions of the estimation problem, particle filters
scale exponentially! A straightforward implementation of particle filters for
the SLAM problem would be doomed to fail, due to the large number of
variables involved in describing a map.
The algorithm in this chapter is based on an important characteristic of
the SLAM problem, which has not yet been explicitly discussed in this book.
Specifically, the full SLAM problem with known correspondences possesses
a conditional independence between any two disjoint sets of features in the
map, given the robot pose. Put differently, if an oracle told us the true robot
path, we could estimate the location of all features independently of each
other. Dependencies in these estimates arise only through robot pose uncer-
tainty. This structural observation will make it possible to apply a version
of particle filters to SLAM known as Rao-Blackwellized particle filters. Rao-RAO-BLACKWELLIZED

PARTICLE FILTER Blackwellized particle filters use particles to represent the posterior over
some variables, along with Gaussians (or some other parametric PDF) to rep-
resent all other variables.
FastSLAM uses particle filters for estimating the robot path. As we shall
see, for each of these particles the individual map errors are conditionallyCONDITIONAL

INDEPENDENCE independent. Hence the mapping problem can be factored into many sepa-
rate problems, one for each feature in the map. FastSLAM estimates these
map feature locations by EKFs, but using a separate low-dimensional EKF

438 13 The FastSLAM Algorithm

for each individual feature. This is fundamentally different from SLAM al-
gorithms discussed in previous chapters, which all use a single Gaussian to
estimate the location of all features jointly.
The basic algorithm can be implemented in time logarithmic in the number
of features. Hence, FastSLAM offers computational advantages over plain
EKF implementations and many of its descendants. The key advantage of
FastSLAM, however, stems from the fact that data association decisions can
be made on a per-particle basis. As a result, the filter maintains posteriors
over multiple data associations, not just the most likely one. This is in stark
contrast to all SLAM algorithms discussed so far, which track only a single
data association at any point in time. In fact, by sampling over data asso-
ciations, FastSLAM approximates the full posterior, not just the maximum
likelihood data association. As shown empirically, the ability to pursue mul-
tiple data associations simultaneously makes FastSLAM significantly more
robust to data association problems than algorithms based on incremental
maximum likelihood data association.
Another advantage of FastSLAM over other SLAM algorithms arises from
the fact that particle filters can cope with non-linear robot motion models,
whereas previous techniques approximate such models via linear functions.
This is important when the kinematics are highly non-linear, or when the
pose uncertainty is relatively high.
The use of particle filters creates the unusual situation that FastSLAM
solves both the full SLAM problem and the online SLAM problem. As we shall
see, FastSLAM is formulated to calculate the full path posterior—only the
full path renders feature locations conditionally independent. However, be-
cause particle filters estimate one pose at-a-time, FastSLAM is indeed an on-
line algorithm. Hence it also solves the online SLAM problem. Among all
SLAM algorithms discussed thus far, FastSLAM is the only algorithm that
fits both categories.
This chapter describes several instantiations of the FastSLAM algorithm.
FastSLAM 1.0 is the original FastSLAM algorithm, which is conceptually
simple and easy to implement. In certain situations, however, the particle
filter component of FastSLAM 1.0 generates samples inefficiently. The algo-
rithm FastSLAM 2.0 overcomes this problem through an improved proposal
distribution, but at the expense of an implementation that is significantly
more involved (as is the mathematical derivation). Both of these FastSLAM
algorithms assume the feature-based sensor model discussed earlier. The ap-
plication of FastSLAM to range sensors results in an algorithm that solves the
SLAM problem in the context of occupancy grid maps. For all algorithms,

13.1 The Basic Algorithm 439

this chapter provides techniques for estimating data association variables.

13.1 The Basic Algorithm

Particles in the basic FastSLAM algorithm are of the form shown in Ta-
ble 13.1. Each particle contains an estimated robot pose, denoted x

[k]
t , and

a set of Kalman filters with mean μ
[k]
j,t and covariance Σ

[k]
j,t , one for each fea-

ture mj in the map. Here [k] is the index of the particle. As usual, the total
number of particles is denotedM .
The basic FastSLAM update step is depicted in Table 13.2. Barring the
many details of the update step, the main loop is in large parts identical
to the particle filter, as discussed in Chapter 4 of this book. The initial step
involves the retrieval of a particle representing the posterior at time t−1, and
the sampling of a robot pose for time t using the probabilistic motion model.
The step that follows updates the EKFs for the observed features, using the
standard EKF update equation. This update is not part of the vanilla particle
filter, but it is necessary in FastSLAM to learn a map. The final steps are
concerned with the calculation of an importance weight, which are then used
to resample the particles.
We will now investigate each of these steps in more detail and derive them
from the basic mathematical properties of the SLAM problem. We note that
our derivation presupposes that FastSLAM solves the full SLAM problem,
not the online problem. However, as shall become apparent further below in
this chapter, FastSLAM is a solution to both of these problems: Each particle
can be thought of as a sample in path space as required for the full SLAM
problem, but the update only requires the most recent pose. For this reason,
FastSLAM can be run just like a filter.

13.2 Factoring the SLAM Posterior

FastSLAM’s key mathematical insight pertains to the fact that the full SLAM
posterior, p(y1:t | z1:t, u1:t) in Equation (10.2) can be written in the factored
form

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)
N∏

n=1

p(mn | x1:t, z1:t, c1:t)(13.1)

This factorization states that the calculation of the posterior over paths and
maps can be decomposed into N + 1 probabilities.

440 13 The FastSLAM Algorithm

robot path feature 1 feature 2 . . . feature N

Particle
k = 1 x

[1]
1:t = {(x y θ)T }[1]

1:t μ
[1]
1 , Σ

[1]
1 μ

[1]
2 , Σ

[1]
2 . . . μ

[1]
N , Σ

[1]
N

Particle
k = 2 x

[2]
1:t = {(x y θ)T }[2]

1:t μ
[2]
1 , Σ

[2]
1 μ

[2]
2 , Σ

[2]
2 . . . μ

[2]
N , Σ

[2]
N

...

Particle
k = M x

[M]
1:t = {(x y θ)T }[M]

1:t μ
[M]
1 , Σ

[M]
1 μ

[M]
2 , Σ

[M]
2 . . . μ

[M]
N , Σ

[M]
N

Figure 13.1 Particles in FastSLAM are composed of a path estimate and a set of
estimators of individual feature locations with associated covariances.

• Do the followingM times:

– Retrieval. Retrieve a pose x
[k]
t−1 from the particle set Yt−1.

– Prediction. Sample a new pose x
[k]
t ∼ p(xt | x[k]

t−1, ut).

– Measurement update. For each observed feature zi
t identify the

correspondence j for the measurement zi
t, and incorporate the

measurement zi
t into the corresponding EKF, by updating themean

μ
[k]
j,t and covariance Σ

[k]
j,t .

– Importance weight. Calculate the importance weight w[k] for the
new particle.

• Resampling. Sample, with replacement, M particles, where each
particle is sampled with a probability proportional to w[k].

Figure 13.2 The basic steps of the FastSLAM algorithm.

13.2 Factoring the SLAM Posterior 441

t+1ut−1u tu t+2u

tzt−1z

xt−1 t+1x xt+2

t+1z t+2z

m2 m3

x

m1

t

Figure 13.3 The SLAM problem depicted as Bayes network graph. The robot moves
from pose xt−1 to pose xt+2, driven by a sequence of controls. At each pose xt it
observes a nearby feature in the map m = {m1, m2, m3}. This graphical network
illustrates that the pose variables “separate” the individual features in the map from
each other. If the poses are known, there remains no other path involving variables
whose value is not known, between any two features in the map. This lack of a path
renders the posterior of any two features in themap conditionally independent (given
the poses).

FastSLAM uses a particle filter to compute the posterior over robot paths,
denoted p(x1:t | z1:t, u1:t, c1:t). For each feature in the map, FastSLAM now
uses a separate estimator over its location p(mn | x1:t, c1:t, z1:t) one for each
n = 1, . . . , N . Thus, in total there are N + 1 posteriors in FastSLAM. The
feature estimators are conditioned on the robot path, which means we will
have a separate copy of each feature estimator, one for each particle. WithM

particles, the number of filters will actually be 1+MN . The product of these
probabilities represents the desired posterior in a factored way. As we shall
show below, this factored representation is exact, not just an approximation.
It is a generic characteristic of the SLAM problem.
To illustrate the correctness of this factorization, Figure 13.3 depicts the
data acquisition process graphically, in the form of a dynamic Bayesian net-
work. As this graph suggests, each measurement z1, . . . , zt is a functions of
the position of the corresponding feature, along with the robot pose at the
time the measurement was taken. Knowledge of the robot path separates
the individual feature estimation problems and renders them independent
of one another, in the sense that no direct path exists in this graphical de-
piction from one feature to another that would not involve variables on the
robot’s path. Knowledge of the exact location of one featurewill therefore tell
us nothing about the locations of other features, if the robot path is known.

442 13 The FastSLAM Algorithm

This implies that features are conditionally independent given the robot path,
as stated in Equation (13.1).
Before we discuss the implications of this property to the SLAM problem,
let us briefly derive it mathematically.

13.2.1 Mathematical Derivation of the Factored SLAM Posterior

We will now derive Equation (13.1) from first principles. Clearly, we have

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t) p(m | x1:t, z1:t, c1:t)(13.2)

It therefore suffices to show that the second term on the right-hand side fac-
tors as follows:

p(m | x1:t, c1:t, z1:t) =

N∏
n=1

p(mn | x1:t, c1:t, z1:t)(13.3)

We will prove this by mathematical induction. Our derivation requires the
distinction of two possible cases, depending on whether or not the feature
mn was observed in the most recent measurement. In particular, if ct �= n,
the most recent measurement zt has no effect on the posterior, and neither
has the robot pose xt or the correspondence ct. Thus, we obtain:

p(mn | x1:t, c1:t, z1:t) = p(mn | x1:t−1, c1:t−1, z1:t−1)(13.4)

If ct = n and hencemn = mct
was observed by the most recent measurement

zt, the situation calls for applying Bayes rule, followed by some standard
simplifications:

p(mct
| x1:t, c1:t, z1:t) =

p(zt | mct
, x1:t, c1:t, z1:t−1) p(mct

| x1:t, c1:t, z1:t−1)

p(zt | x1:t, c1:t, z1:t−1)
(13.5)

=
p(zt | xt,mct

, ct) p(mct
| x1:t−1, c1:t−1, z1:t−1)

p(zt | x1:t, c1:t, z1:t−1)

This gives us the following expression for the probability of the observed
featuremct

:

p(mct
| x1:t−1, c1:t−1, z1:t−1) =

p(mct
| x1:t, c1:t, z1:t) p(zt | x1:t, c1:t, z1:t−1)

p(zt | xt,mct
, ct)

(13.6)

The proof of the correctness of (13.3) is now carried out by induction. Let us
assume that the posterior at time t− 1 is already factored:

p(m | x1:t−1, c1:t−1, z1:t−1) =

N∏
n=1

p(mn | x1:t−1, c1:t−1, z1:t−1)(13.7)

13.2 Factoring the SLAM Posterior 443

This statement is trivially true for t = 1, since in the beginning of time the
robot has no knowledge about any feature; hence all estimates must be inde-
pendent. At time t, the posterior is of the following form:

p(m | x1:t, c1:t, z1:t) =
p(zt | m,x1:t, c1:t, z1:t−1) p(m | x1:t, c1:t, z1:t−1)

p(zt | x1:t, c1:t, z1:t−1)
(13.8)

=
p(zt | xt,mct

, ct) p(m | x1:t−1, c1:t−1, z1:t−1)

p(zt | x1:t, c1:t, z1:t−1)

Plugging in our inductive hypothesis (13.7) gives us:

p(m | x1:t, c1:t, z1:t)(13.9)

=
p(zt | xt,mct

, ct)

p(zt | x1:t, c1:t, z1:t−1)

N∏
n=1

p(mn | x1:t−1, c1:t−1, z1:t−1)

=
p(zt | xt,mct

, ct)

p(zt | x1:t, c1:t, z1:t−1)
p(mct

| x1:t−1, c1:t−1, z1:t−1)︸ ︷︷ ︸
Eq. (13.6)∏

n�=ct

p(mn | x1:t−1, c1:t−1, z1:t−1)︸ ︷︷ ︸
Eq. (13.4)

= p(mct
| x1:t, c1:t, z1:t)

∏
n �=ct

p(mn | x1:t, c1:t, z1:t)

=

N∏
n=1

p(mn | x1:t, c1:t, z1:t)

Notice that we have substituted Equations (13.4) and (13.6) as indicated. This
shows the correctness of Equation (13.3). The correctness of the main form
(13.1) follows now directly from this result and the following generic trans-
formation:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t) p(m | x1:t, z1:t, u1:t, c1:t)(13.10)

= p(x1:t | z1:t, u1:t, c1:t) p(m | x1:t, c1:t, z1:t)

= p(x1:t | z1:t, u1:t, c1:t)

N∏
n=1

p(mn | x1:t, c1:t, z1:t)

We note that conditioning on the entire path x1:t is indeed essential for this
result. Conditioning on the most recent pose xt would be insufficient as con-
ditioning variable, as dependencies may arise through previous poses.

444 13 The FastSLAM Algorithm

Figure 13.4 Samples drawn from the probabilistic motion model.

13.3 FastSLAMwith Known Data Association

The factorial nature of the posterior provides us with significant computa-
tional advantages over SLAM algorithms that estimate an unstructured pos-
terior distribution. FastSLAM exploits the factored representation by main-
tainingMN + 1 filters,M for each factor in (13.1). By doing so, allMN + 1

filters are low-dimensional.
As noted, FastSLAM estimates the path posterior using a particle filter.
The map feature locations are estimated using EKFs. Because of our fac-
torization, FastSLAM can maintain a separate EKF for each feature—which
makes the update more efficient than in EKF SLAM. Each individual EKF is
conditioned on a robot path. Hence, each particle possesses its own set of
EKFs. In total there are NM EKFs, one for each feature in the map and one
for each particle in the particle filter.
Let us begin with the FastSLAM algorithm in the case of known data asso-
ciation. Particles in FastSLAM will be denoted

Y
[k]
t =

〈
x

[k]
t , μ

[k]
1,t,Σ

[k]
1,t, . . . , μ

[k]
N,t,Σ

[k]
N,t

〉
(13.11)

As usual, the bracketed notation [k] indicates the index of the particle; x[k]
t is

the path estimate of the robot, and μ
[k]
n,t and Σ

[k]
n,t are the mean and variance

of the Gaussian representing the n-th feature location, relative to the k-th
particle. Together, all these quantities form the k-th particle Y

[k]
t , of which

there are a total ofM in the FastSLAM posterior.
Filtering, or calculating the posterior at time t from the one at time t − 1,

involves generating a new particle set Yt from Yt−1, the particle set one time
step earlier. This new particle set incorporates a new control ut and a mea-

13.3 FastSLAM with Known Data Association 445

surement zt with associated correspondence ct. This update is performed in
the following steps:

1. Extending the path posterior by sampling new poses. FastSLAM 1.0
uses the control ut to sample new robot pose xt for each particle in Yt−1.
More specifically, consider the k-the particle Y

[k]
t . FastSLAM 1.0 samples

the pose xt in accordance with this k-th particle, by drawing a sample
according to the motion posterior

x
[k]
t ∼ p(xt | x[k]

t−1, ut)(13.12)

Here x
[k]
t−1 is the posterior estimate for the robot location at time t − 1,

residing in the k-th particle. The resulting sample x
[k]
t is then added to a

temporary set of particles, along with the path of previous poses, x[k]
1:t−1.

The sampling step is graphically depicted in Figure 13.4, which illustrates
a set of pose particles drawn from a single initial pose.

2. Updating the observed feature estimate. Next, FastSLAM 1.0 updates
the posterior over the feature estimates, represented by the mean μ

[k]
n,t−1

and the covariance Σ
[k]
n,t−1. The updated values are then added to the

temporary particle set, along with the new pose.

The exact update equation depends on whether or not a feature mn was
observed at time t. For n �= ct we did not observe feature n, we already
established in Equation (13.4) that the posterior over the feature remains
unchanged. This implies the simple update:

〈
μ

[k]
n,t,Σ

[k]
n,t

〉
=

〈
μ

[k]
n,t−1,Σ

[k]
n,t−1

〉
(13.13)

For the observed feature n = ct, the update is specified through Equation
(13.5), restated here with the normalizer denoted by η:

p(mct
| x1:t, z1:t, c1:t)(13.14)

= η p(zt | xt,mct
, ct) p(mct

| x1:t−1, z1:t−1, c1:t−1)

The probability p(mct
| x1:t−1, c1:t−1, z1:t−1) at time t − 1 is represented

by a Gaussian with mean μ
[k]
n,t−1 and covariance Σ

[k]
n,t−1. For the new esti-

mate at time t to be Gaussian as well, FastSLAM linearizes the perceptual

446 13 The FastSLAM Algorithm

model p(zt | xt,mct
, ct) in the same way as EKF SLAM. As usual, we

approximate the measurement function h by Taylor expansion:

h(mct
, x

[k]
t) ≈ h(μ

[k]
ct,t−1, x

[k]
t)︸ ︷︷ ︸

=: ẑ
[k]
t

+ h′(x[k]
t , μ

[k]
ct,t−1)︸ ︷︷ ︸

=: H
[k]
t

(mct
− μ

[k]
ct,t−1)(13.15)

= ẑ
[k]
t + H

[k]
t (mct

− μ
[k]
ct,t−1)

Here the derivative h′ is taken with respect to the feature coordinatesmct
.

This linear approximation is tangent to h at x[k]
t and μ

[k]
ct,t−1. Under this

approximation, the posterior for the location of feature ct is indeed Gaus-
sian. The new mean and covariance are obtained using the standard EKF
measurement update:

K
[k]
t = Σ

[k]
ct,t−1H

[k]T
t (H

[k]
t Σ

[k]
ct,t−1H

[k]T
t + Qt)

−1(13.16)

μ
[k]
ct,t

= μ
[k]
ct,t−1 + K

[k]
t (zt − ẑ

[k]
t)(13.17)

Σ
[k]
ct,t = (I −K

[k]
t H

[k]
t)Σ

[k]
ct,t−1(13.18)

Steps 1 and 2 are repeated M times, resulting in a temporary set of M

particles.

3. Resampling. In a final step, FastSLAM resamples this set of particles. We
already encountered resampling in a number of algorithms. FastSLAM
draws from its temporary setM particles (with replacement) according to
a yet-to-be-defined importance weight. The resulting set of M particles
then forms the new and final particle set, Yt. The necessity to resample
arises from the fact that the particles in the temporary set are not dis-
tributed according to the desired posterior: Step 1 generates poses xt only
in accordance with the most recent control ut, paying no attention to the
measurement zt. As the reader should know well by now, resampling is
the common technique in particle filtering to correct for such mismatches.

This situation is once again illustrated in Figure 13.5, for a 1-D example.
Here the dashed line symbolizes the proposal distribution, which is the dis-
tribution at which particles are generated, and the solid line is the target
distribution. In FastSLAM, the proposal distribution does not depend on
zt, but the target distribution does. By weighing particles as shown in
the bottom of this figure, and resampling according to those weights, the
resulting particle set indeed approximates the target distribution.

13.3 FastSLAM with Known Data Association 447

Samples from
proposal distribution

Weighted samples

Proposal

Target

Figure 13.5 Samples cannot be drawn conveniently from the target distribution
(shown as a solid line). Instead, the importance sampler draws samples from the pro-
posal distribution (dashed line), which has a simpler form. Below, samples drawn
from the proposal distribution are drawn with lengths proportional to their impor-
tance weights.

To determine the importance factor, it will prove useful to calculate the
actual proposal distribution of the path particles in the temporary set.
Under the assumption that the set of path particles in Yt−1 is distributed
according to p(x1:t−1 | z1:t−1, u1:t−1, c1:t−1) (which is an asymptotically
correct approximation), path particles in the temporary set are distributed
according to:

p(x
[k]
1:t | z1:t−1, u1:t, c1:t−1) = p(x

[k]
t | x[k]

t−1, ut) p(x
[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1)(13.19)

The factor p(x
[k]
t | x

[k]
t−1, ut) is the sampling distribution used in Equation

(13.12).

The target distribution takes into account themeasurement at time zt, along
with the correspondence ct:

p(x
[k]
1:t | z1:t, u1:t, c1:t)(13.20)

The resampling process accounts for the difference of the target and the
proposal distribution. As usual, the importance factor for resampling is

448 13 The FastSLAM Algorithm

given by the quotient of the target and the proposal distribution:

w
[k]
t =

target distribution
proposal distribution

(13.21)

=
p(x

[k]
1:t | z1:t, u1:t, c1:t)

p(x
[k]
1:t | z1:t−1, u1:t, c1:t−1)

= η p(zt | x[k]
t , ct)

The last transformation is a direct consequence of the following transfor-
mation of the enumerator in (13.21):

p(x
[k]
1:t | z1:t, u1:t, c1:t)(13.22)

= η p(zt | x[k]
1:t, z1:t−1, u1:t, c1:t) p(x

[k]
1:t | z1:t−1, u1:t, c1:t)

= η p(zt | x[k]
t , ct) p(x

[k]
1:t | z1:t−1, u1:t, c1:t−1)

To calculate the probability p(zt | x
[k]
t , ct) in (13.21), it will be necessary

to transform it further. In particular, this probability is equivalent to the
following integration, where we once again omit variables irrelevant to
the prediction of sensor measurements:

w
[k]
t = η

∫
p(zt | mct

, x
[k]
t , ct) p(mct

| x[k]
t , ct) dmct

(13.23)

= η

∫
p(zt | mct

, x
[k]
t , ct) p(mct

| x[k]
1:t−1, z1:t−1, c1:t−1)︸ ︷︷ ︸

∼ N (μ
[k]
ct,t−1

,Σ
[k]
ct,t−1

)

dmct

Here N (x;μ,Σ) denotes a Gaussian distribution over the variable x with
mean μ and covariance Σ.

The integration in (13.23) involves the estimate of the observed feature
location at time t and the measurement model. To calculate (13.23) in
closed form, FastSLAM employs the very same linear approximation used
in the measurement update in Step 2. In particular, the importance factor
is given by

w
[k]
t ≈ η |2πQ

[k]
t |−

1
2 exp

{
−1

2 (zt − ẑ
[k]
t)Q

[k]−1
t (zt − ẑ

[k]
t)
}

(13.24)

with the covariance

Q
[k]
t = H

[k]T
t Σ

[k]
n,t−1H

[k]
t + Qt(13.25)

13.3 FastSLAM with Known Data Association 449

(a) (b)

Figure 13.6 Mismatch between proposal and posterior distributions: (a) illustrates
the forward samples generated by FastSLAM 1.0, and the posterior induced by the
measurement (ellipse). Diagram (b) shows the sample set after the resampling step.

This expression is the probability of the actual measurement zt under the
Gaussian. It results from the convolution of the distributions in (13.23), ex-
ploiting our linear approximation of h. The resulting importance weights
are used to draw with replacement M new samples from the temporary
sample set. Through this resampling process, particles survive in propor-
tion of their measurement probability.

These three steps together constitute the update rule of the FastSLAM 1.0
algorithm for SLAM problems with known data association. We note that
the execution time of the update does not depend on the total path length t.
In fact, only the most recent pose x

[k]
t−1 is used in the process of generating

a new particle at time t. Consequently, past poses can safely be discarded.
This has the pleasing consequence that neither the time requirements nor
the memory requirements of FastSLAM depend on the total number of time
steps spent on data acquisition.
A summary of the FastSLAM 1.0 algorithmwith known data association is
provided in Table 13.1. For simplicity, this implementation assumes that only
a single feature is measured at each point in time. This algorithm implements
the various update steps in a straightforward manner. Its implementation is
relatively straightforward; in fact, FastSLAM 1.0 happens to be one of the
easiest SLAM algorithms to implement!

450 13 The FastSLAM Algorithm

1: Algorithm FastSLAM 1.0_known_correspondence(zt, ct, ut, Yt−1):

2: for k = 1 toM do // loop over all particles

3: retrieve
〈

x
[k]
t−1,

〈
μ

[k]
1,t−1, Σ

[k]
1,t−1

〉
, . . . ,

〈
μ

[k]
N,t−1, Σ

[k]
N,t−1

〉〉
from Yt−1

4: x
[k]
t ∼ p(xt | x

[k]
t−1, ut) // sample pose

5: j = ct // observed feature
6: if feature j never seen before
7: μ

[k]
j,t = h−1(zt, x

[k]
t) // initialize mean

8: H = h′(x
[k]
t , μ

[k]
j,t) // calculate Jacobian

9: Σ
[k]
j,t = H−1 Qt (H−1)T // initialize covariance

10: w[k] = p0 // default importance weight
11: else
12: ẑ = h(μ

[k]
j,t−1, x

[k]
t) // measurement prediction

13: H = h′(x
[k]
t , μ

[k]
j,t−1) // calculate Jacobian

14: Q = H Σ
[k]
j,t−1 HT + Qt // measurement covariance

15: K = Σ
[k]
j,t−1 HT Q−1 // calculate Kalman gain

16: μ
[k]
j,t = μ

[k]
j,t−1 + K(zt − ẑ) // update mean

17: Σ
[k]
j,t = (I − K H)Σ

[k]
j,t−1 // update covariance

18: w[k] = |2πQ|−
1
2 exp

{
− 1

2
(zt − ẑn)T

Q−1 (zt − ẑn)
}
// importance factor

19: endif
20: for all other features j′ �= j do // unobserved features
21: μ

[k]

j′,t
= μ

[k]

j′,t−1 // leave unchanged
22: Σ

[k]

j′,t
= Σ

[k]

j′,t−1

23: endfor
24: endfor

25: Yt = ∅ // initialize new particle set
26: doM times // resampleM particles
27: draw random k with probability ∝ w[k] // resample

28: add
〈

x
[k]
t ,
〈

μ
[k]
1,t, Σ

[k]
1,t

〉
, . . . ,

〈
μ

[k]
N , Σ

[k]
N

〉〉
to Yt

29: endfor

30: return Yt

Table 13.1 FastSLAM 1.0 with known correspondence.

13.4 Improving the Proposal Distribution 451

13.4 Improving the Proposal Distribution

FastSLAM 2.0 is largely equivalent to FastSLAM 1.0, with one important ex-FASTSLAM 2.0

ception: Its proposal distribution takes the measurement zt into account,
when sampling the pose xt. By doing so it can overcome a key limitation
of FastSLAM 1.0.
On the surface, the difference looks rather marginal: The reader may re-
call that FastSLAM 1.0 samples poses based on the control ut only, and then
uses the measurement zt to calculate importance weights. This is problem-
atic when the accuracy of control is low relative to the accuracy of the robot’s
sensors. Such a situation is illustrated in Figure 13.6. Here the proposal
generates a large spectrum of samples shown in Figure 13.6a, but only a
small subset of these samples have high likelihood, as indicated by the el-
lipsoid. After resampling, only particles within the ellipsoid “survive” with
reasonably high likelihood. FastSLAM 2.0 avoids this problem by sampling
poses based on the measurement zt in addition to the control ut. Thus, as
a result, FastSLAM 2.0 is more efficient than FastSLAM 1.0. On the down-
side, FastSLAM 2.0 is more difficult to implement than FastSLAM 1.0, and
its mathematical derivation is more involved.

13.4.1 Extending the Path Posterior by Sampling a New Pose

In FastSLAM 2.0, the pose x
[k]
t is drawn from the posterior

x
[k]
t ∼ p(xt | x[k]

1:t−1, u1:t, z1:t, c1:t)(13.26)

This distribution differs from the proposal distribution provided in (13.12)
in that (13.26) takes the measurement zt into consideration, along with the
correspondence ct. Specifically, the expression in (13.26) conditions on z1:t,
whereas the pose sampler in FastSLAM 1.0 conditions on z1:t−1.
Unfortunately, it also comes with more complex math. In particular, the
mechanism for sampling from (13.26) requires further analysis. First, we
rewrite (13.26) in terms of the “known” distributions, such as the measure-
ment and motion models, and the Gaussian feature estimates in the k-th par-
ticle.

p(xt | x[k]
1:t−1, u1:t, z1:t, c1:t)(13.27)

Bayes
=

p(zt | xt, x
[k]
1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]

1:t−1, u1:t, z1:t−1, c1:t)

p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t)

= η[k] p(zt | xt, x
[k]
1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]

1:t−1, u1:t, z1:t−1, c1:t)

452 13 The FastSLAM Algorithm

Markov
= η[k] p(zt | xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t); p(xt | x[k]

t−1, ut)

= η[k]

∫
p(zt | mct

, xt, x
[k]
1:t−1, u1:t, z1:t−1, c1:t)

p(mct
| xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) dmct

p(xt | x[k]
t−1, ut)

Markov
= η[k]

∫
p(zt | mct

, xt, ct)︸ ︷︷ ︸
∼ N (zt;h(mct

,xt),Qt)

p(mct
| x[k]

1:t−1, z1:t−1, c1:t−1)︸ ︷︷ ︸
∼ N (mct

;μ
[k]
ct,t−1

,Σ
[k]
ct,t−1

)

dmct

p(xt | x[k]
t−1, ut)︸ ︷︷ ︸

∼ N (xt;g(x
[k]
t−1

,ut),Rt)

This expression makes apparent that our sampling distribution is truly the
convolution of two Gaussians multiplied by a third. In the general SLAM
case, the sampling distribution possesses no closed form from which we
could easily sample. The culprit is the function h: If it were linear, this prob-
ability would be Gaussian, a fact that shall become more obvious below. In
fact, not even the integral in (13.27) possesses a closed form solution. For this
reason, sampling from the probability (13.27) is difficult.
This observationmotivates the replacement of h by a linear approximation.
As common in this book, this approximation is obtained through a first order
Taylor expansion, given by the following linear function:

h(mct
, xt) ≈ ẑ

[k]
t + Hm(mct

− μ
[k]
ct,t−1) + Hx (xt − x̂

[k]
t)(13.28)

Here we use the following abbreviations:

ẑ
[k]
t = h(μ

[k]
ct,t−1, x̂

[k]
t)(13.29)

x̂
[k]
t = g(x

[k]
t−1, ut)(13.30)

The matricesHm andHx are the Jacobians of h. They are the derivatives of h
with respect to mct

and xt, respectively, evaluated at the expected values of
their arguments:

Hm = ∇mct
h(mct

, xt)
∣∣
xt=x̂

[k]
t ;mct

=μ
[k]
ct,t−1

(13.31)

Hx = ∇xt
h(mct

, xt)|xt=x̂
[k]
t ;mct

=μ
[k]
ct,t−1

(13.32)

Under this approximation, the desired sampling distribution (13.27) is a
Gaussian with the following parameters:

Σ[k]
xt

=
[
HT

x Q
[k]−1
t Hx + R−1

t

]−1

(13.33)

μ[k]
xt

= Σ[k]
xt

HT
x Q

[k]−1
t (zt − ẑ

[k]
t) + x̂

[k]
t(13.34)

13.4 Improving the Proposal Distribution 453

where the matrix Q
[k]
t is defined as follows:

Q
[k]
t = Qt + HmΣ

[k]
ct,t−1H

T
m(13.35)

To see, we note that under out linear approximation the convolution theorem
provides us with a closed form for the integral term in (13.27):

N (zt; ẑ
[k]
t + Hxxt −Hxx̂

[k]
t , Q

[k]
t)(13.36)

The sampling distribution (13.27) is now given by the product of this nor-
mal distribution and the rightmost term in (13.27), the normalN (xt; x̂

[k]
t , Rt).

Written in Gaussian form, we have

p(xt | x[k]
1:t−1, u1:t, z1:t, c1:t) = η exp

{
−P

[k]
t

}
(13.37)

with

P
[k]
t = 1

2

[
(zt − ẑ

[k]
t −Hxxt + Hxx̂

[k]
t)T Q

[k]−1
t (zt − ẑ

[k]
t −Hxxt + Hxx̂

[k]
t)(13.38)

+(xt − x̂
[k]
t)T R−1

t (xt − x̂
[k]
t)
]

This expression is obviously quadratic in our target variable xt, hence p(xt |
x

[k]
1:t−1, u1:t, z1:t, c1:t) is Gaussian. The mean and covariance of this Gaussian
are equivalent to the minimum of P [k]

t and its curvature. Those are identified
by calculating the first and second derivatives of P [k]

t with respect to xt:

∂P
[k]
t

∂xt

= −HT
x Q

[k]−1
t (zt − ẑ

[k]
t −Hxxt + Hxx̂

[k]
t) + R−1

t (xt − x̂
[k]
t)(13.39)

= (HT
x Q

[k]−1
t Hx + R−1

t)xt −HT
x Q

[k]−1
t (zt − ẑ

[k]
t + Hxx̂

[k]
t)−R−1

t x̂
[k]
t

∂2P
[k]
t

∂x2
t

= HT
x Q

[k]−1
t Hx + R−1

t(13.40)

The covariance Σ
[k]
xt of the sampling distribution is now obtained by the in-

verse of the second derivative

Σ[k]
xt

=
[
HT

x Q
[k]−1
t Hx + R−1

t

]−1

(13.41)

The mean μ
[k]
xt of the sample distribution is obtained by setting the first

derivative (13.39) to zero. This gives us:

μ[k]
xt

= Σ[k]
xt

[
HT

x Q
[k]−1
t (zt − ẑ

[k]
t + Hxx̂

[k]
t) + R−1

t x̂
[k]
t

]
(13.42)

= Σ[k]
xt

HT
x Q

[k]−1
t (zt − ẑ

[k]
t) + Σ[k]

xt

[
HT

x Q
[k]−1
t Hx + R−1

t

]
x̂

[k]
t

= Σ[k]
xt

HT
x Q

[k]−1
t (zt − ẑ

[k]
t) + x̂

[k]
t

454 13 The FastSLAM Algorithm

This Gaussian is the approximation of the desired sampling distribution
(13.26) in FastSLAM 2.0. Obviously, this proposal distribution is quite a
bit more involved than the much simpler one for FastSLAM 1.0 in Equation
(13.12).

13.4.2 Updating the Observed Feature Estimate

Just like our first version of the FastSLAM algorithm, FastSLAM 2.0 updates
the posterior over the feature estimates based on the measurement zt and
the sampled pose x

[k]
t . The estimates at time t− 1 are once again represented

by the mean μ
[k]
j,t−1 and the covariance Σ

[k]
j,t−1. The updated estimates are μ

[k]
j,t

andΣ
[k]
j,t . The nature of the update depends on whether or not a feature j was

observed at time t. For j �= ct, we already established in Equation (13.4) that
the posterior over the feature remains unchanged. This implies that instead
of updating the estimated, we merely have to copy it.
For the observed feature j = ct, the situation is more intricate. Equation

(13.5) already stated the posterior over observed features. Here we repeat it
with the particle index k:

p(mct
| x[k]

t , c1:t, z1:t)(13.43)

= η p(zt | mct
, x

[k]
t , ct)︸ ︷︷ ︸

∼ N (zt;h(mct
,x

[k]
t),Qt)

p(mct
| x[k]

1:t−1, z1:t−1, c1:t−1)︸ ︷︷ ︸
∼ N (mct

;μ
[k]
ct,t−1

,Σ
[k]
ct,t−1

)

As in (13.27), the nonlinearity of h causes this posterior to be non-Gaussian,
which is at odds with FastSLAM 2.0’s Gaussian representation for feature es-
timates. Luckily, the exact same linearization as above provides the solution:

h(mct
, xt) ≈ ẑ

[k]
t + Hm(mct

− μ
[k]
ct,t−1)(13.44)

Notice that xt is not a free variable here, hence we can omit the third term in
(13.28). This approximation renders the probability (13.43) Gaussian in the
target variablemct

:

p(mct
| x[k]

t , c1:t, z1:t)(13.45)

= η exp
{
− 1

2 (zt − ẑ
[k]
t −Hm(mct

− μ
[k]
ct,t−1)) Q−1

t

(zt − ẑ
[k]
t −Hm(mct

− μ
[k]
ct,t−1))

− 1
2 (mct

− μ
[k]
ct,t−1) Σ

[k]−1
ct,t−1(mct

− μ
[k]
ct,t−1)

}

13.4 Improving the Proposal Distribution 455

The new mean and covariance are obtained using the standard EKF mea-
surement update equations:

K
[k]
t = Σ

[k]
ct,t−1H

T
mQ

[k]−1
t(13.46)

μ
[k]
ct,t

= μ
[k]
ct,t−1 + K

[k]
t (zt − ẑ

[k]
t)(13.47)

Σ
[k]
ct,t = (I −K

[k]
t Hm)Σ

[k]
ct,t−1(13.48)

We notice this is quite a bit more complicated than the update in FastSLAM
1.0, but the additional effort in implementing this often pays out, in terms of
improved accuracy.

13.4.3 Calculating Importance Factors

The particles generated thus far do not yet match the desired posterior. In
FastSLAM 2.0, the culprit is the normalizer η[k] in (13.27), which is usually
different for each particle k. These differences are not yet accounted for in
the resampling process. As in FastSLAM 1.0, the importance factor is given
by the following quotient.

w
[k]
t =

target distribution
proposal distribution

(13.49)

Once again, the target distribution that wewould like our particles to assume
is given by the path posterior, p(x

[k]
t | z1:t, u1:t, c1:t). Under the asymptoti-

cally correct assumptions that paths in x
[k]
1:t−1 have been generated according

to the target distribution one time step earlier, p(x
[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1),

we note that the proposal distribution is now given by the product

p(x
[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1) p(x

[k]
t | x[k]

1:t−1, u1:t, z1:t, c1:t)(13.50)

The second term in this product is the pose sampling distribution (13.27).
The importance weight is obtained as follows:

w
[k]
t =

p(x
[k]
t | u1:t, z1:t, c1:t)

p(x
[k]
t | x[k]

1:t−1, u1:t, z1:t, c1:t) p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

(13.51)

=
p(x

[k]
t | x[k]

1:t−1, u1:t, z1:t, c1:t) p(x
[k]
1:t−1 | u1:t, z1:t, c1:t)

p(x
[k]
t | x[k]

1:t−1, u1:t, z1:t, c1:t) p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

=
p(x

[k]
1:t−1 | u1:t, z1:t, c1:t)

p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

456 13 The FastSLAM Algorithm

Bayes
= η

p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t) p(x

[k]
1:t−1 | u1:t, z1:t−1, c1:t)

p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

Markov
= η

p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t) p(x

[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

= η p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t)

The reader may notice that this expression is the inverse of our normalization
constant η[k] in (13.27). Further transformations give us the following form:

w
[k]
t = η

∫
p(zt | xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t)(13.52)

p(xt | x[k]
1:t−1, u1:t, z1:t−1, c1:t) dxt

Markov
= η

∫
p(zt | xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]

t−1, ut) dxt

= η

∫ ∫
p(zt | mct

, xt, x
[k]
1:t−1, u1:t, z1:t−1, c1:t)

p(mct
| xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) dmct

p(xt | x[k]
t−1, ut) dxt

Markov
= η

∫
p(xt | x[k]

t−1, ut)︸ ︷︷ ︸
∼ N (xt;g(x̂

[k]
t−1

,ut),Rt)

∫
p(zt | mct

, xt, ct)︸ ︷︷ ︸
∼ N (zt;h(mct

,xt),Qt)

p(mct
| x[k]

1:t−1, u1:t−1, z1:t−1, c1:t−1)︸ ︷︷ ︸
∼ N (mct

;μ
[k]
ct,t−1

,Σ
[k]
ct,t−1

)

dmct
dxt

We find that this expression can once again be approximated by a Gaussian
over measurements zt by linearizing h. As it is easily shown, the mean of the
resulting Gaussian is ẑt, and its covariance is

L
[t]
t = HT

x Qt Hx + HmΣ
[k]
ct,t−1H

T
m + Rt(13.53)

Put differently, the (non-normalized) importance factor of the k-th particle is
given by the following expression:

w
[k]
t = |2πL

[t]
t |−

1
2 exp

{
−1

2 (zt − ẑt) L
[t]−1
t (zt − ẑt)

}
(13.54)

As in FastSLAM 1.0, particles generated in Steps 1 and 2, along with their
importance factor calculated in Step 3, are collected in a temporary particle
set.
The final step of the FastSLAM 2.0 update is a resampling step. Just as
in FastSLAM 1.0, FastSLAM 2.0 draws (with replacement)M particles from

13.5 Unknown Data Association 457

Pose uncertainty

Figure 13.7 The data association problem in SLAM. This figure illustrates that the
best data association may vary even within regions of high likelihood for the pose of
the robot.

the temporary particle set. Each particle is drawn with a probability pro-
portional to its importance factor w

[k]
t . The resulting particle set represent

(asymptotically) the desired factored posterior at time t.

13.5 Unknown Data Association

This section extends both variants of the FastSLAM algorithm to cases where
the correspondence variables c1:t are unknown. A key advantage of using
particle filters for SLAM is that each particle can rely on its own, local data
association decisions.
We remind the reader that the data association problem at time t is the
problem of determining the variable ct based on the available data. This
problem is illustrated in Figure 13.7: Here a robot observes two features in
the world. Depending on its actual pose relative to these features, these mea-
surements correspond to different features in the map (depicted as stars in
Figure 13.7).
So far, we discussed a number of data association technique using argu-
ments such as maximum likelihood. Those techniques had in common that
there is only a single data association per measurement, for the entire filter.
FastSLAM, by virtue of using multiple particles, can determine the corre-

458 13 The FastSLAM Algorithm

spondence on a per-particle basis. Thus, the filter not only samples over
robot paths, but also over possible data association decisions along the way.
This is one of the key features of FastSLAM, which sets it aside from the
rich body of Gaussian SLAM algorithms. As long as a small subset of the
particles is based on the correct data association, data association errors are
not as fatal as in EKF approaches. Particles subject to such errors tend to pos-
sess inconsistent maps, which increases the probability that they are simply
sampled away in future resampling steps.
The mathematical definition of the per-particle data association is straight-
forward, in that it generalizes the per-filter data association to individual
particles. Each particle maintains a local set of data association variables, de-
noted ĉ

[k]
t . In maximum likelihood data association, each ĉ

[k]
t is determined

by maximizing the likelihood of the measurement zt:

ĉ
[k]
t = argmax

ct

p(zt | ct, ĉ
[k]
1:t−1, x

[k]
1:t, z1:t−1, u1:t)(13.55)

An alternative is the data association sampler (DAS), which samples the data
association variable according to their likelihood

ĉt ∼ η p(zt | ct, ĉ1:t−1, x
[k]
1:t, z1:t−1, u1:t)(13.56)

Both techniques, ML and DAS, make it possible to estimate the number of
features in the map. SLAM techniques using ML create new features in the
map if the likelihood falls below a threshold p0 for all known features in
the map. DAS associates an observed measurement with a new, previously
unobserved feature stochastically. They do so with probability proportional
to ηp0, where η is a normalizer defined in (13.56).

ĉ
[k]
t ∼ η p(zt | ct, ĉ

[k]
1:t−1, x

[k]
1:t, z1:t−1, u1:t)(13.57)

For both techniques, the likelihood is calculated as follows:

p(zt | ct, ĉ
[k]
1:t−1, x

[k]
1:t, z1:t−1, u1:t)(13.58)

=

∫
p(zt | mct

, ct, ĉ
[k]
1:t−1, x

[k]
1:t, z1:t−1, u1:t)

p(mct
| ct, ĉ

[k]
1:t−1, x

[k]
1:t, z1:t−1, u1:t) dmct

=

∫
p(zt | mct

, ct, x
[k]
t)︸ ︷︷ ︸

∼ N (zt;h(mct
,x

[k]
t),Qt)

p(mct
| ĉ[k]

1:t−1, x
[k]
1:t−1, z1:t−1)︸ ︷︷ ︸

∼ N (μ
[k]
ct,t−1

,Σ
[k]
ct,t−1

)

dmct

Linearization of h enables us to obtain this in closed form:

p(zt | ct, ĉ
[k]
1:t−1, x

[k]
t , z1:t−1, u1:t)(13.59)

13.6 Map Management 459

= |2πQ
[k]
t |−

1
2 exp

{
− 1

2 (zt − h(μ
[k]
ct,t−1, x

[k]
t))T Q

[k]−1
t (zt − h(μ

[k]
ct,t−1, x

[k]
t))

}
The variable Q

[k]
t was defined in Equation (13.35), as a function of the data

association variable ct. New features are added to the map in exactly the
same way as outlined above. In the ML approach, a new feature is added
when the probability p(zt | ct, ĉ

[k]
1:t−1, x

[k]
t , z1:t−1, u1:t) falls beyond a threshold

p0. The DAS includes the hypothesis that an observation corresponds to a
previously unobserved feature in its set of hypotheses, and samples it with
probability ηp0.

13.6 Map Management

Map management in FastSLAM is largely equivalent to EKF SLAM, with a
few particulars arising from the fact that data association is handled on a
per-particle level in FastSLAM.
As in the alternative SLAM algorithms, any newly added feature requires
the initialization of a new Kalman filter. In many SLAM problems the mea-
surement function h is invertible. This is the case, for example, for robots
measuring range and bearing to features in the plane, in which a single mea-
surement suffices to produce a (non-degenerate) estimate on the feature lo-
cation. The initialization of the EKF is then straightforward:

x
[k]
t ∼ p(xt | x[k]

t−1, ut)(13.60)

μ
[k]
n,t = h−1(zt, x

[k]
t)(13.61)

Σ
[k]
n,t = (H

[k]T
ĉ Q−1

t H
[k]
ĉ)−1 with H

[k]
ĉ = h′(μ[k]

n,t, x
[k]
t)(13.62)

w
[k]
t = p0(13.63)

Notice that for newly observed features, the pose x
[k]
t is sampled according to

the motion model p(xt | x[k]
t−1, ut). This distribution is equivalent to the Fast-

SLAM sampling distribution (13.26) in situations where no previous location
estimate for the observed feature is available.
Initialization techniques for situations in which h is not invertible are dis-

cussed in Deans and Hebert (2002). In general, such situations require the
accumulation of multiple measurements, to obtain a good estimate for the
linearization of h.
To accommodate features introduced erroneously into the map, FastSLAM
features a mechanism for eliminating features that are not supported by suf-

460 13 The FastSLAM Algorithm

ficient evidence. Just as in EKF SLAM, FastSLAM does so by keeping track
of the log odds of the actual existence of individual features in the map.
Specifically, when a feature is observed, its log odds for existence is incre-
mented by a fixed amount, which is calculated using the standard Bayes filter
formula. Similarly, when a feature is not observed even though it should
have, such negative information results in a decrement of the feature exis-
tence variable by a fixed amount. Features whose variable sinks below a
threshold value are then simply removed from the list of particles. It is also
possible to implement a provisional feature list in FastSLAM. Technically this
is trivial, since each feature possesses its own particle.

13.7 The FastSLAM Algorithms

Tables 13.2 and 13.3 summarize both FastSLAM variants with unknown data
association. In both algorithms, particles are of the form

Y
[k]
t =

〈
x

[k]
t , N

[k]
t ,
〈
μ

[k]
1,t,Σ

[k]
1,t, τ

[k]
1

〉
, . . . ,

〈
μ

[k]

N
[k]
t ,t

,Σ
[k]

N
[k]
t ,t

, τ
[k]

N
[k]
t

〉〉
(13.64)

In addition to the pose x
[k]
t and the feature estimates μ

[k]
n,t and Σ

[k]
n,t, each par-

ticle maintains the number of features N
[k]
t in its local map, and each feature

carries a probabilistic estimate of its existence τ
[k]
n . Iterating the filter requires

time linear in the maximum number of features maxk N
[k]
t in each map, and

it is also linear in the number of particlesM . Further below, we will discuss
advanced data structure that yield more efficient implementations.
We note that both versions of FastSLAM, as described here, consider a
single measurement at a time. As before, this choice is made for notational
convenience, and many of the techniques discussed in previous SLAM chap-
ters can be brought to bear.

13.8 Efficient Implementation

At first glance, it may appear that each update in FastSLAM requiresO(MN)

time, whereM is the number of particlesM andN the number of features in
the map. The linear complexity inM is unavoidable, given that we have to
processM particles with each update. The linear complexity in N is the re-
sult of the resampling process. Whenever a particle is drawn more than once
in the resampling process, a “naive” implementation might duplicate the en-
tire map attached to the particle. Such a duplication process is linear in the

13.7 The FastSLAM Algorithms 461

1: Algorithm FastSLAM 1.0(zt, ut, Yt−1):

2: for k = 1 toM do // loop over all particles

3: retrieve
〈

x
[k]
t−1, N

[k]
t−1,

〈
μ

[k]
1,t−1, Σ

[k]
1,t−1, i

[k]
1

〉
, . . . ,〈

μ
[k]

N
[k]
t−1

,t−1
, Σ

[k]

N
[k]
t−1

,t−1
, i

[k]

N
[k]
t−1

,t−1

〉〉
from Yt−1

4: x
[k]
t ∼ p(xt | x

[k]
t−1, ut) // sample new pose

5: for j = 1 to N
[k]
t−1 do // measurement likelihoods

6: ẑj = h(μ
[k]
j,t−1, x

[k]
t) // measurement prediction

7: Hj = h′(μ
[k]
j,t−1, x

[k]
t) // calculate Jacobian

8: Qj = Hj Σ
[k]
j,t−1 HT

j + Qt // measurement covariance

9: wj = |2πQj |−
1
2 exp

{
− 1

2
(zt − ẑj)

T

Q−1
j (zt − ẑj)

}
// likelihood of correspondence

10: endfor

11: w
1+N

[k]
t−1

= p0 // importance factor, new feature

12: w[k] = max wj // max likelihood correspondence

13: ĉ = argmax wj // index of ML feature

14: N
[k]
t = max{N [k]

t−1, ĉ} // new number of features in map

15: for j = 1 to N
[k]
t do // update Kalman filters

16: if j = ĉ = 1 + N
[k]
t−1 then // is new feature?

17: μ
[k]
j,t = h−1(zt, x

[k]
t) // initialize mean

18: Hj = h′(μ
[k]
j,t, x

[k]
t); Σ

[k]
j,t = (H−1

j)T QtH
−1
j // initialize covar.

19: i
[k]
j,t = 1 // initialize counter

20: else if j = ĉ ≤ N
[k]
t−1 then // is observed feature?

21: K = Σ
[k]
j,t−1H

T
j Q−1

ĉ // calculate Kalman gain

22: μ
[k]
j,t = μ

[k]
j,t−1 + K(zt − ẑĉ) // update mean

23: Σ
[k]
j,t = (I − K Hj)Σ

[k]
j,t−1 // update covariance

24: i
[k]
j,t = i

[k]
j,t−1 + 1 // increment counter

see next page for continuation

462 13 The FastSLAM Algorithm

continued from the previous page

25: else // all other features

26: μ
[k]
j,t = μ

[k]
j,t−1 // copy old mean

27: Σ
[k]
j,t = Σ

[k]
j,t−1 // copy old covariance

28: if μ[k]
j,t−1 outside perceptual

range of x[k]
t then // should feature have been seen?

29: i
[k]
j,t = i

[k]
j,t−1 // no, do not change

30: else

31: i
[k]
j,t = i

[k]
j,t−1 − 1 // yes, decrement counter

32: if i[k]
j,t−1 < 0 then

33: discard feature j // discard dubious features

34: endif

35: endif

36: endif

37: endfor

38: add

〈
x

[k]
t , N

[k]
t ,
〈

μ
[k]
1,t, Σ

[k]
1,t, i

[k]
1

〉
, . . . ,

〈
μ

[k]

N
[k]
t

,t
, Σ

[k]

N
[k]
t

,t
, i

[k]

N
[k]
t

〉〉
to Yaux

39: endfor

40: Yt = ∅ // construct new particle set

41: doM times // resampleM particles

42: draw random index k

with probability ∝ w[k] // resample

43: add

〈
x

[k]
t , N

[k]
t ,
〈

μ
[k]
1,t, Σ

[k]
1,t, i

[k]
1

〉
, . . . ,

〈
μ

[k]

N
[k]
t

,t
, Σ

[k]

N
[k]
t

,t
, i

[k]

N
[k]
t

〉〉
to Yt

44: enddo

45: return Yt

Table 13.2 The algorithm FastSLAM 1.0 with unknown data association. This ver-
sion does not implement any of the efficient tree representations discussed in the
chapter.

13.7 The FastSLAM Algorithms 463

1: Algorithm FastSLAM 2.0(zt, ut, Yt−1):

2: for k = 1 toM do // loop over all particles

3: retrieve
〈

x
[k]
t−1, N

[k]
t−1,

〈
μ

[k]
1,t−1, Σ

[k]
1,t−1, i

[k]
1

〉
, . . . ,〈

μ
[k]

N
[k]
t−1

,t−1
, Σ

[k]

N
[k]
t−1

,t−1
, i

[k]

N
[k]
t−1

〉〉
from Yt−1

4: for j = 1 to N
[k]
t−1 do // calculate sampling distribution

5: x̂j,t = g(x
[k]
t−1, ut) // predict pose

6: z̄j = h(μ
[k]
j,t−1, x̂j,t) // predict measurement

7: Hx,j = ∇xt h(μ
[k]
j,t−1, x̂j,t) // Jacobian wrt pose

8: Hm,j = ∇mj h(μ
[k]
j,t−1, x̂j,t) // Jacobian wrt map feature

9: Qj = Qt + Hm,j Σ
[k]
j,t−1 HT

m,j // measurement information

10: Σx,j =
[
HT

x,j Q−1
j Hx,j + R−1

t

]−1
// Cov of proposal distribution

11: μxt,j = Σx,j HT
x,j Q−1

j

(zt − z̄j) + x̂j,t // mean of proposal distribution

12: x
[k]
t,j ∼ N (μxt,j , Σx,j) // sample pose

13: ẑj = h(μ
[k]
j,t−1, x

[k]
t) // measurement prediction

14: πj = |2πQj |−
1
2 exp

{
− 1

2

(zt − ẑj)
T Q−1

j (zt − ẑj)
}
// correspondence likelihood

15: endfor

16: π
1+N

[k]
t−1

= p0 // likelihood of new feature

17: ĉ = argmax πj // ML correspondence

18: N
[k]
t = max{N [k]

t−1, ĉ} // new number of features

19: for j = 1 to N
[k]
t do // update Kalman filters

20: if j = ĉ = 1 + N
[k]
t−1 then // is new feature?

21: x
[k]
t ∼ p(xt | x

[k]
t−1, ut) // sample pose

22: μ
[k]
j,t = h−1(zt, x

[k]
t) // initialize mean

23: Hm,j = ∇mj h(μ
[k]
j,t, x

[k]
t) // Jacobian wrt map feature

24: Σ
[k]
j,t = (H−1

m,j)
T Qt H−1

m,j // initialize covariance

25: i
[k]
j,t = 1 // initialize counter

26: w[k] = p0 // importance weight

27: else if j = ĉ ≤ N
[k]
t−1 then // is observed feature?

28: x
[k]
t = x

[k]
t,j

29: K = Σ
[k]
j,t−1 HT

m,j Q−1
j // calculate Kalman gain

see next page for continuation

464 13 The FastSLAM Algorithm

continued from the previous page

30: μ
[k]
j,t = μ

[k]
j,t−1 + K(zt − ẑj) // update mean

31: Σ
[k]
j,t = (I − K Hm,j) Σ

[k]
j,t−1 // update covariance

32: i
[k]
j,t = i

[k]
j,t−1 + 1 // increment counter

33: L = Hx,j Rt HT
x,j + Hm,j Σ

[k]
j,t−1 HT

m,j + Qt

34: w[k] = |2πL|−
1
2 exp

{
− 1

2

(zt − ẑj)
T L−1 (zt − ẑj)

}
// importance weight

35: else // all other features

36: μ
[k]
j,t = μ

[k]
j,t−1 // copy old mean

37: Σ
[k]
j,t = Σ

[k]
j,t−1 // copy old covariance

38: if μ[k]
j,t−1 outside perceptual

range of x[k]
t then // should feature have been seen?

39: i
[k]
j,t = i

[k]
j,t−1 // no, do not change

40: else

41: i
[k]
j,t = i

[k]
j,t−1 − 1 // yes, decrement counter

42: if i[k]
j,t−1 < 0 then

43: discard feature j // discard dubious features

44: endif

45: endif

46: endif

47: endfor

48: add

〈
x

[k]
t , N

[k]
t ,
〈

μ
[k]
1,t, Σ

[k]
1,t, i

[k]
1

〉
, . . . ,

〈
μ

[k]

N
[k]
t

,t
, Σ

[k]

N
[k]
t

,t
, i

[k]

N
[k]
t

〉〉
to Yaux

49: endfor

50: Yt = ∅ // construct new particle set

51: doM times // resampleM particles

52: draw random index k

with probability ∝ w[k] // resample

53: add

〈
x

[k]
t , N

[k]
t ,
〈

μ
[k]
1,t, Σ

[k]
1,t, i

[k]
1

〉
, . . . ,

〈
μ

[k]

N
[k]
t

,t
, Σ

[k]

N
[k]
t

,t
, i

[k]

N
[k]
t

〉〉
to Yt

54: enddo

55: return Yt

Table 13.3 The FastSLAM 2.0 Algorithm, stated here unknown data association.

13.8 Efficient Implementation 465

size of the map N . Furthermore, a naive implementation of data association
may result in evaluating the measurement likelihood for each of the N fea-
tures in the map, resulting again in linear complexity in N . We note that a
poor implementation of the sampling process might easily add another log N

to the update complexity.
Efficient implementations of FastSLAM require only O(M log N) update
time. This is logarithmic in the size of the map N . First, consider the situ-
ation with known data association. Linear copying costs can be avoided by
introducing a data structure for representing particles that allow for more
selective updates. The basic idea is to organize the map as a balanced binary
tree. Figure 13.8a shows such a tree for a single particle, in the case ofM = 8

features. Notice that all Gaussian parameters μ[k]
j andΣ

[k]
j for all j are located

at the leaves of the tree. Assuming that the tree is approximately balanced,
accessing a leaf requires time logarithmic in N .
Suppose FastSLAM incorporates a new control ut and a newmeasurement

zt. Each new particle in Yt will differ from the corresponding one in Yt−1 in
two ways: First, it will possess a different pose estimate obtained via (13.26),
and second, the observed feature’s Gaussianwill have been updated, as spec-
ified in Equations (13.47) and (13.48). All other Gaussian feature estimates,
however, will be equivalent to the generating particle. When copying the
particle, thus, only a single path has to be modified in the tree representing
all Gaussians, leading to the logarithmic update time.
An illustration of this “trick” is shown in Figure 13.8b: Here we assume

ci
t = 3, hence only the Gaussian parameters μ[k]

3 andΣ
[k]
3 are updated. Instead

of generating an entire new tree, only a single path is created, leading to the
Gaussian ci

t = 3. This path is an incomplete tree. The tree is completed by
copying the missing pointers from the tree of the generating particle. Thus,
branches that leave the path will point to the same (unmodified) subtree as
that of the generating tree. Clearly, generating this tree takes only time loga-
rithmic in N . Moreover, accessing a Gaussian also takes time logarithmic in
N , since the number of steps required to navigate to a leaf of the tree is equiv-
alent to the length of the path (which is by definition logarithmic). Thus, both
generating and accessing a partial tree can be done in time O(log N). Since
in each updating stepM new particles are created, an entire update requires
time in O(M log N).
Organizing particles in trees raises the question as to when to deallocate
memory. Memory deallocation can equally be implemented in amortized
logarithmic time. The idea is to assign a variable to each node—internal

466 13 The FastSLAM Algorithm

(a)

(b)

Figure 13.8 (a) A tree representing N = 8 feature estimates within a single particle.
(b) Generating a new particle from an old one, while modifying only a single Gaus-
sian. The new particle receives only a partial tree, consisting of a path to the modified
Gaussian. All other pointers are copied from the generating tree. This can be done in
time logarithmic in N .

13.8 Efficient Implementation 467

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

Number of Landmarks
M

em
or

y
(M

B
)

Memory Usage of Log(N) FastSLAM vs. Linear FastSLAM − 100 Particles

Log(N) FastSLAM 1.0
Linear FastSLAM 1.0

Figure 13.9 Memory requirements for linear and log(N) version of FastSLAM 1.0.

or leaf—that counts the number of pointers pointing to it. The counter of
a newly created node will be initialized by 1. It will be incremented as
pointers to a node are created in other particles. Decrements occur when
pointers are removed (e.g., pointers of pose particles that fail to survive the
resampling process). When a counter reaches zero, its children’s counters are
decremented and the memory of the corresponding node is deallocated. The
process is then applied recursively to all children of the node whose counter
may have reached zero. This recursive process will require O(M log N) time
on average.
The tree also induces substantial memory savings. Figure 13.9 shows the
effect of the efficient tree technique on the memory consumed by FastSLAM,
measured empirically. This graph is the result of an actual implementation of
FastSLAM 1.0 withM = 100 particles for acquiring feature-based maps. The
graph shows nearly two orders of magnitude savings for a map with 50,000
features. The relative savings in update time are similar in value.
Obtaining logarithmic time complexity for FastSLAMwith unknown data
association is more difficult. Specifically, we need a technique that restricts
data association search to the local neighborhood of a feature, to avoid calcu-
lating the data association probability for all N features in the map. Further,
the tree has to remain approximately balanced.
There indeed exists variants of kernel density trees, or kd-trees, that can

468 13 The FastSLAM Algorithm

meet these assumptions, assuming that the variance in the sensor measure-
ments is small compared to the overall size of the map. For example, the
bkd-tree proposed by Procopiuc et al. (2003) maintains a sequence of trees of
growing complexity. By carefully shifting items across those trees, a loga-
rithmic time recall can be guaranteed under amortized logarithmic time for
inserting new features in the map. Another is the DP-SLAM algorithm pro-
posed by Eliazar and Parr (2003), which uses history trees for efficient storage
and retrieval, similar to the one described here.

13.9 FastSLAM for Feature-Based Maps

13.9.1 Empirical Insights

The FastSLAM algorithm has been applied to a number of map represen-
tation and sensor data. The most basic application concerns feature-based
maps, assuming that the robot is equipped with a sensor for detecting range
and bearing to landmarks. One such data set is the Victoria Park dataset,
which we already discussed in Chapter 12. Figure 13.10a shows the path
of the vehicle obtained by integrating the estimated controls. Controls are
a poor predictor of location for this vehicle; after 30 minutes of driving, the
estimated position of the vehicle is well over 100 meters away from its GPS
position.
The remaining three panels of Figure 13.10 show the output of FastSLAM
1.0. In all these diagrams, the path estimated by GPS is shown as a dashed
line, and the output of FastSLAM is shown as a solid line. The RMS error of
the resulting path is just over 4 meters over the 4 km traverse. This experi-
ment was run with M = 100 particles. This error is indistinguishable from
the error of other state-of-the-art SLAM algorithms, such as the ones dis-
cussed in previous chapters. The robustness of FastSLAM becomes apparent
in Figure 13.10d, which plots the result for an experiment in whichwe simply
ignored the motion information. Instead, the odometry-based motion model
was replaced by a Brownian motion model. The average error of FastSLAM
is statistically indistinguishable from the error obtained before.
When implementing FastSLAM in feature-based maps, it is important to
consider negative information. When negative information is used to esti-
mate the existence of each feature, as described in Chapter 13.6, many spuri-
ous features can be removed from the map. Figure 13.11 shows the Victoria
Park map built with and without considering negative evidence. Here the
use of negative information results in 44% percent fewer features in the re-

13.9 FastSLAM for Feature-Based Maps 469

(a) Raw vehicle path (b) FastSLAM 1.0 (solid), GPS path (dashed)

(c) Paths and map with aerial image
(d) Estimated path without odometry

Figure 13.10 (a) Vehicle path predicted by the odometry; (b) True path (dashed line)
and FastSLAM 1.0 path (solid line); (c) Victoria Park results overlayed on aerial im-
agery with the GPS path in blue (dashed), average FastSLAM 1.0 path in yellow
(solid), and estimated features as yellow circles. (d) Victoria Park Map created with-
out odometry information. Data and aerial image courtesy of José Guivant and Ed-
uardo Nebot, Australian Centre for Field Robotics.

sulting map. While the correct number of features is not available, visual
inspection of themaps suggests that many of the spurious features have been
eliminated.
It makes sense to compare FastSLAM to EKF SLAM, which continues to be

470 13 The FastSLAM Algorithm

(a)Map without feature elimination (b)Map with feature elimination

Figure 13.11 FastSLAM 1.0 (a) without and (b) with feature elimination based on
negative information.

a popular benchmark algorithm. For example, Figure 13.12 compares the ac-
curacy of FastSLAM 1.0 with that of the EKF, for various numbers of particles
from 1 to 5,000. The error of the EKF SLAM is shown as a dashed horizon-
tal line in Figure 13.12 for comparison. The accuracy of FastSLAM 1.0 ap-
proaches the accuracy of the EKF as the number of particles is increased, and
it is statistically indistinguishable from that of the EKF past approximately 10
particles. This is interesting because FastSLAM 1.0 with 10 particles and 100
features requires an order of magnitude fewer parameters than EKF SLAM
in order to achieve this level of accuracy.
In practice, FastSLAM 2.0 yields superior results to FastSLAM 1.0, though
the improvement is of significance only under certain circumstances. As a
rule of thumb, both algorithms produce comparable results when the num-
ber of particles M is large, and when the measurement noise is large com-
pared to the motion uncertainty. This is illustrated in Figure 13.13, which
graphs the accuracy of either FastSLAM variant as a function of the mea-
surement noise, usingM = 100 particles. The most important finding here is
FastSLAM 1.0’s relatively poor performance in low-noise simulations. One
way to test whether a FastSLAM 1.0 implementation suffers from this pathol-
ogy is to artificially inflate the measurement noise in the probabilistic model
p(z | x). If, as a result of this inflation, the overall map error goes down—not

13.9 FastSLAM for Feature-Based Maps 471

10
0

10
1

10
2

10
3

0

5

10

15

20

25

Number of Particles

R
M

S
 P

os
e

E
rr

or
 (

m
et

er
s)

Accuracy of FastSLAM vs. the EKF on Simulated Data

FastSLAM
EKF

Figure 13.12 A comparison of the accuracy of FastSLAM 1.0 and the EKF on simu-
lated data.

up—it is time to switch to FastSLAM 2.0.

13.9.2 Loop Closure

No algorithm is perfect. There exists problems in which FastSLAM is infe-
rior to its Gaussian counterparts. One such problem involves loop closure.
In loop closure, a robot moves through unknown terrain and at some point
encounters features not seen for a long time. It is here that maintaining the
correlations in a SLAM algorithm is particularly important, so that the infor-
mation acquired when closing a loop can be propagated through the entire
map. EKFs and GraphSLAM maintain such correlations directly, whereas
FastSLAM maintains them through its diversity in the particle sets. Thus,
the ability to close loops, depends on the number of particles M . Better di-
versity in the sample set results in better loop closing performance, because
new observations can affect the pose of the vehicle further back in the past.
Unfortunately, by pruning away improbable trajectories of the vehicle, re-
sampling eventually causes all of the FastSLAM particles to share a common
history at some point in the past. New observations cannot affect the posi-
tions of features observed prior to this point. This common history point can
be pushed back in time by increasing the number of particles M . This pro-
cess of throwing away correlation data over time enables FastSLAM’s effi-

472 13 The FastSLAM Algorithm

10
−2

10
−1

10
0

0

5

10

15

20

25

30

Measurement Noise (range) (meters)

R
M

S
 P

os
e

E
rr

or
 (

m
et

er
s)

Accuracy of FastSLAM Algorithms On Simulated Data

FastSLAM 1.0
FastSLAM 2.0

Figure 13.13 FastSLAM 1.0 and 2.0 with varying levels of measurement noise: As to
be expected, FastSLAM 2.0 is uniformly superior to FastSLAM 1.0. The difference is
particularly obvious for small particle sets, where the improved proposal distribution
focuses the particles much better.

cient sensor updates. This efficiency comes at the cost of slower convergence
speed. Throwing away correlation information means that more observa-
tions will be required to achieve a given level of accuracy. Clearly, FastSLAM
2.0’s improved proposal distribution ensures that fewer particles are elimi-
nated in resampling compared to FastSLAM 1.0, but it does not alleviate this
problem.
In practice, diversity is important, and it is worthwhile to optimize the im-
plementation so as tomaintainmaximumdiversity. Examples of loop closure
are shown in Figure 13.15. These figures show the histories of allM particles.
In Figure 13.15a, the FastSLAM 1.0 particles share a common history part of
the way around the loop. New observations can not affect the positions of
features observed before this threshold. In this case of FastSLAM 2.0, the al-
gorithm is able to maintain diversity that extends back to the beginning of
the loop. This is crucial for reliable loop closing and fast convergence.
Figure 13.16a shows the result of an experiment comparing the loop clos-
ing performance of FastSLAM 1.0 and 2.0. As the size of the loop increases,
the error of both algorithms increases. However, FastSLAM 2.0 consistently

13.9 FastSLAM for Feature-Based Maps 473

Figure 13.14 Map of Victoria Park by FastSLAM 2.0 withM = 1 particle.

outperforms FastSLAM 1.0. Alternately, this result can be rephrased in terms
of particles. FastSLAM 2.0 requires fewer particles to close a given loop than
FastSLAM 1.0.
Figure 13.16b shows the results of an experiment comparing the conver-
gence speed of FastSLAM 2.0 and the EKF. FastSLAM 2.0 (with 1, 10, and 100
particles) and the EKF were each run 10 times around a large simulated loop
of features, similar to the ones shown in Figure 13.16a&b. Different random
seeds were used for each run, causing different controls and observations to
be generated for each loop. The RMS position error in the map at every time
step was averaged over the 10 runs for each algorithm.
As the vehicle goes around the loop, error should gradually build up in
the map. When the vehicle closes the loop at iteration 150, revisiting old
features should affect the positions of features all around the loop, causing
the overall error in the map to decrease. This clearly happens in the EKF.
FastSLAM 2.0 with a single particle has no way to affect the positions of past
features so there is no drop in the feature error. As more particles are added
to FastSLAM 2.0, the filter is able to apply observations to feature positions
further back in time, gradually approaching the convergence speed of the
EKF. Clearly, the number of particles necessary to achieve convergence time
close to the EKFwill increase with the size of the loop. The lack of long-range
correlations in the FastSLAM representation is arguably the most important

474 13 The FastSLAM Algorithm

Particles share common history here

Figure 13.15 FastSLAM 2.0 can close larger loops than FastSLAM 1.0 given a con-
stant number of particles.

weakness of FastSLAM algorithm over Gaussian SLAM techniques.

13.10 Grid-based FastSLAM

13.10.1 The Algorithm

In Chapter 9 we studied occupancy grid maps as a volumetric representation
of robot environments. The advantage of such a representation is that it does
not require any predefined definition of landmarks. Instead, in can model
arbitrary types of environments. In the remainder of this chapter, we will
therefore extend the FastSLAM algorithm to such representations.
To adapt the FastSLAM algorithm to occupancy grid maps, we need three
functions that we already defined in previous sections. First, we have to sam-
ple from the motion posterior p(xt | x[k]

t−1, ut) as in Equation 13.12. Hence, we
need such a sampling technique. Second, we need a technique for estimat-
ing the map of each particle. It turns out that we can rely on occupancy grid
mapping, as described in Chapter 9. Finally, we need to compute the impor-
tance weights of the individual particles. That is, we require an approach to
compute the likelihood p(zt | xk

t ,m[k]) of the observation zt, conditioned on
the pose xk

t , the mapm[k], and the most recent measurement zt.
As it turns out, the extension of FastSLAM to occupancy grid maps is quite
straightforward. Table 13.4 describes FastSLAM with occupancy grid maps.
Not surprisingly, this algorithm borrows parts of Monte Carlo Localization

13.10 Grid-based FastSLAM 475

10
2

10
3

0

5

10

15

20

25

Loop size (meters)

R
M

S
 P

os
e

E
rr

or
 (

m
et

er
s)

Accuracy of FastSLAM Algorithms vs. Loop Size

FastSLAM 1.0
FastSLAM 2.0

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time − Iterations

R
M

S
 L

an
dm

ar
k

E
rr

or

Convergence of FastSLAM and the EKF Closing a Large Loop

FastSLAM 2.0 − 10 particles

FastSLAM 2.0 − 100 particles

EKF

FastSLAM 2.0 − 1 particle(a) (b)

Figure 13.16 (a) Accuracy as a function of loop size: FastSLAM 2.0 can close larger
loops than FastSLAM 1.0 given a fixed number of particles. (b) Comparison of the
convergence speed of FastSLAM 2.0 and the EKF.

(see Table 8.2) and occupancy grid mapping (see Table 9.1). The individual
functions used in this algorithm are variants of those used in the localization
and mapping algorithms.
In particular, the function measurement_model_map(zt, x

[k]
t ,m

[k]
t−1)

computes the likelihood of the measurement zt given the pose x
[k]
t repre-

sented by the k-th particle and given the map m
[k]
t−1 computed based on the

previous measurement and the trajectory represented by this particle. Fur-
thermore, the function updated_occupancy_grid(zt, x

[k]
t ,m

[k]
t−1) computes

a new occupancy grid map, given the current pose x
[k]
t of the k-th particle,

the mapm
[k]
t−1 associated to it, and the measurement zt.

13.10.2 Empirical Insights

Figure 13.17 shows a typical situation of the application of the grid-based
FastSLAM algorithm. Shown there are three particles together with their
associated maps. Each particle represents a potential trajectory of the robot,
which explains why each occupancy grid map looks different. The center
map is the best in terms of global consistency.
A typical map acquired with the FastSLAM algorithm is depicted in Fig-
ure 13.19. The size of this environment is 28m × 28m. The length of the
robot’s trajectory is 491m and the average speed was 0.19m/s. The reso-

476 13 The FastSLAM Algorithm

Figure 13.17 Application of the grid-based variant of the FastSLAMalgorithm. Each
particle carries its ownmap and the importance weights of the particles are computed
based on the likelihood of the measurements given the particle’s own map.

Figure 13.18 Occupancy grid map generated from laser range data and based on
pure odometry. All images courtesy of Dirk Hähnel, University of Freiburg.

13.10 Grid-based FastSLAM 477

Figure 13.19 Occupancy grid map corresponding to the particle with the highest
accumulated importance weight obtained by the algorithm listed in Table 13.4 from
the data depicted in Figure 13.18. The number of particles to create this experiment
was 500. Also depicted in this image is the path represented by the particle with the
maximum accumulated importance weight.

(a) (b)

Figure 13.20 Trajectories of all samples shortly before (left) and after (right) closing
the outer loop of the environment depicted in Figure 13.19. Images courtesy of Dirk
Hähnel, University of Freiburg.

478 13 The FastSLAM Algorithm

1: Algorithm FastSLAM_occupancy_grids(Xt−1, ut, zt):

2: X̄t = Xt = ∅
3: for k = 1 toM do

4: x
[k]
t = sample_motion_model(ut, x

[k]
t−1)

5: w
[k]
t = measurement_model_map(zt, x

[k]
t ,m

[k]
t−1)

5: m
[k]
t = updated_occupancy_grid(zt, x

[k]
t ,m

[k]
t−1)

6: X̄t = X̄t + 〈x[k]
t ,m

[k]
t , w

[k]
t 〉

7: endfor

8: for k = 1 toM do

9: draw iwith probability ∝ w
[i]
t

10: add 〈x[i]
t ,m

[i]
t 〉 to Xt

11: endfor

12: return Xt

Table 13.4 The FastSLAM algorithm for learning occupancy grid maps.

lution of the map is 10cm. To learn this map, as few as 500 particles were
used. During the overall process the robot encountered two loops. A map
calculated from pure odometry data is shown in Figure 13.18, illustrating the
amount of error in the robot’s odometry.
The importance of using multiple particles becomes evident in Fig-
ure 13.20, which visualizes the trajectories of the samples shortly before and
after closing a loop. As the left image illustrates, the robot is quite uncertain
about its position relative to the starting position, hence the wide spread of
particles at the time of loop closure. However, a few resampling steps after
the robot re-enters known terrain suffice to reduce the uncertainty drastically
(right image).

13.11 Summary 479

13.11 Summary

This chapter has presented the particle filter approach to the SLAM problem,
known as the FastSLAM algorithm.

• The basic idea of FastSLAM is to maintain a set of particles. Each particle
contains a sampled robot path. It also contains a map, but here each fea-
ture in the map is represented by its own, local Gaussian. The resulting
representation requires space linear in the size of the map, and linear in
the number of particles.

• The “trick” to represent a map as a set of separate Gaussians—instead of
one big joint Gaussian as was the case in the EKF SLAM algorithm—is
possible because of the factorial structure of the SLAM problem. Specif-
ically, we noticed that the map features are conditionally independent
given the path. By factoring out the path (one per particle), we can then
simply treat eachmap feature as independent, thereby avoiding the costly
step of maintaining the correlations between them that plagued the EKF
approach.

• The update in FastSLAM follows directly that of the conventional particle
filter: Sample a new pose, then update the observed features. This update
can be performed online, and FastSLAM is a solution to the online SLAM
problem.

• Consequently, we noted that FastSLAM solves both SLAM problems: The
offline SLAM problem and the online SLAM problem. Our derivation
treated FastSLAM as an offline technique, in which particles represented
samples in path space, not just in the momentary pose space. However,
it so turned out that none of the update steps require knowledge of any
pose other than the most recent one, so one can safely discard past pose
estimates. This makes it possible to run FastSLAM as a filter. It also avoids
that the size of particles grow linearly with time.

• We encountered two different instantiations of FastSLAM, with version
numbers 1.0 and 2.0. FastSLAM 2.0 is an advanced version of FastSLAM.
It differs from the base version in one key idea: FastSLAM2.0 incorporates
the measurement when sampling a new pose. The math for doing so was
somewhat more involved, but FastSLAM 2.0 is found to be superior in
that it requires fewer particles than FastSLAM 1.0.

480 13 The FastSLAM Algorithm

• The idea of using particle filters makes it possible to estimate data asso-
ciation variables on a per-particle basis. Each particle can be based on
a different data association. This provides FastSLAM with a straightfor-
ward and powerful mechanism for solving data association problems in
SLAM. Previous algorithms, specifically the EKF, GraphSLAM, and the
SEIF, are forced to adopt a single data association decision for the entire
filter at any point in time, and therefore require more care in selecting the
value of the data association.

• For efficiently updating the particles over time, we discussed tree repre-
sentations of the map. These representations make it possible to reduce
the complexity of FastSLAM updates from linear to logarithmic, enabling
particles to share parts of the maps that are identical. The ideas of such
trees is important in practice, as it enables FastSLAM to scale to 109 or
more features in the map.

• We also discussed techniques for utilizing negative information. One per-
tains to the removal of features from the map that are not supported by
sufficient evidence. Here FastSLAM adopts an evidence integration ap-
proach familiar from the occupancy grid map chapter. Another pertains
to the weighting of particles themselves: When failing to observe a feature
in the map of a particle, such a particle can be devalued by multiplying
its importance weight accordingly.

• We discussed a number of practical properties of the two FastSLAM algo-
rithms. Experiments show that both algorithms perform well in practice,
both in feature-based maps and in volumetric occupancy grid-style maps.
From a practical perspective, FastSLAM is among the best probabilistic
SLAM techniques presently available. Its scaling properties are only ri-
valed by some of the information filter algorithms described in the two
previous chapters.

• We extended FastSLAM 2.0 to different map representations. In one rep-
resentation, the map was composed of points detected by a laser range
finder. In this case, we were able to abandon the idea of modeling the
uncertainty in the features through Gaussians, and rely on scan matching
techniques to implement the forward sampling process of FastSLAM 2.0.
The use of a particle filter leads to a robust loop closure technique.

Possibly the biggest limitation of FastSLAM is the fact that maintains de-
pendencies in the estimates of feature locations only implicitly, through the

13.12 Bibliographical Remarks 481

diversity of its particle set. In certain environments this can negatively af-
fect the convergence speed when compared to Gaussian SLAM techniques.
When using FastSLAM care has to be taken to reduce the damaging effects
of the particle deprivation problem in FastSLAM.

13.12 Bibliographical Remarks

The idea of computing distributions over sets of variables by combining samples with a para-
metric density function is due to Rao (1945) and Blackwell (1947). Today, this idea has become
a common tool in the statistics literature (Gilks et al. 1996; Doucet et al. 2001). A first mapping
algorithm that uses particle filters for closing loops can be found in Thrun et al. (2000b). The for-
mal introduction of Rao-Blackwellized particle filters into the field of SLAM is due to Murphy
(2000a); Murphy and Russell (2001), who developed this idea in the context of occupancy grid
maps.
The FastSLAM algorithm was first developed by Montemerlo et al. (2002a), who also de-

veloped a tree representation for efficiently maintaining multiple maps. The extension of this
algorithm to high-resolution maps is due to Eliazar and Parr, whose algorithm DP-SLAM has
generated maps from laser range scans with unprecedented accuracy and detail. Their central
data structure is called ancestry trees, which extends FastSLAM’s trees to update problems in
occupancy-style maps. A more efficient version is known as DP-SLAM 2.0 (Eliazar and Parr
2004). The FastSLAM 2.0 algorithm was developed by Montemerlo et al. (2003b). It is based on
prior work by van der Merwe et al. (2001), who pioneered the idea of using the measurement as
part of the proposal distribution in particle filter theory. The grid-based FastSLAM algorithm in
this chapter is due to Hähnel et al. (2003b), who integrated the improved proposal distribution
idea with Rao-Blackwellized filters applied to grid-based maps. A Rao-Blackwellized filter for
tracking the status of doors in a dynamic office environment is described in Avots et al. (2002).
One of FastSLAM’s most important contributions lies in the area of data association, so a

word is on order on the literature of data association in SLAM. The original SLAMwork (Smith
et al. 1990; Moutarlier and Chatila 1989a) resorted to maximum likelihood data association, as
derived in detail by Dissanayake et al. (2001). A key limitation of these data association tech-
niques was the inability to enforce mutual exclusivity: Two different features seen within a single
sensor measurement (or in short temporal succession) cannot possibly correspond to the same
physical feature in the world. Realizing this, Neira and Tardós developed techniques for testing
correspondence for sets of features, which greatly reduced the number of data association er-
rors. To accommodate the huge number of potential associations (exponential in the number of
features considered at each point in time), Neira et al. (2003) proposed random sampling tech-
niques in the data association space. All of these techniques, however, maintained a single mode
in the SLAM posterior. Feder et al. (1999) applied the greedy data association idea to sonar data,
but implemented a delayed decision to resolve ambiguities.
The idea of maintaining multi-modal posterior in SLAM goes back to Durrant-Whyte et al.

(2001), whose algorithm sum of Gaussians uses a Gaussian mixture for representing the poste-
rior. Each mixture component corresponded to a different trace through the history of all data
association decisions. FastSLAM follows this idea, but using particles instead of Gaussian mix-
ture components. The idea of lazy data association can be traced back to other fields, such as
the popular RANSAC algorithm (Fischler and Bolles 1981) in computer vision. The tree algo-
rithm presented in the previous chapter is due to Hähnel et al. (2003a). As mentioned there, it
parallels work by Kuipers et al. (2004). An entirely different approach for data association is

482 13 The FastSLAM Algorithm

described in Shatkay and Kaelbling (1997); Thrun et al. (1998b), which use the expectation max-
imization algorithm for resolving correspondence problems (see (Dempster et al. 1977)). The
EM algorithm iterates a phase of data association for all features with a phase of map building,
thereby performing search simultaneously in the space of numerical map parameters, and in
the space of discrete correspondences. Araneda (2003) successfully uses MCMC techniques for
data association in offline SLAM.
The data association problem arises naturally in the context of multi-robot map integration.

A number of papers have developed algorithms for localizing one robot relative to another un-
der the assumption that they both operate in the same environment, and their maps overlap
(Gutmann and Konolige 2000; Thrun et al. 2000b). Roy and Dudek (2001) developed a tech-
nique by which robots had to rendezvous for integrating their information. For the general
case, however, a data association technique must consider the possibility that maps might not
even overlap. Stewart et al. (2003) developed a particle filter algorithm that explicitly models the
possibility that maps do not overlap. Their algorithm contains a Bayesian estimator for calcu-
lating this probability, which takes into consideration how “common” specific local maps are in
the environment. The idea of matching sets of features for data association in multi-robot map-
ping is due to Dedeoglu and Sukhatme (2000); see also Thrun and Liu (2003). A new non-planar
representation of maps was proposed by Howard (2004), for circumvented inconsistency in in-
complete maps. His approach led to remarkably accurate multi-robot mapping results (Howard
et al. 2004).

13.13 Exercises

1. Name three key, distinct advantages for each of the following SLAM al-
gorithms: EKF, GraphSLAM, and FastSLAM.

2. Describe a set of circumstances under which FastSLAM 1.0 will fail to con-
verge and FastSLAM 2.0 will converge to a correct map (with probability
1).

3. On page 443, we stated that conditioning on the most recent pose xt instead
of the entire path x1:t is insufficient, as dependencies may arise through previous
poses. Prove this assertion. You might prove it with an example.

4. FastSLAM generates many different maps, one for each particle. This
chapter left open how to combine these maps into a single posterior es-
timate. Suggest two such methods, one for FastSLAM with known corre-
spondence, and one for FastSLAM with per-particle data association.

5. The improvement of FastSLAM 2.0 over FastSLAM 1.0 lies in the nature of
the proposal distribution. Develop the same forMonte Carlo Localization:
Devise a similar proposal distribution for MCL in feature-based maps,
and state the resulting algorithm “MCL 2.0.” For this exercise you might
assume known correspondence.

13.13 Exercises 483

6. Chapter 13.8 describes an efficient tree implementation, but it does not
provide pseudo-code. In this exercise, you are asked to provide the cor-
responding data structures and update equations for the tree, assuming
that the number of features is known in advance, and that we do not face
a correspondence problem.

7. In this question, you are asked to verify empirically that FastSLAM in-
deed maintains the correlations between feature estimates and the robot
pose estimate. Specifically, you are asked to implement a simple Fast-
SLAM 1.0 algorithm for linear Gaussian SLAM. Recall from previous ex-
ercises that the motion and measurement equations in linear Gaussian
SLAM are linear with additive Gaussian noise:

xt ∼ N (xt−1 + ut, R)

zt = N (mj − xt, Q)

Run FastSLAM 1.0 in simulation. After t steps, fit a Gaussian over the
joint space of feature locations and the robot pose. Compute the cor-
relation matrix from this Gaussian, and characterize the strength of the
correlations as a function of t. What are your observations?

8. As mentioned in the text, FastSLAM is a Rao-Blackwellized particle fil-
ter. In this question you are asked to design a Rao-Blackwellized fil-
ter for a different problem: Localization with a robot that systematically
drifts. Systematic drift is a common phenomena in odometry; just in-
spect Figures 9.1 and 10.7 for two particularly strong instances of drift.
Suppose you are given a map of the environment. Can you design a Rao-
Blackwellized filter that simultaneously estimates the drift parameters of
the robot and the global location of the robot in the environment? Your
filter should combine particle filters with Kalman filters.

P A R T I V

Planning and Control

14 Markov Decision Processes

14.1 Motivation

This is the first chapter on probabilistic planning and control in this book.
Thus far, the book has focused exclusively on robot perception. We have
discussed a range of probabilistic algorithms that estimate quantities of in-
terest from sensor data. However, the ultimate goal of any robot software
is to choose the right actions. This and the following chapters will discuss
probabilistic algorithms for action selection.
To motivate the study of probabilistic planning algorithms, consider the
following examples.

1. A robotic manipulator grasps and assembles parts arriving in random
configuration on a conveyor belt. The configuration of a part is un-
known at the time it arrives, yet the optimal manipulation strategy re-
quires knowledge of the configuration. How can a robot manipulate such
pieces? Will it be necessary to sense? If so, are all sensing strategies
equally good? May there exist manipulation strategies that result in a
well-defined configuration without sensing?

2. An underwater vehicle shall travel from Canada to the Caspian Sea. Shall
it take the shortest route through the North Pole, running risk of loosing
orientation under the Ice? Or should it take the longer route through open
waters, where it can regularly relocalize using GPS, the satellite-based
global positioning system? To what extent do such decisions depend on
the accuracy of the submarine’s inertial sensors?

3. A team of robots explores an unknown planet, seeking to acquire a joint
map. Shall the robots seek each other to determine their relative location
to each other? Or shall they instead avoid each other so that they can

488 14 Markov Decision Processes

cover more unknown terrain in shorter amounts of time? How does the
optimal exploration strategy change when the relative starting locations
of the robots are unknown?

These examples illustrate that action selection in many robotics tasks is
closely tied to the notion of uncertainty. In some tasks, such as robot ex-
ploration, reducing uncertainty is the direct goal of action selection. Such
problems are known as information gathering tasks. They will be studied inINFORMATION

GATHERING TASK Chapter 17. In other cases, reducing uncertainty is merely a means to achiev-
ing some other goal, such as reliably arriving at a target location. These tasks
will be studied in this and the next chapters.
From an algorithm design perspective, it is convenient to distinguish two
types of uncertainty: uncertainty in action effects, and uncertainty in percep-
tion.
First, we distinguish deterministic from stochastic action effects. Many the-
oretical results in robotics are based on the assumption that the effects of
control actions are deterministic. In practice, however, actions cause uncer-
tainty, as outcomes of actions are non-deterministic. The uncertainty arising
from the stochastic nature of the robot and its environments mandates that
the robot senses at execution time, and reacts to unanticipated situations—
even if the environment state is fully observable. It is insufficient to plan a
single sequence of actions and blindly execute it at run-time.
Second, we distinguish fully observable from partially observable systems.
Classical robotics often assumes that sensors can measure the full state of the
environment. If this was always the case, then we would not have written
this book! In fact, the contrary appears to be the case. In nearly all interesting
real-world robotics problems, sensor limitations are a key factor.
Obviously, robots should consider their current uncertaintywhen determin-

ing what to do. When selecting a control action, at a minimum a robot should
consider the various outcomes (which might include catastrophic failures),
and weigh them by the probability that such outcomes might actually occur.
However, robot control must also cope with future, anticipated uncertainty.ANTICIPATED

UNCERTAINTY An example of the latter was given above, where we discussed a robot that
has the choice between a shorter path through a GPS-denied environment,
with a longer one that reduces the danger of getting lost. Minimizing antici-
pated uncertainty is essential for many robotic applications.
Throughout this chapter, we will take a very liberal view and make vir-
tually no distinction between planning and control. Fundamentally, both
planning and control address the same problem: to select actions. They dif-

14.1 Motivation 489

fer in the time constraints under which actions have to be selected, and in
the role of sensing during execution. The algorithms described in this chap-
ter are all similar in that they require an off-line optimization, or planning,
phase. The result of this planning phase is a control policy, which prescribes a
control action for any reasonable situation. In other words, the control policy
is effectively a controller, in the sense that it can be used to determine robot
actions with minimum computing time. By no means is the choice of algo-
rithms meant to suggest that this is the only way to cope with uncertainty in
robotics. However, it reflects the style of algorithms that are currently in use
in the field of probabilistic robotics.
The majority of algorithms discussed in this chapter assume finite state
and action spaces. Continuous spaces are approximated using grid-style rep-
resentations.
The following four chapters are organized as follows.

• This chapter discusses in depth the role of the two types of uncertainty
and lays out their implications on algorithm design. As a first solution to
a restricted class of problems, we introduce value iteration, a popular plan-
ning algorithm for probabilistic systems. Our discussion in this chapter
addresses only the first type of uncertainty: the uncertainty in robot mo-
tion. It rests on the assumption that the state is fully observable. The
underlyingmathematical framework is known asMarkov decision processes
(MDP).

• Chapter 15 generalizes the value iteration technique to both types of un-
certainty, in action effects and perception. This algorithm applies value
iteration to a belief state representation. The framework underlying
this algorithm is called partially observable Markov decision processes
(POMDPs). POMDP algorithms anticipate uncertainty, actively gather in-
formation, and explore optimally in pursuit of an arbitrary performance
goal. Chapter 15 also discusses a number of efficient approximations
which can calculate control policies more efficiently.

• Chapter 16 introduces a number of approximate value iteration algo-
rithms for POMDPs. These algorithms have in common that they ap-
proximate the probabilistic planning process, so as to gain computational
efficiency. One of these algorithms will shortcut probabilistic planning by
assuming that at some point in the future, the state becomes fully observ-
able. Another compresses the belief state into a lower dimensional rep-
resentation, and plans using this representation. A third algorithm uses

490 14 Markov Decision Processes

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The
robot starts at the center with unknown orientation. Its task is to move to the goal
location on the left.

particle filters and a machine learning approach to condense the problem
space. All three of these algorithms yield considerable computational im-
provements while still performing well in practical robotic applications.

• Chapter 17 addresses the specialized problem of robot exploration. Here
the robot’s goal is to accumulate information about its environment.
While exploration techniques address the problem of sensor uncertainty,
the problem is significantly easier than the full POMDP problem, and
hence can be solved much more efficiently. Probabilistic exploration tech-
niques are popular in robotics, as robots are frequently used for acquiring
information about unknown spaces.

14.2 Uncertainty in Action Selection

Figure 14.1 shows a toy-like environment that we will use to illustrate the
different types of uncertainty a robot may encounter. Shown in this figure
is a mobile robot in a corridor-like environment. The environment is highly
symmetric; the only distinguishing feature are its far ends, which are shaped
differently. The robot starts at the location indicated, and it seeks to reach the
location labeled goal. We notice there exist multiple paths to the goal, one
that is short but narrow, and two others that are longer but wider.
In the classical robot planning paradigm, there is no uncertainty. The robot
would simply know its initial pose and the location of the goal. Further-
more, actions when executed in the physical world have predictable effects,
and such effects can be pre-planned. In such a situation, there is no need
to sense. It suffices to plan off-line a single sequence of actions, which can

14.2 Uncertainty in Action Selection 491

(a)

(b)

Figure 14.2 The value function and control policy for anMDPwith (a) deterministic
and (b) nondeterministic action effects. Under the deterministic model, the robot is
perfectly fine to navigate through the narrow path; it prefers the longer path when
action outcomes are uncertain, to reduce the risk of colliding with a wall. Panel (b)
also shows a path.

then be executed at run-time. Figure 14.1 shows an example of such a plan.
Obviously, in the absence of errors in the robot’s motion, the narrow shorter
path is superior to any of the longer, wider ones. Hence, a “classical” planner
would choose the former path over the latter.
In practice, such plans tend to fail, for more than one reason. A robot
blindly following the narrow hallway runs danger of colliding with the
walls. Furthermore, a blindly executing robot might miss the goal location
because of the error it accrued during plan execution. In practice, thus, plan-
ning algorithms of this type are often combined with a sensor-based, reactive
control module that consults sensor readings to adjust the plan so as to avoid
collisions. Such a module might prevent the robot from colliding in the nar-
row corridor. However, in order to do so it may have to slow down the robot,
making the narrow path inferior to the wider, longer path.
A paradigm that encompasses uncertainty in robot motion is known as
Markov decision processes, or MDPs. MDPs assume that the state of the en-MARKOV DECISION

PROCESS

492 14 Markov Decision Processes

(a)

(b)

(c)

Figure 14.3 Knowledge gathering actions in POMDPs: To reach its goal with more
than 50% chance, the belief space planner first navigates to a locationwhere the global
orientation can be determined. Panel (a) shows the corresponding policy, and a pos-
sible path the robot may take. Based on its location, the robot will then find itself in
panel (b) or (c), from where it can safely navigate to the goal.

vironment can be fully sensed at all times. In other words, the perceptual
model p(z | x) is deterministic and bijective. However, the MDP framework
allows for stochastic action effects. The action model p(x′ | u, x) may be
non-deterministic. As a consequence, it is insufficient to plan a single se-
quence of actions. Instead, the planner has to generate actions for a whole
range of situations that the robot might find itself in, because of its actions or

14.2 Uncertainty in Action Selection 493

other unpredictable environment dynamics. Ourway to copewith the result-
ing uncertainty shall be to generate a policy for action selection defined for all
states that the robot might encounter. Such mappings from states to actions
are known under many names, such as control policy, universal plans, andCONTROL POLICY

navigation functions. An example of a policy is shown in Figure 14.2. Instead
of a single sequence of actions, the robot calculates a mapping from states
to actions indicated by the arrows. Once such a mapping is computed, the
robot can accommodate non-determinism by sensing the state of the world,
and acting accordingly. The panel in Figure 14.2a shows a policy for a robot
with nearly no motion uncertainty, in which cases the narrow path is indeed
acceptable. Figure 14.2b depicts the same situation for an increased random-
ness in robot motion. Here the narrow path makes a collision more likely,
and the detour becomes preferable. This example illustrates two things: the
importance of incorporating uncertainty in the motion planning process; and
the ability of finding a good control policy using the algorithm described in
this chapter.
Let us now return to the most general, fully probabilistic case, by drop-
ping the assumption that the state is fully observable. This case is known
as partially observable Markov decision processes, or POMDPs. In most if notPARTIALLY

OBSERVABLE MARKOV
DECISION PROCESS

all robotics applications, measurements z are noisy projections of the state x.
Hence, the state can only be estimated up to a certain degree. To illustrate
this, consider once again our example, but under different assumptions. As-
sume that the robot knows its initial location but does not know whether it
is oriented towards the left or to the right. Further, it has no sensor to sense
whether it has arrived at the goal location.
Clearly, the symmetry of the environment makes it difficult to disam-
biguate the orientation. By moving directly towards the projected goal state
the robot faces a 50% chance of missing the goal, and instead moving to the
symmetric location on the right size of the environment. The optimal plan,
thus, is to move to any of the corners of the environment, which is perceptu-
ally sufficiently rich to disambiguate its orientation. A policy for moving to
these locations is shown in Figure 14.3a. Based on its initial orientation, the
robot may execute any of the two paths shown there. As it reaches a corner,
its sensors now reveal its orientation, and hence its actual location relative
to the environment. The robot might now find itself in any of the two situ-
ations depicted in Figures 14.3b&c, from where it can safely navigate to the
goal location as shown.
This example illustrates one of the key aspects of probabilistic robotics.
The robot has to actively gather information, and in order to do so, might be

494 14 Markov Decision Processes

suffering a detour relative to a robot that knows its state with absolute cer-
tainty. This problem is paramount in robotics. For nearly any robotics task,
the robot’s sensors are characterized by intrinsic limitations as to what the
robot can know, and where information can be acquired. Similar situations
occur in tasks as diverse as locate-and-retrieve, planetary exploration, urban
search-and-rescue, and so on.
The question now arises as to how can one devise an algorithm for action
selection that can cope with this type of uncertainty. As we will learn, this is
not a trivial question. One might be tempted to solve the problem of what to
do by analyzing each possible situation that might be the case under the cur-
rent state of knowledge. In our example, there are two such cases: the case
where the goal is on the upper left relative to the initial robot heading, and
the case where the goal is on the lower right. In both these cases, however,
the optimal policy does not bring the agent to a location where it would be
able to disambiguate its pose. That is, the planning problem in a partially
observable environment cannot be solved by considering all possible envi-
ronments and averaging the solution.
Instead, the key idea is to generate plans in the belief space, a synonym for

information space. The belief space comprises the space of all posterior beliefs
that the robot might hold about the world. The belief space for our simple
example corresponds to the three panels in Figure 14.3. The top panel shows
such a belief space policy. It displays the initial policy while the robot is
unaware of its orientation. Under this policy, the robot navigates to one of
the corners of the environment where it can localize. Once localized, it can
safely navigate to the target location, as illustrated in the two lower panels
of Figure 14.3. Since the a priori chance of each orientation is the same, the
robot will experience a random transition with a 50% chance of ending up in
either of the two bottom diagrams.
In our toy example, the number of different belief states happens to be
finite: either the robot knows or it does not have a clue. In practical appli-
cations, this is usually not the case. In worlds with finitely many states the
belief space is usually continuous, but of finite dimensionality. In fact, the
number of dimensions of the belief space is of the same order as the number
of states in the underlying state space. If the state space is continuous, the
belief space possesses infinitely many dimensions.
This example illustrates a fundamental property that arises from the
robot’s inability to perfectly sense the state of the world—one whose im-
portance for robotics has often been under-appreciated. In uncertain worlds
a robot planning algorithm must consider the state of its knowledge when

14.3 Value Iteration 495

making control decisions. In general it does not suffice to consider the most
likely state only. By conditioning the action on the belief state—as opposed
to the most likely actual state—the robot can actively pursue information
gathering. In fact, the optimal plan in belief state gathers information “opti-
mally,” in that it only seeks new information to the extent that it is actually
beneficial to the expected utility of the robot’s action. The ability to devise
optimal control policies is a key advantage of the probabilistic approach to
robotics over the classical deterministic, omniscient approach. However, as
we shall see soon, it comes at the price of an increased complexity of the
planning problem.

14.3 Value Iteration

Our first algorithm for finding control policies is called value iteration. Value
iteration recursively calculates the utility of each action relative to a payoff
function. Our discussion in this chapter will be restricted to the first type of
uncertainty: stochasticity of the robot and the physical world. We defer our
treatment of uncertainty arising from sensor limitations to the subsequent
chapter. Thus, we will assume that the state of the world is fully observable
at any point in time.

14.3.1 Goals and Payoff

Before describing a concrete algorithm, let us first define the problem in
more concise terms. In general, robotic action selection is driven by goals.GOAL

Goals might correspond to specific configurations (e.g., a part has success-
fully been picked up and placed by a robot manipulator), or they might ex-
press conditions over longer periods of time (e.g., a robot balances a pole).
In robotics, one is sometimes concerned with reaching a specific goal config-
uration, while simultaneously optimizing other variables, often thought of
as cost. For example, one might be interested in moving the end-effector ofCOST

a manipulator to a specific location, while simultaneously minimizing time,
energy consumption, or the number of collisions with obstacles.
At first glance, one might be tempted to express these desires by two quan-
tities, one that is beingmaximized (e.g., the binary flag that indicates whether
or not a robot reached its goal location), and the other one being minimized
(e.g., the total energy consumed by the robot). However, both can be ex-
pressed using a single function called the payoff function.PAYOFF FUNCTION

496 14 Markov Decision Processes

The payoff, denoted r, is a function of the state and the robot control. For
example, a simple payoff function may be the following:

r(x, u) =

{
+100 if u leads to a goal configuration or state
−1 otherwise

(14.1)

This payoff function “rewards” the robot with+100 if a goal configuration is
attained, while it “penalizes” the robot by −1 for each time step where it has
not reached that configuration. Such a payoff function will yield maximum
cumulative return if the robot reaches its goal configuration in the minimum
possible time.
Why use a single payoff variable to express both goal achieval and costs?
This is primarily because of two reasons: First, the notation avoids clutter
in the formulae yet to come, as it shall unify our treatment of costs and goal
achieval throughout this book. Second, and more importantly, it pays tribute
to the fundamental trade-off between goal achievement and costs along the
way. Since robots are inherently uncertain, they cannot know with certainty
as to whether a goal configuration has been achieved; instead, all one can
hope for is to maximize the chances of reaching a goal. This trade-off be-
tween goal achieval and cost is characterized by questions like Is increasing
the probability of reaching a goal worth the extra effort (e.g., in terms of energy,
time)? Treating both goal achieval and costs as a single numerical factor
enables us to trade off one against the other, hence providing a consistent
framework for selecting actions under uncertainty.
We are interested in devising programs that generate actions so as to opti-
mize future payoff in expectation. Such a program is usually referred to as a
control policy, or simply policy. It will be denoted as follows:POLICY

π : z1:t−1, u1:t−1 −→ ut(14.2)

In the case of full observability, we assume the much simpler case:

π : xt −→ ut(14.3)

Thus, a policy π is a function that maps past data into controls, or states into
controls when the state is observable.
So far, our definition of a control policy makes no statements about its
computational properties. It might be a fast, reactive algorithm that bases
its decision on the most recent data item only, or an elaborate planning al-
gorithm. In practice, however, computational considerations are essential, in
that any delay in calculating a control may negatively affect a robot’s perfor-
mance. Our definition of a policy π also makes no commitment as to whether
it is deterministic or non-deterministic.

14.3 Value Iteration 497

An interesting concept in the context of creating control policies is the plan-PLANNING HORIZON

ning horizon. Sometimes, it suffices to choose a control action so as to maxi-
mize the immediate next payoff value. Most of the time, however, an action
might not pay off immediately. For example, a robot moving to a goal lo-
cation will receive the final payoff for reaching its goal only after the very
last action. Thus, payoff might be delayed. An appropriate objective is then
to choose actions so that the sum of all future payoff is maximal. We will
call this sum the cumulative payoff. Since the world is non-deterministic, theCUMULATIVE PAYOFF

best one can optimize is the expected cumulative payoff , which is conveniently
written as

RT = E

[
T∑

τ=1

γτrt+τ

]
(14.4)

Here the expectation E[] is taken over future momentary payoff values rt+τ

which the robot might accrue between time t and time t + T . The individual
payoffs rt+τ are multiplied by a factor γτ , called the discount factor. The valueDISCOUNT FACTOR

of γ is a problem-specific parameter, and it is constrained to lie in the interval
[0; 1]. If γ = 1, we have γτ = 1 for arbitrary values of τ , and hence the
factor can be omitted in Equation (14.4). Smaller values of γ discount future
payoff exponentially, making earlier payoffs exponentially more important
than later ones. This discount factor, whose importance will be discussed
later, bears resemblance to the value of money, which also loses value over
time exponentially due to inflation.
We notice that RT is a sum of T time steps. T is called the planning horizon,PLANNING HORIZON

or simply: horizon. We distinguish three important cases:

1. T = 1. This is called the greedy case, where the robot only seeks to min-GREEDY CASE

imize the immediate next payoff. While this approach is degenerate in
that it does not capture the effect of actions beyond the immediate next
time step, it nevertheless plays an important role in practice. The reason
for its importance stems from the fact that greedy optimization is much
simpler than multi-step optimization. In many robotics problems, greedy
algorithms are currently the best known solutions that can be computed
in polynomial time. Obviously, greedy optimization is invariant with re-
spect to the discount factor γ, but it requires that γ > 0.

2. T larger than 1 but finite. This case is known as the finite-horizon case. Typ-FINITE-HORIZON CASE

ically, the payoff is not discounted over time, thus γ = 1. One might argue
that the finite-horizon case is the only one that matters, since for all prac-
tical purposes time is finite. However, finite-horizon optimality is often

498 14 Markov Decision Processes

harder to achieve than optimality in the discounted infinite-horizon case.
Why is this so? A first insight stems from the observation that the optimal
control action is a function of time horizon. Near the far end of the time
horizon, for example, the optimal policy might differ substantially from
the optimal choice earlier in time, even under otherwise identical condi-
tions (e.g., same state, same belief). As a result, planning algorithms with
finite horizon are forced to maintain different plans for different horizons,
which can add undesired complexity.

3. T is infinite. This case is known as the infinite-horizon case. This case doesINFINITE-HORIZON
CASE not suffer the same problem as the finite horizon case, as the number of

remaining time steps is the same for any point in time (it is infinite!). How-
ever, here the discount factor γ is essential. To see why, let us consider the
case where we have two robot control programs, one that earns us $1 per
hour, and another one that makes us $100 per hour. In the finite hori-
zon case, the latter is clearly preferable to the former. No matter what
the value of the horizon is, the expected cumulative payoff of the second
program exceeds that of the first by a factor of a hundred. Not so in the
infinite horizon case. Without discounting, both programs will earn us an
infinite money, rendering the expected cumulative payoff RT insufficient
to select the better program.

Under the assumption that each individual payoff r is bounded in mag-
nitude (that is, |r| < rmax for some value rmax), discounting guarantees
that R∞ is finite—despite the fact that the sum has infinitely many terms.
Specifically, we have

R∞ ≤ rmax + γrmax + γ2rmax + γ3rmax + . . . =
rmax

1− γ
(14.5)

This shows that R∞ is finite as long as γ is smaller than 1. As an aside, we
note that an alternative to discounting involves maximizing the average
payoff instead of the total payoff. Algorithms for maximizing average
payoff will not be studied in this book.

Sometimes we will refer to the cumulative payoff RT conditioned on a state
xt. This will be written as follows:

RT (xt) = E

[
T∑

τ=1

γτrt+τ | xt

]
(14.6)

14.3 Value Iteration 499

The cumulative payoff RT is a function of the robot’s policy for action selec-
tion. Sometimes, it is beneficial to make this dependence explicit:

Rπ
T (xt) = E

[
T∑

τ=1

γτrt+τ | ut+τ = π(z1:t+τ−1, u1:t+τ−1)

]
(14.7)

This notation enables us to compare two control policies π and π′, and deter-
mine which one is better. Simply compare Rπ

T to Rπ′

T and pick the algorithm
with higher expected discounted future payoff!

14.3.2 Finding Optimal Control Policies for the Fully Observable Case

This chapter shall be concluded with a concreted value iteration algorithm,
for calculating control policies in fully observable domains. At first glance,
such algorithms depart from the basic assumption of probabilistic robotics,
namely that state is not observable. However, in certain applications one can
safely assume that the posterior p(xt | z1:t, u1:t) is well-represented by its
mean E[p(xt | z1:t, u1:t)].
The fully observable case has some merit. The algorithm discussed in turn
also prepares us for the more general case of partial observability.
We already noted that the framework of stochastic environments with fully
observable state is known as Markov decision processes. Policies, in MDPs,
are mappings from state to control actions:

π : x −→ u(14.8)

The fact that the state is sufficient for determining the optimal control is a
direct consequence of our Markov assumption that was discussed in length
in Chapter 2.4.4. The goal of planning in the MDP framework is to identify
the policy π that maximizes the future cumulative payoff.
Let us beginwith defining the optimal policy for a planning horizon of T =

1, hence we are only interested in a policy that maximizes the immediate next
payoff. This policy shall be denoted π1(x) and is obtained bymaximizing the
expected 1-step payoff over all controls:

π1(x) = argmax
u

r(x, u)(14.9)

Thus, an optimal action is one that maximizes the immediate next payoff in
expectation. The policy that chooses such an action is optimal in expectation.
Every policy has an associated value function, whichmeasures the expectedVALUE FUNCTION

value (cumulative discounted future payoff) of this specific policy. For π1,

500 14 Markov Decision Processes

the value function is simply the expected immediate payoff, discounted by
the factor γ:

V1(x) = γ max
u

r(x, u)(14.10)

This value for longer planning horizons is now defined recursively. The op-
timal policy for horizon T = 2 selects the control that maximizes the sum of
the one-step optimal value V1(x) and the immediate 1-step payoff:

π2(x) = argmax
u

[
r(x, u) +

∫
V1(x

′) p(x′ | u, x) dx′
]

(14.11)

It should be immediately obvious why this policy is optimal. The value of
this policy conditioned on the state x is given by the following discounted
expression:

V2(x) = γ max
u

[
r(x, u) +

∫
V1(x

′) p(x′ | u, x) dx′
]

(14.12)

The optimal policy and its value function for T = 2 was constructed recur-
sively, from the optimal value function for T = 1. This observation suggests
that for any finite horizon T the optimal policy, and its associated value func-
tion, can be obtained recursively from the optimal policy and value function
T − 1.

πT (x) = argmax
u

[
r(x, u) +

∫
VT−1(x

′) p(x′ | u, x) dx′
]

(14.13)

The resulting policy πT (x) is optimal for the planning horizon T . The associ-
ated value function is defined through the following recursion:

VT (x) = γ max
u

[
r(x, u) +

∫
VT−1(x

′) p(x′ | u, x) dx′
]

(14.14)

In the infinite horizon case, the optimal value function tends to reach the
equilibrium (with the exception of some rare deterministic systems, in which
no such equilibrium exists):

V∞(x) = γ max
u

[
r(x, u) +

∫
V∞(x′) p(x′ | u, x) dx′

]
(14.15)

This invariance is known as Bellman equation. Without proof, we notice thatBELLMAN EQUATION

every value function V that satisfies the condition (14.15) is both necessary
and sufficient for the induced policy to be optimal.

14.3 Value Iteration 501

14.3.3 Computing the Value Function

This consideration leads to the definition of a practical algorithm for calcu-
lating the optimal policy in stochastic systems with full state observability.
Value iteration does this by successively approximating the optimal value
functions, as defined in (14.15).
In detail, let us denote out value function approximation by V̂. Initially, V̂

is set to rmin, the minimum possible immediate payoff:

V̂ ←− rmin(14.16)

Value iteration then successively updates the approximation via the follow-
ing recursive rule, which computes the value function for increasing hori-
zons:

V̂ (x) ←− γ max
u

[
r(x, u) +

∫
V̂ (x′) p(x′ | u, x) dx′

]
(14.17)

Since each update propagates information in reverse temporal order through
the value function, it is usually referred to as the backup step.BACKUP STEP

The value iteration rule bears close resemblance to the calculation of the
horizon-T optimal policy above. Value iteration converges if γ < 1 and, in
some special cases, even for γ = 1. The order in which states are updated in
value iteration is irrelevant, as long as each state is updated infinitely often.
In practice, convergence is usually observed after a much smaller number of
iterations.
At any point in time, the value function V̂ (x) defines a policy:

π(x) = argmax
u

[
r(x, u) +

∫
V̂ (x′) p(x′ | u, x) dx′

]
(14.18)

After convergence of value iteration, the policy that is greedy with respect to
the final value function is optimal.
We note that all of these equations have been formulated for general state
spaces. For finite state spaces, the integral in each of these equations can be
implemented as a finite sum over all states. This sum can often be calculated
efficiently, since p(x′ | u, x)will usually be non-zero for a relatively few states
x and x′. This leads to an efficient family of algorithms for calculating value
functions.
Table 14.1 shows three algorithms: The general value iteration algo-
rithmMDP_value_iteration for arbitrary state and action spaces; its discrete
variant for finite state spaces MDP_discrete_value_iteration, and the algo-
rithm for retrieving the optimal control action from the value function, pol-
icy_MDP.

502 14 Markov Decision Processes

1: AlgorithmMDP_value_iteration():

2: for all x do
3: V̂ (x) = rmin

4: endfor
5: repeat until convergence
6: for all x

7: V̂ (x) = γ max
u

[
r(x, u) +

∫
V̂ (x′) p(x′ | u, x) dx′

]
8: endfor
9: endrepeat
10: return V̂

1: AlgorithmMDP_discrete_value_iteration():

2: for i = 1 to N do
3: V̂ (xi) = rmin

4: endfor
5: repeat until convergence
6: for i = 1 to N do

7: V̂ (xi) = γ max
u

⎡
⎣r(xi, u) +

N∑
j=1

V̂ (xj) p(xj | u, xi)

⎤
⎦

8: endfor
9: endrepeat
10: return V̂

1: Algorithm policy_MDP(x, V̂):

2: return argmax
u

⎡
⎣r(x, u) +

N∑
j=1

V̂ (xj) p(xj | u, xi)

⎤
⎦

Table 14.1 The value iteration algorithm for MDPs, stated here in its most general
form and for MDPs with finite state and control spaces. The bottom algorithm com-
putes the best control action.

14.4 Application to Robot Control 503

Figure 14.4 An example of an infinite-horizon value function T∞, assuming that the
goal state is an “absorbing state.” This value function induces the policy shown in
Figure 14.2a.

The first algorithmMDP_value_iteration initializes the value function in
line 3. Line 5 through 9 implement the recursive calculation of the value
function. Once value iteration converges, the resulting value function V̂ in-
duces the optimal policy. If the state space is finite, the integral is replaced
by a finite sum, as shown inMDP_discrete_value_iteration. The factor γ is
the discount factor. The algorithm policy_MDP processes the optimal value
function along with a state x, and returns the control u that maximizes the
expected value.
Figure 14.4 depicts an example value function, for our example discussed
above. Here the shading of each grid cell corresponds to its value, with white
being V = 100 and black being V = 0. Hill climbing in this value function
using Equation 14.18 leads to the policy shown in Figure 14.2a.

14.4 Application to Robot Control

The simple value iteration algorithm is applicable to low-dimensional robot
motion planning and control problems. To do so, we have to introduce two
approximations.
First, the algorithm in Table 14.5 defines a value function over a continuous
space, and requires maximization and integration over a continuous space.
In practice, it is common to approximate the state space by a discrete decom-
position, similar to our histogram representations in Chapter 4.1. Similarly,
it is common to discretize the control space. The function V̂ is then easily im-
plemented as a look-up table. However, such a decomposition works only

504 14 Markov Decision Processes

(a) (b)

Figure 14.5 Example of value iteration over state spaces in robot motion. Obstacles
are shown in black. The value function is indicated by the gray shaded area. Greedy
action selection with respect to the value function lead to optimal control, assuming
that the robot’s pose is observable. Also shown in the diagrams are example paths
obtained by following the greedy policy.

for low-dimensional state and control spaces, due to the curse of dimension-
ality. In higher dimensional situations, it is common to introduce learning
algorithms to represent the value function.
Second, we need a state! As noted above, it might be viable to replace the
posterior by its mode

x̂t = E[p(xt | z1:t, u1:t)](14.19)

In the context of robot localization, for example, such an approximation
works well if we can guarantee that the robot is always approximately local-
ized, and the residual uncertainty in the posterior is local. It ceases to work
when the robot performs global localization, or if it is being kidnapped.
Figure 14.5 illustrates value iteration in the context of a robotic path plan-
ning problem. Shown there is a two-dimensional projection of a configu-
ration space of a circular robot. The configuration space is the space of all
〈x, y, θ〉 coordinates that the robot can physically attain. For circular robots,
the configuration space is obtained by “growing” the obstacles in the map
by the radius of the robot. These increased obstacles shown in black in Fig-
ure 14.5.
The value function is shown in gray, where the brighter a location, the
higher its value. The path obtained by following the optimal policy leads to

14.4 Application to Robot Control 505

(a) (b)

Figure 14.6 (a) 2-DOF robot arm in an environment with obstacles. (b) The configu-
ration space of this arm: the horizontal axis corresponds to the shoulder joint, and the
vertical axis to its elbow joint configuration. Obstacles are shown in gray. The small
dot in this diagram corresponds to the configuration on the left.

the respective goal location, as indicated in Figure 14.5. The key observation
is that the value function is defined over the entire state space, enabling the
robot to select an action no matter where it is. This is important in non-
deterministic worlds, where actions have stochastic effects on the robot’s
state.
The path planner that generated Figure 14.5 makes specific assumptions
in order to keep the computational load manageable. For circular robots
that can turn on the spot, it is common to compute the value function in the
two-dimensional Cartesian coordinates only, ignoring the cost of rotation.
We also ignore state variables such as the robot’s velocity, despite the fact
that velocity clearly constrains where a robot can move at any given point in
time. To turn such a control policy into actual robot controls, it is therefore
common practice to combine such path planners with fast, reactive collision
avoidance modules that generate motor velocities while obeying dynamic
constraints. A path planner that considers the full robot state would have to
plan in at least five dimensions, comprising the full pose (three dimensions),
the translational and the rotational velocity of the robot. In two dimensions,
calculating the value function for environment like the one above takes only
a fraction of a second on a low-end PC.

506 14 Markov Decision Processes

(a) (b)

Figure 14.7 (a) Value iteration applied to a coarse discretization of the configura-
tion space. (b) Path in workspace coordinates. The robot indeed avoids the vertical
obstacle.

(a) (b)

Figure 14.8 (a) Probabilistic value iteration, here over a fine-grained grid. (b) The
corresponding path.

14.5 Summary 507

A second example is illustrated in Figure 14.6a. Shown there is a robot
arm model with two rotational degrees of freedom (DOFs), a shoulder and
an elbow joint. Determining the exact configuration of these joints is usu-
ally possible, through shaft encoders that are attached to the joints. Hence,
the approximation in (14.19) is a valid one. However, robot arm motion is
usually subject to noise, and as such the control noise should be taken into
account during planning. This makes arm control a primary application for
probabilistic MDP-style algorithms.
Robot armmotion is usually tackled in the configuration space. The configu-CONFIGURATION SPACE

ration space for the specific arm is shown in Figure 14.6b. Here the horizontal
axis graphs the orientation of the shoulder, and the vertical orientation that of
the elbow. Each point in this diagram, thus, corresponds to a specific configu-
ration. In fact, the small dot in Figure 14.6b corresponds to the configuration
shown in Figure 14.6a.
It is common to decompose the configuration space into areas in which
the robot can move, and areas where it would collide. This is shown in
Figure 14.6b. The white area in this figure corresponds to the collision-free
configuration space, commonly called freespace. The black boundary in the
configuration space is the constraint imposed by the table and the enclosing
case. The vertical obstacle, protruding into the robot’s workspace from above
in Figure 14.6a, corresponds to the light gray obstacle in the center of Fig-
ure 14.6b. This figure is not at all obvious, and the reader may take a minute
to visualize configurations in which the robot collides with this obstacle.
Figure 14.7a shows the result of value iteration using a coarse discretiza-
tion of the configurations space. Here the value is propagated using a deter-
ministic motion model and the resulting path is also shown. When executed,
this policy leads to a motion shown in Figure 14.7b. Figure 14.8 shows a re-
sult for a probabilistic motion model, with the resulting motion of the arm.
Again, this is the result of applying value iteration under the assumption
that the configuration of the robot arm is fully observable—a rare instance in
which this assumption is valid!

14.5 Summary

This chapter introduced the basic framework of probabilistic control.

• We identified the two basic types of uncertainty a robot may face: uncer-
tainty with regards to controls, and uncertainty in perception. The former
makes it difficult to determine what lies ahead, whereas the latter makes

508 14 Markov Decision Processes

it hard to determine what is. Uncertainty from unpredictable events in
the environment was silently subsumed into this taxonomy.

• We defined the control objective through a payoff function, which maps
states and controls to a goodness value. The payoff enables us to express
performance goals as well as costs of robot operation. The overall con-
trol objective is the maximization of all payoff, immediate and at future
points in time. To avoid possibly infinite sums, we introduced a so-called
discount factor that exponentially discounts future payoffs.

• We discussed an approach to solving probabilistic control problems by
devising a control policy. A control policy defines the control action that
is to be chosen, as a function of the robot’s information about the world. A
policy is optimal if it maximizes the sum of all future cumulative payoffs.
The policy is computed in a planning phase that precedes robot operation.
Once computed, it specifies the optimal control action for any possible
situation a robot may encounter.

• We devised a concrete algorithm for finding the optimal control policy for
the restricted case of fully observable domains, in which the state is fully
observable. Those domains are known as Markov decision processes.
The algorithm involved the calculation of a value function, which mea-
sures the expected cumulative payoff. A value function defines a policy
of greedily selecting the control that maximizes value. If the value func-
tion is optimal, so is the policy. The value iteration algorithm successively
improved the value function by updating it recursively.

• We discussed applications of MDP value iteration to probabilistic robotics
problems. For that we extracted themode of the belief as the state, and ap-
proximated the value function by a low-dimensional grid. The result was
a motion planning algorithm for stochastic environments, which enables
a robot to navigate even if its action effects are nondeterministic.

The material in this chapter lays the groundwork for the next chapter, in
which we will tackle the more general problem of control under measure-
ment uncertainty, also known as the partially observable MDP problem. We
already intuitively discussedwhy this problem ismuch harder than theMDP
problem. Nevertheless, some of the intuitions and basic algorithms carry
over to this case.
We close this chapter by remarking that there exist a number of alterna-
tive techniques for probabilistic planning and control under uncertainty. Our

14.6 Bibliographical Remarks 509

choice of value iteration as the basic method is due to its popularity; further,
value iteration techniques are among the best-understood techniques for the
more general POMDP case.
Value iteration is by no means the most effective algorithm for generating
control. Common planning algorithms include the A* algorithm, which uses
a heuristic in the computation of the value function, or direct policy search
techniques that identify a locally optimal policy through gradient descent.
However, value iteration plays a pivotal role in the next chapter, when we
address the much harder case of optimal control under sensor uncertainty.

14.6 Bibliographical Remarks

The idea of dynamic programming goes back to Bellman (1957) and Howard (1960). Bellman
(1957) identified the equilibrium equation for value iteration, which has henceforth been called
the Bellman equation. Markov decision processes (MDPs) with incomplete state estimationwere
first discussed by Astrom (1965); see also Mine and Osaki (1970) for early work on MDPs. Since
then, dynamic programming for control has been a vast field, as a recent book on this topic
attests (Bertsekas and Tsitsiklis 1996). Recent improvements to the basic paradigm include tech-
niques for real-time value iteration (Korf 1988), value iteration guided through the interaction
with an environment (Barto et al. 1991), model free value iteration (Watkins 1989), and value
iteration with parametric representation of the value function (Roy and Tsitsiklis 1996; Gor-
don 1995), or using trees (Moore 1991) (see also (Mahadevan and Kaelbling 1996)). Hierarchical
value iteration techniques have been developed by Parr and Russell (1998) and Dietterich (2000),
and Boutilier et al. (1998) improved the efficiency of MDP value iteration by reachability anal-
ysis. There exists also a rich literature on applications of value iteration, for example work by
Barniv (1990) on moving target detection. In the light of this rich literature, the material in this
chapter is a basic exposition of the most simple value iteration techniques, in preparation of the
techniques described in the chapters that follow.
Within robotics, the issue of robot motion planning has typically been investigated in a non-

probabilistic framework. As noted, the assumption is usually that the robot and its environ-
ment is perfectly known, and controls have deterministic effects. Complications arise from the
fact that the state space is continuous and high-dimensional. The standard text in this field is
Latombe (1991). It is predated by seminal work on a number of basic motion planning tech-
niques, visibility graphs (Wesley and Lozano-Perez 1979), potential field control (Khatib 1986),
and Canny’s (1987) famous silhouette algorithm. Rowat (1979) introduced the idea of Voronoi
graphs into the field of robot control, and Guibas et al. (1992) showed how to compute them
efficiently. Choset (1996) developed this paradigm into a family of efficient online exploration
and mapping techniques. Another set of techniques used randomized (but not probabilistic!)
techniques for searching the space of possible robot paths (Kavraki and Latombe 1994). A con-
temporary book on this topic is due to Choset et al. (2004).
In the language of the robotic motion planning field, the methods discussed in this chapter

are approximate cell decompositionswhich, in the deterministic case, provide no guarantee of com-APPROXIMATE CELL

DECOMPOSITION pleteness. Decompositions of continuous spaces into finite graphs have been studied in robotics
for decades. Reif (1979) developed a number of techniques for decomposing continuous spaces
into finitelymany cells that retained completeness inmotion planning. The idea of configuration

510 14 Markov Decision Processes

spaces, necessary to check collision with the techniques described in this chapter, was originally
proposed by Lozano-Perez (1983). Recursive cell decomposition techniques for configuration
space planning can be found in Brooks and Lozano-Perez (1985), all under the non-probabilistic
assumptions of perfect world models and perfect robots. Acting under partial knowledge has
been addressed by Goldberg (1993), who in his Ph.D. thesis developed algorithms for orienting
parts in the absence of sensors. Sharma (1992) developed robot path planning techniques with
stochastic obstacles.
Policy functions that assign to every possible robot state a control action are known as con-

trollers. An algorithm for devising a control policy is often called optimal controller (Bryson and
Yu-Chi 1975). Control policies are also known as navigation function (Koditschek 1987; Rimon
and Koditschek 1992). Within AI, they are known as universal plans (Schoppers 1987), and a
number of symbolic planning algorithms have addressed the problem of finding such universal
plans (Dean et al. 1995; Kushmerick et al. 1995; Hoey et al. 1999). Some robotic work has been
devoted to bridging the gap between universal plans and open-loop action sequences, such as
in Nourbakhsh’s (1987) Ph.D. work.
We also remark that the notion of “control” in this book is somewhat narrowly defined. The

chapter deliberately did not address standard techniques in the rich field of control, such as PID
control and other popular techniques often found in introductory textbooks (Dorf and Bishop
2001). Clearly, such techniques are both necessary and applicable in many real-world robot
systems. Our choice to omit them is based on space constraints, and on the fact that most of
these techniques do not rely on explicit representations of uncertainty.

14.7 Exercises

1. The dynamic programming algorithm uses the most likely state to deter-
mine its action. Can you draw a robot environment in which conditioning
actions on the most likely state is fundamentally the wrong choice? Can
you give a concise reason why this might sometimes be a poor choice?

2. Suppose we run value iteration to completion, for a fixed cost function.
Then the cost function changes. We would now like to adjust the value
function by further iterations of the algorithm, using the previous value
function as a starting point.

(a) Is this a good or a bad idea? Does your answer depend on whether the
cost increased or decreased?

(b) Can you flesh out an algorithm that would be more efficient than sim-
ply continuing value iteration after the cost changes? If you can, argue
why your algorithm is more efficient. If not, argue why no such algo-
rithm may exist.

3. Heaven or Hell? In this exercise, you are asked to extend dynamic pro-
gramming to an environment with a single hidden state variable. The

14.7 Exercises 511

environment is a maze with a designated start marked “S,” and two pos-
sible goal states, both marked “H.”

What the agent does not know is which of the two goal states provides a
positive reward. One will give +100, whereas the other will give −100.
There is a .5 probability that either of those situations is true. The cost
of moving is −1; the agent can only move into the four directions north,
south, east, and west. Once a state labeled “H” has been reached, the play
is over.

(a) Implement a value iteration algorithm for this scenario (and ignore the
label “X” in the figure). Have your implementation compute the value
of the starting state. What is the optimal policy?

(b) Modify your value algorithm to accommodate a probabilistic motion
model: with .9 chance the agent moves as desired; with .1 chance it
will select any of the three other directions at random. Run your value
iteration algorithm again, and compute both the value of the starting
state, and the optimal policy.

(c) Now suppose the location labeled “X” contains a sign that informs the
agent of the correct assignment of rewards to the two states labeled
“H.” How does this affect the optimal policy?

(d) How can youmodify your value iteration algorithm to find the optimal
policy? Be concise. State any modifications to the space over which the
value function is defined.

(e) Implement your modification, and compute both the value of the start-
ing state and the optimal policy.

15 Partially Observable Markov
Decision Processes

15.1 Motivation

This chapter discusses algorithms for the partially observable robot control
problem. These algorithms address both the uncertainty in measurement
and the uncertainty in control effects. They generalize the value iteration al-
gorithm discussed in the previous chapter, which was restricted to action ef-
fect uncertainty. The framework studied here is known as partially observable
Markov decision processes, or POMDPs. This name was coined in the opera-
tions research literature. The term partial indicates that the state of the world
cannot be sensed directly. Instead, the measurements received by the robot
are incomplete and usually noisy projections of this state.
As has been discussed in so many chapters of this book, partial observ-
ability implies that the robot has to estimate a posterior distribution over
possible world states. Algorithms for finding the optimal control policy exist
for finite worlds, where the state space, the action space, the space of obser-
vations, and the planning horizon T are all finite. Unfortunately, these exact
methods are computationally involved. For the more interesting continuous
case, the best known algorithms are approximate.
All algorithms studied in this chapter build on the value iteration ap-
proach discussed previously. Let us restate Equation (14.14), which is the
central update equation in value iteration in MDPs:

VT (x) = γ max
u

[
r(x, u) +

∫
VT−1(x

′) p(x′ | u, x) dx′
]

(15.1)

with V1(x) = γ maxu r(x, u). In POMDPs, we apply the very same idea.
However, the state x it not observable. The robot has to make its decision
in the belief state, which is the space of posterior distributions over states.

514 15 Partially Observable Markov Decision Processes

Throughout this and the next chapters, we will abbreviate a belief by the
symbol b, instead of the more elaborate bel used in previous chapters.
POMDPs compute a value function over belief space:

VT (b) = γ max
u

[
r(b, u) +

∫
VT−1(b

′) p(b′ | u, b) db′
]

(15.2)

with V1(b) = γ maxu Ex[r(x, u)]. The induced control policy is as follows:

πT (b) = argmax
u

[
r(b, u) +

∫
VT−1(b

′) p(b′ | u, b) db′
]

(15.3)

A belief is a probability distribution; thus, each value in a POMDP is a func-
tion of an entire probability distribution. This is problematic. If the state
space is finite, the belief space is continuous, since it is the space of all distri-
butions over the state space. Thus, there is a continuum of different values;
whereas there was only a finite number of different values in the MDP case.
The situation is even more delicate for continuous state spaces, where the
belief space is an infinitely-dimensional continuum.
An additional complication arises from the computational properties of
the value function calculation. Equations (15.2) and (15.3) integrate over all
beliefs b′. Given the complex nature of the belief space, it is not at all obvious
that the integration can be carried out exactly, or that effective approxima-
tions can be found. It should therefore come at no surprise that calculating
the value function VT is more complicated in belief space than it is in state
space.
Luckily, an exact solution exists for the interesting special case of finite
worlds, in which the state space, the action space, the space of observations,
and the planning horizon are all finite. This solution represents value func-
tions by piecewise linear functions over the belief space. As we shall see, thePIECEWISE LINEAR

FUNCTION linearity of this representation arises directly from the fact that the expecta-
tion is a linear operator. The piecewise nature is the result of the fact that
the robot has the ability to select controls, and in different parts of the belief
space it will select different controls. All these statements will be proven in
this chapter.
This chapter discusses the general POMDP algorithm for calculating poli-
cies defined over the space of all belief distributions. This algorithm is com-
putationally cumbersome but correct for finite POMDPs; although a variant
will be discussed that is highly tractable. The subsequent chapter will dis-
cuss a number of more efficient POMDP algorithms, which are approximate
but scale to actual robotics problems.

15.2 An Illustrative Example 515

Figure 15.1 The two-state environment used to illustrate value iteration in belief
space.

15.2 An Illustrative Example

15.2.1 Setup

We illustrate value iteration in belief spaces through a numerical example.
This example is simplistic, but by discussing it we identify all major elements
of value iteration in belief spaces.
Our example is the two-state world in Figure 15.1. The states are labeled

x1 and x2. The robot can choose among three different control actions, u1,
u2, and u3. Actions u1 and u2 are terminal: When executed, they result in the
following immediate payoff:

r(x1, u1) = −100 r(x2, u1) = +100(15.4)

r(x1, u2) = +100 r(x2, u2) = −50(15.5)

The dilemma is that both actions provide opposite payoffs in each of the
states. Specifically, when in state x1, u2 is the optimal action, whereas it is u1

in state x2. Thus, knowledge of the state translates directly into payoff when
selecting the optimal action.
To acquire such knowledge, the robot is provided with a third control ac-
tion, u3. Executing this control comes at a mild cost of −1:

r(x1, u3) = r(x2, u3) = −1(15.6)

516 15 Partially Observable Markov Decision Processes

One might think of this as the cost of waiting, or the cost of sensing. Action
u3 affects the state of the world in a non-deterministic manner:

p(x′
1|x1, u3) = 0.2 p(x′

2|x1, u3) = 0.8(15.7)

p(x′
1|x2, u3) = 0.8 p(x′

2|x2, u3) = 0.2(15.8)

In other words, when the robot executes u3, the state flips to the respective
other state with 0.8 probability, and the robot pays a unit cost.
Nevertheless, there is a benefit to executing action u3. Before each control
decision, the robot can sense. By sensing, the robot gains knowledge about
the state, and in turn it can make a better control decision that leads to higher
payoff in expectation. The action u3 lets the robot sense without committing
to a terminal action.
In our example, the measurement model is governed by the following
probability distribution:

p(z1|x1) = 0.7 p(z2|x1) = 0.3(15.9)

p(z1|x2) = 0.3 p(z2|x2) = 0.7(15.10)

Put differently, if the robot measures z1 its confidence increases for being in
x1, and the same is the case for z2 relative to x2.
The reason for selecting a two-state example is that it makes it easy to
graph functions over the belief space. In particular, a belief state b is charac-
terized by p1 = b(x1) and p2 = b(x2). However, we know p2 = 1− p1, hence
it suffices to graph p1. The corresponding control policy π is a function that
maps the unit interval [0; 1] to the space of all actions:

π : [0; 1] −→ u(15.11)

15.2.2 Control Choice

In determining when to execute what control, let us start our consideration
with the immediate payoff for each of the three control choices, u1, u2, and
u3. In the previous chapter, payoff was considered a function of state and
actions. Since we do not know the state, we have to generalize the notion
of a payoff to accommodate belief state. Specifically, for any given belief
b = (p1, p2), the expected payoff under this belief is given by the following
expectation:

r(b, u) = Ex[r(x, u)] = p1 r(x1, u) + p2 r(x2, u)(15.12)

The function r(b, u) defines the payoff in POMDPs.PAYOFF IN POMDPS

15.2 An Illustrative Example 517

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(a) r(b, u1) for action u1

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(b) r(b, u2) for action u2

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(c) r(b, u3) for action u3

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(d) V1(b) = max
u

r(b, u)

x2 p1 x1

u1 optimal u2 optimal

Figure 15.2 Diagrams (a), (b), and (c) depict the expected payoff r as a function of
the belief state parameter p1 = b(x1), for each of the three actions u1, u2, and u3.
(d) The value function at horizon T = 1 corresponds to the maximum of these three
linear functions.

Figure 15.2a graphs the expected payoff r(b, u1) for control choice u1, pa-
rameterized by the parameter p1. On the leftmost end of this diagram, we
have p1 = 0, hence the robot believes the world to be in state x2 with absolute
confidence. Executing action u1 hence yields r(x2, u1) = 100, as specified in
Equation (15.4). On the rightmost end, we have p1 = 1, hence the state is x1.
Consequently, control choice u1 will result in r(x1, u1) = −100. In between,
the expectation provides a linear combination of these two values:

r(b, u1) = −100 p1 + 100 p2 = −100 p1 + 100 (1− p1)(15.13)

This function is graphed in Figure 15.2a.
Figures Figure 15.2b&c show the corresponding functions for action u2 and

518 15 Partially Observable Markov Decision Processes

u3, respectively. For u2, we obtain

r(b, u2) = 100 p1 − 50 (1− p1)(15.14)

and for u3 we obtain the constant function

r(b, u3) = −1 p1 − 1 (1− p1) = −1(15.15)

Our first exercise in understanding value iteration in belief spaces will focus
on the computation of the value function V1, which is the value function that
is optimal with regards to horizon T = 1 decision processes. Within a single
decision cycle, our robot can choose among its three different control choices.
So which one should it choose?
The answer is easily read off the diagrams studied thus far. For any be-
lief state p1, the diagrams in Figures 15.2a-c graph the expected payoff for
each of the action choices. Since the goal is to maximize payoff, the robot
simply selects the action of highest expected payoff. This is visualized in
Figure 15.2d: This diagram superimposes all three expected payoff graphs.
In the left region, u1 is the optimal action, hence its value function dominates.
The transition occurs when r(b, u1) = r(b, u2), which resolves to p1 = 3

7 . For
values p1 larger than 3

7 , u2 will be the better action. Thus the (T = 1)-optimal
policy is

π1(b) =

⎧⎨
⎩

u1 if p1 ≤ 3
7

u2 if p1 > 3
7

(15.16)

The corresponding value is then the thick upper graph in Figure 15.2d. This
graph is a piecewise linear, convex function. It is the maximum of the indi-
vidual payoff functions in Figures 15.2a-c. Thus, we can write it as a maxi-
mum over 3 functions:

V1(b) = max
u

r(b, u)(15.17)

= max

⎧⎨
⎩
−100 p1 +100 (1− p1)

100 p1 −50 (1− p1)

−1

⎫⎬
⎭

(∗)
(∗)

Obviously, only the linear functions marked (∗) in (15.17) contribute. The
remaining linear function can safely be pruned away:

V1(b) = max

{ −100 p1 +100 (1− p1)

100 p1 −50 (1− p1)

}
(15.18)

15.2 An Illustrative Example 519

We will use this pruning trick repeatedly in our example. Prunable linear
constraints are shown as dashed lines in Figure 15.2d and many graphs to
follow.

15.2.3 Sensing

The next step in our reasoning involves perception. What if the robot can
sense before it chooses its control? How does this affect the optimal value
function? Obviously, sensing provides information about the state, hence
should enable the robot to choose a better control action. Specifically, for the
worst possible belief thus far, p1 = 3

7 , the expected payoff in our example
was 100

7 ≈ 14.3, which is the value at the kink in Figure 15.2d. Clearly, if we
can sense first, we find ourselves in a different belief after sensing. The value
of this belief will be better than 14.3, but by how much?
The answer is surprising. Suppose we sense z1. Figure 15.3a shows the
belief after sensing z1 as a function of the belief before sensing. Let us dissect
this function. If our pre-sensing belief is p1 = 0, our post-sensing belief is
also p1 = 0, regardless of the measurement. Similarly for p1 = 1. Hence, at
the extreme ends, this function is the identity. In between, we are uncertain
as to what the state of the world is, and measuring z1 does shift our belief.
The amount it shifts is governed by Bayes rule:

p′1 = p(x1 | z)(15.19)

=
p(z1 | x1) p(x1)

p(z1)

=
0.7 p1

p(z1)

and

p′2 =
0.3 (1− p1)

p(z1)
(15.20)

The normalizer p(z1) adds the non-linearity in Figure 15.3a. In our example,
it resolves to

p(z1) = 0.7 p1 + 0.3 (1− p1) = 0.4 p1 + 0.3(15.21)

and hence p′1 = 0.7 p1

0.4 p1+0.3 . However, as we shall see below, this normalizer
nicely cancels out. More on this in a minute.
Let us first study the effect of this non-linear transfer function on the
value function V1. Suppose we know that we observed z1, and then have

520 15 Partially Observable Markov Decision Processes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) p′1 after sensing z1

x2

x1

x2 p1 before sensing z1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(b) V1(b)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(c) V1(b | z1)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(d) p(z1) V1(b | z1)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(e) p(z2) V1(b | z2)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(f) V̄1(b) =
∑

p(zi) V1(b | zi)

x2 p1 x1

u1 optimal

unclear

u2 optimal

Figure 15.3 The effect of sensing on the value function: (a) The belief after sensing
z1 as a function of the belief before sensing z1. Sensing z1 makes the robot more con-
fident that the state is x1. Projecting the value function in (b) through this nonlinear
function results in the non-linear value function in (c). (d) Dividing this value func-
tion by the probability of observing z1 results in a piecewise linear function. (e) The
same piecewise linear function for measurement z2. (f) The expected value function
after sensing.

15.2 An Illustrative Example 521

to make an action choice. What would that choice be, and what would the
corresponding value function look like? The answer is given graphically in
Figure 15.3c. This figure depicts the piecewise linear value function in Fig-
ure 15.3b, mapped through the nonlinear measurement function discussed
above (and shown in Figure 15.3a). The reader may take a moment to get
oriented here: Take a belief p1, map it to a corresponding belief p′1 according
to our non-linear function, and then read off its value in Figure 15.3b. This
procedure, for all p1 ∈ [0; 1], leads to the graph in Figure 15.3c.
Mathematically, this graph is given by

V1(b | z1) = max

⎧⎪⎨
⎪⎩
−100 · 0.7 p1

p(z1)
+100 · 0.3 (1−p1)

p(z1)

100 · 0.7 p1

p(z1)
−50 · 0.3 (1−p1)

p(z1)

⎫⎪⎬
⎪⎭(15.22)

=
1

p(z1)
max

{ −70 p1 +30 (1− p1)

70 p1 −15 (1− p1)

}
which is simply the result of replacing p1 by p′1 in the value function V1 spec-
ified in (15.18). We note in Figure 15.3c that the belief of “worst” value has
shifted to the left. Now the worst belief is the one that, after sensing z1,
makes us believe with 3

7 probability we are in state x1.
However, this is the consideration for one of the two measurements only,
the value before sensing has to take both measurements into account. Specif-
ically, the value before sensing, denoted V̄1, is given by the following expec-
tation:

V̄1(b) = Ez[V1(b | z)] =

2∑
i=1

p(zi) V1(b | zi)(15.23)

We immediately notice that in this expectation, each contributing value func-
tion V1(b | zi) is multiplied by the probability p(zi), which was the cause of
the nonlinearity in the pre-measurement value function. Plugging (15.19)
into this expression gives us

V̄1(b) =

2∑
i=1

p(zi) V1(
p(zi | x1) p1

p(zi)
)(15.24)

=

2∑
i=1

p(zi)
1

p(zi)
V1(p(zi | x1) p1)

=
2∑

i=1

V1(p(zi | x1) p1)

522 15 Partially Observable Markov Decision Processes

This transformation is true because each element in V1 is linear in 1/p(zi),
as illustrated by example in (15.22). There we were able to move the factor
1/p(zi) out of the maximization, since each term in the maximization is a
product of this factor. After restoring the terms accordingly, the term p(zi)

simply cancels out!
In our example, we have two measurements, hence we can compute the
expectation p(zi) V1(b | zi) for each of these measurements. The reader may
recall that these terms are added in the expectation (15.23). For z1, we already
computed V1(b | zi) in (15.22), hence

p(z1) V1(b | z1) = max

{ −70 p1 +30 (1− p1)

70 p1 −15 (1− p1)

}
(15.25)

This function is shown in Figure 15.3d: It is indeed the maximum of two
linear functions. Similarly, for z2 we obtain

p(z2) V1(b | z2) = max

{ −30 p1 +70 (1− p1)

30 p1 −35 (1− p1)

}
(15.26)

This function is depicted in Figure 15.3e.
The desired value function before sensing is then obtained by adding those
two terms, according to Equation (15.23):

V̄1 = max

{ −70 p1 +30 (1− p1)

70 p1 −15 (1− p1)

}
+ max

{ −30 p1 +70 (1− p1)

30 p1 −35 (1− p1)

}
(15.27)

This sum is shown in Figure 15.3f. It has a remarkable shape: Instead of a sin-
gle kink, it possesses two different kinks, separating the value function into
three different linear segments. For the left segment, u1 is the optimal action,
no matter what additional information the robot may reap through future
sensing. Similarly for the right segment, u2 is the optimal control action no
matter what. In the center region, however, sensing matters. The optimal
action is determined by what the robot senses. In doing so, the center seg-
ment defines a value that is significantly higher than the corresponding value
without sensing, shown in Figure 15.2d. Essentially, the ability to sense lifted
an entire region in the value function to a higher level, in the region where
the robot was least certain about the state of the world. This remarkable find-
ing shows that value iteration in belief space indeed values sensing, but only
to the extent that it matters for future control choices.
Let us return to computing this value function, since it may appear easier
than it is. Equation (15.27) requires us to compute the sum of two maxima
over linear functions. Bringing this into our canonical form—which is the

15.2 An Illustrative Example 523

maximum over linear functions without the sum—requires some thought.
Specifically, our new value function V̄1 will be bounded below by any sum
that adds a linear function from the first max-expression to a linear function
from the second max-expression. This leaves us with four possible combina-
tions:

V̄1(b) = max

⎧⎪⎪⎨
⎪⎪⎩
−70 p1 +30 (1− p1) −30 p1 +70 (1− p1)

−70 p1 +30 (1− p1) +30 p1 −35 (1− p1)

70 p1 −15 (1− p1) −30 p1 +70 (1− p1)

70 p1 −15 (1− p1) +30 p1 −35 (1− p1)

⎫⎪⎪⎬
⎪⎪⎭(15.28)

= max

⎧⎪⎪⎨
⎪⎪⎩
−100 p1 +100 (1− p1)

−40 p1 −5 (1− p1)

40 p1 +55 (1− p1)

100 p1 −50 (1− p1)

⎫⎪⎪⎬
⎪⎪⎭

(∗)

(∗)
(∗)

= max

⎧⎨
⎩
−100 p1 +100 (1− p1)

40 p1 +55 (1− p1)

100 p1 −50 (1− p1)

⎫⎬
⎭

Once again, we use (∗) to denote constraints that actually contribute to the
definition of the value function. As shown in Figure 15.3f, only three of these
four linear functions are required, and the fourth can safely be pruned away.

15.2.4 Prediction

Our final step concerns state transitions. When the robot selects an action, its
state changes. To plan at a horizon larger than T = 1, we have to take this into
consideration and project our value function accordingly. In our example, u1

and u2 are both terminal actions. Thus, we only have to consider the effect
of action u3.
Luckily, state transitions are not anywhere as intricate as measurements
in POMDPs. Figure 15.4a shows mapping of the belief upon executing u3.
Specifically, suppose we start out in state x1 with absolute certainty, hence
p1 = 1. Then according to our transition probability model in Equation
(15.7), we have p′1 = p(x′

1|x1, u3) = 0.2. Similarly, for p1 = 0 we get
p′1 = p(x′

1|x2, u3) = 0.8. In between the expectation is linear:

p′1 = Ex[p(x′
1|x, u3)](15.29)

=
2∑

i=1

p(x′
1|xi, u3) pi

524 15 Partially Observable Markov Decision Processes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) p1 after action u3

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(b) V̄1(b)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(c) V2(b | u3)

x2 p1 x1

u2
unclear

u1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(d) V2(b) = max
u

V2(b | u)

x2 p1 x1

u1 optimal

unclear

u2 optimal

Figure 15.4 (a) The belief state parameter p′1 after executing action u3, as a function
of the parameter p1 before the action. Propagating the belief shown in (b) through
the inverse of this mapping results in the belief shown in (c). (d) The value function
V2 obtained by maximizing the propagated belief function, and the payoff of the two
remaining actions, u1 and u2.

= 0.2 p1 + 0.8 (1− p1) = 0.8− 0.6 p1

This is the function graphed in Figure 15.4a. If we now back-project the
value function in Figure 15.4b—which is equivalent to the one shown in Fig-
ure 15.3f—we obtain the value function in Figure 15.4c. This value function
is flatter than the one before the projection step, reflecting the loss of infor-
mation through the state transition. It is also mirrored, since in expectation
the state changes when executing u3.
Mathematically, this value function is computed by projecting (15.28)

15.2 An Illustrative Example 525

through (15.29).

V̄1(b | u3) = max

⎧⎨
⎩
−100 (0.8− 0.6 p1) +100 (1− (0.8− 0.6 p1))

40 (0.8− 0.6 p1) +55 (1− (0.8− 0.6 p1))

100 (0.8− 0.6 p1) −50 (1− (0.8− 0.6 p1))

⎫⎬
⎭(15.30)

= max

⎧⎨
⎩
−100 (0.8− 0.6 p1) +100 (0.2 + 0.6 p1)

40 (0.8− 0.6 p1) +55 (0.2 + 0.6 p1)

100 (0.8− 0.6 p1) −50 (0.2 + 0.6 p1)

⎫⎬
⎭

= max

⎧⎨
⎩

60 p1 −60 (1− p1)

52 p1 +43 (1− p1)

−20 p1 +70 (1− p1)

⎫⎬
⎭

These transformations are easily checked by hand. Figure 15.4c shows this
function, along with the optimal control actions.
We have now almost completed the vale function V2 with a planning hori-

zon of T = 2. Once again, the robot is given a choice whether to execute the
control u3, or to directly engage in any of the terminal actions u1 or u2. As
before, this choice is implemented by adding two new options to our consid-
eration, in the form of the two linear functions r(b, u1) and r(b, u2). We also
must subtract the cost of executing action u3 from the value function.
This leads to the diagram in Figure 15.4d, which is of the form

V̄2(b) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−100 p1 +100 (1− p1)

100 p1 −50 (1− p1)

59 p1 −61 (1− p1)

51 p1 +42 (1− p1)

−21 p1 +69 (1− p1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(∗)
(∗)

(∗)
(15.31)

Notice that we simply added the two options (lines one and two), and sub-
tracted the uniform cost of u3 from all other linear constraints (lines three
through five). Once again, only three of those constraints are needed, as
indicated by the (∗)’s. The resulting value can thus be rewritten as

V̄2(b) = max

⎧⎨
⎩
−100 p1 +100 (1− p1)

100 p1 −50 (1− p1)

51 p1 +42 (1− p1)

⎫⎬
⎭(15.32)

526 15 Partially Observable Markov Decision Processes

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

(a) V10(b) at horizon T = 10

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

(b) V20(b) at horizon T = 20

x2 p1 x1

Figure 15.5 The value function V for horizons T = 10 and T = 20. Note that the
vertical axis in these plots differs in scale from previous depictions of value functions.

15.2.5 Deep Horizons and Pruning

We have now executed a full backup step in belief space. This algorithm isBACKUP STEP IN BELIEF

SPACE easily recursed. Figure 15.5 shows the value function at horizon T = 10 and
T = 20, respectively. Both of these value functions are seemingly similar.
With appropriate pruning, V20 has only 13 components

V̄20(b) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−100 p1 +100 (1− p1)

100 p1 −50 (1− p1)

64.1512 p1 +65.9454 (1− p1)

64.1513 p1 +65.9454 (1− p1)

64.1531 p1 +65.9442 (1− p1)

68.7968 p1 +62.0658 (1− p1)

68.7968 p1 +62.0658 (1− p1)

69.0914 p1 +61.5714 (1− p1)

68.8167 p1 +62.0439 (1− p1)

69.0369 p1 +61.6779 (1− p1)

41.7249 p1 +76.5944 (1− p1)

39.8427 p1 +77.1759 (1− p1)

39.8334 p1 +77.1786 (1− p1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.33)

We recognize the two familiar linear functions on the top; all others corre-
spond to specific sequences of measurements and action choices.
As simple consideration shows that pruning is of essence. Without prun-
ing, each update brings two new linear constraints (action choice), and then
squares the number of constraints (measurement). Thus, an unpruned value

15.3 The Finite World POMDP Algorithm 527

function for T = 20 is defined over 10547,864 linear functions; at T = 30 we
have 10561,012,337 linear constraints. The pruned value function, in compari-
son, contains only 13 such constraints.
This enormous explosion of linear pieces is a key reason why plain
POMDPs are impractical. Figure 15.6 compares side-by-side the steps that
led to the value function V2. The left column shows our pruned functions,
whereas the right row maintains all linear functions without pruning. While
we only have a single measurement update in this calculation, the number
of unused functions is already enormous. We will return to this point later,
when we will devise efficient approximate POMDP algorithms.
A final observation of our analysis is that the optimal value function for
any finite horizon is continuous, piecewise linear, and convex. Each linear
piece corresponds to a different action choice at some point in the future.
The convexity of the value function indicates the rather intuitive observation,
namely that knowing is always superior to not knowing. Given two belief
states b and b′, the mixed value of the belief states is larger or equal to the
value of the mixed belief state, for some mixing parameter β with 0 ≤ β ≤ 1:

βV (b) + (1− β)V (b′) ≥ V (βb + (1− β)b′)(15.34)

This characterization only applies to the finite horizon case. Under infinite
horizon, the value function can be discontinuous and nonlinear.

15.3 The Finite World POMDP Algorithm

The previous section showed, by example, how to calculate value functions
in finite worlds. Here we briefly discuss a general algorithm for calculating
a value function, before deriving it from first principles.
The algorithm POMDP is listed in Table 15.1. This algorithm accepts as

an input just a single parameter: T , the planning horizon for the POMDP. It
returns a set of parameter vectors, each of the form

(v1, . . . , vN)(15.35)

Each of these parameters specifies a linear function over the belief space of
the form∑

i

vi pi(15.36)

528 15 Partially Observable Markov Decision Processes

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(a) V1(b) pruned

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(b) same without pruning

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(c) V̄1(b) pruned

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(d) same without pruning

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(e) V2(b | u3) pruned

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

(f) same without pruning

x2 p1 x1

Figure 15.6 Comparison of an exact pruning algorithm (left row) versus a non-
pruning POMDP algorithm (right row), for the first few steps of the POMDP planning
algorithm. Obviously, the number of linear constraints increases dramatically with-
out pruning. At T = 20, the unpruned value function is defined over 10547,864 linear
functions, whereas the pruned one only uses 13 such functions.

15.3 The Finite World POMDP Algorithm 529

1: Algorithm POMDP(T):

2: Υ = (0; 0, . . . , 0)

3: for τ = 1 to T do
4: Υ′ = ∅
5: for all (u′; vk

1 , . . . , vk
N) in Υ do

6: for all control actions u do

7: for all measurements z do
8: for j = 1 to N do

9: vk
u,z,j =

N∑
i=1

vk
i p(z | xi) p(xi | u, xj)

10: endfor
11: endfor
12: endfor
13: endfor
14: for all control actions u do

15: for all k(1), . . . , k(M) = (1, . . . , 1) to (|Υ|, . . . , |Υ|) do
16: for i = 1 to N do

17: v′
i = γ

[
r(xi, u) +

∑
z

v
k(z)
u,z,i

]
18: endfor
19: add (u; v′

1, . . . , v
′
N) to Υ′

20: endfor
21: endfor
22: optional: prune Υ′

23: Υ = Υ′

24: endfor
25: return Υ

Table 15.1 The POMDP algorithm for discrete worlds. This algorithm represents the
optimal value function by a set of linear constraints, which are calculated recursively.

530 15 Partially Observable Markov Decision Processes

1: Algorithm policy_POMDP(Υ, b = (p1, . . . , pN)):

2: û = argmax
(u;vk

1 ,...,vk
N

)∈Υ

N∑
i=1

vk
i pi

3: return û

Table 15.2 The algorithm for determining the optimal action for a policy repre-
sented by the set of linear functions Υ.

The actual value is governed by the maximum of all these linear functions:MAXIMUM OF LINEAR

FUNCTIONS

max
(p1,...,pN)

∑
i

vi pi(15.37)

The algorithm POMDP computes this value function recursively. An initial
set for the pseudo-horizon T = 0 is set in line 2 of Table 15.1. The algo-
rithm POMDP then recursively computes a new set in the nested loop of
lines 3-24. A key computational step takes place in line 9: Here, the coeffi-
cients vk

u,z,j of the linear functions needed to compute the next set of linear
constraints are computed. Each linear function results from executing con-
trol u, followed by observing measurement z, and then executing control u′.
The linear constraint corresponding to u′ was calculated in the previous iter-
ation for a smaller planning horizon (taken in line 5). Thus, upon reaching
line 14, the algorithm has generated one linear function for each combination
of control action, measurement, and linear constraint of the previous value
function.
The linear constraints of the new value function result by taking the expec-
tations over measurements, as done in lines 14-21. For each control action,
the algorithm generates KM such linear constraints in line 15. This large
number is due to the fact that each expectation is taken over the M pos-
sible measurements, each of which can be “combined” with any of the K

constraints contained in the previous value function. Line 17 computes the
expectation for each such combination. The resulting constraint is added to
the new set of constraints in line 19.
The algorithm for finding the optimal control action is shown in Ta-
ble 15.2. The input to this algorithm is a belief state, parameterized by

15.4 Mathematical Derivation of POMDPs 531

b = (p1, . . . , pN), along with the set of linear functions Υ. The optimal ac-
tion is determined by search through all linear functions, and identifying the
one that maximizes its value for b. This value is returned in line 3 of the
algorithm policy_POMDP:, Table 15.2.

15.4 Mathematical Derivation of POMDPs

15.4.1 Value Iteration in Belief Space

The general update for the value function implements (15.2), restated here
for convenience.

VT (b) = γ max
u

[
r(b, u) +

∫
VT−1(b

′) p(b′ | u, b) db′
]

(15.38)

We begin by transforming this equation into a more practical form, one that
avoids integration over the space of all possible beliefs.
A key factor in this update is the conditional probability p(b′ | u, b). This
probability specifies a distribution over probability distributions. Given a
belief b and a control action u, the outcome is indeed a distribution over dis-
tributions. This is because the concrete belief b′ is also based on the next
measurement, the measurement itself is generated stochastically. Dealing
with distributions of distributions adds an element of complexity that is un-
desirable.
If we fix the measurement, the posterior b′ is unique and p(b′ | u, b) degen-
erate to a point-mass distribution. Why is this so? The answer is provided by
the Bayes filter. From the belief b before action execution, the action u, and
the subsequent observation z, the Bayes filter calculates a single, posterior
belief b′ which is the single, correct belief. Thus, we conclude that if only we
knew z, the integration over all beliefs in (15.38) would be obsolete.
This insight can be exploited by re-expressing

p(b′ | u, b) =

∫
p(b′ | u, b, z) p(z | u, b) dz(15.39)

where p(b′ | u, b, z) is a point-mass distribution focused on the single belief
calculated by the Bayes filter. Plugging this integral into Equation (15.38)
gives us

VT (b) = γ max
u

[
r(b, u) +

∫ [∫
VT−1(b

′) p(b′ | u, b, z) db′
]

p(z | u, b) dz

]
(15.40)

532 15 Partially Observable Markov Decision Processes

The inner integral∫
VT−1(b

′) p(b′ | u, b, z) db′(15.41)

contains only one non-zero term. This is the term where b′ is the distribution
calculated from b, u, and z using the Bayes filter. Let us call this distribution
B(b, u, z):

B(b, u, z)(x′) = p(x′ | z, u, b)(15.42)

=
p(z | x′, u, b) p(x′ | u, b)

p(z | u, b)

=
1

p(z | u, b)
p(z | x′)

∫
p(x′ | u, b, s) p(x | u, b) dx

=
1

p(z | u, b)
p(z | x′)

∫
p(x′ | u, x) b(x) dx

The reader should recognize the familiar Bayes filter derivation that was ex-
tensively discussed in Chapter 2, this timewith the normalizer made explicit.
We can now rewrite (15.40) as follows. Note that this expression no longer
integrates over b′.

VT (b) = γ max
u

[
r(b, u) +

∫
VT−1(B(b, u, z)) p(z | u, b) dz

]
(15.43)

This form is more convenient than the original one in (15.38), since it only
requires integration over all possible measurements z, instead of all possible
belief distributions b′. This transformation was used implicitly in the ex-
ample above, where a new value function was obtained by mixing together
finitely many piecewise linear functions.
Below, it will be convenient to split the maximization over actions from the
integration. Hence, we notice that (15.43) can be rewritten as the following
two equations:

VT (b, u) = γ

[
r(b, u) +

∫
VT−1(B(b, u, z)) p(z | u, b) dz

]
(15.44)

VT (b) = max
u

VT (b, u)(15.45)

Here VT (b, u) is the horizon T -value function over the belief b, assuming that
the immediate next action is u.

15.4.2 Value Function Representation

As in our example, we represent the value function by a maximum of a set
of linear functions. We already discussed that any linear function over the

15.4 Mathematical Derivation of POMDPs 533

belief simplex can be represented by the set of coefficients v1, . . . , vN :

V (b) =
N∑

i=1

vi pi(15.46)

where, as usual, p1, . . . , pN are the parameters of the belief distribution b. As
in our example, a piecewise linear and convex value function VT (b) can be
represented by the maximum of a finite set of linear functions

V (b) = max
k

N∑
i=1

vk
i pi(15.47)

where vk
1 , . . . , vk

N denotes the parameters of the k-th linear function. The
reader should quickly convince herself that the maximum of a finite set of
linear functions is indeed a convex, continuous, and piecewise linear func-
tion.

15.4.3 Calculating the Value Function

We will now derive a recursive equation for calculating the value function
VT (b). We assume by induction that VT−1(b), the value function for horizon
T − 1, is represented by a piecewise linear function as specified above. As
part of the derivation, we will show that under the assumption that VT−1(b)

is piecewise linear and convex, VT (b) is also piecewise linear and convex.
Induction over the planning horizon T then proves that all value functions
with finite horizon are indeed piecewise linear and convex.
We begin with Equations (15.44) and (15.45). If the measurement space is
finite, we can replace the integration over z by a finite sum.

VT (b, u) = γ

[
r(b, u) +

∑
z

VT−1(B(b, u, z)) p(z | u, b)

]
(15.48)

VT (b) = max
u

VT (b, u)(15.49)

The beliefB(b, u, z) is obtained using the following expression, derived from
Equation (15.42) by replacing the integral with a finite sum.

B(b, u, z)(x′) =
1

p(z | u, b)
p(z | x′)

∑
x

p(x′ | u, x) b(x)(15.50)

If the belief b is represented by the parameters {p1, . . . , pN}, and the belief
B(b, u, z) by {p′1, . . . , p′N}, it follows that the j-th parameter of the belief b′ is

534 15 Partially Observable Markov Decision Processes

computed as follows:

p′j =
1

p(z | u, b)
p(z | xj)

N∑
i=1

p(xj | u, xi) pi(15.51)

To compute the value function update (15.48), let us now find more practi-
cal expressions for the term VT−1(B(b, u, z)), using the finite sums described
above. Our derivation starts with the definition of VT−1 and substitutes the
p′j according to Equation (15.51):

VT−1(B(b, u, z)) = max
k

N∑
j=1

vk
j p′j(15.52)

= max
k

N∑
j=1

vk
j

1

p(z | u, b)
p(z | xj)

N∑
i=1

p(xj | u, xi) pi

=
1

p(z | u, b)
max

k

N∑
j=1

vk
j p(z | xj)

N∑
i=1

p(xj | u, xi) pi

=
1

p(z | u, b)
max

k

(∗∗)︷ ︸︸ ︷
N∑

i=1

pi

N∑
j=1

vk
j p(z | xj) p(xj | u, xi)

︸ ︷︷ ︸
(∗)

The termmarked (∗) is independent of the belief. Hence, the function labeled
(∗∗) is a linear function in the parameters of the belief space, p1, . . . , pN . The
term 1/p(z | u, b) is both nonlinear and difficult to compute, since it contains
an entire belief b as conditioning variable. However, the beauty of POMDPs
is that this expression cancels out. In particular, substituting this expression
back into (15.48) yields the following update equation:

VT (b, u) = γ

⎡
⎣r(b, u) +

∑
z

max
k

N∑
i=1

pi

N∑
j=1

vk
j p(z | xj) p(xj | u, xi)

⎤
⎦(15.53)

Hence, despite the non-linearity arising from the measurement update,
VT (b, u) is once again piecewise linear.
Finally, we note that r(b, u) is given by the expectation

r(b, u) = Ex[r(x, u)] =
N∑

i=1

pi r(xi, u)(15.54)

15.4 Mathematical Derivation of POMDPs 535

Here we assumed that the belief b is represented by the parameters
{p1, . . . , pN}.
The desired value function VT is now obtained by maximizing VT (b, u)

over all actions u, as stated in (15.49):

VT (b) = max
u

VT (b, u)(15.55)

= γ max
u

([
N∑

i=1

pi r(xi, u)

]
+
∑

z

max
k

N∑
i=1

pi

N∑
j=1

vk
j p(z | xj) p(xj | u, xi)

︸ ︷︷ ︸
=: vk

u,z,i

)

= γ max
u

([
N∑

i=1

pi r(xi, u)

]
+
∑

z

max
k

N∑
i=1

pi vk
u,z,i︸ ︷︷ ︸

(∗)

)

with

vk
u,z,i =

N∑
j=1

vk
j p(z | xj) p(xj | u, xi)(15.56)

as indicated. This expression is not yet in the form of a maximum of lin-
ear functions. In particular, we now need to change the sum-max-sum ex-
pression labeled (∗) in (15.55) into a max-sum-sum expression, which is the
familiar form of a maximum over a set of linear functions.
We utilize the same transformation as in our example, Chapter 15.2.3.
Specifically, suppose we would like to compute the maximum

max{a1(x), . . . , an(x)}+ max{b1(x), . . . , bn(x)}(15.57)

for some functions a1(x), . . . , an(x) and b1(x), . . . , bn(x) over a variable x.
This maximum is attained at

max
i

max
j

[ai(x) + bj(x)](15.58)

This follows from the fact that each ai + bj is indeed a lower bound. Further
for any x there must exist an i and j such that ai(x)+bj(x) defines the maxi-
mum. By including all such potential pairs in (15.58) we obtain a tight lower
bound, i.e., the solution.

536 15 Partially Observable Markov Decision Processes

This is now easily generalized into arbitrary sums over max expressions:
m∑

j=1

N
max
i=1

ai,j(x) =
N

max
i(1)=1

N
max
i(2)=1

· · · N
max

i(m)=1

m∑
j=1

ai(j),j(15.59)

We apply now this “trick” to our POMDP value function calculation and
obtain for the expression (∗) in (15.55). Let M be the total number of mea-
surements.∑

z

max
k

N∑
i=1

pi vk
u,z,i = max

k(1)
max
k(2)

· · · max
k(M)

∑
z

N∑
i=1

pi v
k(z)
u,z,i(15.60)

= max
k(1)

max
k(2)

· · · max
k(M)

N∑
i=1

pi

∑
z

v
k(z)
u,z,i

Here each k() is a separate variable, each of which takes on the values of the
variable k on the left hand side. There are as many such variables as there
are measurements. As a result, the desired value function is now obtained as
follows:

VT (b) = γ max
u

[
N∑

i=1

pi r(xi, u)

]
+ max

k(1)
max
k(2)

· · · max
k(M)

N∑
i=1

pi

∑
z

v
k(z)
u,z,i(15.61)

= γ max
u

max
k(1)

max
k(2)

· · · max
k(M)

N∑
i=1

pi

[
r(xi, u) +

∑
z

v
k(z)
u,z,i

]

In other words, each combination([
r(x1, u) +

∑
z

v
k(z)
u,z,1

] [
r(x2, u) +

∑
z

v
k(z)
u,z,2

]
· · ·
[
r(xN , u) +

∑
z

v
k(z)
u,z,N

])

makes for a new linear constraint in the value function VT .
There will be one such constraint for each unique joint setting of the vari-
ables k(1), k(2), . . . , k(M). Obviously, the maximum of these linear functions
is once again piecewise linear and convex, which proves that this represen-
tation indeed is sufficient to represent the correct value function over the
underlying continuous belief space. Further, the number of linear pieces will
be doubly exponential in the size of the measurement space, at least for our
naive implementation that retains all such constraints.

15.5 Practical Considerations

The value iteration algorithm discussed thus far is far from practical. For
any reasonable number of distinct states, measurements, and controls, the

15.5 Practical Considerations 537

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

(a) pruned value function V30(b)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

(b) PBVI value function V30(b)

x2 p1 x1

Figure 15.7 The benefit of point-based value iteration over general value iteration:
Shown in (a) is the exact value function at horizon T = 30 for a different example,
which consists of 120 constraints, after pruning. On the right is the result of the PBVI
algorithm retaining only 11 linear functions. Both functions yield virtually indistin-
guishable results when applied to control.

complexity of the value function is prohibitive, even for relatively beginning
planning horizons.
There exists a number of opportunities to implement more efficient algo-

rithms. One was already discussed in our example: The number of linear
constraints rapidly grows prohibitively large. Fortunately, a good number of
linear constraints can safely be ignored, since they do not participate in the
definition of the maximum.
Another related shortcoming of the value iteration algorithm is that it com-

putes value functions for all belief states, not just for the relevant ones. When
a robot starts at a well-defined belief state, the set of reachable belief states
is often much smaller. For example, if the robot seeks to move through two
doors for which it is uncertain as to whether they are open or closed, it surely
knows the state of the first when reaching the second. Thus, a belief state
in which the second door’s state is known but the first one is not is physi-
cally unattainable. In many domains, huge subspaces of the belief space are
unattainable.
Even for the attainable beliefs, some might only be attained with small

probability; othersmay be plainly undesirable so that the robot will generally
avoid them. Value iteration makes no such distinctions. In fact, the time and
resources invested in value computations are independent of the odds that a
belief state will actually be relevant.

538 15 Partially Observable Markov Decision Processes

(a)

(b)

7

17

4

15

26 27

252423

20 21 22

28

5 8

18 19

9

16

6

1413

3

12

2

11

10

10

Figure 15.8 Indoor environment, in which we seek a control policy for finding a
moving intruder. (a) Occupancy grid map, and (b) discrete state set used by the
POMDP. The robot tracks its own pose sufficiently well that the pose uncertainty
can be ignored. The remaining uncertainty pertains to the location of the person.
Courtesy of Joelle Pineau, McGill University.

There exists a flurry of algorithms that are more selective with regards to
the subspace of the belief state for which a value function is computed. One
of them is point-based value iteration, or PBVI. It is based on the idea of main-POINT-BASED VALUE

ITERATION taining a set of exemplary belief states, and restricting the value function to
constraints that maximize the value function for at least one of these belief
states. More specifically, imagine we are given a set B = {b1, b2, . . .} of belief
states, called belief points. Then the reduced value function V with respect to
B is the set of constraints v ∈ V for which we can find at least one bi ∈ B

such that v(bi) = V (bi). In other words, linear segments that do not coin-
cide with any of the discrete belief points in B are discarded. The original
PBVI algorithm calculates the value function efficiently by not even gener-
ating constraints that are not supported by any of the points; however, the
same idea can also be implemented by pruning away all line segments after
generating them in a standard POMDP backup.

15.5 Practical Considerations 539

(a) t = 1

�

(b) t = 7

�

(c) t = 12

�

(d) t = 17

�

(e) t = 29

Figure 15.9 A successful search policy. Here the tracking of the intruder is imple-
mented via a particle filter, which is then projected into a histogram representation
suitable for the POMDP. The robot first clears the room on the top, then proceeds
down the hallway. Courtesy of Joelle Pineau, McGill University.

540 15 Partially Observable Markov Decision Processes

The idea of maintaining a belief point set B can make value iteration sig-
nificantly more efficient. Figure 15.7a shows the value function for a prob-
lem that differs from our example in Chapter 15.2 by only one aspect: The
state transition function is deterministic (simply replace 0.8 by 1.0 in (15.7)
and (15.8)). The value function in Figure 15.7a is optimal with respect to
the horizon T = 30. Careful pruning along the way reduced it to 120
constraints, instead of the 10561,012,337 that a non-pruning implementation
would give us—assuming the necessary patience. With a simple point set
B = {p1 = 0.0, p1 = 0.1, p1 = 0.2, . . . , p1 = 1}, we obtain the value function
shown on the right side of Figure 15.7b. This value function is approximate,
and it consists of only 11 linear functions. More importantly, its calculation
is more than 1,000 times faster.
The use of belief points has a second important implication: The prob-
lem solver can select belief points deemed relevant for the planning pro-
cess. There exists a number of heuristics to determine a set of belief points.
Chief among them are to identify reachable beliefs (e.g., through simulating
the robot in the POMDP), and to find beliefs that are spaced reasonably far
apart from each other. By doing so it is usually possible to get many or-
ders of magnitude faster POMDP algorithms. In fact, it is possible to grow
the set B incrementally, and to therefore build up the set of value functions
V1, v2, . . . , VT incrementally, by adding new linear constraints to all of them
whenever a new belief point is added. In this way, the planning algorithm
becomes anytime, in that it produces increasingly better results as time goes
on.
An emerging view in robotics is that the number of plausible belief states
exceeds that of the number of states only by a constant factor. As a conse-
quence, techniques that actively select appropriate regions in belief space for
updating during planning have fundamentally different scaling properties
than the flat, unselective value iteration approach.
A typical robotics result of PBVI is shown in Figures 15.8 and 15.9. Fig-
ure 15.8a depicts an occupancy grid map of an indoor environment that con-
sists of a long corridor and a room. The robot starts on the right side of the
diagram. Its task is to find an intruder that moves according to Brownian
motion. To make this task amenable to PBVI planning, a low-dimensional
state space is required. The state space used here is shown in Figure 15.8b. It
tessellates the grid map into 22 discrete regions. The granularity of this rep-
resentation is sufficient to solve this task, while it makes computing the PBVI
value function computationally feasible. The task of finding such an intruder
is inherently probabilistic. Any control policy has to be aware of the uncer-

15.6 Summary 541

tainty in the environment, and seek its reduction. Further, it is inherently
dynamic. Just moving to spaces not covered yet is generally insufficient.
Figure 15.9 shows a typical result of POMDP planning. Here the robot has
determined a control sequence that first explores the relatively small room,
then progresses down the corridor. This control policy exploits the fact that
while the robot clears the room, the intruder has insufficient time to pass
through the corridor. Hence, this policy succeeds with high probability.
This example is paradigmatic of applying POMDP value iteration to ac-
tual robot control problem. Even when using aggressive pruning as in PBVI,
the resulting value functions are still limited to a few dozen states. How-
ever, if such a low-dimensional state representation can be found, POMDP
techniques yield excellent results through accommodating the inherent un-
certainty in robotics.

15.6 Summary

In this section, we introduced the basic value iteration algorithm for robot
control under uncertainty.

• POMDPs are characterized by multiple types of uncertainty: Uncertainty
in the control effects, uncertainty in perception, and uncertainty with re-
gards to the environment dynamics. However, POMDPs assume that we
are given a probabilistic model of action and perception.

• The value function in POMDPs is defined over the space of all beliefs
robots might have about the state of the world. For worlds with N states,
this belief is defined over the (N − 1)-dimensional belief simplex, charac-
terized by the probability assigned to each of the N states.

• For finite horizons, the value function is piecewise linear in the belief
space parameters. It is also continuous and convex. Thus, it can be rep-
resented as a maximum of a collection of finitely many linear functions.
Further, these linear constraints are easily calculated.

• The POMDP planning algorithm computes a sequence of value func-
tions, for increasing planning horizons. Each such calculation is recursive:
Given the optimal value function at horizon T −1, the algorithm proceeds
to computing the optimal value function at horizon T .

• Each recursive iteration combines a number of elements: The action
choice is implemented by maximizing over sets of linear constraints,

542 15 Partially Observable Markov Decision Processes

where each action carries its own set. The anticipated measurement is
incorporated by combining sets of linear constraints, one for each mea-
surement. The prediction is then implemented by linearly manipulating
the set of linear constraints. Payoff is generalized into the belief space by
calculating its expectation, which once again is linear in the belief space
parameters. The result is a value backup routine that manipulates linear
constraints.

• We find that the basic update produces intractably many linear con-
straints. Specifically, in each individual backup the measurement step
increases the number of constraints by a factor that is exponential in the
number of possible measurements. Most of these constraints are usually
passive, and omitting them does not change the value function at all.

• Point-based value iteration (PBVI) is an approximate algorithm that main-
tains only constraints that are needed to support a finite set of representa-
tive belief states. In doing so, the number of constraints remains constant
instead of growing doubly exponentially (in the worst case). Empirically
PBVI provides good results when points are chosen to be representative
and well-separated in the belief space.

In many ways, the material presented in this chapter is of theoretical interest.
The value iteration algorithm defines the basic update mechanism that un-
derlies a great number of efficient decision making algorithms. However, it
in itself is not computationally tractable. Efficient implementations therefore
resort to approximations, such as the PBVI technique we just discussed.

15.7 Bibliographical Remarks

The topic of decision making under uncertainty has been studied extensively in statistics, where
it is known as experimental design. Key textbooks in this area include those by Winer et al. (1971)EXPERIMENTAL DESIGN

and Kirk and Kirk (1995); more recent work can be found in Cohn (1994).
The value iteration algorithm described in this paper goes back to Sondik (1971) and Small-

wood and Sondik (1973), who were among the first to study the POMDP problem. Other early
work can be found in Monahan (1982), with an early grid-based approximation in Lovejoy
(1991). Finding policies for POMDPswas long deemed infeasible due to the enormous computa-
tional complexity involved. The problem was introduced into the field of Artificial Intelligence
by Kaelbling et al. (1998). The pruning algorithms in Cassandra et al. (1997) and Littman et al.
(1995) led to significant improvements over previous algorithms. Paired with remarkable in-
crease of computer speed and memory available, their work enabled POMDPs to grow into a
tool for solving small AI problems. Hauskrecht (1997) provided bounds on the complexity of
POMDP problem solving.

15.7 Bibliographical Remarks 543

The most significant wave of progress came with the advent of approximate techniques—
some of which will be discussed in the next chapter. An improved grid approximation of
POMDP belief spaces was devised by Hauskrecht (2000); variable resolution grids were intro-
duced by Brafman (1997). Reachability analysis began to play a role in computing policies. Poon
(2001) and Zhang and Zhang (2001) developed point-based POMDP techniques, in which the
set of belief states were limited. Unlike Hauskrecht’s (2000) work, these techniques relied on
piecewise linear functions for representing value functions. This work culminated in the defini-
tion of the point based value iteration algorithm by Pineau et al. (2003b), who developed new
any-time techniques for finding relevant belief space for solving POMDPs. Their work was later
extended using tree-based representations (Pineau et al. 2003a).
Geffner and Bonet (1998) solved a number of challenge problems using dynamic program-

ming applied to a discrete version of the belief space. This work was extended by Likhachev
et al. (2004), who applied the A* algorithm (Nilsson 1982) to a restricted type of POMDP. Fergu-
son et al. (2004) extended this to D* planning for dynamic environments (Stentz 1995).
Another family of techniques used particles to compute policies, paired with nearest neigh-

bor in particle set space to define approximations to the value function (Thrun 2000a). Particles
were also used for POMDP monitoring by Poupart et al. (2001). Poupart and Boutilier (2000)
devised an algorithm for approximating the value function using a technique sensitive to the
value itself, which led to state-of-the-art results. A technique by Dearden and Boutilier (1994)
gained efficiency through interleaving planning and execution of partial policies; see Smith and
Simmons (2004) for additional research on interleaving heuristic search-type planning and exe-
cution. Exploiting domain knowledge was discussed in Pineau et al. (2003c), and Washington
(1997) provided incremental techniqueswith bounds. Additional work on approximate POMDP
solving is discussed in Aberdeen (2002); Murphy (2000b). One of the few fielded systems con-
trolled by POMDP value iteration is the CMUNursebot, whose high-level controller and dialog
manager is a POMDP (Pineau et al. 2003d; Roy et al. 2000).
An alternative approach to finding POMDP control policies is to search directly in the space

of policies, without computing a value function. This idea goes back to Williams (1992), who
developed the idea of policy gradient search in the context of MDPs. Contemporary techniques
for policy gradient search is described in Baxter et al. (2001) and Ng and Jordan (2000). Bagnell
and Schneider (2001) and Ng et al. (2003) successfully applied this approach to the control of
hovering an autonomous helicopter; in fact, Ng et al. (2003) reports that it took only 11 days
to design such a controller using POMDP techniques, using a learned model. In more recent
work, Ng et al. (2004) used these techniques to identify a controller capable of sustained in-
verted helicopter flight, a previously open problem. Roy and Thrun (2002) applied policy search
techniques to mobile robot navigation, and discuss the combination of policy search and value
iteration techniques.
Relatively little progress has been made on learning POMDP models. Early attempts to learn

themodel of a POMDP from interactionwith an environment essentially failed (Lin andMitchell
1992; Chrisman 1992), due to the hardness of the problem. Some more recent work on learning
hierarchical models shows more promise (Theocharous et al. 2001). Recent work has moved
away from learning HMM-style models, into alternative representations. Techniques for repre-
senting and learning the structure of partially observable stochastic environments can be found
in Jaeger (2000); Littman et al. (2001); James and Singh. (2004); Rosencrantz et al. (2004). While
none of these papers fully solve the POMDP problem, they nevertheless are intellectually rele-
vant and promise new insights into the largely open problem of probabilistic robot control.

544 15 Partially Observable Markov Decision Processes

15.8 Exercises

1. This problem is known as the tiger problem and is due to Cassandra,TIGER PROBLEM

Littman and Kaelbling (Cassandra et al. 1994). A person faces two doors.
Behind one is a tiger, behind the other a reward of +10. The person can
either listen or open one of the doors. When opening the door with a
tiger, the person will be eaten, which has an associated cost of −20. Lis-
tening costs −1. When listening, the person will hear a roaring noise that
indicates the presence of the tiger, but only with 0.85 probability will the
person be able to localize the noise correctly. With 0.15 probability, the
noise will appear as if it came from the door hiding the reward.

Your questions:

(a) Provide the formal model of the POMDP, in which you define the state,
action, and measurement spaces, the cost function, and the associated
probability functions.

(b) What is the expected cumulative payoff/cost of the open-loop action
sequence: “Listen, listen, open door 1”? Explain your calculation.

(c) What is the expected cumulative payoff/cost of the open-loop action
sequence: “Listen, then open the door for which we did not hear a
noise”? Again, explain your calculation.

(d) Manually perform the one-step backup operation of the POMDP. Plot
the resulting linear functions in a diagram just like the ones in Chap-
ter 15.2. Provide diagrams of all intermediate steps, and don’t forget to
add units to your diagrams.

(e) Manually perform the second backup, and provide all diagrams and
explanations.

(f) Implement the problem, and compute the solution for the planning
horizons T = 1, 2, . . . , 8. Make sure you prune the space of all linear
functions. For what sequences of measurements would a person still
choose to listen, even after 8 consecutive listening actions?

2. Show the correctness of Equation (15.26).

3. What is the worst-case computational complexity of a single POMDP
value function backup? Provide your answer using the O() notation,
where arguments may include the number of linear functions before a
backup, and the number of states, actions, andmeasurements in a discrete
POMDP.

15.8 Exercises 545

4. The POMDP literature often introduces a discount factor, which is analo-
gous to the discount factor discussed in the previous section. Show that
even with a discount factor, the resulting value functions are still piece-
wise linear.

5. Consider POMDP problems with finite state, action, and measurement
space, but for which the horizon T ↑ ∞.
(a) Will the value function still be piecewise linear?

(b) Will the value function still be continuous?

(c) Will the value function still be convex?

For all three questions, argue why the answer is positive, or provide a
counterexample in case it is negative.

6. On page 28, we provided an example of a robot sensing and opening a
door. In this exercise, you are asked to implement a POMDP algorithm for
an optimal control policy. Most information can be found in the example
on page 28. To turn this into a control task, let us assume that the robot
has a third action: go. When it goes, it receives +10 payoff if the door is
open, and −100 if it is closed. The action go terminates the episode. The
action do_nothing costs the robot −1, and push costs the robot −5. Plot
value functions for different time horizons up to T = 10, and explain the
optimal policy.

16 Approximate POMDP Techniques

16.1 Motivation

In previous chapters, we have studied two main frameworks for action se-
lection under uncertainty: MDPs and POMDPs. Both frameworks address
non-deterministic action outcomes, but they differ in their ability to accom-
modate sensor limitations. Only the POMDP algorithms can cope with un-
certainty in perception, whereas MDP algorithms assume that the state is
fully observable. However, the computational expense of exact planning
in POMDPs renders exact methods inapplicable to just about any practical
problem in robotics.
This chapter describes POMDP algorithms that scale. As we shall see in
this chapter, both MDP and POMDP are extreme ends of a spectrum of pos-
sible probabilistic planning and control algorithms. This chapter reviews a
number of approximate POMDP techniques that fall in between MDPs and
POMDPs. The algorithms discussed here share with POMDPs the use of
value iteration in belief space. However, they approximate the value func-
tion in a number of ways. By doing so, they gain immense speed-ups over
the full POMDP solution.
The techniques surveyed in this chapter have been chosen because they
characterize different styles of approximation. In particular, we will discuss
the following three algorithms:

• QMDP is a hybrid between MDPs and POMDPs. This algorithm general-
izes the MDP-optimal value function defined over states, into a POMDP-
style value function over beliefs. QMDP would be exact under the—
usually false—assumption that after one step of control, the state becomes
fully observable. Value iteration in QMDPs is of the same complexity as
in MDPs.

548 16 Approximate POMDP Techniques

1: Algorithm QMDP(b = (p1, . . . , pN)):

2: V̂ = MDP_discrete_value_iteration()// see page 502

3: for all control actions u do

4: Q(xi, u) = r(xi, u) +

N∑
j=1

V̂ (xj) p(xj | u, xi)

5: endfor

6: return argmax
u

N∑
i=1

pi Q(xi, u)

Table 16.1 The QMDP algorithm computes the expected return for each control ac-
tion u, and then selects the action u that yields the highest value. The value function
used here is MDP-optimal, hence dismisses the state uncertainty in the POMDP.

• The augmented MDP, or AMDP. This algorithm projects the belief state
into a low-dimensional sufficient statistic and performs value iteration in
this lower-dimensional space. The most basic implementation involves a
representation that combines the most likely state and the degree of un-
certainty, measured by entropy. The planning is therefore only marginally
less efficient than planning in MDPs, but the result can be quite an im-
provement!

• Monte Carlo POMDP, orMC-POMDP. This is the particle filter version of
the POMDP algorithm, where beliefs are approximated using particles.
By constructing a belief point set dynamically—just like the PBVI algo-
rithm described towards the end of the previous chapter—MC-POMDPs
can maintain a relatively small set of beliefs. MC-POMDPs are applicable
to continuous-valued states, actions, andmeasurements, but they are sub-
ject to the same approximations that we have encountered in all particle
filter applications in this book, plus some additional ones that are unique
to MC-POMDPs.

These algorithms cover some of the primary techniques for approximating
value functions in the emerging literature on probabilistic planning and con-
trol.

16.2 QMDPs 549

16.2 QMDPs

QMDPs are an attempt to combine the best of MDPs and POMDPs. Value
functions are easier to compute for MDPs than for POMDPs, but MDPs rely
on the assumption that the state is fully observable. A QMDP is computa-
tionally just about as efficient as anMDP, but it returns a policy that is defined
over the belief state.
The mathematical “trick” is relatively straightforward. The MDP algo-
rithm discussed in Chapter 14 provides us with a state-based value function
that is optimal under the assumption that the state is fully observable. The
resulting value function V̂ is defined over world states. The QMDP general-
izes this value to the belief space through the mathematical expectation:

V̂ (b) = Ex[V̂ (x)] =

N∑
i=1

pi V̂ (xi)(16.1)

Here we use our familiar notation pi = b(xi). Thus, this value function is
linear, with the parameters

ui = V̂ (xi)(16.2)

This linear function is exactly of the form used by the POMDP value iteration
algorithm. Hence the value function over the belief space is given by the
following linear equation:

V̂ (b) =

N∑
i=1

pi ui(16.3)

The MDP value function provides a single linear constraint in belief space.
This enables us to apply the algorithm policy_POMDP in Table 15.2, with a
single linear constraint.
The most basic version of this idea leads to the algorithm QMDP shown

in Table 16.1. Here we use a slightly different notation than in Table 15.2:
Instead of caching away one linear function for each action u and letting
policy_POMDP determine the action, our formulation of QMDP directly
computes the optimal value function through a function Q. The value of
Q(xi, u), as calculated in line 4 in Table 16.1, is the MDP-value of the control
u in state xi. The generalization to belief states then follows in line 6, where
the expectation is taken over the belief state. Line 6 also maximizes over all
actions, and returns the control action with the highest expected value.
The insight that the MDP-optimal value function can be generalized to
belief space enables us to arbitrarily combine MDP and POMDP backups.

550 16 Approximate POMDP Techniques

In particular, the MDP-optimal value function V̂ can be used as input to the
POMDP algorithm in Table 15.1 (page 529). With T further POMDP backups,
the resulting policy can actively engage in information gathering—as long
as the information shows utility within the next T time steps. Even for very
small values of T , we usually obtain a robust probabilistic control algorithm
that is computationally vastly superior to the full POMDP solution.

16.3 Augmented Markov Decision Processes

16.3.1 The Augmented State Space

The augmented MDP, or AMDP, is an alternative to the QMDP algorithm. It
too approximates the full POMDP value function. However, instead of ignor-
ing state uncertainty beyond a small time horizon T , the AMDP compresses
the belief state into a more compact representation, and then performs full
POMDP-style probabilistic backups.
The fundamental assumption in AMDPs is that the belief space can be
summarized by a lower-dimensional “sufficient” statistic f , which maps be-
lief distributions into a lower dimensional space. Values and actions are
calculated from this statistic f(b) instead of the original belief b. The more
compact the statistic, the more efficient the resulting value iteration algo-
rithm.
In many situations a good choice of the statistic is the tuple

b̄ =

(
argmax

x
b(x)

Hb(x)

)
(16.4)

Here argmaxx b(x) is the most likely state under the belief distribution b, and

Hb(x) = −
∫

b(x) log b(x) dx(16.5)

is the entropy of the belief. This space will be called the augmented state space,AUGMENTED STATE

SPACE since it augments the state space by a single value, the entropy of the belief
distribution. Calculating a value function over the augmented state space,
instead of the belief space, makes for a huge change in complexity. The
augmented state avoids the high dimensionality of the belief space, which
leads to enormous savings when computing a value function (from worst
case doubly exponential to low-degree polynomial).
The augmented state representation is mathematically justified if f(b) is a

16.3 Augmented Markov Decision Processes 551

sufficient statistic of bwith regards to the estimation of value:

V (b) = V (f(b))(16.6)

for all beliefs b the robot may encounter. In practice, this assumption will
rarely hold true. However, the resulting value function might still be good
enough for a sensible choice of control.
Alternatively, one might consider different statistics, such as the moments
of the belief distribution (mean, variance, . . .), the eigenvalues and vectors of
the covariance, and so on.

16.3.2 The AMDP Algorithm

The AMDP algorithm performs value iteration in the augmented state space.
To do so, we have to overcome two obstacles. First, the exact value up-
date is non-linear for our augmented state representation. This is because
the entropy is a non-linear function of the belief parameters. It therefore
becomes necessary to approximate the value backup. AMDPs discretize
the augmented state, representing the value function V̂ by a look-up table.
We already encountered such an approximation when discussing MDPs. In
AMDPs, this table is one dimension larger than the state space table used by
MDPs.
The second obstacle pertains to the transition probabilities and the payoff
function in the augmented state space. We are normally given probabilities
such as the motion model p(x′ | u, x), the measurement model p(z | x), and
the payoff function r(x, u). But for value iteration in the augmented state
space we need to define similar functions over the augmented state space.
AMDPs use a “trick” for constructing the necessary functions. The trick is
to learn transition probabilities and payoffs from simulations. The learning
algorithm is based on a frequency statistic, which counts how often an aug-
mented belief b̄ transitions to another belief b̄′ under a control u, and what
average payoff this transition induces.
Table 16.2 states the basic algorithm AMDP_value_iteration. The algo-
rithm breaks down into two phases. In a first phase (lines 2–19), it constructs
a transition probability table P̂ for the transition from an augmented state b̄

and a control action u to a possible subsequent augmented state b̄′. It also
constructs a payoff function R̂which measures the expected immediate pay-
off r when u is chosen in the augmented state b̄.
These functions are estimated through a sampling procedure, in which we
generate n samples for each combination of b̄ and u (line 8). For each of

552 16 Approximate POMDP Techniques

1: Algorithm AMDP_value_iteration():

2: for all b̄ do // learn model
3: for all u do
4: for all b̄ do // initialize model
5: P̂(b̄, u, b̄′) = 0

6: endfor
7: R̂(b̄, u) = 0

8: repeat n times // learn model
9: generate b with f(b) = b̄

10: sample x ∼ b(x) // belief sampling
11: sample x′ ∼ p(x′ | u, x) // motion model
12: sample z ∼ p(z | x′) // measurement model
13: calculate b′ = B(b, u, z) // Bayes filter
14: calculate b̄′ = f(b′) // belief state statistic
15: P̂(b̄, u, b̄′) = P̂(b̄, u, b̄′) + 1

n
// learn transitions prob’s

16: R̂(b̄, u) = R̂(b̄, u) + r(u,s)
n

// learn payoff model
17: endrepeat
18: endfor
19: endfor
20: for all b̄ // initialize value function
21: V̂ (b̄) = rmin

22: endfor
23: repeat until convergence // value iteration
24: for all b̄ do

25: V̂ (b̄) = γ max
u

[
R̂(u, b̄) +

∑
b̄′

V̂ (b̄′) P̂(b̄, u, b̄′)

]
26: endfor
27: return V̂ , P̂, R̂ // return value fct & model

1: Algorithm policy_AMDP(V̂ , P̂ , R̂, b):
2: b̄ = f(b)

3: return argmax
u

[
R̂(u, b̄) +

∑
b̄′

V̂ (b̄′) P̂(b̄, u, b̄′)

]

Table 16.2 Top: The value iteration algorithm for augmented MDPs. Bottom: The
algorithm for selecting a control action.

16.3 Augmented Markov Decision Processes 553

these Monte Carlo simulations, the algorithm first generates a belief b for
which f(b) = b̄. This step is tricky (in fact, it is ill-defined): In the original
AMDP model, the creators simply choose to set b to a symmetric Gaussian
with parameters chosen to match b̂. Next, the AMDP algorithm samples a
pose x, a successor pose x′, and a measurement z, all in the obvious ways. It
then applies the Bayes filter to generate a posterior beliefB(b, u, z), for which
it calculates the augmented statistics (line 14). The tables P̂ and R̂ are then
updated in lines 15 and 16, using simple frequency counts weighted (in the
case of the payoff) with the actual payoff for this Monte Carlo sample.
Once the learning is completed, AMDP continues with value iteration.
This is implemented in lines 20-26. As usual, the value function is initial-
ized by a large negative value. Iteration of the backup equation in line 25
leads to a value function defined over the augmented state space.
When using AMDPs, the state tracking usually takes place over the orig-
inal belief space. For example, when using AMDPs for robot motion, one
might use MCL for tracking the belief over the robot’s pose. The algorithm
policy_AMDP in Table 16.2 shows how to extract a policy action from the
AMDP value function. It extracts the augmented state representation from
the full belief in line 2, and then simply chooses the control action that maxi-
mizes the expected value (line 3).

16.3.3 Mathematical Derivation of AMDPs

The derivation of AMDP is relatively straightforward, under the assumption
that f is a sufficient statistic of the belief state b; i.e., the world is Markov
relative to the state f(b). We start with an appropriate modification of the
standard POMDP-style backup in Equation (15.2). Let f be the function that
extracts the statistic b̄ from b, hence b̄ = f(b) for arbitrary beliefs b. Assuming
that f is a sufficient statistic, the POMDP value iteration equation (15.2) can
be defined over the AMDP state space

VT (b̄) = γ max
u

[
r(b̄, u) +

∫
VT−1(b̄

′) p(b̄′ | u, b̄) db̄′
]

(16.7)

where b̄ refers to the low-dimensional statistic of b defined in (16.4). Here
VT−1(b̄

′) and VT (b̄) are realized through look-up tables.
This equation contains the probability p(b̄′ | u, b̄), which needs further ex-

planation. Specifically, we have

p(b̄′ | u, b̄) =

∫
p(b̄′ | u, b) p(b | b̄) db(16.8)

554 16 Approximate POMDP Techniques

=

∫ ∫
p(b̄′ | z, u, b) p(z | b) p(b | b̄) dz db

=

∫ ∫
p(b̄′ = f(B(b, u, z)) p(z | b) p(b | b̄) dz db

=

∫ ∫
p(b̄′ = f(B(b, u, z))

∫
p(z | x′)∫

p(x′ | u, x) b(x) dx dx′ dz p(b | b̄) db

This transformation exploited the fact that the posterior belief b′ is uniquely
determined once we know the prior belief b, the control u, and the mea-
surement z. This same “trick” was already exploited in our derivation of
POMDPs. It enabled us to replace the distribution over posterior beliefs by
the Bayes filter result B(b, u, z). In the augmented state space, we there-
fore could replace p(b̄′ | z, u, b) by a point-mass distribution centered on
f(B(b, u, z)).
Our learning algorithm in Table 16.2 approximates this equation through
Monte Carlo sampling. It replaced each of the integrals by a sampler. The
reader should take a moment to establish the correspondence: Each of the
nested integrals in (16.8) maps directly to one of the sampling steps in Ta-
ble 16.2.
Along the same lines, we can derive an expression for the expected payoff

r(b̄, u):

r(b̄, u) =

∫
r(b, u) p(b | b̄) db(16.9)

=

∫ ∫
r(x, u) b(x) dx p(b | b̄) db

Once again, the algorithm AMDP_value_iteration approximates this inte-
gral using Monte Carlo sampling. The resulting learned payoff function
resides in the lookup R̂. The value iteration backup in lines 20–26 of
AMDP_value_iteration is essentially identical to the derivation of MDPs.
As noted above, this Monte Carlo approximation is only legitimate when

b̄ is a sufficient statistics of b and the system is Markov with respect to b̄. In
practice, this is usually not the case, and proper sampling if augmented states
would therefore have to be conditioned on past actions andmeasurements—
a nightmare! The AMDP algorithm ignores this, by simply generating b’s
with f(b) = b̄. Our example above involved a symmetric Gaussian whose
parameters matched b̄. An alternative—which deviates from the original
AMDP algorithm but would bemathematically more sound—would involve

16.3 Augmented Markov Decision Processes 555

(a) (b)

(c) (d)

Figure 16.1 Examples of robot paths in a large, open environment, for two different
configurations (top row and bottom row). The diagrams (a) and (c) show paths gen-
erated by a conventional dynamic programming path planner that ignores the robot’s
perceptual uncertainty. The diagrams (b) and (d) are obtained using the augmented
MDP planner, which anticipates uncertainty and avoids regions where the robot is
more likely to get lost. Courtesy of Nicholas Roy, MIT.

simulation of entire traces of belief states using the motion and measure-
ment models, and using subsequent pairs of simulated belief states to learn
P̂ and R̂. Below, when discussing MC-POMDPs, we will encounter such a
technique. MC-POMDPs sidestep this issue by using simulation to generate
plausible pairs of belief states.

556 16 Approximate POMDP Techniques

-2
0
2
4
6
8

10
12
14
16
18
20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
En

tro
py

 a
t G

oa
l

Maximum Range of Laser Range Sensor in Meters

Positional Uncertainty at Goal

Conventional Navigation
Coastal Navigation

Figure 16.2 Performance comparison of MDP planning and AugmentedMDP plan-
ning. Shown here is the uncertainty (entropy) at the goal location as a function of the
sensor range. Courtesy of Nicholas Roy, MIT.

16.3.4 Application to Mobile Robot Navigation

The AMDP algorithm is highly practical. In the context of mobile robot nav-
igation, AMDPs enable a robot to consider its general level of “confusion”
in its action choice. This pertains not just to the momentary uncertainty, but
also future expected uncertainties a robot may experience through the choice
of its actions.
Our example involves a robot navigating in a known environment. It was
already given as an example in the introduction to this book; see Figure 1.2
on page 7. Clearly, the level of confusion depends on where the robot nav-
igates. A robot traversing a large featureless area is likely to gradually lose
information as to where it is. This is reflected in the conditional probabil-
ity p(b̄′ | u, b̄), which with high likelihood increases the entropy of the belief
in such areas. In areas populated with localization features, e.g., near the
walls with distinctive features, the uncertainty is more likely to decrease.
The AMDP anticipates such situations and generates policies that minimize
the time of arrival while simultaneously maximizing the certainty at the time
of arrival at a goal location. Since the uncertainty is an estimate of the true
positioning error, it is a good measure for the chances of actually arriving at
the desired location.

16.3 Augmented Markov Decision Processes 557

(a)

(b)

(c)

(d)

(e)

(f)

Figure 16.3 The policy computed using an advanced version of AMDP, with a
learned state representation. The task is to find an intruder. The gray particles are
drawn from the distribution of where the person might be, initially uniformly dis-
tributed in (a). The black dot is the true (unobservable) position of the person. The
open circle is the observable position of the robot. This policy succeeds with high
likelihood. Courtesy of Nicholas Roy, MIT, and Geoffrey Gordon, CMU.

558 16 Approximate POMDP Techniques

Figure 16.1 shows example trajectories for two constellations (two differ-
ent start and goal locations). The diagrams on the left correspond to a MDP
planner, which does not consider the robot’s uncertainty. The augmented
MDP planner generates trajectories like the ones shown on the right. In Fig-
ures 16.1a&b, the robot is requested to move through a large open area, ap-
proximately 40 meters wide. The MDP algorithm, not aware of the increased
risk of getting lost in the open area, generates a policy that corresponds to
the shortest path from the start to the goal location. The AMDP planner, in
contrast, generates a policy that stays close to the obstacles, where the robot
has an increased chance of receiving informative sensor measurements at the
expense of an increased travel time. Similarly, Figure 16.1c&d considers a sit-
uation where the goal location is close to the center of the featureless, open
area. Here the AMDP planner recognizes that passing by known objects re-
duces the pose uncertainty, increasing the chances of successfully arriving at
the goal location.
Figure 16.2 shows a performance comparison between the AMDP naviga-
tion strategy and the MDP approach. In particular, it depicts the entropy of
the robot’s belief b at the goal location, as a function of the sensor character-
istics. In this graph, the maximum perceptual range is varied, to study the
effect of impoverished sensors. As the graph suggests, the AMDP has sig-
nificantly higher chances of success. The difference is largest if the sensors
are very poor. For sensors that have a long range, the difference ultimately
disappears. The latter does not come as a surprise, since with good range
sensors the amount of information that can be perceived is less dependent
on the specific pose of the robot.
The feature to anticipate and avoid uncertainty has led to the name coastalCOASTAL NAVIGATION

navigation, for the application of AMDPs to robot navigation. This name in-
dicates the resemblance to ships, which, before the advent of satellite-based
global positioning, often stayed close to the coastline so as to not lose track
of their location.
We close our discussion of AMDPs by noting that the choice of the statistic

f has been somewhat arbitrary. It is possible to add more features as needed,
but at the obvious increase of computational complexity. Recent work has led
to algorithms that learn statistics f , using non-linear dimensionality reduc-
tion techniques. Figure 16.3 shows the result of such a learning algorithm,
applied to the problem of clearing a building from a moving intruder. Here
the learning algorithm identifies a 6-dimensional state representation, which
captures the belief of the robot for any plausible pursuit strategy. The gray
particles represent the robot’s belief about the intruder’s location. As this

16.4 Monte Carlo POMDPs 559

example illustrates, AMDPs with a learned state representation succeed in
generating quite a sophisticated strategy: The robot first clears part of the
corridor, but always stays close enough to the room on the top that an in-
truder cannot escape from there. It then clears the room, in time short enough
to prevent an intruder to pass by the corridor undetected. The robot finally
continues its pursuit in the corridor.

16.4 Monte Carlo POMDPs

16.4.1 Using Particle Sets

The final algorithm discussed in this chapter is the particle filter solution to
POMDPs, calledMC-POMDP, which is short forMonte Carlo POMDP. MC-
POMDPs acquire a value function that is defined over particle sets. Let X be
a particle set representing a belief b. Then the value function is represented
as a function

V : X −→ �(16.10)

This representation has a number of advantages, but it also creates a number
of difficulties. A key advantage is that we can represent value functions over
arbitrary state spaces. In fact, among all the algorithms discussed thus far,
MC-POMDPs are the only ones that do not require a finite state space. Fur-
ther, MC-POMDPs use particle filters for belief tracking. We have already
seen a number of successful particle filter applications. MC-POMDPs extend
particle filters to planning and control problems.
The primary difficulty in using particle sets in POMDPs pertains to the
representation of the value function. The space of all particle sets of any
given sizeM isM -dimensional. Further, the probability that any particle set
is ever observed twice is zero, due to the stochastic nature of particle gener-
ation. As a result, we need a representation for V that can be updated using
some particle set, but then provides a value for other particle sets, which
the MC-POMDP algorithm never saw before. In other words, we need a
learning algorithm. MC-POMDP use a nearest neighbor algorithm using locally
weighted interpolation when interpolating between different beliefs.

16.4.2 The MC-POMDP Algorithm

Table 16.3 lays out the basic MC-POMDP algorithm. The MC-POMDP al-
gorithm required a number of nested loops. The innermost loop, in lines 6

560 16 Approximate POMDP Techniques

1: AlgorithmMC-POMDP(b0, V):

2: repeat until convergence

3: sample x ∼ b(x) // initialization

4: initialize X withM samples of b(x)

5: repeat until episode over

6: for all control actions u do // update value function

7: Q(u) = 0

8: repeat n times

9: select random x ∈ X
10: sample x′ ∼ p(x′ | u, x)

11: sample z ∼ p(z | x′)

12: X ′ = Particle_filter(X , u, z)

13: Q(u) = Q(u) +
1

n
γ [r(x, u) + V (X ′)]

14: endrepeat

15: endfor

16: V (X) = max
u

Q(u) // update value function

17: u∗ = argmax
u

Q(u) // select greedy action

18: sample x′ ∼ p(x′ | u, x) // simulate state transition

19: sample z ∼ p(z | x′)

20: X ′ = Particle_filter(X , u, z) // compute new belief

21: set x = x′; X = X ′ // update state and belief

22: endrepeat

23: endrepeat

24: return V

Table 16.3 The MC-POMDP algorithm.

16.4 Monte Carlo POMDPs 561

through 16 in Table 16.3, updates the value function V for a specific belief
X . It does so by simulating for each applicable control action u, the set of
possible successor beliefs. This simulation takes place in lines 9 through 12.
From that, it gathers a local value for each of the applicable actions (line 13).
The value function update takes place in line 16, in which V is simply set to
the maximum of all Qu’s.
Following this local backup is a step in which MC-POMDPs simulate the
physical system, to generate a new particle setX . This simulation takes place
in lines 17 through 21. In our example, the update always selects the greedy
action (line 17); however, in practice it may be advantageous to occasionally
select a random action. By transitioning to a new belief X , the MC-POMDP
value iteration performs the update for a different belief state. By iterating
through entire episodes (outer loops in lines 2 through 5), the value function
is eventually updated everywhere.
The key open question pertains to representation of the function V . MC-
POMDP uses a local learning algorithm reminiscent of nearest neighbor. This
algorithm grows a set of reference beliefs Xi with associated values Vi. When
a query arrives with a previously unseen particle set Xquery, MC-POMDP
identifies the K “nearest” particle sets in its memory. To define a suitable
concept of nearness for particle sets requires additional assumptions. In the
original implementation, MC-POMDP convolves each particle with a Gaus-
sian with small, fixed covariance, and then measures the KL-divergence be-
tween the resulting mixtures of Gaussians. Leaving details aside, this step
makes it possible to determine K nearest reference particle sets X1, . . . ,XK ,
with an associated measure of distance, denoted d1, . . . , dK (we note that KL-
divergence is not a distance in the technical sense, since it is asymmetric). The
value of the query set Xquery, is then obtained through the following formula

V (Xquery) = η

K∑
k=1

1

dk

Vk(16.11)

with η =
[∑

k
1
dk

]−1

. Here Xk is the k-th reference belief in the set of K

nearest neighbors, and dk is the associated distance to the query set. This
interpolation formula, known as Shepard’s interpolation, explains how to cal-SHEPARD’S

INTERPOLATION culate V (X ′) in line 13 of Table 16.3.
The update in line 16 involves an implicit case differentiation. If the ref-
erence set contains already K particle sets whose distance is below a user-
defined threshold, the corresponding V -values are simply updated in pro-

562 16 Approximate POMDP Techniques

portion to their contribution in the interpolation:

Vk ←− Vk + α η
1

dk

(max
u

Q(u)− Vk)(16.12)

where α is a learning rate. The expression maxu Q(u) is the “target” value
for the function V , and η 1

dk
is the contribution of the k-th reference particle

set under Shepard’s interpolation formula.
If there are less thanK particle sets whose distance falls below the thresh-

old, the query particle set is simply added into the reference set, with the
associated value V = maxu Q(u). In this way, the set of reference particle
sets grow over time. The value ofK and the user-specified distance threshold
determine the smoothness of theMC-POMDP value function. In practice, se-
lecting appropriate values will take some thought, since it is easy to exceed
the memory of an ordinary PC with the reference set, when the threshold is
chosen too tightly.

16.4.3 Mathematical Derivation of MC-POMDPs

The MC-POMDP algorithm relies on a number of approximations: the use
of particle sets constitutes one such approximation. Another one is the lo-
cal learning algorithm for representing V , which is clearly approximate. A
third approximation is due to theMonte Carlo backup step of the value func-
tion. Each of these approximations jeopardizes convergence of the basic al-
gorithm.
The mathematical justification for using particle filters was already pro-
vided in Chapter 4. The Monte Carlo update step follows from the general
POMDP update Equation (15.43) on page 532, which is restated here:

VT (b) = γ max
u

[
r(b, u) +

∫
VT−1(B(b, u, z)) p(z | u, b) dz

]
(16.13)

The Monte Carlo approximation is now derived in a way entirely analogous
to our AMDP derivation. We begin with the measurement probability p(z |
u, b), which resolves as follows:

p(z | u, b) =

∫ ∫
p(z | x′) p(x′ | u, x) b(x) dx dx′(16.14)

Similarly, we obtain for r(b, u):

r(b, u) =

∫
r(x, u) b(x) dx(16.15)

16.4 Monte Carlo POMDPs 563

This enables us to re-write (16.13) as follows:

VT (b) = γ max
u

[∫
r(x, u) b(x) dx(16.16)

+

∫
VT−1(B(b, u, z))

[∫ ∫
p(z | x′) p(x′ | u, x) b(x) dx dx′

]
dz

]

= γ max
u

∫ ∫ ∫
[r(x, u) + VT−1(B(b, u, z)) p(z | x′) p(x′ | u, x)]

b(x) dx dx′ dz

The Monte Carlo approximation to this integral is now a multi-variable sam-
pling algorithm, which requires us to sample x ∼ b(x), x′ ∼ p(x′ | u, x) and
z ∼ p(z | x′). Once we have x, x′, and z, we can compute B(b, u, z) via
the Bayes filter. We then compute VT−1(B(b, u, z)) using the local learning
algorithm, and r(x, u) by simply looking it up. We note that all these steps
are implemented in 7 through 14 of Table 16.3, with the final maximization
carried out in line 16.
The local learning algorithm, which plays such a central role in MC-
POMDPs, may easily destroy any convergence we might otherwise obtain
with the Monte Carlo algorithm. We will not attempt to characterize the con-
ditions under which local learning may give accurate approximations, but
instead simply state that care has to be taken setting its various parameters.

16.4.4 Practical Considerations

From the three POMDP approximations provided in this chapter, MC-
POMDP is the least developed and potentially the least efficient one. Its
approximation relies on a learning algorithm for representing the value func-
tion. Implementing an MC-POMDP algorithm can be tricky. A good under-
standing of the smoothness of the value function is required, as is the number
of particles one seeks to employ.
The original implementation of the MC-POMDP algorithm led to the re-
sults shown in Figure 16.4. A robot, shown in Figure 16.4a, is placed near a
graspable object located on the floor near the robot, which it can detect using
a camera. However, initially the object is placed outside the robot’s percep-
tual field. A successful policy will therefore exhibit three stages: A search
stage, in which the robot rotates until it senses the object; a motion stage in
which the robot centers itself relative to the object so that it can grasp it; and a
final grasping action. The combination of active perception and goal-directed
behavior make this a relatively challenging probabilistic control problem.

564 16 Approximate POMDP Techniques

(a) (b)

(c) % success

iteration

Figure 16.4 A robotic find and fetch task: (a) The mobile robot with gripper and
camera, holding the target object. (b) 2-D trajectory of three successful policy execu-
tions, in which the robot rotates until it sees the object, and then initiates a successful
grasp action (c) success rate as a function of number of planning steps, evaluated in
simulation.

Figure 16.4b shows example episodes, in which the robot turned, moved,
and grasped successfully. The trajectories shown there are projected motion
directories in 2-D. Quantitative results are shown in Figure 16.4c, which plots
the success rate as a function of update iterations of the MC-POMDP value
iteration. 4,000 iterations of value backup require approximately 2 hours
computation time, on a low-end PC, at which point the average performance
levels off at 80%. The remaining 20% failures are largely due to configura-
tions in which the robot fails to position itself to grasp the object—in part a
consequence of the many approximations in MC-POMDPs.

16.5 Summary 565

16.5 Summary

In this section, we introduced three approximate probabilistic planning and
control algorithms, with varying degrees of practical applicability. All three
algorithms relied on approximations of the POMDP value function. How-
ever, they differed in the nature of their approximations.

• The QMDP framework considers uncertainty only for a single action
choice: It is based on the assumption that after the immediate next con-
trol action, the state of the world suddenly becomes observable. The full
observability made it possible to use the MDP-optimal value function.
QMDP generalizes the MDP value function to belief spaces through the
mathematical expectation operator. As a result, planning in QMDPs is as
efficient as in MDPs, but the value function generally overestimates the
true value of a belief state.

• Extensions of the QMDP algorithm combine the MDP-optimal value
function with a sequence of POMDP backups. When combined with
T POMDP backup steps, the resulting policy considers information-
gathering actions within the horizon of T , and then relies on the QMDP
assumption of a fully observable state. The larger the horizon T is, the
closer the resulting policy to the full POMDP solution.

• The AMDP algorithm pursues a different approximation: It maps the be-
lief into a lower-dimensional representation, over which it then performs
exact value iteration. The “classical” representation consists of the most
likely state under a belief, along with the belief entropy. With this repre-
sentation, AMDPs are like MDPs with one added dimension in the state
representation that measures the global degree of uncertainty of the robot.

• To implement an AMDP, it becomes necessary to learn the state transition
and the reward function in the low-dimensional belief space. AMDPs
achieve this by an initial phase, in which statistics are cached into look-
up tables, representing the state transition and reward function. Thus,
AMDPs operate over a learned model, and are only accurate to the degree
that the learned model is accurate.

• AMDPs applied to mobile robot navigation in known environments is
called coastal navigation. This navigation technique anticipates uncer-
tainty, and selects motion that trades off overall path length with the

566 16 Approximate POMDP Techniques

uncertainty accrued along a path. The resulting trajectories differ signifi-
cantly from any non-probabilistic solution: A “coastally” navigating robot
stays away from areas in which chances of getting permanently lost are
high. Being temporarily lost is acceptable, if the robot can later re-localize
with sufficiently high probability.

• The MC-POMDP algorithm is the particle filter version of POMDPs. It
calculates a value function defined over sets of particles. To implement
such a value function, MC-POMDPs had to resort to a local learning tech-
nique, which used a locally weighted learning rule in combination with a
proximity test based on KL-divergence. MC-POMDPs then apply Monte
Carlo sampling to implement an approximate value backup. The result-
ing algorithm is a full-fledged POMDP algorithm whose computational
complexity and accuracy are both functions of the parameters of the learn-
ing algorithm.

The key lesson to take away from this chapter is that there exists a number of
approximations whose computational complexity is much closer to MDPs,
but that still consider state uncertainty. No matter how crude the approx-
imation, algorithms that consider state uncertainty tend to be significantly
more robust than algorithms that entirely ignore state uncertainty. Even a
single new element in the state vector—which measures global uncertainty
in a one-dimensional way—can make a huge difference in the performance
of a robot.

16.6 Bibliographical Remarks

The literature on approximate POMDP problem solving was already extensively discussed in
the last chapter (15.7). The QMDP algorithm described in this chapter is due to Littman et al.
(1995). The AMDP algorithm for a fixed augmented state representation was developed by Roy
et al. (1999). Later, Roy et al. (2004) extended it to a learned state representation. Thrun (2000a)
devised the Monte Carlo POMDP algorithm.

16.7 Exercises

1. In this question, you are asked to design an AMDP that solves a simple
navigation problem. Consider the following environment with 12 discrete
states.

16.7 Exercises 567

Initially, the robot is placed at a random location, chosen uniformly
among all 12 states. Its goal is to advance to state 7. At any point in time,
the robot goes north, east, west, or south. Its only sensor is a bumper:
When it hits an obstacle, the bumper triggers and the robot does not
change states. The robot cannot sense what state it is in, and it cannot
sense the direction of its bumper. There is no noise in this problem, just
the initial location uncertainty (which we will assume to be uniform).

(a) How many states will an AMDP minimally have to possess? Describe
them all.

(b) How many of those states are reachable from the initial AMDP state?
Describe them all.

(c) Now assume the robot starts at state 2 (but it still does not know, so its
internal belief state will be different). Draw the state transition diagram
between all AMDP states that can be reached within four actions.

(d) For this specific type problem (noise-free sensors and robot motion,
finite state, action, and measurement space), can you think of a more
compact representation than the one used by AMDPs, which is still
sufficient to find the optimal solution?

(e) For this specific type problem (noise-free sensors and robot motion,
finite state, action, and measurement space), can you craft a state space
for which AMDPs will fail to find the optimal solution?

2. In the previous chapter, we learned about the tiger problem (Exercise 1 on
page 544). What modification of this problem will enable QMDP to come
up with an optimal solution? Hint: There are multiple possible answers.

3. In this question, we would like you to determine the size of the belief state
space. Consider the following table:

568 16 Approximate POMDP Techniques

problem number sensors state initial
number of states sensors transition state

#1 3 perfect noise-free known
#2 3 perfect noisy known
#3 3 noise-free noise-free unknown (uniform)
#4 3 noisy noise-free known
#5 3 noisy noise-free unknown (uniform)
#6 3 none noise-free unknown (uniform)
#7 3 none noisy known
#8 1-dim continuum perfect noisy known
#9 1-dim continuum noisy noisy known
#10 2-dim continuum noisy noisy unknown (uniform)

A perfect sensor always provides the full state information. A noise-free
sensor may provide partial state information, but it does so without any
randomness. A noisy sensor may be partial and is also subject to noise.
A noise-free state transition is deterministic, whereas a stochastic state
transition is called noisy. Finally, we only distinguish two types of initial
conditions, one in which the initial state is known with absolute certainty,
and one in which it is entirely unknown and the prior over states is uni-
form.

Your question: What is the size of the reachable belief space for all 10
problems above? Hint: It may be finite or infinite, and in the infinite case
you should be able to tell what dimension the belief state has.

4. We want you to brainstorm about the failure modes of an AMDP plan-
ner. In particular, the AMDP learns state transition and reward functions.
Brainstorm what can go wrong with this when such learned models are
used for value iteration. Identify at least three different types of problems,
and discuss them in detail.

17 Exploration

17.1 Introduction

This chapter focuses on the robotic exploration problem. Exploration is the
problem of controlling a robot so as to maximize its knowledge about the
external world. In many robotics applications, the primary purpose of the
robotic device is to provide us, the users, with information. Some environ-
ments may be plainly inaccessible to people. In others, it may be uneco-
nomical to send people, and robots may be the most economical means of
acquiring information. The exploration problem is paramount in robotics.
Robots have explored abandoned mines, nuclear disaster sites, even Mars.
Exploration problems come inmany different flavors. For example, a robot
may seek to acquire a map of a static environment. If we represent the envi-
ronment by an occupancy grid map, the exploration problem is the problem
of maximizing the cumulative information we have about each grid cell. A
more dynamic version of the problem may involve moving actors: For ex-
ample, a robot might have the task to find a person in a known environment,
as part of a pursuit evasion problem. The goal might be to maximize the infor-PURSUIT EVASION

PROBLEM mation about the person’s whereabouts, and finding a person might require
exploring the environment. However, since the person might move, the ex-
ploration policy may have to explore areas multiple times. A third explo-
ration problem arises when a robot seeks to determine its own pose during
localization. This problem is commonly called active localization, and the goalACTIVE LOCALIZATION

is to maximize the information about the robot’s own pose. In robotic manip-
ulation, an exploration problem arises when a manipulator equipped with a
sensor faces an unknown object. As this brief discussion suggests, explo-
ration problems arise virtually everywhere in robotics.
At first glance, one might conclude that the exploration problem is already

570 17 Exploration

fully subsumed by the POMDP framework discussed in previous chapters.
As we have shown, POMDPs naturally engage in information gathering. To
turn a POMDP into an algorithm whose sole goal it is to maximize informa-
tion, all we have to do is supply it with an appropriate payoff function. One
appropriate choice is the information gain, which measures the reduction in
entropy of a robot’s belief as a function of its actions. With such a payoff
function, POMDPs solve the exploration problem.
However, exploring using the POMDP framework is often not such a good
idea. This is because in many exploration problems, the number of unknown
state variables is huge, as is the number of possible observations. Consider,
for example, the problem of exploring an unknown planet. The number of
variables needed to describe the surface of a planet will be enormous. So will
be the set of possible observations a robot may make. We already found that
in the general POMDP framework the planning complexity grows doubly
exponential in the number of observations (in the worst case); hence calculat-
ing a value function is plainly impossible. In fact, given the huge number of
possible values for the unknown state variables in exploration, any algorithm
that integrates over all possible such values will inevitably be inapplicable to
high dimensional exploration problems, simply for computational reasons.
This chapter discusses a family of practical algorithms that can solve high-
dimensional exploration problems. The techniques discussed here are all
greedy. Put differently, their look-ahead is limited to one exploration action.
However an exploration action can involve a sequence of control actions.
For example, we will discuss algorithms that select a location anywhere in
the map to explore; moving there is considered one exploration action. The al-EXPLORATION ACTION

gorithms discussed here also approximate the knowledge gain upon sensing,
so as to reduce the computation involved.
This chapter is organized as follows

• We begin with the general definition of information gain in exploration,
for the discrete and the continuous case. We define the basic greedy ex-
ploration algorithm that selects actions so as to maximize its information
gain.

• We then analyze a first special case of robotic exploration: active localiza-
tion. Active localization pertains to the choice of actions while globally
localizing a robot. The application of our greedy exploration algorithm,
under an appropriate definition of the action space yields a practical so-
lution to this problem.

17.2 Basic Exploration Algorithms 571

• We also consider the problem of exploration in occupancy grid mapping.
We derive a popular technique called frontier-based exploration, in which a
robot moves to its nearest frontier.

• Furthermore we describe an extension of our exploration algorithm to
multi-robot systems and show how a team of mobile robots can be con-
trolled so as to efficiently explore an unknown environment.

• Finally we consider the application of exploration techniques to the SLAM
problem. We show how to control a robot so as to minimize the uncer-
tainty, using FastSLAM as our example SLAM approach.

The exploration techniques described below have been widely used in the
literature and in a variety of practical applications. They also span a number
of different representations and robotics problems.

17.2 Basic Exploration Algorithms

17.2.1 Information Gain

The key to exploration is information. We already encountered a number of
uses for information in probabilistic robotics. In the context of exploration,
we define the entropy Hp(x) of a probability distribution p as the expectedEXPECTED

INFORMATION information E[− log p]

Hp(x) = −
∫

p(x) log p(x) dx or −
∑

x

p(x) log p(x)(17.1)

The entropy was already briefly discussed in Chapter 2.2 of this book. Hp(x)

is at its maximum if p is a uniform distribution. It is at its minimum when
p is a point-mass distribution; however, in certain continuous cases such as
Gaussians we might never reach full confidence.
Conditional entropy is defined as the entropy of a conditional distribution.CONDITIONAL

ENTROPY In exploration, we seek to minimize the expected entropy of the belief after
executing an action, hence it is natural to condition on the measurement z
and the control u that define the belief state transition.
Holding with the notation introduced before, let us useB(b, z, u) to denote
the belief after executing control u and observing z under the belief b. The
conditional entropy of the state x′ after executing action u and measuring z

is given by

Hb(x
′ | z, u) = −

∫
B(b, z, u)(x′) log B(b, z, u)(x′) dx′(17.2)

572 17 Exploration

HereB(b, z, u) is computed using the Bayes filter. In robotics, we only have a
choice over the control action u, we cannot pick z. Consequently, we consider
the conditional entropy of the control u, with the measurement integrated
out:

Hb(x
′ | u) ≈ Ez[Hb(x

′ | z, u)](17.3)

=

∫ ∫
Hb(x

′ | z, u) p(z | x′) p(x′ | u, x) b(x) dz dx′ dx

Notice that this is only an approximation, as the final expression inverts the
oder of a summation and a logarithm. The information gain associated withINFORMATION GAIN

action u in belief b is thus given by the difference

Ib(u) = Hp(x)− Ez[Hb(x
′ | z, u)](17.4)

17.2.2 Greedy Techniques

The expected information gain lets us phrase the exploration problem as a
decision-theoretic problem of the type addressed in previous chapters. In
particular, let r(x, u) be the cost of applying control action u in state x; here
we assume r(x, u) < 0 to keep our notation consistent. Then the optimal
greedy exploration for the belief b maximizes the difference between the in-
formation gain and the costs, weighted by a factor α.

π(b) = argmax
u

α (Hp(x)− Ez[Hb(x
′ | z, u)])︸ ︷︷ ︸

expected information gain

+

∫
r(x, u) b(x) dx︸ ︷︷ ︸
expected costs

(17.5)

The factor α relates information to the cost of executing u. It specifies the
value a robot assigns to information, which measures the price it is willing
to pay in terms of costs for obtaining information.
Equation (17.5) resolves to

π(b) = argmax
u

−α Ez[Hb(x
′ | z, u)] +

∫
r(x, u) b(x) dx(17.6)

= argmax
u

∫
[r(x, u)− α

∫ ∫
Hb(x

′ | z, u) p(z | x′)

p(x′ | u, x) dz dx′] b(x) dx

In short, to understand the utility of the control u, we need to compute the
expected entropy after executing u and observing. This expected entropy is
obtained by integrating over all possible measurements z that we might be

17.2 Basic Exploration Algorithms 573

(a) (b)

Figure 17.1 Unpredictability of the exploration problem: A robot in (a) might an-
ticipate a sequence of three controls, but whether or not this sequence is executable
depends on the things the robot finds out along the way. Any exploration policy has
to be highly reactive.

receiving, times their probability. It is translated into utility via the constant
α. We subsequently subtract the expected cost of executing action r.
Most exploration techniques employ this greedy policy, which is indeed
optimal at horizon 1. The reason for relying on greedy techniques is because
of the enormous branching factor in exploration, which renders multi-step
planning impossible. The large branching factor is due to the very nature
of the exploration problem. The goal of exploration is to acquire new infor-
mation, but once such information has been acquired, the robot is in a new
belief state, hence has to adjust its policy. Hence, measurements are inher-
ently unpredictable.
Figure 17.1 illustrates such a situation. Here a robot has mapped two
rooms and part of a corridor. At this point, the optimal exploration might in-
volve exploring one corridor, and an appropriate sequence of actions might
correspond to the one shown in Figure 17.1a. However, whether or not such
an action sequence is executable is highly unpredictable. For example, the
robot may find itself in a dead end as illustrated in Figure 17.1b where the
anticipated action sequence is not applicable.

17.2.3 Monte Carlo Exploration

The algorithm Monte_Carlo_exploration is a simple probabilistic explo-
ration algorithm. Table 17.1 depicts this Monte Carlo approximation of the
greedy exploration rule in Equation (17.6). This algorithm simply replaces
the integrals in the greedy approach by sampling. In line 4, it samples a

574 17 Exploration

1: AlgorithmMonte_Carlo_exploration(b):

2: set ρu = 0 for all actions u

3: for i = 1 to N do
4: sample x ∼ b(x)

5: for all control action u do
6: sample x′ ∼ p(x′ | u, x)

7: sample z ∼ p(z | x′)
8: b′ = Bayes_filter(b, z, u)

9: ρu = ρu + r(x, u)− α Hb′(x
′)

10: endfor
11: endfor

12: return argmax
u

ρu

Table 17.1 A Monte Carlo implementation of the greedy exploration algorithm,
which chooses actions by maximizing the trade-off between information gain and
cost.

state x from the momentary belief b, followed by sampling the next state x′

and the corresponding observation z′. A new posterior belief is then calcu-
lated in line 8, and its entropy-cost trade-off is cached away in line 9. Line
12 then returns the action whose Monte Carlo information gain-cost value is
the highest.
In general, the greedy Monte Carlo algorithm may still require substantial
time, to a point that it becomes impractical. The main complication arises
from the sampling of measurements z. When exploring an unknown en-
vironment during mapping, the number of possible measurements can be
huge. For example, for a robot equipped with 24 ultrasound sensors that
each report one byte of range data, the number of potential sonar scans ob-
tained at a specific location is 25624. Clearly, not all of those measurements
are plausible, but the number of plausible measurements is at least as large
as the number of plausible local maps. And for any realistic mapping prob-
lem, the number of possible maps is immense! Below, we will consider ex-
ploration techniques that side-step this integration through a closed-form
analysis of the expected information gain.

17.3 Active Localization 575

17.2.4 Multi-Step Techniques

In situations where the measurement and the state spaces are confined, it
may be possible to generalize the principle of information gathering to any fi-
nite horizon T > 1. Suppose we would like to optimize the information-cost
trade-off at horizon T . This is achieved by defining the following exploration
payoff function:

rexp(bt, ut) =

⎧⎪⎪⎨
⎪⎪⎩
∫

r(xt, ut) b(xt) dxt if t < T

α Hbt
(xt) if t = T

(17.7)

Under this payoff function, a POMDP planner then finds a control policy
that minimizes the entropy of the final belief bT minus the cost of achieving
this belief, scaled appropriately. All of the previously discussed POMDP
techniques are applicable.
The reader may notice the similarity to the augmented MDP discussed in
the previous chapter. The difference here is that we only specify the payoff
function, not the belief state representation. Because most exploration prob-
lems become computationally intractable under the general POMDP model,
we will not pursue this approach any further in this book.

17.3 Active Localization

The simplest case of exploration occurs when estimating the state of a low-
dimensional variable. Active localization is such a problem: Here we seek
information about the robot pose xt, but we are given a map of the environ-
ment. Active localization is particularly interesting during global localiza-
tion, since here the control choice can have an enormous impact on the in-
formation gain. In many environments, wandering around aimlessly makes
global localization hard, whereas moving to the right location can yield very
fast localization.
Such an environment is depicted in Figure 17.2a. Here the robot is placed
within a symmetric corridor, and no matter how long it explores, it cannot
resolve its pose without leaving the corridor and moving through one of
the open doors. Thus, any solution to the active localization problem must
ultimately steer the robot out of the corridor and into one of the rooms.
Active localization can be solved greedily, along the lines of the algorithm
just presented. The key insight pertains to the choice of action representa-
tion. Clearly, if actions are defined as low-level control actions as in much of

576 17 Exploration

123

B

CA

move<-9m,-4m>

1

2

(a) Environment with an example posterior. (b) Effect of exploration action.

Figure 17.2 (a) Active localization in a symmetric environment: Shown here is an
environment with a symmetric corridor, but an asymmetric arrangement of rooms,
labeled A, B, and C. This figure also shows an exploration path. (b) An example of
the exploration action “go backward 9 meters, go left 4 meters.” If the robot’s pose
posterior possesses two distinct modes as shown here, the actual control in global
world coordinates might lead to two different places.

this book, any viable exploration plan would have to involve a long chain of
controls, before any pose ambiguity can be resolved. To solve the active local-
ization problem through greedy exploration, we need a definition of actions
through which the robot can gather pose information greedily.
One possible solution is to define an exploration action through target loca-
tions, expressed in the robot’s local coordinate frame. For example, “move to
the point Δx = −9m and Δy = 4m relative to the robot’s local coordinate frame”
can be considered an action, so long as we can devise a low level navigation
module that can map this action back into low-level controls. Figure 17.2b
visualizes the potential effect of this action in global world coordinates. In
this example, the posterior possesses two modes, hence this action can carry
the robot to two different locations.
The definition of relative motion actions makes it possible to solve the ac-
tive localization problem through an algorithm that is essentially the same
as the greedy exploration algorithm in Table 17.1. We will describe this algo-
rithm through an example. Figure 17.3a shows the active localization path
along with a number of labeled places. We begin in the middle of localiza-
tion: Figure 17.3b shows the belief after moving from the location labeled “1”
to the location labeled “2”. This belief possesses six modes, each indicated
by a circle in Figure 17.3b. For this belief, the expected occupancy in robot

17.3 Active Localization 577

123

B

CA

(a) Path of the localizing robot (b) Early belief distribution with six modes

(c) Occupancy probability in robot coordinates (d) Expected costs of motion

(e) Exp. information gain in robot coordinates (f) Gain plus costs (the darker, the better)

Figure 17.3 Illustration of active localization. This figure displays a number of aux-
iliary functions for computing the optimal action, for a multi-hypothesis pose distri-
bution.

578 17 Exploration

(a) Belief distribution (b) Occupancy prob. in robot coordinates

(c) Expected costs of motion (d) Exp. information gain in robot coordinates

(e) Gain plus costs (the darker, the better) (f) Final belief after active localization

Figure 17.4 Illustration of active localization at some later point in time, for a belief
with two distinct modes.

17.3 Active Localization 579

coordinates is shown in Figure 17.3c. This figure is simply obtained by su-
perimposing the known occupancy grid map for each of the possible robot
poses, weighted by the respective probability. Since the robot does not know
its pose with certainty, it cannot know the occupancy of locations; hence the
“fuzziness” of the expected cost map. However, with high likelihood the
robot is in a corridor-shaped area that is traversable.
While Figure 17.3c depicts the cost of being at a target location, we need the
cost of moving to such a target location. We have already encountered an al-
gorithm for computing such motion costs, along with the optimal path: value
iteration (see Chapter 14). Figure 17.3d shows the result of value iteration, ap-
plied to the map in Figure 17.3b as cost function. Here value is propagated
from the robot outwards (as opposed to from the goal, as was the notion in
Chapter 14). This makes it possible to calculate the cost of moving to any
potential target location in this map.
As this figure illustrates, there exists a large region near the robot where
motion is safe; in fact, this region corresponds to the corridor, no matter
where the robot actually is located. Moving out of this region and into one
of the rooms incurs higher expected costs, since the validity of such a motion
hinges on the exact location of the robot, which is unknown.
For greedy exploration, we now need to determine the expected informa-
tion gain. It can be approximated by placing the robot in a location, simulate
possible range measurements, incorporate the result, and measure the in-
formation after the Bayesian update. Repetition of this evaluation step for
each possible location yields an expected information gain map. Figure 17.3e
shows the result: the darker a location in this map, the more information it
provides relative to the robot’s pose estimate. Obviously, any of the rooms
will be most informative, as will be the far end of the corridors. Thus, from a
pure information gathering perspective, the robot should seek to move into
one of the rooms.
Adding this cost map to the expected information gain leads to the plot in
Figure 17.3f: the darker a target location, the better. While the outside rooms
fare still high in this combined function, their utility has been reduced by the
relatively high costs of moving there. At this point, areas at the end of the
corridor score the highest.
The robot nowmoves to the location of the highest combined value, which
brings it to the outer area of the corridor that is still safe to travel. In Fig-
ure 17.3a, this corresponds to a transition from the location marked “2” to
the one marked “3”.
The greedy active exploration rule is now reiterated. The belief at location

580 17 Exploration

“3” is depicted in Figure 17.4a. Obviously, the previous exploration action
had the effect of reducing the modes in the posterior, from six down to two.
Figure 17.4b shows the new occupancy map, in robot-centric coordinates;
and Figure 17.4c depicts the corresponding value function. The expected
information gain is now uniformly high only in the rooms, as illustrated in
Figure 17.4d. Figure 17.4e shows the combined gain-cost map. At this point,
the cost of moving into any of the symmetrically open rooms is the lowest,
hence the robot moves there, at which the ambiguity is largely resolved. One
time step later, after another round of deliberation, the final belief is the one
shown in Figure 17.4f.
This greedy active localization algorithm is not without shortcomings.
One shortcoming stems from its greediness: It cannot compose multiple ex-
ploration actions that togethermaximize the knowledge gain. Another short-
coming is the result of our action definition. The algorithm fails to consider
the measurements that will be acquired while moving to a target location. In-
stead, it treats each suchmotion as an open-loop control, in which the robot is
unable to react to its measurements. Clearly, when faced with a closed door,
a real robot can abandon a target point even before reaching it; however, no
such provision is considered during planning. This explains the sub-optimal
choice in our example above, where the robot explores the room labeled “B”
before it explores the room labeled “A.” As a result, localization tends to take
longer than theoretically necessary. Nevertheless, this algorithm performs
well in practice.

17.4 Exploration for Learning Occupancy Grid Maps

17.4.1 Computing Information Gain

Greedy exploration can also be applied in robotic mapping. Mapping prob-
lems involve many more unknown variables than robot localization, hence
we need a technique for calculating expected knowledge gain that scales to
high-dimensional estimation problems. As we shall see, the “trick” for ex-
ploration in occupancy grid maps is the very same trick that led us to define
an efficient update algorithm for occupancy grid maps: We treat information
gain as independent between different grid cells.
Consider an occupancy grid map, such as the one shown in Figure 17.5a.
Parts of this map are well-explored, such as the large free area in the center of
the map, and the many walls and obstacles whose locations are well-known.
Other parts remain unexplored, such as the large gray area outside the map.

17.4 Exploration for Learning Occupancy Grid Maps 581

(a) Occupancy grid map (b) Cell entropy

(c) Explored and unexplored space (d) Value function for exploration

Figure 17.5 Example of the essential step in exploration for mapping. (a) shows a
partial grid map; (b) depicts the map entropy; (c) shows the space for which we have
zero information; and (d) displays the value function for optimal exploration.

582 17 Exploration

(a)Map segment (b) Entropy (c) Exp. information gain

Figure 17.6 Map, entropy and expected information gain. This figure illustrates
that with the appropriate scaling, entropy and expected information gain are nearly
indistinguishable.

Greedy exploration steers the robot to the nearest unexplored area, where the
information gain is maximal. This raises the question as to how to compute
gain.
We will discuss three possible techniques. All three approaches have in
common that they calculate the information gain per grid cell, and not as a
function of the robot action. This conveniently leads to an information gain
map, which is a 2-Dmap defined over the same grid as the original grid map.
The difference between these techniques is the quality of the approximation.

• Entropy. Computing the entropy of each cell is straightforward. Let us
denote the i-th cell bymi, and its occupancy probability pi = p(mi). Then
the entropy of the binary occupancy variable is given by the following
sum:

Hp(mi) = −pi log pi − (1− pi) log(1− pi)(17.8)

Figure 17.5b depicts the entropy, for each of the cells in the map shown in
Figure 17.5a. The brighter a location, the larger the entropy. Most of the
central areas in the map exhibit low entropy, with the exception of a few
areas near or inside obstacles. This matches our intuition, as most of the
map is already well-explored. The outer areas possess high entropy, indi-
cating that they might be good areas to explore. Thus, the entropy map
indeed assigns high information values to places that remain unexplored.

• Expected information gain. Technically, the entropy only measures the
current information. It does not specify the information a robot would

17.4 Exploration for Learning Occupancy Grid Maps 583

gain through its sensors when in a vicinity of a cell. The calculation of
the expected information gain is slightly more involved, and it requires
additional assumptions on the nature of the information provided by the
robot’s sensors.

Suppose our sensor measures with probability ptrue the correct occupancy,
and it errs with probability 1 − ptrue. Then we would expect to measure
“occupied” with the following probability:

p+ = ptrue pi + (1− ptrue) (1− pi)(17.9)

The standard occupancy grid update will then yield the new probabil-
ity, which follows directly from the occupancy grid mapping algorithm
discussed in Chapter 9:

p′i =
ptrue pi

ptrue pi + (1− ptrue) (1− pi)
(17.10)

The entropy of this posterior is now:

H+
p′(mi)(17.11)

= − ptrue pi

ptrue pi + (1− ptrue) (1− pi)
log

ptrue pi

ptrue pi + (1− ptrue) (1− pi)

− (1− ptrue) (1− pi)

ptrue pi + (1− ptrue) (1− pi)
log

(1− ptrue) (1− pi)

ptrue pi + (1− ptrue) (1− pi)

By analogy, our sensor will sense “free” with probability

p− = ptrue (1− pi) + (1− ptrue) pi(17.12)

in which case the posterior will become

p′i =
(1− ptrue) pi

ptrue (1− pi) + (1− ptrue) pi

(17.13)

This posterior has the entropy

H−
p′ (mi)(17.14)

= − (1− ptrue) pi

ptrue (1− pi) + (1− ptrue) pi

log
(1− ptrue) pi

ptrue (1− pi) + (1− ptrue) pi

− ptrue (1− pi)

ptrue (1− pi) + (1− ptrue) pi

log
ptrue (1− pi)

ptrue (1− pi) + (1− ptrue) pi

584 17 Exploration

Putting the previous equations together, we obtain the expected entropy
after sensing:

E[Hp′(mi)] = p+ H+
p′(mi) + p− H−

p′ (mi)(17.15)

= −ptrue pi log
ptrue pi

ptrue pi + (1− ptrue) (1− pi)

−(1− ptrue) (1− pi) log
(1− ptrue) (1− pi)

ptrue pi + (1− ptrue) (1− pi)

−(1− ptrue) pi log
(1− ptrue) pi

ptrue (1− pi) + (1− ptrue) pi

−ptrue (1− pi) log
(1− ptrue) pi

ptrue (1− pi) + (1− ptrue) pi

Following our definition in Equation (17.4), the expected information
gain upon sensing the grid cell mi is simply the difference Hp(mi) −
E[Hp′(mi)].

So howmuch better is the expected information gain than just the entropy
from which it was derived? The answer is: not much. Figure 17.6 plots
the entropy in Panel (b), next to the expected information gain in Panel
(c), all for the map segment shown in Panel (a). Visually, the entropy
and the expected information gain are nearly indistinguishable, although
the values are different. This “justifies” the common practice of using
entropy—instead of the expected information gain—as a function to di-
rect the exploration.

• Binary gain. The third approach is the simplest of all, and by far the most
popular. A very crude approximation of the expected information gain is
to mark cells that have been updated at least once as “explored,” and all
other cells ’unexplored.’ Thus, the gain becomes a binary function.

Figure 17.5c shows such a binarymap: Only the outer white area promises
any new information; the map interior is assumed to be fully explored.
While this information gain map is clearly the crudest of all the approxi-
mations discussed here, it tends to work well in practice, in that it pushes
an exploring robot continuously into unexplored terrain. This binary map
is at the core of a popular exploration algorithm called frontier-based explo-FRONTIER-BASED

EXPLORATION ration, in which the robot continuously moves to the nearest unexplored
frontier of the explored space.

17.4 Exploration for Learning Occupancy Grid Maps 585

17.4.2 Propagating Gain

The remaining question now pertains to the development of a greedy ex-
ploration technique that utilizes these maps. As in our active localization
example, this requires the definition of an appropriate exploration action.
A simple yet effective definition of an exploration action involves moving to
an x-y location along a minimum cost path, and then sensing all grid cells in
a small circular diameter around the robot. Thus, each location in the map
defines a potential exploration action.
The computation of the best greedy exploration action is now easily done
using value iteration. Figure 17.5d shows the resulting value function for
the map shown in Figure 17.5a, and the binary information gain map in Fig-
ure 17.5c. The value iteration approach assumes such a binary gain map:
Gain can only be reaped at unexplored locations.
The central value update is implemented by the following recursion:

VT (mi) =

⎧⎨
⎩

maxj r(mi,mj) + VT−1(mj) if I(mi) = 0

I(mi) if I(mi) > 0

(17.16)

Here V is the value function, j indexes over all grid cells adjacent to mi, r
measures the cost of moving there (usually a function of the occupancy grid
map), and I(mi) is the information we would gain in cellmi. The termina-
tion condition I(mi) > 0 is only true for unexplored grid cells in the binary
information gain map.
Figure 17.5d shows such a value function after convergence. Here the
value is highest near the open areas of the map, and lower in the interior
of the map. The exploration technique now simply determines the optimal
path by hill-climbing in this map. This path leads the robot directly to the
nearest unexplored frontier.
Clearly, this exploration technique is just a crude approximation. It entirely
ignores the information acquired as the robot moves to a target location, in
that it falsely assumes that no sensing takes place along the way. However, it
tends to work well in practice. Figure 17.7 shows a value function and a map
of an exploring robot. This map is historical: it is taken from the 1994 AAAI
Mobile Robot Competition, which involved the acquisition of an environment
map at high speeds. The robot was equipped with an array of 24 sonar sen-
sors, which accounts for the relatively low accuracy of the map. The most
interesting aspect of this figure pertains to the robot path: As can be seen
in Figure 17.7b, initially the exploration is highly effective, with the robot

586 17 Exploration

(a) Exploring value function

(b) Exploration path

Figure 17.7 Illustration of autonomous exploration. (a) Exploration values V , com-
puted by value iteration. White regions are completely unexplored. By following the
gray-scale gradient, the robot moves to the next unexplored area on a minimum-cost
path. The large black rectangle indicates the global wall orientation θwall. (b) Actual
path traveled during autonomous exploration, along with the resulting metric map.

17.4 Exploration for Learning Occupancy Grid Maps 587

(a) (b)

Figure 17.8 (a) Urban robot for indoor and outdoor exploration. The urban robot’s
odometry happens to be poor. (b) Exploration path of the autonomously exploring
robot, using the exploration techniques described in the text.

roaming unexplored corridors. Later, however, the robot begins to alternate
between different goal locations. Such alternate behavior is quite common
for greedy exploration techniques, and most contemporary implementations
provide additional mechanisms for avoiding such behavior.
A second example is shown in Figure 17.8. The path of the robot, shown
on the right, illustrates the efficiency of the greedy exploration algorithm.

17.4.3 Extension to Multi-Robot Systems

The gain-seeking exploration rule has frequently been extended to multi-
robot systems, in which the robot seeks to acquire amap through cooperative
exploration. In general, the speed-up when using K robots is linear. It can
be super-unitary: K robots tend to speed-up the time required for exploration
by more than a factor ofK when compared to one robot. Such super-unitary
speed-up is due to the fact that a single robot might have to traverse many
areas twice, once to go out and explore, and once to come back to explore
some other part of the environment. With an appropriate number of robots,
the return portion may become unnecessary, and the speed-up is closer to a
factor of 2K. This factor of 2K is an upper bound for robots that can navigate
easily in all directions.
The key provision for multi-robot exploration pertains to coordination. In
static exploration, this is easily accomplished through greedy task allocation
techniques. Consider a situation in which K robots are placed in a partially
explored map. The setup now is that there exists a number of frontier places

588 17 Exploration

1: Algorithm multi_robot_exploration(m,x1, . . . , xK):

2: for each robot k = 1 toK do
3: Letmk be the grid cell that contains xk

4: Vk(mi) =

{ ∞ if mi �= mk

0 if mi = mk

5: do until Vk converged
6: for all i do
7: Vk(mi) ←− min

j
{Vk(mi), r(mi,mj) + Vk(mj)}

8: endfor
9: endwhile
10: endfor

11: compute the binary gain map m̄ from the mapm

12: for each robot k = 1 toK do
13: set goalk = argmin

i such that m̄i=1
Vk(mi)

14: for all cells m̄j in ε-neighborhood of goalk
15: set m̄j = 0

16: endfor
17: endfor

18: return {goal1, goal2, . . . , goalK}

Table 17.2 Multi-robot exploration algorithm.

to explore, and we need an algorithm that assigns such robots to places in a
way that greedily maximizes the overall exploration effect.
The algorithm multi_robot_exploration in Table 17.2 is a very simple

such algorithm. It computes for a set of K robots a set of K exploration
goals, which are locations to which the robots move during coordinated ex-
ploration.
The algorithm first computes value function Vk, one for each of the robots
(lines 2 through 10). However, these value functions are defined differently
from the ones encountered thus far: The minimum value is attained at the

17.4 Exploration for Learning Occupancy Grid Maps 589

robot pose. The further out a cell, the higher its value. Figure 17.9 and 17.10
show several examples of such value functions. In each case, the location of
the robot possesses minimum value, with the value increasing throughout
the reachable space.
It is easy to show that these value functions measure for any possible grid
cell the cost of moving there. For each individual robot, the optimal frontier
cell to explore is now computed via line 13: it is the minimum cost cell in Vk

which is yet unexplored, according to a binary gain map computed in line
11. This cell is used as the goal point. However, to “discourage” other robots
from using the same or a nearby goal location, our algorithm resets the gain
map to zero in the vicinity of the chosen goal location. This takes place in
lines 14 through 16.
The coordination mechanism in multi_robot_exploration can be summa-
rized as follows: Each robot greedily picks the best available exploration goal
point, and then prohibits other robots from selecting the same or a nearby
point. Figures 17.9 and 17.10 illustrate the effect of this coordination. Both
robots in Figure 17.9, although located at different places, identify the same
frontier cell for exploration. Thus, when exploring without coordination,
they would both aim for the same area to explore. This is different in Fig-
ure 17.10. Here the first robot makes its choice, out-ruling this location for
the second robot. In turn, the second robot selects a superior location. The
resulting joint exploration action avoids this conflict and, as a result, explores
more efficiently.
Clearly, the coordination mechanism is quite simplistic, and it is easily
trapped in a local minimum. What would have happened if in Figure 17.10
we would have let the second robot choose first? Then the first robot would
have been forced to select a far-away target location, and both robots’ paths
would have crossed along the way. Obviously, a good criterion for a subop-
timal assignment is that paths cross. However, the absence of such a path
crossing does not guarantee an optimal assignment.
Improved coordination techniques take such conflicts into consideration,
and enable robots to trade goal points with each other. A popular family
of techniques enables robots to swap assignments of goal points with each
other, if this reduces the overall exploration costs. Such algorithms are often
phrased in terms of auction mechanisms. The resulting algorithms are oftenAUCTION MECHANISM

characterized as market-based algorithms.
Figure 17.11 shows an application of algorithm multi_robot_exploration
in a real-world experiment. Here three robots are exploring an unknown
environment. The leftmost image shows all the robots at their starting lo-

590 17 Exploration

Robot

(a)

Robot

(b)

Figure 17.9 Two robots exploring an environment. Without any coordination both
vehicles would decide to approach the same target location. Each image shows the
robot, the map, and its value function. The black rectangle indicates the target points
with minimum cost.

Robot

(a)

Robot

(b)

Figure 17.10 Target positions obtained using the coordination approach. In this case
the target point for the second robot is to the left in the corridor.

cations. The other images depict different situations during the coordinated
exploration. A map constructed by the same robots in an additional run is
depicted in Figure 17.12. As can be seen, the robots in fact were nicely dis-
tributed over the environment.
Figure 17.13 depicts the performance of this algorithm compared to a team
of robots from which all robots apply AlgorithmMonte_Carlo_exploration
without any coordination. Whereas the horizontal axis depicts the number of
robots in the team, the vertical axis shows the number of time steps needed
to complete the exploration task. In these experiments it was assumed that
the robots always share their local maps. It was furthermore assumed that

17.4 Exploration for Learning Occupancy Grid Maps 591

Figure 17.11 Coordinated exploration by a team of mobile robots. The robots dis-
tribute themselves throughout the environment.

Figure 17.12 Map of a 62 × 43m2 large environment learned by three robots in 8
minutes.

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

ex
pl

or
at

io
n

tim
e

[m
in

]

number of robots

uncoordinated
coordinated

Figure 17.13 Exploration time obtained in a simulation experiment in which robot
teams of different sizes explore the environment shown in the left image.

592 17 Exploration

Start robot B

Start robot A

Meeting point

Robot B decides to
verify hypothesis

Figure 17.14 Coordinated exploration from unknown start locations. The robots
establish a common frame of reference by estimating and verifying their relative loca-
tions using a rendezvous approach. Once theymeet, they share a map and coordinate
their exploration. Courtesy of Jonathan Ko and Benson Limketkai.

all robots started close to each other. The result is quite telling. Obviously,
the uncoordinated robots are significantly less efficient than the coordinated
team.
The coordination strategies discussed so far assume that the robots share a
map and know their relative locations. By considering the uncertainty in the
relative robot locations, multi robot exploration can be extended to the case
when the robots start from different, unknown locations.
Figure 17.14 shows an exploration run using such an extended coordina-
tion technique. The two robots, A and B, have no knowledge about their rel-
ative start locations. Initially, the robots explore independently of each other.
As they explore, each robot estimates the other robot’s location relative to
its own map, using a modified version of MCL localization. When deciding
where to move next, both A and B consider whether it is “better” to move to
an unexplored area, or to verify a hypothesis for the other robot’s location.
At one point, B decides to verify a hypothesis for A’s location. It sends A a
message to stop and moves to A’s hypothesized location (marked as meet-
ing point in Figure 17.14). Upon reaching this location, both robots check

17.5 Exploration for SLAM 593

the presence of the other robot using their laser range-finders (robots are
tagged with highly reflective tape). When they detect each other, their maps
are merged and the robots share a common frame of reference. From then
on, they explore the environment using algorithmmulti_robot_exploration.
Such an exploration technique from unknown start locations can be applied
to scenarios involving more than two robots.

17.5 Exploration for SLAM

The final algorithm in this book applies the greedy exploration idea to a full
SLAM algorithm. In the previous sections we always assumed that either the
map or the pose of the robot was known. In SLAM, however, we do not know
either. Accordingly, we have to consider the uncertainty in the map as well
as the uncertainty in the robot’s pose when choosing how to explore, and
we can gain or lose knowledge about both. Obviously, without knowledge
about the pose of the vehicle, the integration of sensor information into the
map can lead to serious errors. On the other hand, a robot that solely focuses
on reducing the uncertainty about its pose will simply not move, and thus it
will never acquire any information about the environment beyond its initial
sensor radius.

17.5.1 Entropy Decomposition in SLAM

The key insights for optimal exploration in SLAM is that the entropy of the
SLAM posterior can be decomposed into two terms: One pertaining to the en-
tropy in the pose posterior, and one pertaining to the expected entropy of the
map. In this way, an exploring SLAM robot trades off the uncertainty in the
robot pose with the uncertainty in the map. Control actions tend to reduce
only one of both: when closing a loop, a robot will mainly reduce its pose
uncertainty. When moving into open unexplored terrain, it will mainly re-
duce its map uncertainty. By considering both, whatever reduction is larger
will win, and the robot may sometimes move into open terrain, sometimes
re-localize by moving back into known terrain.
The decomposition of the entropy is in fact universal for the full SLAM
problem. Consider the full SLAM posterior.

p(x1:t,m | z1:t, u1:t)(17.17)

This posterior can be factored as follows:

p(x1:t,m | z1:t, u1:t) = p(x1:t | z1:t, u1:t) p(m | x1:t, z1:t, u1:t)(17.18)

594 17 Exploration

This is trivial, and it was already stated in Equation (13.2) on page 442. It is
less obvious that this implies

H[p(x1:t,m | z1:t, u1:t)](17.19)

= H[p(x1:t | z1:t, u1:t)] + E [H[p(m | x1:t, z1:t, u1:t)]]

where the expectation is taken over the posterior probability p(x1:t |
z1:t, u1:t).
Writing p(x,m) as an abbreviation for the full posterior p(x1:t,m |

z1:t, u1:t), we can derive the additive decomposition from first principles:

H(x,m) = Ex,m[− log p(x,m)](17.20)

= Ex,m[− log(p(x) p(m | x))]

= Ex,m[− log p(x)− log p(m | x)]

= Ex,m[− log p(x)] + Ex,m[− log p(m | x)]

= Ex[− log p(x)] +

∫
x,m

−p(x,m) log p(m | x) dx dm

= Ex[− log p(x)] +

∫
x,m

−p(m | x)p(x) log p(m | x) dx dm

= Ex[− log p(x)] +

∫
x

p(x)

∫
m

−p(m | x) log p(m | x) dx dm

= H(x) +

∫
x

p(x) H(m | x) dx

= H(x) + Ex[H(m | x)]

This transformation directly implies the decomposition in (17.19). It proves
that the SLAM entropy is the sum of the path entropy and the expected en-
tropy of the map.

17.5.2 Exploration in FastSLAM

The entropy decomposition is now leveraged into an actual SLAM explo-
ration algorithm. Our approach is based on the FastSLAM algorithm de-
scribed in Chapter 13 of this book, and in particular the grid-based Fast-
SLAM algorithm described in Chapter 13.10. Recall that FastSLAM repre-
sents the SLAM posterior by a set of particles. Each particle contains a robot
path. In the case of the grid-based implementation, each particle also con-
tains an occupancy grid map. This makes the entropy measures for occu-
pancy grid maps applicable, as were just discussed in the previous section.

17.5 Exploration for SLAM 595

1: Algorithm FastSLAM_exploration(Yt):

2: initialize ĥ = ∞
3: repeat

4: propose an exploration control sequence ut+1:T

5: select a random particle yt ∈ Yt

6: for τ = t + 1 to T

7: draw xτ ∼ p(xτ | uτ , xτ−1)

8: draw zτ ∼ p(zτ | xτ)

9: compute Yτ = FastSLAM(zτ , uτ , Yτ−1)

10: endfor

11: fit a Gaussian μx,Σx to all pose particles {x[k]
T } ∈ YT

12: h = 1
2 log det(Σx)

13: for particles k = 1 toM do

14: letm be the mapm
[k]
T from the k-th particle in YT

15: update h = h + 1
M

H[m]

16: endfor

17: if h < ĥ then

18: set ĥ = h

19: set ût+1:T = ut+1:T

20: endif

21: until convergence

22: return ût+1:T

Table 17.3 The exploration algorithm for the grid-based version of FastSLAM. It
accepts as input a set of particles Yt. Each particle y

[k]
t contains a sampled robot

path x
[k]
1:t and an associated occupancy grid mapm[k]. It outputs an exploration path,

expressed in relative motion commands.

596 17 Exploration

An algorithm for determining an exploration action sequence is illustrated
in Table 17.3. This algorithm leaves a number of important implementation
questions open, hence it shall only serve as a schematic illustration. How-
ever, it characterizes all main steps of an actual implementation of the SLAM
exploration ideas.
The FastSLAM exploration algorithm is essentially a test-and-evaluate al-
gorithm. It proposes a course of action for exploration. It then evaluates
these actions by measuring the residual entropy. Building on the fundamen-
tal insight discussed above, the entropy is computed by adding two terms;
a term corresponding to the robot pose at the end of the proposed explo-
ration sequence, and a term pertaining to the expected map entropy. The
exploration algorithm then selects the controls that minimize the resulting
entropy.
In detail, the algorithm FastSLAM_exploration accepts as input a set of
particles and returns as output a proposed sequence of control for explo-
ration. Line 4 of Table 17.3 proposes a potential control sequence. The eval-
uation of a control sequence takes place in lines 5 through 16. It is organized
in three parts. First, the robot is simulated, based on a random particle in the
particle set. This simulation uses the stochastic model of the robot and its
environment. The result is a sequence of particle sets, all the way to the end
of the control trajectory. This simulation takes place in lines 5 through 9.
Subsequently, the entropy of the final particle set is calculated. Through
the mathematical decomposition stated in Equation 17.19, the entropy is fac-
tored into two terms: A term related to the entropy of the robot pose estimate
at time T , and a term related to the expected map uncertainty. The first term
is calculated in lines 11 and 12. Its correctness follows from the calculation of
the entropy of a Gaussian, which is derived in Table 17.4.
The second entropy term is computed in lines 13 through 16. Notice that
the calculation of the second term involves the entropy of a map m. For
occupancy grid maps, this computation is analogous to the one discussed in
the previous section. Lines 13 through 16 compute the average entropy of
the map, where the average is taken over all particles at time T . The result
is a value h which measures the expected entropy at time T , conditioned on
the proposed control sequence. Lines 17 through 20 then select the action
sequence that minimizes this expected entropy, which is ultimately returned
in line 22.
Note that this algorithm uses an approximation to compute the entropy of
the posterior about the trajectories in line 11. Instead of fitting a Gaussian

17.5 Exploration for SLAM 597

Lemma. The entropy of a multivariate Gaussian of d dimensions and covari-
ance Σ is given by

H =
d

2
(1 + log 2π) +

1

2
log det(Σ)

Proof. With

p(x) = (2π)−
d
2 det(Σ)−

1
2 exp

{
−1

2
xT Σ−1 x + xT Σ−1 μ− 1

2
μT Σ−1 μ

}
we get

Hp[x] = E[− log p(x)]

=
1

2

(
d log 2π + log det(Σ) + E[xT Σ−1 x]− 2E[xT] Σ−1 μ + μT Σ−1 μ

)
Here E[xT] = μT , and E[xT Σ−1 x] resolve as follows (where “·” denotes
the dot product)

E[xT Σ−1 x] = E[x xT · Σ−1]

= E[x xT] · Σ−1

= μ μT · Σ−1 + Σ · Σ−1

= μT Σ−1μ + d

It follows that

Hp[x] =
1

2

(
d log 2π + log det(Σ) + μT Σ−1μ + d− 2μT Σ−1μ + μT Σ−1μ

)
=

d

2
(1 + log 2π) +

1

2
log det(Σ)

Table 17.4 The entropy of a multivariate Gaussian.

to all trajectory particles y
[k]
T , it only computes it based on the last poses x

[k]
T .

This approximation works well in practice, and it bears resemblance to our
notion of exploration action approximation.
In summary, the FastSLAM exploration algorithm is essentially an exten-
sion of the Monte Carlo exploration algorithm stated in Table 17.1, with two
insights. First, it is applied to entire sequences of controls, not just a single
control. Second—and more importantly—the FastSLAM exploration algo-
rithm computes two types of entropies, one pertaining to the robot path, and
one to the map.

598 17 Exploration

17.5.3 Empirical Characterization

The exploration algorithm leads to appropriate exploratory behavior, specif-
ically in cyclic environments. Figure 17.15 shows a situation in which a robot
explores a cyclic environment containing a loop. The robot started in the lower
right corner of the loop, labeled “start.” At time step 35, the actions consid-
ered by the robot lead back to the start, and also the unknown area to the left
of this marker. The anticipated knowledge gain for moving back to the start
is higher than moving into unexplored terrain, since in addition to new map
information the pose uncertainty will be reduced. Thus, the exploring robot
actively decided to close the loop and move towards previously explored
terrain.
Figure 17.16 investigates the cost-benefit trade off closer. Shown there are
8 different actions as indicated. The utility of action 1 happens to be the
highest. It specifically outweighs the utility of action 4 (and any other non-
loop-closing action), which is significantly lower.
In time step 45, the robot closes the loop, as indicated in Figure 17.15. At
this point, the pose uncertainty is minimal and the map uncertainty begins to
dominate. As a result, the loop-closing action becomes unattractive. At time
88, the robot chooses to explore the open area, to which it then advances as
visualized in Figure 17.15.
Figure 17.17 depicts the evolution of the overall entropy during this exper-
iment over time. Up to time step 30, the reduction of the map uncertainty
compensates the increase of uncertainty about the robot’s trajectory. There-
fore, the entropy stays more or less constant. Whereas the execution of the
loop-closing action reduces the entropy in the belief about the trajectory of
the robot, the change inmap uncertainty is relatively small. This leads to a re-
duction in the overall entropy. As soon as the robot integrates measurements
covering so far unknown areas in the horizontal corridor, the changes in the
map and pose uncertainties again compensate each other. The decline of the
overall entropy around time step 90 is caused by observations in the wider
parts of the horizontal corridor. This is due to the fact that in occupancy grid
maps the reduction of the map uncertainty by incorporating a range scan
generally depends linearly on the size of the unknown area covered by the
scan.
The intricate interplay between path and map uncertainty, and the cor-
responding knowledge gain terms, play an essential role in the exploration
approach. When appropriate, the robot sometimes prefers localization, and
sometimes prefers moving into unmapped terrain.

17.5 Exploration for SLAM 599

35

45

88

start

70

97

Figure 17.15 A mobile robot explores an environment with a loop. The robot starts
in the lower right corner of the loop. After traversing it, it decides to follow the pre-
vious trajectory again in order to reduce its uncertainty. Then it continues to explore
the corridor. Courtesy of Cyrill Stachniss, University of Freiburg.

0

2
3

4

5

6
7

1

(a)

 0 1 2 3 4 5 6 7

ex
pe

ct
ed

 u
til

ity

target location

decision at timestep 35(b)

Figure 17.16 In this situation the robot determines the expected utility of possible
actions. (a) the exploration actions considered by the robot; (b) the expected utility of
each action. Action 1 is selected because it maximizes the expected utility. Courtesy
of Cyrill Stachniss, University of Freiburg.

600 17 Exploration

 0 20 40 60 80 100 120

en
tr

op
y

time step

Figure 17.17 The evolution of the entropy during the exploration experiment shown
in Figure 17.15. Courtesy of Cyrill Stachniss, University of Freiburg.

17.6 Summary

In this chapter, we have learned about robot exploration. All algorithms in
this chapter are motivated through a single aim: to maximize the knowledge
gained by the robot. By directing control actions so as to maximize the know-
ledge gain, the robot effectively explores.
This idea was applied to a number of different exploration problems:

• In active localization, the robot seeks to maximize the knowledge of its
pose relative to a known map. We devised an algorithm that calculates
the expected knowledge gain for moving to any relative robot pose. It
trades off the gain with the minimum costs of moving there. The resulting
algorithm does a fine job selecting locations that result in high information
gain.

• In exploration for mapping, the robot knows its pose at all times. Instead,
it has to gather information about its environment. Building on the occu-
pancy grid mapping paradigm, we noted that the information gain can be
computed separately for each grid cell in the map. We compared a num-
ber of different techniques for computing information gain and noted that
simple techniques—such as the entropy—do quite well. We then devised
a dynamic programming algorithm for moving to the nearby point that

17.6 Summary 601

optimizes the trade-off between information gain and costs of moving
there.

• We augmented the knowledge gain exploration technique to the case of
multiple robots. This extension proved remarkably straightforward. This
is because an easy modification of the dynamic programming paradigm
makes it possible to compute the cost of moving to any location, and trade
it off with the knowledge gain. By comparing costs and knowledge gain
for different target locations, multiple robots can coordinate their explo-
ration assignments so as to minimize the overall exploration time.

• Finally, we discussed exploration techniques for the full SLAM problem,
in which both the robot pose and the environment map are unknown.
Our approach observed a fundamental decomposition of the entropy into
two terms, one pertaining to the path uncertainty, and one to the uncer-
tainty in the map (averaged over all paths). This insight was leveraged
into a generate-and-test algorithm for exploration, which generates con-
trol sequences, computes future estimates, and trades off path uncertainty
versus map uncertainty when evaluating such control sequences. The
result was an exploration technique that sometimes leads the robot into
unknown terrain so as to improve the maps, and sometimes back to pre-
viously mapped terrain so as to improve the pose estimates.

Most of the exploration techniques in this chapter were greedy in the sense
that the robot only considers a single action choice in its exploration decision.
This greediness is the result of the enormous branching factor in most explo-
ration problems, which renders multi-step planning intractable. However,
the choice of the right exploration action required some thought.
The algorithms in this chapter consider moving to any point in the robot’s
local coordinate system as an exploration action. Thus, the basic action unit
considered here goes significantly beyond the basic robot control action as
defined in Chapter 5 of this book. It is this definition of action that makes
seemingly simple exploration techniques applicable to complex multi-step
robot exploration problems.
It was noted that exploration can also be formulated as a general POMDP
problem, using a payoff function that rewards information gain. However,
POMDPs are best when the branching factor is small, and the number of
possible observations is limited. Exploration problems are characterized
by huge state and observation spaces. Hence they are best solved through
greedy techniques that directly maximize information gain.

602 17 Exploration

17.7 Bibliographical Remarks

Exploration has been a primary application domain in robotics systems development, with ap-
plications as far reaching as volcano exploration (Bares andWettergreen 1999; Wettergreen et al.
1999), planetary/lunar exploration (Gat et al. 1994; Höllerer et al. 1999; Krotkov et al. 1999;
Matthies et al. 1995; Li et al. 2000), search and rescue (Murphy 2004), abandoned mine mapping
(Madhavan et al. 1999; Thrun et al. 2004c; Baker et al. 2004), meteorite search in Antarctica (Urm-
son et al. 2001; Apostolopoulos et al. 2001), desert exploration (Bapna et al. 1998) and underwater
exploration (Ballard 1987; Sandwell 1997; Smith and Dunn 1995; Whitcomb 2000).
The literature on algorithm design for robotic exploration draws its root in the various fields

of information gathering and decision theory referenced in the two previous chapters. One
of the early approaches to robot exploration is the algorithm described by Kuipers and Byun
(1990) and Kuipers and Byun (1991), see also Pierce and Kuipers (1994). In this approach, the
robot identifies so-called locally distinguishable places that allow it to distinguish between al-
ready visited and so far unexplored areas. A similar seminal paper is by Dudek et al. (1991),
who developed an exploring strategy for exploring an unknown graph-like environment. Their
algorithm does not consider distance metrics and is specifically designed for robots with very
limited perceptual capabilities.
An early exploration technique for learning topological maps with mobile robots was pro-

posed by Koenig and Simmons (1993). The idea of actively exploring for occupancy grid map-
ping using dynamic programming goes back to Moravec (1988) and Thrun (1993). Tailor and
Kriegman (1993) described an approach to visit all landmarks in an environment for learning a
feature-based map. In this system the robot maintains a list of all unvisited landmarks in the en-
vironment. The idea of information maximization for exploration using a statistical formulation
can be found in Kaelbling et al. (1996). Yamauchi et al. (1999) introduced the frontier-based ap-
proach to mobile robot exploration, specifically seeking out the frontiers between the explored
and the unexplored for directing a robot’s actions. More recently, González-Baños and Latombe
(2001) proposed an exploration strategy that considers the amount of unseen area that might
be visible to the robot from possible view points, to determine the next action. Similar explo-
ration strategies have also become popular in the area of 3-D object modeling. For example,
Whaite and Ferrie (1997) study the problem of scanning objects and consider the uncertainty in
the parameters of a model to determine the next best view-point.
The exploration approach has also been extended to teams of collaboratively exploring

robots. Burgard et al. (2000), and Simmons et al. (2000a) extended the greedy exploration frame-
work to robot teams who jointly explore and seek to maximize their map information; see also
Burgard et al. (2004). This approach is similar to the incremental deployment technique intro-
duced by Howard et al. (2002) as well as to the algorithm proposed by Stroupe (2004). Market-
based techniques for coordinated exploration have been investigated by Zlot et al. (2002). Dias
et al. (2004) analyzed potential failures during multi-robot coordination, and provided an im-
proved algorithm. An approach to deal with heterogeneous teams has been presented by Singh
and Fujimura (1993). An extension to coordinated exploration from multiple, unknown start
locations was introduced by Ko et al. (2003) and tested thoroughly in Konolige et al. (2005). The
approach uses a structural estimate of the environment along with a modified version of MCL
localization to estimate the relative robot locations (Fox et al. 2005). In Rekleitis et al. (2001b),
the authors propose an exploration technique in which one robot observes another exploring,
thereby reducing its location uncertainty. Some of the multi-robot exploration experiments pre-
sented in this chapter were first published by Thrun (2001).

17.7 Bibliographical Remarks 603

In some papers, the map exploration problem has been studied as a coverage problem, whichCOVERAGE PROBLEM

addresses the problem of algorithm design for exhaustively covering an unknown environment.
A recent paper by Choset (2001) provides a comprehensive survey into this field. Newer tech-
niques (Acar and Choset 2002; Acar et al. 2003) have approached this problem from a statistical
technique, with algorithms not dissimilar from the ones discussed here.
Within the context of SLAM, several authors have devised exploration techniques that can

jointly optimize for map coverage and active localization. Makarenko et al. (2002) describe
an approach that determines the actions to be carried out based on expected information gain
obtained by re-observing landmarks (to more accurately determine their location or the pose of
the robot) and by exploring unknown terrain. In a similar vein, Newman et al. (2003) describe an
exploration approach in the context of the Atlas (Bosse et al. 2003) framework for efficient SLAM.
Here the robot builds a graph-structure to represent visited areas. Sim et al. (2004) specifically
addresses the problem of trajectory planning in SLAM. He considers a parameterized class of
spiral trajectory policies in the context of an EKF-based approach to the SLAM problem. The
FastSLAM exploration technique described in this chapter is due to Stachniss and Burgard (2003,
2004). A technique for SLAM exploration whereby a robot drops markers to aid the localization
problem is described in Batalin and Sukhatme (2003).
The performance analysis of robotic exploration strategies has also been the subject of consid-

erable interest. Several authors provided mathematical or empirical analyses of the complexity
of different exploration strategies (Albers and Henzinger 2000; Deng and Papadimitriou 1998;
Koenig and Tovey 2003; Lumelsky et al. 1990; Rao et al. 1993). For example, Lee and Recce
(1997) presented an experimental study in which they compare the performance of different
exploration strategies for single robots.
Our technique for active localization in mobile robotics was first published in Burgard et al.

(1997) and Fox et al. (1998). More recently, Jensfelt and Christensen (2001a) presented a sys-
tem that uses a mixture of Gaussians to represent the posterior about the pose of the robot
and describe how to perform active localization given this representation. The problem of ac-
tive localization has also been studied theoretically, for example, by Kleinberg (1994) under the
assumptions of perfect sensors.
Several authors have developed robotic exploration strategies for dynamic environments.

Of specific interest have been pursuit evasion games, as discussed in the rich literature on dif-
ferential games (Isaacs 1965; Bardi et al. 1999). Techniques for pursuit evasion in indoor mobile
robotics are due to LaValle et al. (1997) and Guibas et al. (1999), and have recently been extended
by Gerkey et al. (2004).
Finally, exploration has been intensively studied in automata theory. The sequential deci-

sion making paradigm in which a learner receives payoff as it experiments has originally been
studied in the context of simple finite state automata known as bandits, see Feldman (1962);
Berry and Fristedt (1985); Robbins (1952). Techniques for learning the structure of finite state
automata go back to Rivest and Schapire (1987a,b) and Mozer and Bachrach (1989), who de-
veloped techniques for generating sequences of tests that distinguish different states in an FSA.
State-based bounds on the complexity of exploring deterministic environments have been de-
rived by Koenig and Simmons (1993) and Thrun (1992), which were later extended to stochastic
environments by Kearns and Singh (2003).

604 17 Exploration

17.8 Exercises

1. Consider a robot that operates in the triangular environment with three
types of landmarks:

r

g g

b

r b

Each location has two different landmarks, each with a different color.
Let us assume that in every round the robot can only inquire about the
presence of one landmark type: either the one labeled “r”, the one labeled
“g”, or the one labeled “b”. Suppose the robot first fires the detector for
“b” landmarks and moves clockwise to the next arc. What would be the
optimal landmark detector to use next? How would the answer change if
it does not move or if it moved counterclockwise to the next arc?

2. Suppose you are given K omnidirectional robots, which for the sake of
this question can move and sense in all directions at all times. In this
question, we would like to see each visible location once; we do not care
about the benefits of seeing locations more than once.

The text noted that the use of multiple robots can speed-up exploration
by more than just a unitary factor (meaning: K robots can be more than
K times faster than 1 robot).

(a) Howmuch faster can a team ofK robots be when compared to a single
exploring robot?

(b) Provide an example environment thatmaximizes the speed-up forK =

4 robots, and discuss the exploration strategy that leads to this speed-
up.

3. Suppose you are chasing a moving intruder through a known, bounded
environment. Can you draw an environment whereK robots can succeed
in finding the intruder in finite time, butK − 1 robots cannot? Draw such

17.8 Exercises 605

an environment for K = 2, K = 3, and K = 4 robots. Notice that your
result may make no assumption on the motion strategy of the intruder,
other than: if she is in your field of view, you see her.

4. A very simplistic exploration problem is known as theK-arm bandit prob-BANDIT PROBLEM

lem. In it you face a slot machine withK arms. Each arm provides a payoff
of $1 with pK probability, where pK is fixed but unknown to you. Your
task is to select arms to play such that your overall payoff is maximal.

(a) Prove that the greedy exploration strategy can be suboptimal, where
“greedy” is defined through the optimal choice of action relative to a
maximum likelihood estimator of the probabilities pk. (After n plays of
arm k, the maximum likelihood estimate of pk is given by nk/n, where
nk is the number of times you received the $1 payoff.)

(b) Prove that an optimal exploration strategy may never abandon any of
the arms.

(c) Implement theK-arm bandit forK = 2, with both probabilities p1 and
p2 chosen uniformly from the interval [0; 1]. Implement as good an
exploration strategy as you can find. Your exploration strategy may
only depend on the variables ni for i = 1, 2. Explain your strategy, and
measure your overall return for 1,000 games, each lasting 100 steps.

5. In Chapter 17.4, we empirically compared two different ways of calculat-
ing the information gain for a grid cell: entropy and expected entropy
gain. Provide a mathematical bound for the error between these two
quantities under the assumptions stated in the chapter. For which map
occupancy value(s) will this error be maximal? For which value(s) will it
be minimal?

6. In the text we encountered an expression for the entropy of a Gaussian.
We would like you to compute the expected information gain for a simple
Gaussian update. Suppose we are estimating an unknown state variable
x, and our present maximum likelihood estimates are μ and Σ. Let us
further assume our sensor can measure x, but the measurement will be
corrupted by Gaussian noise with covariance Q. Provide an expression
for the expected knowledge gain through taking a sensor measurement.
Hint: Focus on the covariance, not the mean.

Bibliography

Aberdeen, D. 2002. A survey of approximatemethods for solving partially observable
Markov decision processes. Technical report, Australia National University.

Acar, E.U., and H. Choset. 2002. Sensor-based coverage of unknown environments.
International Journal of Robotic Research 21:345–366.

Acar, E.U., H. Choset, Y. Zhang, and M.J. Schervish. 2003. Path planning for robotic
demining: Robust sensor-based coverage of unstructured environments and prob-
abilistic methods. International Journal of Robotic Research 22:441–466.

Albers, S., and M.R. Henzinger. 2000. Exploring unknown environments. SIAM
Journal on Computing 29:1164–1188.

Anguelov, D., R. Biswas, D. Koller, B. Limketkai, S. Sanner, and S. Thrun. 2002. Learn-
ing hierarchical object maps of non-stationary environments with mobile robots. In
Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI).

Anguelov, D., D. Koller, E. Parker, and S. Thrun. 2004. Detecting and modeling doors
with mobile robots. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Apostolopoulos, D., L. Pedersen, B. Shamah, K. Shillcutt, M.D. Wagner, and W.R.
Whittaker. 2001. Robotic antarctic meteorite search: Outcomes. In Proceedings of
the International Conference on Robotics and Automation (ICRA), pp. 4174–4179.

Araneda, A. 2003. Statistical inference in mapping and localization for a mobile
robot. In J. M. Bernardo, M.J. Bayarri, J.O. Berger, A. P. Dawid, D. Heckerman,
A.F.M. Smith, and M. West (eds.), Bayesian Statistics 7. Oxford, UK: Oxford Univer-
sity Press.

Arkin, R. 1998. Behavior-Based Robotics. Cambridge, MA: MIT Press.

Arras, K.O., and S.J Vestli. 1998. Hybrid, high-precision localisation for the mail dis-
tributing mobile robot system MOPS. In Proceedings of the International Conference
on Robotics and Automation (ICRA).

608 Bibliography

Astrom, K.J. 1965. Optimal control of Markov decision processes with incomplete
state estimation. Journal of Mathematical Analysis and Applications 10:174–205.

Austin, D.J., and P. Jensfelt. 2000. Using multiple Gaussian hypotheses to represent
probability-distributions for mobile robots. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

Avots, D., E. Lim, R. Thibaux, and S. Thrun. 2002. A probabilistic technique for si-
multaneous localization and door state estimation with mobile robots in dynamic
environments. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS).

B, Triggs, McLauchlan P, Hartley R, and Fitzgibbon A. 2000. Bundle adjustment
– A modern synthesis. In W. Triggs, A. Zisserman, and R. Szeliski (eds.), Vision
Algorithms: Theory and Practice, LNCS, pp. 298–375. Springer Verlag.

Bagnell, J., and J. Schneider. 2001. Autonomous helicopter control using reinforce-
ment learning policy search methods. In Proceedings of the International Conference
on Robotics and Automation (ICRA).

Bailey, T. 2002. Mobile Robot Localisation and Mapping in Extensive Outdoor Environ-
ments. PhD thesis, University of Sydney, Sydney, NSW, Australia.

Baker, C., A. Morris, D. Ferguson, S. Thayer, C. Whittaker, Z. Omohundro, C. Reverte,
W. Whittaker, D. Hähnel, and S. Thrun. 2004. A campaign in autonomous mine
mapping. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

Ballard, R.D. 1987. The Discovery of the Titanic. New York, NY:Warner/Madison Press.

Bapna, D., E. Rollins, J. Murphy, M. Maimone, W.L. Whittaker, and D. Wettergreen.
1998. The Atacama Desert trek: Outcomes. In Proceedings of the International Con-
ference on Robotics and Automation (ICRA), volume 1, pp. 597–604.

Bar-Shalom, Y., and T.E. Fortmann. 1988. Tracking and Data Association. Academic
Press.

Bar-Shalom, Y., and X.-R. Li. 1998. Estimation and Tracking: Principles, Techniques, and
Software. Danvers, MA: YBS.

Bardi, M., Parthasarathym T., and T.E.S. Raghavan. 1999. Stochastic and Differential
Games: Theory and Numerical Methods. Boston: Birkhauser.

Bares, J., and D.Wettergreen. 1999. Dante II: Technical description, results and lessons
learned. International Journal of Robotics Research 18:621–649.

Barniv, Y. 1990. Dynamic programming algorithm for detecting dim moving targets.
In Y. Bar-Shalom (ed.), Multitarget-Multisensor Tracking: Advanced Applications, pp.
85–154. Boston: Artech House.

Barto, A.G., S.J. Bradtke, and S.P. Singh. 1991. Real-time learning and control using
asynchronous dynamic programming. Technical Report COINS 91-57, Department
of Computer Science, University of Massachusetts, MA.

Bibliography 609

Batalin, M., and G. Sukhatme. 2003. Efficient exploration without localization. In
Proceedings of the International Conference on Robotics and Automation (ICRA).

Baxter, J., L. Weaver, and P. Bartlett. 2001. Infinite-horizon gradient-based policy
search: II. Gradient ascent algorithms and experiments. Journal of Artificial Intelli-
gence Research. To appear.

Bekker, G. 1956. Theory of Land Locomotion. University of Michigan.

Bekker, G. 1969. Introduction to Terrain-Vehicle Systems. University of Michigan.

Bellman, R.E. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press.

Berry, D., and B. Fristedt. 1985. Bandit Problems: Sequential Allocation of Experiments.
Chapman and Hall.

Bertsekas, Dimitri P., and John N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Bel-
mont, MA: Athena Scientific.

Besl, P., and N. McKay. 1992. A method for registration of 3d shapes. Transactions on
Pattern Analysis and Machine Intelligence 14:239–256.

Betgé-Brezetz, S., R. Chatila, and M. Devy. 1995. Object-based modelling and lo-
calization in natural environments. In Proceedings of the International Conference on
Robotics and Automation (ICRA).

Betgé-Brezetz, S., P. Hébert, R. Chatila, and M. Devy. 1996. Uncertain map making in
natural environments. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Minneapolis.

Betke, M., and K. Gurvits. 1994. Mobile robot localization using landmarks. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pp. 135–4142.

Biswas, R., B. Limketkai, S. Sanner, and S. Thrun. 2002. Towards object map-
ping in dynamic environments with mobile robots. In Proceedings of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS).

Blackwell, D. 1947. Conditional expectation and unbiased sequential estimation.
Annals of Mathematical Statistics 18:105–110.

Blahut, R.E., W. Miller, and C.H. Wilcox. 1991. Radar and Sonar: Parts I&II. New York,
NY: Springer-Verlag.

Borenstein, J., B. Everett, and L. Feng. 1996. Navigating Mobile Robots: Systems and
Techniques. Wellesley, MA: A.K. Peters, Ltd.

Borenstein, J., and Y. Koren. 1991. The vector field histogram – fast obstacle avoidance
for mobile robots. IEEE Transactions on Robotics and Automation 7:278–288.

Bosse, M., P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. 2004. Simulta-
neous localization and map building in large-scale cyclic environments using the
atlas framework. International Journal of Robotics Research 23:1113–1139.

610 Bibliography

Bosse, M., P. Newman, M. Soika, W. Feiten, J. Leonard, and S. Teller. 2003. An atlas
framework for scalable mapping. In Proceedings of the International Conference on
Robotics and Automation (ICRA).

Bouguet, J.-Y., and P. Perona. 1995. Visual navigation using a single camera. In
Proceedings of the International Conference on Computer Vision (ICCV), pp. 645–652.

Boutilier, C., R. Brafman, and C. Geib. 1998. Structured reachability analysis for
Markov decision processes. In Proceedings of the Conference on Uncertainty in AI
(UAI), pp. 24–32.

Brafman, R.I. 1997. A heuristic variable grid solution method for POMDPs. In Pro-
ceedings of the AAAI National Conference on Artificial Intelligence.

Brooks, R.A. 1986. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation 2:14–23.

Brooks, R.A. 1990. Elephants don’t play chess. Autonomous Robots 6:3–15.

Brooks, R.A., and T. Lozano-Perez. 1985. A subdivision algorithm in configuration
space for findpath with rotation. IEEE Transactions on Systems, Man, and Cybernetics
15:224–233.

Bryson, A.E., and H. Yu-Chi. 1975. Applied Optimal Control. Halsted Press, JohnWiley
& Sons.

Bulata, H., and M. Devy. 1996. Incremental construction of a landmark-based and
topological model of indoor environments by a mobile robot. In Proceedings of the
International Conference on Robotics and Automation (ICRA), Minneapolis, USA.

Burgard, W., A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun. 1999a. Experiences with an interactive museum tour-guide robot.
Artificial Intelligence 114:3–55.

Burgard, W., A. Derr, D. Fox, and A.B. Cremers. 1998. Integrating global position esti-
mation and position tracking for mobile robots: the Dynamic Markov Localization
approach. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS).

Burgard, W., D. Fox, D. Hennig, and T. Schmidt. 1996. Estimating the absolute posi-
tion of a mobile robot using position probability grids. In Proceedings of the National
Conference on Artificial Intelligence (AAAI).

Burgard, W., D. Fox, H. Jans, C. Matenar, and S. Thrun. 1999b. Sonar-based mapping
of large-scale mobile robot environments using EM. In Proceedings of the Interna-
tional Conference on Machine Learning, Bled, Slovenia.

Burgard, W., D. Fox, M. Moors, R.G. Simmons, and S. Thrun. 2000. Collaborative
multi-robot exploration. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Bibliography 611

Burgard, W., D. Fox, and S. Thrun. 1997. Active mobile robot localization. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI),
San Mateo, CA. Morgan Kaufmann.

Burgard, W., M. Moors, C. Stachniss, and F. Schneider. 2004. Coordinated multi-robot
exploration. IEEE Transactions on Robotics and Automation. To appear.

Canny, J. 1987. The Complexity of Robot Motion Planning. Cambridge, MA: MIT Press.

Casella, G.C., and R.L. Berger. 1990. Statistical Inference. Pacific Grove, CA:
Wadsworth & Brooks.

Cassandra, A.R., L.P. Kaelbling, andM.L. Littman. 1994. Acting optimally in partially
observable stochastic domains. In Proceedings of the AAAI National Conference on
Artificial Intelligence, pp. 1023–1028.

Cassandra, A., M. Littman, and N. Zhang. 1997. Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proceedings of
the Conference on Uncertainty in AI (UAI).

Castellanos, J.A., J.M.M. Montiel, J. Neira, and J.D. Tardós. 1999. The SPmap: A
probabilistic framework for simultaneous localization and map building. IEEE
Transactions on Robotics and Automation 15:948–953.

Castellanos, J.A., J. Neira, and J.D. Tardós. 2001. Multisensor fusion for simultaneous
localization and map building. IEEE Transactions on Robotics and Automation 17:
908–914.

Castellanos, J.A., J. Neira, and J.D. Tardós. 2004. Limits to the consistency of the EKF-
based SLAM. In M.I. Ribeiro and J. Santos-Victor (eds.), Proceedings of Intelligent
Autonomous Vehicles (IAV-2004), Lisboa, PT. IFAC/EURON and IFAC/Elsevier.

Chatila, R., and J.-P. Laumond. 1985. Position referencing and consistent world mod-
eling for mobile robots. In Proceedings of the International Conference on Robotics and
Automation (ICRA), pp. 138–145.

Cheeseman, P., and P. Smith. 1986. On the representation and estimation of spatial
uncertainty. International Journal of Robotics 5:56 – 68.

Choset, H. 1996. Sensor Based Motion Planning: The Hierarchical Generalized Voronoi
Graph. PhD thesis, California Institute of Technology.

Choset, H. 2001. Coverage for robotics — a survey of recent results. Annals of Mathe-
matical Artificial Intelligence 31:113–126.

Choset, H., K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun.
2004. Principles of Robotic Motion: Theory, Algorithms, and Implementation. Cam-
bridge, MA: MIT Press.

Chown, E., S. Kaplan, and D. Kortenkamp. 1995. Prototypes, location, and associative
networks (plan): Towards a unified theory of cognitive mapping. Cognitive Science
19:1–51.

612 Bibliography

Chrisman, L. 1992. Reinforcement learning with perceptual aliasing: The percep-
tual distinction approach. In Proceedings of 1992 AAAI Conference, Menlo Park, CA.
AAAI Press / The MIT Press.

Cid, R.M., C. Parra, and M. Devy. 2002. Visual navigation in natural environments:
from range and color data to a landmark-based model. Autonomous Robots 13:143–
168.

Cohn, D. 1994. Queries and exploration using optimal experiment design. In J.D.
Cowan, G. Tesauro, and J. Alspector (eds.), Advances in Neural Information Process-
ing Systems 6, San Mateo, CA. Morgan Kaufmann.

Connell, J. 1990. Minimalist Mobile Robotics. Boston: Academic Press.

Coppersmith, D., and S. Winograd. 1990. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation 9:251–280.

Cover, T.M., and J.A. Thomas. 1991. Elements of Information Theory. Wiley.

Cowell, R.G., A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. 1999. Probabilistic
Networks and Expert Systems. Berlin, New York: Springer Verlag.

Cox, I.J. 1991. Blanche—an experiment in guidance and navigation of an autonomous
robot vehicle. IEEE Transactions on Robotics and Automation 7:193–204.

Cox, I.J., and J.J. Leonard. 1994. Modeling a dynamic environment using a Bayesian
multiple hypothesis approach. Artificial Intelligence 66:311–344.

Cox, I.J., and G.T. Wilfong (eds.). 1990. Autonomous Robot Vehicles. Springer Verlag.

Craig, J.J. 1989. Introduction to Robotics: Mechanics and Control (2nd Edition). Reading,
MA: Addison-Wesley Publishing, Inc. 3rd edition.

Crowley, J. 1989. World modeling and position estimation for a mobile robot us-
ing ultrasonic ranging. In Proceedings of the International Conference on Robotics and
Automation (ICRA), pp. 674–680.

Csorba, M. 1997. Simultaneous Localisation and Map Building. PhD thesis, University
of Oxford.

Davison, A. 1998. Mobile Robot Navigation Using Active Vision. PhD thesis, University
of Oxford, Oxford, UK.

Davison, A. 2003. Real time simultaneous localisation and mapping with a single
camera. In Proceedings of the International Conference on Computer Vision (ICCV),
Nice, France.

Dean, L.P. Kaelbling, J. Kirman, and A. Nicholson. 1995. Planning under time con-
straints in stochastic domains. Artificial Intelligence 76:35–74.

Deans, M., and M. Hebert. 2000. Invariant filtering for simultaneous localization and
mapping. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pp. 1042–1047.

Bibliography 613

Deans, M.C., and M. Hebert. 2002. Experimental comparison of techniques for local-
ization and mapping using a bearing-only sensor. In Proceedings of the International
Symposium on Experimental Robotics (ISER), Sant’Angelo d’Ischia, Italy.

Dearden, R., and C. Boutilier. 1994. Integrating planning and execution in stochastic
domains. In Proceedings of the AAAI Spring Symposium on Decision Theoretic Plan-
ning, pp. 55–61, Stanford, CA.

Dedeoglu, G., and G. Sukhatme. 2000. Landmark-based matching algorithm for
cooperative mapping by autonomous robots. In Proceedings of the International
Symposium on Distributed Autonomous Robotic Systems (DARS 2000), Knoxville, Ten-
neessee.

DeGroot, Morris H. 1975. Probability and Statistics. Reading, MA: Addison-Wesley.

Dellaert, F. 2005. Square root SAM. In S. Thrun, G. Sukhatme, and S. Schaal (eds.), Pro-
ceedings of the Robotics Science and Systems Conference. Cambridge, MA: MIT Press.

Dellaert, F., D. Fox, W. Burgard, and S. Thrun. 1999. Monte Carlo localization for mo-
bile robots. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

Dellaert, F., S.M. Seitz, C. Thorpe, and S. Thrun. 2003. EM,MCMC, and chain flipping
for structure frommotion with unknown correspondence. Machine Learning 50:45–
71.

Dempster, A.P., A.N. Laird, and D.B. Rubin. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39:
1–38.

Deng, X., and C. Papadimitriou. 1998. How to learn in an unknown environment:
The rectilinear case. Journal of the ACM 45:215–245.

Devroye, L., L. Györfi, and G. Lugosi. 1996. A Probabilistic Theory of Pattern Recogni-
tion. New York, NY: Springer-Verlag.

Devy, M., and H. Bulata. 1996. Multi-sensory perception and heterogeneous rep-
resentations for the navigation of a mobile robot in a structured environment. In
Proceedings of the Symposium on Intelligent Robot Systems, Lisboa.

Devy, M., and C. Parra. 1998. 3-d scene modelling and curve-based localization in
natural environments. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Dias, M.B., M. Zinck, R. Zlot, and A. Stentz. 2004. Robust multirobot coordination in
dynamic environments. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Dickmanns, E.D. 2002. Vision for ground vehicles: history and prospects. International
Journal of Vehicle Autonomous Systems 1:1–44.

614 Bibliography

Dickmanns, E.D., and V. Graefe. 1988. Application of monocular machine vision.
Machine Vision and Applications 1:241–261.

Diebel, J., K. Reuterswärd, J. Davis, and S. Thrun. 2004. Simultaneous localization
and mapping with active stereo vision. In Proceedings of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS).

Dietterich, T.G. 2000. Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research 13:227–303.

Dissanayake, G., P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. 2001. A
solution to the simultaneous localisation andmap building (SLAM) problem. IEEE
Transactions on Robotics and Automation 17:229–241.

Dissanayake, G., S.B. Williams, H. Durrant-Whyte, and T. Bailey. 2002. Map man-
agement for efficient simultaneous localization and mapping (SLAM). Autonomous
Robots 12:267–286.

Dorf, R.C., and R.H. Bishop. 2001. Modern Control Systems (Ninth Edition). Englewood
Cliffs, NJ: Prentice Hall.

Doucet, A. 1998. On sequential simulation-based methods for Bayesian filtering.
Technical Report CUED/F-INFENG/TR 310, Cambridge University, Department
of Engineering, Cambridge, UK.

Doucet, A., J.F.G. de Freitas, and N.J. Gordon (eds.). 2001. Sequential Monte Carlo
Methods In Practice. New York: Springer Verlag.

Driankov, D., and A. Saffiotti (eds.). 2001. Fuzzy Logic Techniques for Autonomous
Vehicle Navigation, volume 61 of Studies in Fuzziness and Soft Computing. Berlin,
Germany: Springer-Verlag.

Duckett, T., S. Marsland, and J. Shapiro. 2000. Learning globally consistent maps by
relaxation. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pp. 3841–3846.

Duckett, T., S. Marsland, and J. Shapiro. 2002. Fast, on-line learning of globally
consistent maps. Autonomous Robots 12:287 – 300.

Duckett, T., and U. Nehmzow. 2001. Mobile robot self-localisation using occu-
pancy histograms and a mixture of Gaussian location hypotheses. Robotics and
Autonomous Systems 34:119–130.

Duda, R.O., P.E. Hart, and D. Stork. 2000. Pattern classification and scene analysis (2nd
edition). New York: John Wiley and Sons.

Dudek, G., and D. Jegessur. 2000. Robust place recognition using local appearance
based methods. In Proceedings of the International Conference on Robotics and Automa-
tion (ICRA), pp. 466–474.

Dudek, G., andM. Jenkin. 2000. Computational Principles of Mobile Robotics. Cambridge
CB2 2RU, UK: Cambridge University Press.

Bibliography 615

Dudek, G., M. Jenkin, E. Milios, and D. Wilkes. 1991. Robotic exploration as graph
construction. IEEE Transactions on Robotics and Automation 7:859–865.

Durrant-Whyte, H.F. 1988. Uncertain geometry in robotics. IEEE Transactions on
Robotics and Automation 4:23 – 31.

Durrant-Whyte, H.F. 1996. Autonomous guided vehicle for cargo handling applica-
tions. International Journal of Robotics Research 15.

Durrant-Whyte, H., S. Majumder, S. Thrun, M. de Battista, and S. Scheding. 2001. A
Bayesian algorithm for simultaneous localization and map building. In Proceedings
of the 10th International Symposium of Robotics Research (ISRR’01), Lorne, Australia.

Elfes, A. 1987. Sonar-based real-world mapping and navigation. IEEE Transactions on
Robotics and Automation pp. 249–265.

Eliazar, A., and R. Parr. 2003. DP-SLAM: Fast, robust simultaneous localization and
mapping without predetermined landmarks. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico. IJCAI.

Eliazar, A., and R. Parr. 2004. DP-SLAM 2.0. In Proceedings of the International Confer-
ence on Robotics and Automation (ICRA), New Orleans, USA.

Elliott, R.J., L.Aggoun, and J.B. Moore. 1995. Hidden Markov Models: Estimation and
Control. New York, NY: Springer-Verlag.

Engelson, S., and D. McDermott. 1992. Error correction in mobile robot map learning.
In Proceedings of the International Conference on Robotics and Automation (ICRA), pp.
2555–2560.

Etter, P.C. 1996. Underwater Acoustic Modeling: Principles, Techniques and Applications.
Amsterdam: Elsevier.

Featherstone, R. 1987. Robot Dynamics Algorithms. Boston, MA: Kluwer Academic
Publishers.

Feder, H.J.S., J.J. Leonard, and C.M. Smith. 1999. Adaptive mobile robot navigation
and mapping. International Journal of Robotics Research 18:650–668.

Feldman, D. 1962. Contributions to the two-armed bandit problem. Ann. Math. Statist
33:847–856.

Feller, W. 1968. An Introduction To Probability Theory And Its Applications (3rd edition)x.
Quinn-Woodbine.

Feng, L., J. Borenstein, and H.R. Everett. 1994. “Where am I?” Sensors and meth-
ods for autonomousmobile robot positioning. Technical Report UM-MEAM-94-12,
University of Michigan, Ann Arbor, MI.

Fenwick, J., P. Newman, and J. Leonard. 2002. Collaborative concurrent mapping and
localization. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

616 Bibliography

Ferguson, D., T. Stentz, and S. Thrun. 2004. PAO* for planning with hidden state. In
Proceedings of the International Conference on Robotics and Automation (ICRA).

Fischler, M.A., and R.C. Bolles. 1981. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24:381–395.

Folkesson, J., and H.I. Christensen. 2003. Outdoor exploration and SLAM using a
compressed filter. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 419–427.

Folkesson, J., and H.I. Christensen. 2004a. Graphical SLAM: A self-correcting map.
In Proceedings of the International Conference on Robotics and Automation (ICRA).

Folkesson, J., and H.I. Christensen. 2004b. Robust SLAM. In Proceedings of the Inter-
national Symposium on Autonomous Vehicles, Lisboa, PT.

Fox, D. 2003. Adapting the sample size in particle filters through KLD-sampling.
International Journal of Robotics Research 22:985 – 1003.

Fox, D., W. Burgard, F. Dellaert, and S. Thrun. 1999a. Monte Carlo localization: Effi-
cient position estimation for mobile robots. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), Orlando, FL. AAAI.

Fox, D., W. Burgard, H. Kruppa, and S. Thrun. 2000. A probabilistic approach to
collaborative multi-robot localization. Autonomous Robots 8.

Fox, D., W. Burgard, and S. Thrun. 1998. Active Markov localization for mobile
robots. Robotics and Autonomous Systems 25:195–207.

Fox, D., W. Burgard, and S. Thrun. 1999b. Markov localization for mobile robots in
dynamic environments. Journal of Artificial Intelligence Research (JAIR) 11:391–427.

Fox, D., W. Burgard, and S. Thrun. 1999c. Markov localization for mobile robots in
dynamic environments. Journal of Artificial Intelligence Research 11:391–427.

Fox, D., J. Ko, K. Konolige, and B. Stewart. 2005. A hierarchical Bayesian approach to
mobile robot map structure learning. In P. Dario and R. Chatila (eds.), Robotics Re-
search: The Eleventh International Symposium, Springer Tracts in Advanced Robotics
(STAR). Springer Verlag.

Freedman, D., and P. Diaconis. 1981. On this histogram as a density estimator: L_2
theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57:453–476.

Frese, U. 2004. An O(logn) Algorithm for Simultaneous Localization and Mapping of
Mobile Robots in Indoor Environments. PhD thesis, University of Erlangen-Nürnberg,
Germany.

Frese, U., and G. Hirzinger. 2001. Simultaneous localization and mapping—a discus-
sion. In Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robotics,
pp. 17–26, Seattle, WA.

Bibliography 617

Frese, U., P. Larsson, and T. Duckett. 2005. A multigrid algorithm for simultaneous
localization and mapping. IEEE Transactions on Robotics. To appear.

Frueh, C., and A. Zakhor. 2003. Constructing 3d city models by merging ground-
based and airborne views. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), Madison, Wisconsin.

Gat, E. 1998. Three-layered architectures. In D. Kortenkamp, R.P. Bonasso, and
R. Murphy (eds.), AI-based Mobile Robots: Case Studies of Successful Robot Systems,
pp. 195–210. Cambridge, MA: MIT Press.

Gat, E., R. Desai, R. Ivlev, J. Loch, and D.P. Miller. 1994. Behavior control for robotic
exploration of planetary surfaces. IEEE Transactions on Robotics and Automation 10:
490–503.

Gauss, K.F. 1809. Theoria Motus Corporum Coelestium (Theory of the Motion of the Heav-
enly Bodies Moving about the Sun in Conic Sections). Republished in 1857, and by
Dover in 1963: Little, Brown, and Co.

Geffner, H., and B. Bonet. 1998. Solving large POMDPs by real time dynamic pro-
gramming. InWorking Notes Fall AAAI Symposium on POMDPs, Stanford, CA.

Gerkey, B., S. Thrun, and G. Gordon. 2004. Parallel stochastic hill-climbing with
small teams. In L. Parker, F. Schneider, and A. Schultz (eds.), Proceedings of the 3rd
International Workshop onMulti-Robot Systems, Amsterdam. NRL, Kluwer Publisher.

Gilks, W.R., S. Richardson, and D.J. Spiegelhalter (eds.). 1996. Markov Chain Monte
Carlo in Practice. Chapman and Hall/CRC.

Goldberg, K. 1993. Orienting polygonal parts without sensors. Algorithmica 10:201–
225.

Golfarelli, M., D. Maio, and S. Rizzi. 1998. Elastic correction of dead-reckoning errors
in map building. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 905–911.

Golub, G.H., and C.F. Van Loan. 1986. Matrix Computations. North Oxford Academic.

González-Baños, H.H., and J.C. Latombe. 2001. Navigation strategies for exploring
indoor environments. International Journal of Robotics Research.

Gordon, G. J. 1995. Stable function approximation in dynamic programming. In
A. Prieditis and S. Russell (eds.), Proceedings of the Twelfth International Conference
on Machine Learning. Also appeared as Technical Report CMU-CS-95-103, Carnegie
Mellon University, School of Computer Science, Pittsburgh, PA.

Greiner, R., and R. Isukapalli. 1994. Learning to select useful landmarks. In Proceed-
ings of 1994 AAAI Conference, pp. 1251–1256, Menlo Park, CA. AAAI Press / The
MIT Press.

Grunbaum, F.A., M.Bernfeld, and R.E. Blahut (eds.). 1992. Radar and Sonar: Part II.
New York, NY: Springer-Verlag.

618 Bibliography

Guibas, L.J., D.E. Knuth, and M. Sharir. 1992. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica 7:381–413. See also 17th Int. Coll.
on Automata, Languages and Programming, 1990, pp. 414–431.

Guibas, L.J., J.-C. Latombe, S.M. LaValle, D. Lin, and R. Motwani. 1999. A visibility-
based pursuit-evasion problem. International Journal of Computational Geometry and
Applications 9:471–493.

Guivant, J., and E. Nebot. 2001. Optimization of the simultaneous localization and
map building algorithm for real time implementation. IEEE Transactions on Robotics
and Automation 17:242–257. In press.

Guivant, J., and E. Nebot. 2002. Improving computational and memory requirements
of simultaneous localization and map building algorithms. In Proceedings of the
International Conference on Robotics and Automation (ICRA), pp. 2731–2736.

Guivant, J., E. Nebot, and S. Baiker. 2000. Autonomous navigation and map building
using laser range sensors in outdoor applications. Journal of Robotics Systems 17:
565–583.

Guivant, J.E., E.M. Nebot, J. Nieto, and F. Masson. 2004. Navigation and mapping in
large unstructured environments. International Journal of Robotics Research 23.

Gutmann, J.S., and D. Fox. 2002. An experimental comparison of localization meth-
ods continued. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

Gutmann, J.-S., W. Burgard, D. Fox, and K. Konolige. 1998. An experimental compar-
ison of localization methods. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS).

Gutmann, J.-S., and K. Konolige. 2000. Incremental mapping of large cyclic environ-
ments. In Proceedings of the IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation (CIRA).

Gutmann, J.-S., and B. Nebel. 1997. Navigation mobiler roboter mit laserscans. In
Autonome Mobile Systeme. Berlin: Springer Verlag. In German.

Gutmann, J.-S., and C. Schlegel. 1996. AMOS: Comparison of scan matching ap-
proaches for self-localization in indoor environments. In Proc. of the 1st Euromicro
Workshop on Advanced Mobile Robots. IEEE Computer Society Press.

Hähnel, D., W. Burgard, B. Wegbreit, and S. Thrun. 2003a. Towards lazy data associa-
tion in SLAM. In Proceedings of the 11th International Symposium of Robotics Research
(ISRR’03), Sienna, Italy. Springer.

Hähnel, D., D. Fox, W. Burgard, and S. Thrun. 2003b. A highly efficient FastSLAM
algorithm for generating cyclic maps of large-scale environments from raw laser
range measurements. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS).

Bibliography 619

Hähnel, D., D. Schulz, and W. Burgard. 2003c. Mobile robot mapping in populated
environments. Autonomous Robots 17:579–598.

Hartley, R., and A. Zisserman. 2000. Multiple View Geometry in Computer Vision. Cam-
bridge University Press.

Hauskrecht, M. 1997. Incremental methods for computing bounds in partially ob-
servable Markov decision processes. In Proceedings of the AAAI National Conference
on Artificial Intelligence, pp. 734–739, Providence, RI.

Hauskrecht, M. 2000. Value-function approximations for partially observableMarkov
decision processes. Journal of Artificial Intelligence Research 13:33–94.

Hayet, J.B., F. Lerasle, and M. Devy. 2002. A visual landmark framework for indoor
mobile robot navigation. In Proceedings of the International Conference on Robotics and
Automation (ICRA), Washington, DC.

Hertzberg, J., and F. Kirchner. 1996. Landmark-based autonomous navigation in
sewerage pipes. In Proc. of the First Euromicro Workshop on Advanced Mobile Robots.

Hinkel, R., and T. Knieriemen. 1988. Environment perception with a laser radar in
a fast moving robot. In Proceedings of Symposium on Robot Control, pp. 68.1–68.7,
Karlsruhe, Germany.

Hoey, J., R. St-Aubin, A. Hu, and C. Boutilier. 1999. SPUDD: Stochastic planning
using decision diagrams. In Proceedings of the Conference on Uncertainty in AI (UAI),
pp. 279–288.

Höllerer, T., S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway. 1999. Exploring
MARS: Developing indoor and outdoor user interfaces to a mobile augmented re-
ality system. Computers and Graphics 23:779–785.

Howard, A. 2004. Multi-robot mapping using manifold representations. In Proceed-
ings of the International Conference on Robotics and Automation (ICRA), pp. 4198–4203.

Howard, A., M.J. Matarić, and G.S. Sukhatme. 2002. An incremental deployment
algorithm for mobile robot teams. In Proceedings of the IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS).

Howard, A., M.J. Matarić, and G.S. Sukhatme. 2003. Cooperative relative localiza-
tion for mobile robot teams: An ego-centric approach. In Proceedings of the Naval
Research Laboratory Workshop on Multi-Robot Systems, Washington, D.C.

Howard, A., L.E. Parker, and G.S. Sukhatme. 2004. The SDR experience: Experi-
ments with a large-scale heterogenous mobile robot team. In Proceedings of the 9th
International Symposium on Experimental Robotics 2004, Singapore.

Howard, R.A. 1960. Dynamic Programming andMarkov Processes. MIT Press andWiley.

Iagnemma, K., and S. Dubowsky. 2004. Mobile Robots in Rough Terrain: Estimation,
Motion Planning, and Control with Application to Planetary Rovers. Springer.

620 Bibliography

Ilon, B.E., 1975. Wheels for a course stable selfpropelling vehicle movable in any de-
sired direction on the ground or some other base. United States Patent #3,876,255.

Iocchi, L., K. Konolige, and M. Bajracharya. 2000. Visually realistic mapping of a
planar environment with stereo. In Proceesings of the 2000 International Symposium
on Experimental Robotics, Waikiki, Hawaii.

IRobots Inc., 2004. Roomba robotic floor vac. On the Web at
http://www.irobot.com/consumer/.

Isaacs, R. 1965. Differential Games–A Mathematical Theory with Applications to Warfare
and Pursuit, Control and Optimization. John Wiley and Sons, Inc.

Isard, M., and A. Blake. 1998. CONDENSATION: conditional density propagation
for visual tracking. International Journal of Computer Vision 29:5–28.

Jaeger, H. 2000. Observable operator processes and conditioned continuation repre-
sentations. Neural Computation 12:1371–1398.

James, M., and S. Singh. 2004. Learning and discovery of predictive state representa-
tions in dynamical systemswith reset. In Proceedings of the Twenty-First International
Conference on Machine Learning (ICML), pp. 417–424.

Jazwinsky, A.M. 1970. Stochastic Processes and Filtering Theory. New York: Academic.

Jensfelt, P., D. Austin, O. Wijk, and M. Andersson. 2000. Feature based condensation
for mobile robot localization. In Proceedings of the International Conference on Robotics
and Automation (ICRA), pp. 2531–2537.

Jensfelt, P., and H.I. Christensen. 2001a. Active global localisation for a mobile robot
using multiple hypothesis tracking. IEEE Transactions on Robotics and Automation
17:748–760.

Jensfelt, P., and H.I. Christensen. 2001b. Pose tracking using laser scanning and
minimalistic environmental models. IEEE Transactions on Robotics and Automation
17:138–147.

Jensfelt, P., H.I. Christensen, and G. Zunino. 2002. Integrated systems for mapping
and localization. In Proceedings of the International Conference on Robotics and Au-
tomation (ICRA).

Julier, S., and J. Uhlmann. 1997. A new extension of the Kalman filter to nonlin-
ear systems. In International Symposium on Aerospace/Defense Sensing, Simulate and
Controls, Orlando, FL.

Julier, S.J., and J.K. Uhlmann. 2000. Building a million beacon map. In Proceedings of
the SPIE Sensor Fusion and Decentralized Control in Robotic Systems IV, Vol. #4571.

Jung, I.K., and S. Lacroix. 2003. High resolution terrain mapping using low altitude
aerial stereo imagery. In Proceedings of the International Conference on Computer Vision
(ICCV), Nice, France.

Bibliography 621

Kaelbling, L.P., A.R. Cassandra, and J.A. Kurien. 1996. Acting under uncertainty: Dis-
crete Bayesian models for mobile-robot navigation. In Proceedings of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS).

Kaelbling, L.P., M.L. Littman, and A.R. Cassandra. 1998. Planning and acting in
partially observable stochastic domains. Artificial Intelligence 101:99–134.

Kaelbling, L. P., and S. J. Rosenschein. 1991. Action and planning in embedded agents.
In Designing Autonomous Agents, pp. 35–48. Cambridge, MA: The MIT Press (and
Elsevier).

Kalman, R.E. 1960. A new approach to linear filtering and prediction problems.
Trans. ASME, Journal of Basic Engineering 82:35–45.

Kanazawa, K., D. Koller, and S.J. Russell. 1995. Stochastic simulation algorithms
for dynamic probabilistic networks. In Proceedings of the 11th Annual Conference on
Uncertainty in AI, Montreal, Canada.

Kavraki, L., and J.-C. Latombe. 1994. Randomized preprocessing of configuration
space for fast path planning. In Proceedings of the International Conference on Robotics
and Automation (ICRA), pp. 2138–2145.

Kavraki, L., P. Svestka, J.-C. Latombe, andM. Overmars. 1996. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12:566–580.

Kearns, M., and S. Singh. 2003. Near-optimal reinforcement learning in polynomial
time. Machine Learning 49:209–232.

Khatib, O. 1986. Real-time obstacle avoidance for robot manipulator and mobile
robots. The International Journal of Robotics Research 5:90–98.

Kirk, R.E., and P. Kirk. 1995. Experimental Design: Procedures for the Behavioral Sciences.
Pacific Grove, CA: Brooks/Cole.

Kitagawa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics 5:1–25.

Kleinberg, J. 1994. The localization problem for mobile robots. In Proc. of the 35th
IEEE Symposium on Foundations of Computer Science.

Ko, J., B. Stewart, D. Fox, K. Konolige, and B. Limketkai. 2003. A practical, decision-
theoretic approach tomulti-robot mapping and exploration. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3232–3238.

Koditschek, D.E. 1987. Exact robot navigation by means of potential functions: Some
topological considerations. In Proceedings of the International Conference on Robotics
and Automation (ICRA), pp. 1–6.

Koenig, S., and R.G. Simmons. 1993. Exploration with and without a map. In Pro-
ceedings of the AAAI Workshop on Learning Action Models at the Eleventh National Con-
ference on Artificial Intelligence (AAAI), pp. 28–32. Also available as AAAI Technical
Report WS-93-06.

622 Bibliography

Koenig, S., and R. Simmons. 1998. A robot navigation architecture based on partially
observable Markov decision process models. In Kortenkamp et al. (1998).

Koenig, S., and C. Tovey. 2003. Improved analysis of greedy mapping. In Proceedings
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).

Konecny, G. 2002. Geoinformation: Remote Sensing, Photogrammetry and Geographical
Information Systems. Taylor & Francis.

Konolige, K. 2004. Large-scale map-making. In Proceedings of the AAAI National
Conference on Artificial Intelligence, pp. 457–463, San Jose, CA. AAAI.

Konolige, K., and K. Chou. 1999. Markov localization using correlation. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI).

Konolige, K., D Fox, C. Ortiz, A. Agno, M. Eriksen, B. Limketkai, J. Ko, B. Morisset,
D. Schulz, B. Stewart, and R. Vincent. 2005. Centibots: Very large scale distributed
robotic teams. In M. Ang and O. Khatib (eds.), Experimental Robotics: The 9th Inter-
national Symposium, Springer Tracts in Advanced Robotics (STAR). Springer Verlag.

Konolige, K., J.-S. Gutmann, D. Guzzoni, R. Ficklin, and K. Nicewarner. 1999. A
mobile robot sense net. In Proceedings of SPIE 3839 Sensor Fusion and Decentralized
Control in Robotic Systmes II, Boston.

Korf, R.E. 1988. Real-time heuristic search: New results. In Proceedings of the sixth
National Conference on Artificial Intelligence (AAAI-88), pp. 139–143, Los Angeles, CA
90024. Computer Science Department, University of California, AAAI Press/MIT
Press.

Kortenkamp, D., R.P. Bonasso, and R. Murphy (eds.). 1998. Artificial Intelligence and
Mobile Robots: Case Studies of Successful Robot Systems. Cambridge, MA: MIT/AAAI
Press.

Kortenkamp, D., and T. Weymouth. 1994. Topological mapping for mobile robots
using a combination of sonar and vision sensing. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, pp. 979–984, Menlo Park. AAAI, AAAI
Press/MIT Press.

Kröse, B., N. Vlassis, and R. Bunschoten. 2002. Omnidirectional vision for
appearance-based robot localization. In G.D. Hagar, H.I. Cristensen, H. Bunke,
and R. Klein (eds.), Sensor Based Intelligent Robots (Lecture Notes in Computer Science
#2238), pp. 39–50. Springer Verlag.

Krotkov, E., M. Hebert, L. Henriksen, P. Levin, M. Maimone, R.G. Simmons, and
J. Teza. 1999. Evolution of a prototype lunar rover: Addition of laser-based hazard
detection, and results from field trials in lunar analog terrain. Autonomous Robots
7:119–130.

Kuipers, B., and Y.-T. Byun. 1990. A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations. Technical report, Department
of Computer Science, University of Texas at Austin, Austin, Texas 78712.

Bibliography 623

Kuipers, B., and Y.-T. Byun. 1991. A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems
pp. 47–63.

Kuipers, B.J., and T.S. Levitt. 1988. Navigation and mapping in large-scale space. AI
Magazine.

Kuipers, B., J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. 2004. Local metrical
and global topological maps in the hybrid spatial semantic hierarchy. In Proceedings
of the International Conference on Robotics and Automation (ICRA).

Kushmerick, N., S. Hanks, and D.S. Weld. 1995. An algorithm for probabilistic plan-
ning. Artificial Intelligence 76:239–286.

Kwok, C.T., D. Fox, and M. Meilă. 2004. Real-time particle filters. Proceedings of the
IEEE 92:469 – 484. Special Issue on Sequential State Estimation.

Latombe, J.-C. 1991. Robot Motion Planning. Boston, MA: Kluwer Academic Publish-
ers.

LaValle, S.M., H. Gonzalez-Banos, C. Becker, and J.C. Latombe. 1997. Motion strate-
gies for maintaining visibility of a moving target. In Proceedings of the International
Conference on Robotics and Automation (ICRA).

Lawler, E.L., and D.E. Wood. 1966. Branch-and-boundmethods: A survey. Operations
Research 14:699–719.

Lebeltel, O., P. Bessière, J. Diard, and E. Mazer. 2004. Bayesian robot programming.
Autonomous Robots 16:49–97.

Lee, D., and M. Recce. 1997. Quantitative evaluation of the exploration strategies of
a mobile robot. International Journal of Robotics Research 16:413–447.

Lenser, S., andM. Veloso. 2000. Sensor resetting localization for poorly modelled mo-
bile robots. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

Leonard, J.J., and H.F. Durrant-Whyte. 1991. Mobile robot localization by tracking
geometric beacons. IEEE Transactions on Robotics and Automation 7:376–382.

Leonard, J.J., and H.J.S. Feder. 1999. A computationally efficient method for large-
scale concurrent mapping and localization. In J. Hollerbach and D. Koditschek
(eds.), Proceedings of the Ninth International Symposium on Robotics Research, Salt Lake
City, Utah.

Leonard, J.J., and H.J.S. Feder. 2001. Decoupled stochastic mapping. IEEE Journal of
Ocean Engineering 26:561–571.

Leonard, J., and P. Newman. 2003. Consistent, convergent, and constant-time SLAM.
In Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robot Naviga-
tion, Acapulco, Mexico.

624 Bibliography

Leonard, J.J., R.J. Rikoski, P.M. Newman, and M. Bosse. 2002a. Mapping partially
observable features from multiple uncertain vantage points. International Journal of
Robotics Research 21:943–975.

Leonard, J., J.D. Tardós, S. Thrun, and H. Choset (eds.). 2002b. Workshop Notes of the
ICRAWorkshop on Concurrent Mapping and Localization for Autonomous Mobile Robots
(W4). Washington, DC: ICRA Conference.

Levenberg, K. 1944. A method for the solution of certain problems in least squares.
Quarterly Applied Mathematics 2:164–168.

Li, R., F. Ma, F. Xu, L. Matthies, C. Olson, and Y. Xiong. 2000. Large scale mars
mapping and rover localization using descent and rover imagery. In Proceedings of
the ISPRS 19th Congress, IAPRS Vol. XXXIII, Amsterdam.

Likhachev, M., G. Gordon, and S. Thrun. 2004. Planning for Markov decision pro-
cesses with sparse stochasticity. In L. Saul, Y. Weiss, and L. Bottou (eds.), Proceed-
ings of Conference on Neural Information Processing Systems (NIPS). Cambridge, MA:
MIT Press.

Lin, L.-J., and T.M. Mitchell. 1992. Memory approaches to reinforcement learning
in non-Markovian domains. Technical Report CMU-CS-92-138, Carnegie Mellon
University, Pittsburgh, PA.

Littman, M.L., A.R. Cassandra, and L.P. Kaelbling. 1995. Learning policies for par-
tially observable environments: Scaling up. In A. Prieditis and S. Russell (eds.),
Proceedings of the Twelfth International Conference on Machine Learning.

Littman, M.L., R.S. Sutton, and S. Singh. 2001. Predictive representations of state. In
Advances in Neural Information Processing Systems 14.

Liu, J., and R. Chen. 1998. Sequential Monte Carlo methods for dynamic systems.
Journal of the American Statistical Association 93:1032–1044.

Liu, Y., and S. Thrun. 2003. Results for outdoor-SLAM using sparse extended infor-
mation filters. In Proceedings of the International Conference on Robotics and Automa-
tion (ICRA).

Lovejoy, W.S. 1991. A survey of algorithmic methods for partially observable Markov
decision processes. Annals of Operations Research 28:47–65.

Lozano-Perez, T. 1983. Spatial planning: A configuration space approach. IEEE
Transactions on Computers pp. 108–120.

Lu, F., and E. Milios. 1994. Robot pose estimation in unknown environments by
matching 2d range scans. In IEEE Computer Vision and Pattern Recognition Conference
(CVPR).

Lu, F., and E. Milios. 1997. Globally consistent range scan alignment for environment
mapping. Autonomous Robots 4:333–349.

Bibliography 625

Lu, F., and E. Milios. 1998. Robot pose estimation in unknown environments by
matching 2d range scans. Journal of Intelligent and Robotic Systems 18:249–275.

Lumelsky, S., S. Mukhopadhyay, and K. Sun. 1990. Dynamic path planning in sensor-
based terrain acquisition. IEEE Transactions on Robotics and Automation 6:462–472.

MacDonald, I.L., and W. Zucchini. 1997. Hidden Markov and Other Models for Discrete-
Valued Time Series. London, UK: Chapman and Hall.

Madhavan, R., G. Dissanayake, H. Durrant-Whyte, J. Roberts, P. Corke, and J. Cun-
ningham. 1999. Issues in autonomous navigation of underground vehicles. Journal
of Mineral Resources Engineering 8:313–324.

Mahadevan, S., and L. Kaelbling. 1996. The NSF workshop on reinforcement learn-
ing: Summary and observations. AI MagazineWinter:89–97.

Mahadevan, S., and N. Khaleeli. 1999. Robust mobile robot navigation using
partially-observable semi-Markov decision processes. Internal report.

Makarenko, A.A., S.B.Williams, F. Bourgoult, and F. Durrant-Whyte. 2002. An experi-
ment in integrated exploration. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS).

Marquardt, D. 1963. An algorithm for least-squares estimation of nonlinear parame-
ters. SIAM Journal of Applied Mathematics 11:431–441.

Mason, M.T. 2001. Mechanics of Robotic Manipulation. Cambridge, MA: MIT Press.

Matarić, M.J. 1990. A distributed model for mobile robot environment-learning and
navigation. Master’s thesis, MIT, Cambridge, MA. Also available as MIT Artificial
Intelligence Laboratory Tech Report AITR-1228.

Matthies, L., E. Gat, R. Harrison, B. Wilcox, R. Volpe, and T. Litwin. 1995. Mars
microrover navigation: Performance evaluation and enhancement. Autonomous
Robots 2:291–311.

Maybeck, P.S. 1990. The Kalman filter: An introduction to concepts. In I.J. Cox and
G.T. Wilfong (eds.), Autonomous Robot Vehicles. Springer Verlag.

Metropolis, N., and S. Ulam. 1949. The Monte Carlo method. Journal of the American
Statistical Association 44:335–341.

Mikhail, E. M., J. S. Bethel, and J. C. McGlone. 2001. Introduction to Modern Photogram-
metry. John Wiley and Sons, Inc.

Mine, H., and S. Osaki. 1970. Markovian Decision Processes. American Elsevier.

Minka, T. 2001. A family of algorithms for approximate Bayesian inference. PhD thesis,
MIT Media Lab, Cambridge, MA.

Monahan, G.E. 1982. A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science 28:1–16.

626 Bibliography

Montemerlo, M., N. Roy, and S. Thrun. 2003a. Perspectives on standardization in
mobile robot programming: The Carnegie Mellon navigation (CARMEN) toolkit.
In Proceedings of the Conference on Intelligent Robots and Systems (IROS). Software
package for download at www.cs.cmu.edu/∼carmen.

Montemerlo, M., and S. Thrun. 2004. Large-scale robotic 3-d mapping of urban struc-
tures. In Proceedings of the International Symposium on Experimental Robotics (ISER),
Singapore. Springer Tracts in Advanced Robotics (STAR).

Montemerlo, M., S. Thrun, D. Koller, and B. Wegbreit. 2002a. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceedings of
the AAAI National Conference on Artificial Intelligence, Edmonton, Canada. AAAI.

Montemerlo, M., S. Thrun, D. Koller, and B. Wegbreit. 2003b. FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI), Acapulco, Mexico. IJCAI.

Montemerlo, M., W. Whittaker, and S. Thrun. 2002b. Conditional particle filters for
simultaneous mobile robot localization and people-tracking. In Proceedings of the
International Conference on Robotics and Automation (ICRA).

Moore, A.W. 1991. Variable resolution dynamic programming: Efficiently learning
action maps in multivariate real-valued state-spaces. In Proceedings of the Eighth
International Workshop on Machine Learning, pp. 333–337.

Moravec, H.P. 1988. Sensor fusion in certainty grids for mobile robots. AI Magazine
9:61–74.

Moravec, H.P., andM.C. Martin, 1994. Robot navigation by 3D spatial evidence grids.
Mobile Robot Laboratory, Robotics Institute, Carnegie Mellon University.

Moutarlier, P., and R. Chatila. 1989a. An experimental system for incremental envi-
ronment modeling by an autonomous mobile robot. In 1st International Symposium
on Experimental Robotics, Montreal.

Moutarlier, P., and R. Chatila. 1989b. Stochastic multisensory data fusion for mo-
bile robot location and environment modeling. In 5th Int. Symposium on Robotics
Research, Tokyo.

Mozer, M.C., and J.R. Bachrach. 1989. Discovering the structure of a reactive environ-
ment by exploration. Technical Report CU-CS-451-89, Dept. of Computer Science,
University of Colorado, Boulder.

Murphy, K. 2000a. Bayesian map learning in dynamic environments. In Advances in
Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press.

Murphy, K. 2000b. A survey of POMDP solution techniques. Technical report, UC
Berkeley, Berkeley, CA.

Bibliography 627

Murphy, K., and S. Russell. 2001. Rao-Blackwellized particle filtering for dynamic
Bayesian networks. In A. Doucet, N. de Freitas, and N. Gordon (eds.), Sequential
Monte Carlo Methods in Practice, pp. 499–516. Springer Verlag.

Murphy, R. 2000c. Introduction to AI Robotics. Cambridge, MA: MIT Press.

Murphy, R. 2004. Human-robot interaction in rescue robotics. IEEE Systems, Man and
Cybernetics Part C: Applications and Reviews 34.

Narendra, P.M., and K. Fukunaga. 1977. A branch and bound algorithm for feature
subset selection. IEEE Transactions on Computers 26:914–922.

Neira, J., M.I. Ribeiro, and J.D. Tardós. 1997. Mobile robot localisation and map
building using monocular vision. In Proceedings of the International Symposium On
Intelligent Robotics Systems, Stockholm, Sweden.

Neira, J., and J.D. Tardós. 2001. Data association in stochastic mapping using the joint
compatibility test. IEEE Transactions on Robotics and Automation 17:890–897.

Neira, J., J.D. Tardós, and J.A. Castellanos. 2003. Linear time vehicle relocation
in SLAM. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

Nettleton, E.W., P.W. Gibbens, and H.F. Durrant-Whyte. 2000. Closed form solu-
tions to the multiple platform simultaneous localisation and map building (slam)
problem. In Bulur V. Dasarathy (ed.), Sensor Fusion: Architectures, Algorithms, and
Applications IV, volume 4051, pp. 428–437, Bellingham.

Nettleton, E., S. Thrun, and H. Durrant-Whyte. 2003. Decentralised slam with low-
bandwidth communication for teams of airborne vehicles. In Proceedings of the
International Conference on Field and Service Robotics, Lake Yamanaka, Japan.

Newman, P. 2000. On the Structure and Solution of the Simultaneous Localisation and
Map Building Problem. PhD thesis, Australian Centre for Field Robotics, University
of Sydney, Sydney, Australia.

Newman, P., M. Bosse, and J. Leonard. 2003. Autonomous feature-based exploration.
In Proceedings of the International Conference on Robotics and Automation (ICRA).

Newman, P.M., and H.F. Durrant-Whyte. 2001. A new solution to the simultaneous
and map building (SLAM) problem. In Proceedings of SPIE.

Newman, P., and J.L. Rikoski. 2003. Towards constant-time slam on an autonomous
underwater vehicle using synthetic aperture sonar. In Proceedings of the International
Symposium of Robotics Research, Sienna, Italy.

Neyman, J. 1934. On the two different aspects of the representative model: the
method of stratified sampling and the method of purposive selection. Journal of
the Royal Statistical Society 97:558–606.

Ng, A.Y., A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang.
2004. Autonomous inverted helicopter flight via reinforcement learning. In Pro-
ceedings of the International Symposium on Experimental Robotics (ISER), Singapore.
Springer Tracts in Advanced Robotics (STAR).

628 Bibliography

Ng, A.Y., and M. Jordan. 2000. PEGASUS: a policy search method for large MDPs
and POMDPs. In Proceedings of Uncertainty in Artificial Intelligence.

Ng, A.Y., J. Kim, M.I. Jordan, and S. Sastry. 2003. Autonomous helicopter flight via
reinforcement learning. In S. Thrun, L. Saul, and B. Schölkopf (eds.), Proceedings
of Conference on Neural Information Processing Systems (NIPS). Cambridge, MA: MIT
Press.

Nieto, J., J.E. Guivant, and E.M. Nebot. 2004. The hybrid metric maps (HYMMs):
A novel map representation for dense SLAM. In Proceedings of the International
Conference on Robotics and Automation (ICRA).

Nilsson, N.J. 1982. Principles of Artificial Intelligence. Berlin, New York: Springer
Publisher.

Nilsson, N. 1984. Shakey the robot. Technical Report 323, SRI International, Menlo
Park, CA.

Nourbakhsh, I. 1987. Interleaving Planning and Execution for Autonomous Robots.
Boston, MA: Kluwer Academic Publishers.

Nourbakhsh, I., R. Powers, and S. Birchfield. 1995. DERVISH an office-navigating
robot. AI Magazine 16.

Nüchter, A., H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun. 2004. 6D SLAM
with application in autonomous mine mapping. In Proceedings of the International
Conference on Robotics and Automation (ICRA).

Oore, S., G.E. Hinton, and G. Dudek. 1997. Amobile robot that learns its place. Neural
Computation 9:683–699.

Ortin, D., J. Neira, and J.M. Montiel. 2004. Relocation using laser and vision. In
Proceedings of the International Conference on Robotics and Automation (ICRA), New
Orleans.

Park, S., F. Pfenning, and S. Thrun. 2005. A probabilistic progamming language
based upon sampling functions. In Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), Long Beach, CA. ACM SIGPLAN - SIGACT.

Parr, R., and S. Russell. 1998. Reinforcement learning with hierarchies of machines.
InAdvances in Neural Information Processing Systems 10. Cambridge, MA:MIT Press.

Paskin, M.A. 2003. Thin junction tree filters for simultaneous localization and map-
ping. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence (IJCAI), Acapulco, Mexico. IJCAI.

Paul, R.P. 1981. Robot Manipulators: Mathematics, Programming, and Control. Cam-
bridge, MA: MIT Press.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference.
San Mateo, CA: Morgan Kaufmann.

Bibliography 629

Pierce, D., and B. Kuipers. 1994. Learning to explore and build maps. In Proceedings of
the Twelfth National Conference on Artificial Intelligence, pp. 1264–1271, Menlo Park.
AAAI, AAAI Press/MIT Press.

Pineau, J., G. Gordon, and S. Thrun. 2003a. Applying metric trees to belief-point
POMDPs. In S. Thrun, L. Saul, and B. Schölkopf (eds.), Proceedings of Conference on
Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press.

Pineau, J., G. Gordon, and S. Thrun. 2003b. Point-based value iteration: An anytime
algorithm for POMDPs. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI), Acapulco, Mexico. IJCAI.

Pineau, J., G. Gordon, and S. Thrun. 2003c. Policy-contingent abstraction for robust
robot control. In Proceedings of the Conference on Uncertainty in AI (UAI), Acapulco,
Mexico.

Pineau, J., M. Montemerlo, N. Roy, S. Thrun, and M. Pollack. 2003d. Towards robotic
assistants in nursing homes: challenges and results. Robotics and Autonomous Sys-
tems 42:271–281.

Pitt, M., and N. Shephard. 1999. Filtering via simulation: auxiliary particle filter.
Journal of the American Statistical Association 94:590–599.

Poon, K.-M. 2001. A fast heuristic algorithm for decision-theoretic planning. Master’s
thesis, The Hong Kong University of Science and Technology.

Poupart, P., and C. Boutilier. 2000. Value-directed belief state approximation for
POMDPs. In Proceedings of the Conference on Uncertainty in AI (UAI), pp. 279–288.

Poupart, P., L.E. Ortiz, and C. Boutilier. 2001. Value-directed sampling methods for
monitoring POMDPs. In Proceedings of the 17th Annual Conference on Uncertainty in
AI (UAI).

Procopiuc, O., P.K. Agarwal, L. Arge, and J.S. Vitter. 2003. Bkd-tree: A dynamic scal-
able kd-tree. In T. Hadzilacos, Y. Manolopoulos, J.F. Roddick, and Y. Theodoridis
(eds.), Advances in Spatial and Temporal Databases, Santorini Island, Greece. Springer
Verlag.

Rabiner, L.R., and B.H. Juang. 1986. An introduction to hiddenMarkov models. IEEE
ASSP Magazine 3:4–16.

Raibert, M.H. 1991. Trotting, pacing, and bounding by a quadruped robot. Journal of
Biomechanics 23:79–98.

Raibert, M.H., M. Chepponis, and H.B. Brown Jr. 1986. Running on four legs as
though they were one. IEEE Transactions on Robotics and Automation 2:70–82.

Rao, C.R. 1945. Information and accuracy obtainable in estimation of statistical pa-
rameters. Bulletin of the Calcutta Mathematical Society 37:81–91.

Rao, N., S. Hareti, W. Shi, and S. Iyengar. 1993. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-
12410, Oak Ridge National Laboratory.

630 Bibliography

Reed, M.K., and P.K. Allen. 1997. A robotic system for 3-d model acquisition from
multiple range images. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Rees, W.G. 2001. Physical Principles of Remote Sensing (Topics in Remote Sensing). Cam-
bridge, UK: Cambridge University Press.

Reif, J.H. 1979. Complexity of the mover’s problem and generalizations. In Proceed-
ings of the 20th IEEE Symposium on Foundations of Computer Science, pp. 421–427.

Rekleitis, I.M., G. Dudek, and E.E. Milios. 2001a. Multi-robot collaboration for robust
exploration. Annals of Mathematics and Artificial Intelligence 31:7–40.

Rekleitis, I., R. Sim, G. Dudek, and E. Milios. 2001b. Collaborative exploration for
map construction. In IEEE International Symposium on Computational Intelligence in
Robotics and Automation.

Rencken, W.D. 1993. Concurrent localisation and map building for mobile robots
using ultrasonic sensors. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pp. 2129–2197.

Reuter, J. 2000. Mobile robot self-localization using PDAB. In Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA).

Rikoski, R., J. Leonard, P. Newman, andH. Schmidt. 2004. Trajectory sonar perception
in the ligurian sea. In Proceedings of the International Symposium on Experimental
Robotics (ISER), Singapore. Springer Tracts in Advanced Robotics (STAR).

Rimon, E., and D.E. Koditschek. 1992. Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation 8:501–518.

Rivest, R.L., and R.E. Schapire. 1987a. Diversity-based inference of finite automata.
In Proceedings of Foundations of Computer Science.

Rivest, R.L., and R.E. Schapire. 1987b. A new approach to unsupervised learning in
deterministic environments. In P. Langley (ed.), Proceedings of the Fourth Interna-
tional Workshop on Machine Learning, pp. 364–375, Irvine, California.

Robbins, H. 1952. Some aspects of the sequential design of experiments. Bulletin of
the American Mathemtical Society 58:529–532.

Rosencrantz, M., G. Gordon, and S. Thrun. 2004. Learning low dimensional pre-
dictive representations. In Proceedings of the Twenty-First International Conference on
Machine Learning, Banff, Alberta, Canada.

Roumeliotis, S.I., and G.A. Bekey. 2000. Bayesian estimation and Kalman filtering: A
unified framework for mobile robot localization. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pp. 2985–2992.

Rowat, P.F. 1979. Representing the Spatial Experience and Solving Spatial problems in a
Simulated Robot Environment. PhD thesis, University of British Columbia, Vancou-
ver, BC, Canada.

Bibliography 631

Roy, B.V., and J.N. Tsitsiklis. 1996. Stable linear approximations to dynamic pro-
gramming for stochastic control problems with local transitions. In D. Touretzky,
M. Mozer, and M.E. Hasselmo (eds.), Advances in Neural Information Processing Sys-
tems 8. Cambridge, MA: MIT Press.

Roy, N., W. Burgard, D. Fox, and S. Thrun. 1999. Coastal navigation: Robot naviga-
tion under uncertainty in dynamic environments. In Proceedings of the International
Conference on Robotics and Automation (ICRA).

Roy, N., and G. Dudek. 2001. Collaborative exploration and rendezvous: Algorithms,
performance bounds and observations. Autonomous Robots 11:117–136.

Roy, N., G. Gordon, and S. Thrun. 2004. Finding approximate POMDP solutions
through belief compression. Journal of Artificial Intelligence Research. To appear.

Roy, N., J. Pineau, and S. Thrun. 2000. Spoken dialogue management using prob-
abilistic reasoning. In Proceedings of the 38th Annual Meeting of the Association for
Computational Linguistics (ACL-2000), Hong Kong.

Roy, N., and S. Thrun. 2002. Motion planning through policy search. In Proceedings
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).

Rubin, D.B. 1988. Using the SIR algorithm to simulate posterior distributions. In
M.H. Bernardo, K.M. an DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian
Statistics 3. Oxford, UK: Oxford University Press.

Rubinstein, R.Y. 1981. Simulation and the Monte Carlo Method. John Wiley and Sons,
Inc.

Russell, S., and P. Norvig. 2002. Artificial Intelligence: A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall.

Saffiotti, A. 1997. The uses of fuzzy logic in autonomous robot navigation. Soft
Computing 1:180–197.

Sahin, E., P. Gaudiano, and R. Wagner. 1998. A comparison of visual looming and
sonar as mobile robot range sensors. In Proceedings of the Second International Con-
ference on Cognitive And Neural Systems, Boston, MA.

Salichs, M.A., J.M. Armingol, L. Moreno, and A. Escalera. 1999. Localization system
for mobile robots in indoor environments. Integrated Computer-Aided Engineering 6:
303–318.

Salichs, M.A., and L. Moreno. 2000. Navigation of mobile robots: Open questions.
Robotica 18:227–234.

Sandwell, D.T., 1997. Exploring the ocean basins with satellite altimeter data.
http://julius.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML.

Saranli, U., and D.E. Koditschek. 2002. Back flips with a hexapedal robot. In Proceed-
ings of the International Conference on Robotics and Automation (ICRA), volume 3, pp.
128–134.

632 Bibliography

Schiele, B., and J.L. Crowley. 1994. A comparison of position estimation techniques
using occupancy grids. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Schoppers, M.J. 1987. Universal plans for reactive robots in unpredictable environ-
ments. In J. McDermott (ed.), Proceedings of the Tenth International Joint Conference
on Artificial Intelligence (IJCAI-87), pp. 1039–1046, Milan, Italy. Morgan Kaufmann.

Schulz, D., W. Burgard, D. Fox, and A.B. Cremers. 2001a. Tracking multiple moving
objects with a mobile robot. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), Kauai, Hawaii.

Schulz, D., W. Burgard, D. Fox, and A.B. Cremers. 2001b. Tracking multiple moving
targets with a mobile robot using particle filters and statistical data association. In
Proceedings of the International Conference on Robotics and Automation (ICRA).

Schulz, D., and D. Fox. 2004. Bayesian color estimation for adaptive vision-based
robot localization. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS).

Schwartz, J.T., M. Scharir, and J. Hopcroft. 1987. Planning, Geometry and Complexity of
Robot Motion. Norwood, NJ: Ablex Publishing Corporation.

Scott, D.W. 1992. Multivariate density estimation: theory, practice, and visualization. John
Wiley and Sons, Inc.

Shaffer, G., J. Gonzalez, and A. Stentz. 1992. Comparison of two range-based estima-
tors for a mobile robot. In SPIE Conf. on Mobile Robots VII, pp. 661–667.

Sharma, R. 1992. Locally efficient path planning in an uncertain, dynamic environ-
ment using a probabilistic model. T-RA 8:105–110.

Shatkay, H, and L. Kaelbling. 1997. Learning topological maps with weak local odo-
metric information. In Proceedings of IJCAI-97. IJCAI, Inc.

Siegwart, R., K.O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin,
B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Philippsen, R. Piguet, G. Ramel,
G. Terrien, and N. Tomatis. 2003. A large scale installation of personal robots.
Special issue on socially interactive robots. Robotics and Autonomous Systems 42:
203–222.

Siegwart, R., and I. Nourbakhsh. 2004. Introduction to Autonomous Mobile Robots.
Cambridge, MA: MIT Press.

Sim, R., G. Dudek, and N. Roy. 2004. Online control policy optimization for minimiz-
ing map uncertainty during exploration. In Proceedings of the International Confer-
ence on Robotics and Automation (ICRA).

Simmons, R.G., D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and
H. Younes. 2000a. Coordination for multi-robot exploration and mapping. In
Proc. of the National Conference on Artificial Intelligence (AAAI).

Bibliography 633

Simmons, R.G., J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan. 2000b.
Lessons learned from Xavier. IEEE Robotics and Automation Magazine 7:33–39.

Simmons, R.G., and S. Koenig. 1995. Probabilistic robot navigation in partially ob-
servable environments. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI).

Simmons, R.G., S. Thrun, C. Athanassiou, J. Cheng, L. Chrisman, R. Goodwin, G.-T.
Hsu, and H. Wan. 1992. Odysseus: An autonomous mobile robot. AI Magazine.
extended abstract.

Singh, K., and K. Fujimura. 1993. Map making by cooperating mobile robots. In
Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 254–
259.

Smallwood, R.W., and E.J. Sondik. 1973. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research 21:1071–1088.

Smith, A.F.M., and A.E. Gelfand. 1992. Bayesian statistics without tears: a sampling-
resampling perspective. American Statistician 46:84–88.

Smith, R.C., and P. Cheeseman. 1986. On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research 5:56–68.

Smith, R., M. Self, and P. Cheeseman. 1990. Estimating uncertain spatial relationships
in robotics. In I.J. Cox and G.T. Wilfong (eds.), Autonomous Robot Vehicles, pp. 167–
193. Springer-Verlag.

Smith, S. M., and S. E. Dunn. 1995. The ocean explorer AUV: A modular platform
for coastal sensor deployment. In Proceedings of the Autonomous Vehicles in Mine
Countermeasures Symposium. Naval Postgraduate School.

Smith, T., and R.G. Simmons. 2004. Heuristic search value iteration for POMDPs. In
Proceedings of the 20th Annual Conference on Uncertainty in AI (UAI).

Soatto, S., and R. Brockett. 1998. Optimal structure from motion: Local ambiguities
and global estimates. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 282–288.

Sondik, E. 1971. The Optimal Control of Partially Observable Markov Processes. PhD
thesis, Stanford University.

Stachniss, C., and W. Burgard. 2003. Exploring unknown environments with mo-
bile robots using coverage maps. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico. IJCAI.

Stachniss, C., and W. Burgard. 2004. Exploration with active loop-closing for Fast-
SLAM. In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS).

Steels, L. 1991. Towards a theory of emergent functionality. In J-A. Meyer and R. Wil-
son (eds.), Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

634 Bibliography

Stentz, A. 1995. The focussed D* algorithm for real-time replanning. In Proceedings of
IJCAI-95.

Stewart, B., J. Ko, D. Fox, and K. Konolige. 2003. The revisiting problem in mo-
bile robot map building: A hierarchical Bayesian approach. In Proceedings of the
Conference on Uncertainty in AI (UAI), Acapulco, Mexico.

Strassen, V. 1969. Gaussian elimination is not optimal. Numerische Mathematik 13:
354–356.

Stroupe, A.W. 2004. Value-based action selection for exploration and mapping with
robot teams. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

Sturges, H. 1926. The choice of a class-interval. Journal of the American Statistical
Association 21:65–66.

Subrahmaniam, K. 1979. A Primer In Probability. New York, NY: M. Dekker.

Swerling, P. 1958. A proposed stagewise differential correction procedure for satellite
tracking and prediction. Technical Report P-1292, RAND Corporation.

Tailor, C.J., and D.J. Kriegman. 1993. Exloration strategies for mobile robots. In
Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 248–
253.

Tanner, M.A. 1996. Tools for Statistical Inference. New York: Springer Verlag. 3rd
edition.

Tardós, J.D., J. Neira, P.M. Newman, and J.J. Leonard. 2002. Robust mapping and lo-
calization in indoor environments using sonar data. International Journal of Robotics
Research 21:311–330.

Teller, S., M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, and N. Master. 2001.
Calibrated, registered images of an extended urban area. In Proceedings of the Con-
ference on Computer Vision and Pattern Recognition (CVPR).

Theocharous, G., K. Rohanimanesh, and S. Mahadevan. 2001. Learning hierarchi-
cal partially observed Markov decision process models for robot navigation. In
Proceedings of the International Conference on Robotics and Automation (ICRA).

Thorp, E.O. 1966. Elementary Probability. R.E. Krieger.

Thrun, S. 1992. Efficient exploration in reinforcement learning. Technical Re-
port CMU-CS-92-102, Carnegie Mellon University, Computer Science Department,
Pittsburgh, PA.

Thrun, S. 1993. Exploration and model building in mobile robot domains. In E. Rus-
pini (ed.), Proceedings of the IEEE International Conference on Neural Networks, pp.
175–180, San Francisco, CA. IEEE Neural Network Council.

Thrun, S. 1998a. Bayesian landmark learning for mobile robot localization. Machine
Learning 33.

Bibliography 635

Thrun, S. 1998b. Learning metric-topological maps for indoor mobile robot naviga-
tion. Artificial Intelligence 99:21–71.

Thrun, S. 2000a. Monte Carlo POMDPs. In S.A. Solla, T.K. Leen, and K.-R. Müller
(eds.), Advances in Neural Information Processing Systems 12, pp. 1064–1070. Cam-
bridge, MA: MIT Press.

Thrun, S. 2000b. Towards programming tools for robots that integrate probabilistic
computation and learning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), San Francisco, CA. IEEE.

Thrun, S. 2001. A probabilistic online mapping algorithm for teams of mobile robots.
International Journal of Robotics Research 20:335–363.

Thrun, S. 2002. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel (eds.),
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann.

Thrun, S. 2003. Learning occupancy grids with forward sensor models. Autonomous
Robots 15:111–127.

Thrun, S., M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,
D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. 2000a. Probabilistic
algorithms and the interactive museum tour-guide robot minerva. International
Journal of Robotics Research 19:972–999.

Thrun, S., A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning, T. Hofmann,
M. Krell, and T. Schmidt. 1998a. Map learning and high-speed navigation in
RHINO. In D. Kortenkamp, R.P. Bonasso, and R. Murphy (eds.), AI-based Mobile
Robots: Case Studies of Successful Robot Systems, pp. 21–52. Cambridge, MA: MIT
Press.

Thrun, S., W. Burgard, and D. Fox. 2000b. A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3D mapping. In Proceedings of the
International Conference on Robotics and Automation (ICRA).

Thrun, S., M. Diel, and D. Hähnel. 2003. Scan alignment and 3d surface modeling
with a helicopter platform. In Proceedings of the International Conference on Field and
Service Robotics, Lake Yamanaka, Japan.

Thrun, S., D. Fox, and W. Burgard. 1998b. A probabilistic approach to concurrent
mapping and localization for mobile robots. Machine Learning 31:29–53. Also ap-
peared in Autonomous Robots 5, 253–271 (joint issue).

Thrun, S., D. Fox, and W. Burgard. 2000c. Monte Carlo localization with mixture
proposal distribution. In Proceedings of the AAAI National Conference on Artificial
Intelligence, Austin, TX. AAAI.

Thrun, S., D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A.Y. Ng. 2002. Simulta-
neous mapping and localization with sparse extended information filters. In J.-D.
Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson (eds.), Proceedings of the
Fifth International Workshop on Algorithmic Foundations of Robotics, Nice, France.

636 Bibliography

Thrun, S., and Y. Liu. 2003. Multi-robot SLAM with sparse extended information fil-
ers. In Proceedings of the 11th International Symposium of Robotics Research (ISRR’03),
Sienna, Italy. Springer.

Thrun, S., Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-Whyte. 2004a.
Simultaneous localization and mapping with sparse extended information filters.
International Journal of Robotics Research 23.

Thrun, S., C. Martin, Y. Liu, D. Hähnel, R. Emery-Montemerlo, D. Chakrabarti, and
W. Burgard. 2004b. A real-time expectation maximization algorithm for acquiring
multi-planar maps of indoor environments with mobile robots. IEEE Transactions
on Robotics 20:433–443.

Thrun, S., S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson, D. Hähnel,
M. Montemerlo, A. Morris, Z. Omohundro, C. Reverte, and W. Whittaker. 2004c.
Autonomous exploration and mapping of abandoned mines. IEEE Robotics and
Automation Magazine. Forthcoming.

Tomasi, C., and T. Kanade. 1992. Shape and motion from image streams under
orthography: A factorization method. International Journal of Computer Vision 9:
137–154.

Tomatis, N., I. Nourbakhsh, and R. Siegwart. 2002. Hybrid simultaneous localization
and map building: closing the loop with multi-hypothesis tracking. In Proceedings
of the International Conference on Robotics and Automation (ICRA).

Uhlmann, J., M. Lanzagorta, and S. Julier. 1999. The NASA mars rover: A testbed for
evaluating applications of covariance intersection. In Proceedings of the SPIE 13th
Annual Symposium in Aerospace/Defence Sensing, Simulation and Controls.

United Nations, and International Federation of Robotics. 2004. World Robotics 2004.
New York and Geneva: United Nations.

Urmson, C., B. Shamah, J. Teza, M.D. Wagner, D. Apostolopoulos, and W.R. Whit-
taker. 2001. A sensor arm for robotic antarctic meteorite search. In Proceedings of
the 3rd International Conference on Field and Service Robotics, Helsinki, Finland.

Vaganay, J., J. Leonard, J.A. Curcio, and J.S. Willcox. 2004. Experimental validation of
the moving long base-line navigation concept. In Proceedings of the IEEE Conference
on Autonomous Underwater Vehicles.

van der Merwe, R. 2004. Sigma-Point Kalman Filters for Probabilistic Inference in Dy-
namic State-Space Models. PhD thesis, OGI School of Science & Engineering.

van derMerwe, R., N. de Freitas, A. Doucet, and E.Wan. 2001. The unscented particle
filter. In Advances in Neural Information Processing Systems 13.

Vlassis, N., B. Terwijn, and B. Kröse. 2002. Auxiliary particle filter robot localiza-
tion from high-dimensional sensor observations. In Proceedings of the International
Conference on Robotics and Automation (ICRA).

Bibliography 637

Vukobratović, M. 1989. Introduction to Robotics. Berlin, New York: Springer Publisher.

Wang, C.-C., C. Thorpe, and S. Thrun. 2003. Online simultaneous localization and
mapping with detection and tracking of moving objects: Theory and results from a
ground vehicle in crowded urban areas. In Proceedings of the International Conference
on Robotics and Automation (ICRA).

Washington, R. 1997. BI-POMDP: Bounded, incremental, partially-observable
Markov-model planning. In Proceedings of the European Conference on Planning
(ECP), Toulouse, France.

Watkins, C.J.C.H. 1989. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, England.

Weiss, G., C. Wetzler, and E. von Puttkamer. 1994. Keeping track of position and
orientation of moving indoor systems by correlation of range-finder scans. In Pro-
ceedings of the International Conference on Intelligent Robots and Systems, pp. 595–601.

Wesley, M.A., and T. Lozano-Perez. 1979. An algorithm for planning collision-free
paths among polyhedral objects. Communications of the ACM 22:560–570.

West, M., and P.J. Harrison. 1997. Bayesian Forecasting and Dynamic Models, 2nd edi-
tion. New York: Springer-Verlag.

Wettergreen, D., D. Bapna, M. Maimone, and H. Thomas. 1999. Developing Nomad
for robotic exploration of the Atacama Desert. Robotics and Autonomous Systems 26:
127–148.

Whaite, P., and F.P. Ferrie. 1997. Autonomous exploration: Driven by uncertainty.
IEEE Transactions on Pattern Analysis and Machine Intelligence 19:193–205.

Whitcomb, L. 2000. Underwater robotics: out of the research laboratory and into the
field. In Proceedings of the International Conference on Robotics and Automation (ICRA),
pp. 85–90.

Williams, R.J. 1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8:229–256.

Williams, S.B. 2001. Efficient Solutions to Autonomous Mapping and Navigation Problems.
PhD thesis, ACFR, University of Sydney, Sydney, Australia.

Williams, S.B., G. Dissanayake, and H.F. Durrant-Whyte. 2001. Constrained initial-
ization of the simultaneous localization and mapping algorithm. In Proceedings of
the Symposium on Field and Service Robotics. Springer Verlag.

Williams, S.B., G. Dissanayake, and H. Durrant-Whyte. 2002. An efficient approach
to the simultaneous localisation and mapping problem. In Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA), pp. 406–411.

Winer, B.J., D.R. Brown, and K.M. Michels. 1971. Statistical Principles in Experimental
Design. New York: Mc-Graw-Hill.

638 Bibliography

Winkler, G. 1995. Image Analysis, Random Fields, and Dynamic Monte Carlo Methods.
Berlin: Springer Verlag.

Wolf, D.F., and G.S. Sukhatme. 2004. Mobile robot simultaneous localization and
mapping in dynamic environments. Autonomous Robots.

Wolf, J., W. Burgard, and H. Burkhardt. 2005. Robust vision-based localization by
combining an image retrieval system with Monte Carlo localization. IEEE Transac-
tions on Robotics and Automation.

Wong, J. 1989. Terramechanics and Off-Road Vehicles. Elsevier.

Yamauchi, B., and P. Langley. 1997. Place recognition in dynamic environments.
Journal of Robotic Systems 14:107–120.

Yamauchi, B., A. Schultz, and W. Adams. 1999. Integrating exploration and localiza-
tion for mobile robots. Adaptive Systems 7.

Yoshikawa, T. 1990. Foundations of Robotics: Analysis and Control. Cambridge, MA:
MIT Press.

Zhang, N.L., and W. Zhang. 2001. Speeding up the convergence of value iteration
in partially observable Markov decision processes. Journal of Artificial Intelligence
Research 14:29–51.

Zhao, H., and R. Shibasaki. 2001. A vehicle-borne system of generating textured
CAD model of urban environment using laser range scanner and line cameras. In
Proc. International Workshop on Computer Vision Systems (ICVS), Vancouver, Canada.

Zlot, R., A.T. Stenz, M.B. Dias, and S. Thayer. 2002. Multi-robot exploration controlled
by a market economy. In Proceedings of the International Conference on Robotics and
Automation (ICRA).

Index

action selection, 490
active feature, 387
active localization, 195, 569, 575
adaptive algorithm, 86
adjusting model parameters, 158
AMDP, 550
algorithm, 551, 552
amortized map recovery, 402
anchoring constraint, 343
anticipated uncertainty, 488
anytime algorithm, 540
approximate cell decomposition, 509
assumed density filter, 65
Atlas, 376
auction mechanism, 589
augmented state
in a POMDP, 550
in localization, 269

backpropagation, 296
backup step, 501
in belief space, 526
bandit problem, 605
Bayes filter, 8, 26
algorithm, 26, 27
Bayes rule, 16
bearing of a robot, 119
bearing only SLAM, 320, 334
behavior-based robotics, 11
belief, 25
in a POMDP, 494

Bellman equation, 500
bias of a sampler, 112
bicycle model, 146
binary Bayes filter, 94
algorithm, 94, 95
in mapping, 285

binary information gain, 584
binary tree, 465
bin in a histogram, 87
branch-and-bound data association,
415

bundle adjustment, 381

canonical parameterization, 40, 71
catastrophic failure in localization,
249

clustering, 105
CML, see SLAM
coastal navigation, 8, 558
coin flip, 14
combined state vector, 313
complete state, 21, 24
complete state assumption, 33
computer vision, 332
concurrent mapping and localization,
see SLAM

condensation algorithm, 276
conditional entropy, 571
conditional independence, 17, 24
in SLAM, 437
conditional of a Gaussian, 359

640 Index

conditional probability, 16
conditioning lemma, 359
configuration of a mobile robot, 118
configuration space, 141, 507
conjugate gradient
in GraphSLAM, 376

consistency in SLAM, 435
constant time SLAM, 395
control, 22, 487
control action, 22
control policy, 493, 496
coordinate descent, 403
coordination between robots, 589
correction, 26
in an UKF, 225
in localization, 207

correlation-based measurement
model, 174

correspondence, 178
between different maps, 429
in EKF, 323
in GraphSLAM, 362
in localization, 201, 215
in SEIF, 409
likelihood test, 363
through maximum likelihood, 215

cost, 495
covariance intersection, 434
covariance matrix, 15
coverage problem, 603
cumulative payoff, 497
cyclic environment, 282
in exploration, 598
in FastSLAM, 471
in SLAM, 343

data association, 178
decomposition of entropy, 593
delayed motion update in
localization, 244

De Morgan’s law, 293
density tree, 92

for a particle filter, 105
derivative-free filter, 70
discount factor, 497
discrete Bayes filter, 86
algorithm, 86, 87

dynamic Bayes network, 25
dynamic environment, 194, 267
dynamics, 145
dynamic state, 20

EIF, 75
algorithm, 75, 76

EKF, 54
algorithm, 59

EKF localization, 201
algorithm with known
correspondences, 203, 204
general algorithm, 216, 217
illustration, 201, 210

EKF SLAM, 312
algorithm with known
correspondence, 313, 314
fundamental dilemma, 330
general algorithm, 321, 323
numerical instability, 329

EM algorithm, 333
for data association, 482
for learning a sensor model, 165
for outlier rejection, 269

emergent behavior, 12
entropy, 18
decomposition, 593
of a multivariate Gaussian, 597

entropy lemma, 597
environment, 19
equivalence constraints, 419
expectation maximization, see EM

algorithm
expectation of a random variable, 18
expected cumulative payoff, 497
expected information
in exploration, 571

Index 641

experimental design, 542
exploration, 569
exploration action, 570, 576, 585
for SLAM, 593
frontier-based, 584
greedy, 572
in occupancy grids, 580
Monte Carlo, 573
Monte Carlo algorithm, 573, 574
multi-robot, 587
multi-robot algorithm, 588
multi step, 575
exponential decay, 307
extended information filter, see EIF
extended information form, see

GraphSLAM
extended Kalman filter, see EKF
extended Kalman filter SLAM, see

EKF SLAM

factorization
in GraphSLAM, 344
in SLAM, 439
FastSLAM, 437
exploration algorithm, 595, 596
grid-based, 474
occupancy grid algorithm, 478
v1.0, 439
v1.0 algorithm with known
correspondence, 449, 450

v1.0 general algorithm, 460, 461
v1.0 with known correspondence,
444

v2.0, 451
v2.0 general algorithm, 460, 463
with unknown correspondence,
457

feature-based
measurement model, 176
feature-based map, 152
in SLAM, 312
feature in a map, 176

finite-horizon case, 497
frontier
in exploration, 584
of a search tree, 416

frontier-based exploration, 584
full SLAM problem, 310

Gaussian, 14
as a posterior, 40
canonical parameterization, 71
conditioning lemma, 359
for a particle filter, 104
marginalization lemma, 358
mixture, 63
multivariate, 15
noise, in SLAM, 312

Gaussian filter, 39
generative model, 17
global correspondence problem, 424
global localization, 5, 194, 198
goal, 495
gradient descent, 376
in learning, 296

graphical SLAM, 382
GraphSLAM, 337
algorithm, 346, 347, 365
correspondence test algorithm, 364
with unknown correspondence,
363

greedy case, 497
grid-based FastSLAM, 474
grid localization, 238
algorithm, 238, 239
illustration, 245

heading direction, 119
heaven-or-hell problem, 510
hidden Markov model, 25, 87
histogram filter, 86
dynamic decomposition, 92
for localization, 238
selective updating, 93

642 Index

static decomposition, 92
histogram in a particle filter, 105
holonomic robot, 147
horizon, 497
hybrid control, 12
hybrid state, 21

importance factor
in a particle filter, 99
in FastSLAM, 447, 455

importance sampling
in a particle filter, 99

incomplete state, 21
independence, 15
between sensor beams, 152
conditional, 17

infinite-horizon case, 498
information filter, 71
algorithm, 73

information gain, 572
information gathering, 488
information matrix, 71
information state, 26
in a POMDP, 494

information vector, 71
injection of random particles, 256
innovation, 43, 214
inverse measurement model, 95, 294
inverse range sensor algorithm, 287,
288

inversion lemma, 50

Jacobian, 58
joint distribution, 15

k-means algorithm, 104
Kalman filter, 40
algorithm, 42, 43
multi-hypothesis, 63
unscented, 65

Kalman gain, 43, 52
in EKF SLAM, 315

kernel density estimation, 105

kidnapped robot problem, 194
kinematics, 118
kinematic state, 20
KLD-sampling, 263
algorithm, 264
comparison, 265

knowledge state, 26
Kullback-Leibler divergence, 263

landmark, 21, 177
landmark existence probability, 329
landmark model
algorithm, 178, 179
sampling algorithm, 179, 180

laser range scan, 150
lazy SLAM, 339, 385
learning
in an AMDP, 558
in an MC-POMDP, 559
of a measurement model, 158

least squares
in SLAM, 337

Levenberg Marquardt, 376
likelihood field
algorithm, 171, 172
for range finders, 169

likelihood test for correspondence,
363

linear Gaussian SLAM, 382
linear Gaussian system, 40
measurement probability, 42
state transition, 41

linearization, 56
in GraphSLAM, 356

localization
comparison chart, 273
in a dynamic environment, 267
Markov, 197
of a mobile robot, 5
taxonomy, 193
with a grid, 238
with an EKF, 201

Index 643

with MCL, 250
local submaps, 369
location
of a robot, 119
location-based map, 152
logistic regression, 294
log odds ratio, 94
in an occupancy grid map, 286
loop closure, 471
loopy belief propagation, 79
low variance sampling, 109
algorithm, 109, 110

Mahalanobis distance, 72
map, 152
feature-based, 152
location-based, 152
metric, 93
of an environment, 152
topological, 93
volumetric, 152
map-based motion model, 140
map management
in FastSLAM, 459
in SLAM, 328
map matching, 174, 233, 275
MAP occupancy grid map, 299
MAP occupancy grid mapping
algorithm, 301, 302

mapping with known poses, 283
marginalization lemma, 358
marginal of a Gaussian, 358
market-based algorithms, 589
Markov assumption, 33
Markov blanket, 419
Markov chain, 21
Markov localization, 197
algorithm, 197
illustration, 5, 200
Markov random field, 79
matrix inversion lemma, 50
max-range measurement, 156

maximum likelihood
correspondence, 215
estimator, 159
maximum likelihood correspondence
in SLAM, 323
maximum of linear functions, 530
MC-POMDP, 559
algorithm, 559, 560
MCL, 250
algorithm, 252
algorithm with adaptive sample
set, 264

augmented algorithm, 257, 258
with adaptive sample set, 263
with mixture proposal distribution,
262

with random particles, 256
MDP, 491
measurement, 22
measurement arcs, 337
measurement innovation, 214
measurement likelihood, 208
measurement model, 149
correlation-based, 174
feature-based, 176
for a range finder, 153
measurement noise, 154, 169
measurement probability, 25
in a linear Gaussian, 42
measurement update, 26
in a Bayes filter, 27
in an information filter, 75
metric map, 93, 241
Mixture MCL, 262
mixture of Gaussians, 63
mixture weight in an MHT, 219
model-based paradigm, 11
moments matching, 65
moments parameterization, 40
Monte Carlo exploration, 573
algorithm, 573, 574
Monte Carlo localization, seeMCL

644 Index

Monte Carlo POMDP, see
MC-POMDP

motion arcs, 337
motion model, 119
algorithm with maps, 141
map-based, 140
nonlinear, 54
odometry, 132
odometry algorithm, 134
velocity, 121
velocity algorithm, 121, 123, 129

multi-hypothesis EKF, 63
multi-hypothesis tracking, 218
multi-robot
coordination, 589
exploration, 587
exploration algorithm, 588
localization, 196
SLAM, 424

multi-sensor fusion, 293
multi-step exploration, 575
multivariate distribution, 15
mutual exclusion principle, 229, 369

natural parameterization, 40
navigation function, 11, 493
nearest neighbor, 559
negative information
in a SEIF, 421
in FastSLAM, 459
in GraphSLAM, 370
in localization, 231

neural network, 294, 296
nonlinear motion model, 54
nonlinear state transition, 54
nonparametric filter, 85
normal distribution, 14, 128
algorithm for computing, 123
algorithm for sampling, 124

normalizer in Bayes rule, 17
numerical instability of EKF SLAM,
329

occupancy grid
in FastSLAM, 478

occupancy grid map, 94, 281
algorithm, 286
MAP technique, 299

odds of an event, 94
odometer, 23
odometry algorithm
sampling algorithm, 136

odometry model
algorithm, 134, 135
sampling algorithm, 137

odometry motion model, 132
online SLAM problem, 309
outlier rejection
in localization, 229
in MCL, 269
in SLAM, 328

overconfidence in perception, 183

partially observable Markov decision
process, see POMDP

partial observability, 488
particle
in a particle filter, 97
in FastSLAM, 444

particle deprivation, 112
particle filter, 96
algorithm, 98
Gaussian approximation, 104
histogram approximation, 105
in localization, 250
in SLAM, 437
low variance sampling, 109
particle deprivation, 112
stratified sampling, 111

passive localization, 195
payoff function, 495
in a POMDP, 516

PBVI, 538
photogrammetry, 332
piecewise linear function, 514

Index 645

planning, 487
planning horizon, 497
point-based value iteration, 538
policy, 496
policy for action selection, 493
POMDP, 493, 513
algorithm, 527, 529
approximate algorithms, 547
numerical example, 515
pose, 20
pose of a robot, 118
position estimation, 191
position tracking, 193, 197
positive information, 313
posterior probability, 16
potential field, 11
pre-caching of a measurement model,
167, 243

precision matrix, 71
prediction, 26
in a Bayes filter, 27
in an information filter, 74
in an UKF, 223
in localization, 205
prior probability, 16
in a binary Bayes filter, 96
proactive SLAM, 339
probabilistic robotics, 4
probability density function, 14
proposal distribution
in a particle filter, 102
in FastSLAM, 446
provisional landmark list
in EKF SLAM, 328
in SEIF, 411
pruning, 220
pursuit evasion problem, 569

QMDP, 549
algorithm, 548, 549

random particles in MCL, 256

random variables, 14
range and bearing sensor, 177
range finder algorithm, 158
Rao-Blackwellized particle filter, 437
ray casting, 154
relative motion information, 133
relaxation algorithm, 390
resampling, 99
resource-adaptive algorithms, 86
robot environment, 19
robot learning problem, 9
rotational velocity, 121

sampling
from a normal distribution, 124
from a probability density function,
122

from a triangular distribution, 124
sampling algorithm
landmark model, 179, 180
model model, 141
normal distribution, 124
odometry model, 136, 137
triangular distribution, 124
velocity motion model, 122, 124

scan matching
for localization, 234

Schur complement, 359
SEIF, 385
algorithm with known
correspondence, 391, 392

correspondence test, 416
correspondence test algorithm, 418
map fusion algorithm, 425, 426

selective updating
in localization, 244
of a histogram filter, 93

semi Markov decision process, 276
sensor failure, 156, 171
sensor measurement, 22
sensor resetting in localization, 276

646 Index

sensor subsampling in localization,
244

Shepard’s interpolation, 561
Sherman/Morrison formula, 50
sigma point, 65
signature of a landmark, 177
significant place, 239
simultaneous localization and
mapping, see SLAM

single-robot localization, 196
situated agent, 12
SLAM, 309
exploration, 593

soft correspondence, 419
soft data association constraints, 415
sonar range scan, 149
sparse extended information filter, see
SEIF

sparseness
in SEIF, 387
in the full SLAM problem, 337

sparsification, 390
in SEIF, 400

Spatial Semantic hierarchy, 306
specular reflection, 150
state
augmented, 550
complete, 21, 24
dynamic, 20
hybrid, 21
incomplete, 21
kinematic, 20
of an environment, 20
of knowledge, 26
static, 20
transition probability, 25

state augmentation, 269
state transition
in a linear Gaussian, 41
nonlinear, 54

static environment, 194
static state, 20

stochastic action effects, 488
stratified sampling, 111
structure from motion, 334, 381
sufficient statistics, 181
supervised learning algorithm, 294

target distribution
in a particle filter, 100
in FastSLAM, 447

taxonomy of localization problems,
193

Taylor expansion, 57
textbooks on mobile robotics, 145
Theorem of total probability, 16
thin junction filter, 434
tiger problem, 544
topological map, 93, 239
track, 220
training example, 295
translational velocity, 121
triangular distribution, 128
algorithm for computing, 123
algorithm for sampling, 124

UKF
algorithm, 70

UKF localization
algorithm, 221

uncertainty ellipse, 82
undo a data association, 363, 369
unexplainable measurements, 157,
171

universal plan, 493
unscented Kalman filter, 65
unscented transform, 65
update, 27

value function, 499
value iteration
algorithm for an MDP, 501, 502
algorithm for a POMDP, 527, 529
for exploration, 579
in an MDP, 495

Index 647

in a POMDP, 531
variable elimination algorithm, 344
variance of a sampler, 108
variance reduction, 109
velocity motion model, 121
algorithm, 121, 123
velocity motion model algorithm, 129
volumetric map, 152

	Contents
	Preface
	Acknowledgments
	I Basics
	1 Introduction
	2 Recursive State Estimation
	3 Gaussian Filters
	4 Nonparametric Filters
	5 Robot Motion
	6 Robot Perception

	II Localization
	7 Mobile Robot Localization: Markov and Gaussian
	8 Mobile Robot Localization: Grid And Monte Carlo

	III Mapping
	9 Occupancy Grid Mapping
	10 Simultaneous Localization and Mapping
	11 The GraphSLAM Algorithm
	12 The Sparse Extended Information Filter
	13 The FastSLAM Algorithm

	IV Planning and Control
	14 Markov Decision Processes
	15 Partially Observable Markov Decision Processes
	16 Approximate POMDP Techniques
	17 Exploration

	Bibliography
	Index

